BD9528 PDF
BD9528 PDF
●Description
BD9528MUV is a 2ch switching regulator controller with high output current which can achieve low output voltage (1.0V~
5.5V) from a wide input voltage range (5.5V~28V). High efficiency for the switching regulator can be realized by utilizing an
external N-MOSFET power transistor. A new technology called H3RegTM(High speed, High efficiency, High performance)
is a Rohm proprietary control method to realize ultra high transient response against load change. SLLM (Simple Light Load
Mode) technology is also integrated to improve efficiency in light load mode, providing high efficiency over a wide load
range. For protection and ease of use, 2ch LDO (5V/100mA, 3.3V/100mA), the soft start function, variable frequency
function, short circuit protection function with timer latch, over voltage protection, and Power good function are all built in.
This switching regulator is specially designed for Main Power Supply of laptop PC.
●Features
1) 2ch H3REGTM DC/DC Converter controller
2) Adjustable Simple Light Load Mode (SLLM), Quiet Light Load Mode (QLLM) and Forced continuous Mode
3) Thermal Shut Down (TSD), Under Voltage LockOut (UVLO), Over Current Protection (OCP),
Over Voltage Protection (OVP), Short circuit protection with 0.75ms timer-latch (SCP)
4) Soft start function to minimize rush current during startup
5) Switching Frequency Variable (f=200kHz~500kHz)
6) Built-in Power good circuit
7) Built-in 2ch Linear regulator (5V/100mA,3.3V/100mA)
8) Built in reference voltage(0.7V)
9) VQFN032V5050 package
10) Built-in BOOT-Di
11) Built-in output discharge
●Applications
Laptop PC, Desktop PC, LCD-TV, Digital Components
www.rohm.com
1/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
●Operating conditions(Ta=25℃)
www.rohm.com
2/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
●Electrical characteristics
(unless otherwise noted, Ta=25℃ VIN=12V, CTL=OPEN, EN1=EN2=5V, FS1=FS2=51kΩ)
Standard Value
Parameter Symbol Unit Condition
MIN. TYP. MAX.
VIN standby current ISTB 70 150 250 μA CTL=5V, EN1=EN2=0V
VIN bias current IIN 60 130 230 μA Vo1=5V
VIN shut down mode current ISHD 6 12 18 μA CTL=0V
CTL Low Voltage VCTLL -0.3 - 0.8 V
CTL High Voltage VCTLH 2.3 - 28 V
CTL bias current ICTL -18 -12 -6 μA CTL=0V
EN Low Voltage VENL -0.3 - 0.8 V
EN High Voltage VENH 2.3 - 5.5 V
EN bias current IEN - 3 6 μA EN=3V
[5V linear regulator](VIN)
REG1 output voltage VREG1 4.90 5.00 5.10 V IREG1=1mA
Maximum current IREG1 100 - - mA IREG2=0mA
Line Regulation Reg.l1 - 90 180 mV VIN=5.5 to 25V
Load Regulation Reg.L1 - 30 50 mV IREG1=0 to 30mA
[3.3V linear regulator]
REG2 output voltage VREG2 3.27 3.30 3.33 V IREG2=1mA
Maximum current IREG2 100 - - mA IREG1=0mA
Line Regulation Reg.l2 - - 20 mV VIN=5.5 to 25V
Load Regulation Reg.L2 - - 30 mV IREG2=0 to 30mA
[5V linear regulator](Vo1)
Input threshold voltage REG1th 4.1 4.4 4.7 V Vo1: Sweep up
Input delay time TREG1 1.5 3.0 6.0 ms
Switch resistance RREG1 - 1.0 3.0 Ω
[Under Voltage lock out block]
REG1 threshold voltage REG1_UVLO 3.9 4.2 4.5 V REG1: Sweep up
Hysteresis voltage dV_UVLO 50 100 200 mV REG1, Sweep down
[Output voltage sense block]
Feedback voltage1 VFB1 0.693 0.700 0.707 V
FB1 bias current IFB1 - 0 1 μA FB1=REF
Output discharge resistance1 RDISOUT1 50 100 200 Ω
Feedback voltage2 VFB2 0.693 0.700 0.707 V
FB2 bias current IFB2 - 0 1 μA FB2=REF
Output discharge resistance2 RDISOUT2 50 100 200 Ω
www.rohm.com
3/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
www.rohm.com
4/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
Input Output
CTL EN1 EN2 REG1(5V) REG2(3.3V) DC/DC1 DC/DC2
Low Low Low OFF OFF OFF OFF
Low Low High OFF OFF OFF OFF
Low High Low OFF OFF OFF OFF
Low High High OFF OFF OFF OFF
High Low Low ON ON OFF OFF
High Low High ON ON OFF ON
High High Low ON ON ON OFF
High High High ON ON ON ON
※ CTL pin is connected to VIN pin with 1MΩ resistor(pull up) internal IC.
※ EN pin is connected to AGND pin with 1MΩ resistor(pull down) internal IC.
Adjustable
Adjustable
Vo1
Vo2
VIN
VIN
BOOT2
BOOT1
PGND1
PGND2
SW2
SW1
HG2
HG1
LG2
LG1
3 2 1 31 32 22 23 24 26 25
REG1 REG1
REG1
REG1
AGND
CL2 CL1
13
SCP2 Short through Short through SCP1
OVP2 Protection Protection OVP1
Circuit Circuit FS1 RFS1
FS2
15
10
SLLMTM SLLMTM
MCTL MCTL
Short Circuit Protect
SCP2
Block Block
SCP1
REG1
REG1
5 20
Short Circuit Protect
PGOOD2 PGOOD1
OVP2
OVP1
H3RegTM H3RegTM
Timer
Timer
Power Good
Over Voltage
Over Voltage
Timer
Timer
Block Block
Protect
Protect
TSD
EN2 EN1
UVLO
FB2 FB1
REF
11 Thermal 14
Protection
REF
REF
6 12
SS1
Over Current
SS2 19
CL2
Over Current
Protect
CL1
Protect
ILIM2 ILIM1
8 17
REF
REG1
SW2
PGND2
SW1
PGND1
Reference
MCTL
Block
5V 3.3V
Reg Reg
Vo1
EN2
4 EN1
21
7 9 30 29 28 18 16 27
MCTL1
MCTL2
VIN
Vo2
Vo1
CTL
REG1
REG2
1uF
REG2
REG1
VIN
5.5~28V
3.3V
5V
www.rohm.com
5/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
●Pin Configuration
PGOOD1
BOOT1
MCTL1
ILIM1
SW1
HG1
EN1
SS1
24 23 22 21 20 19 18 17
Input
PGND1 MCTL2 Control Mode
25 16 MCTL1 MCTL2
LG1 FS1 Low Low SLLM
26 15
Vo1 FB1 Low High QLLM
27 14
High Low Forced Continuous Mode
REG2 AGND
28 13 High High Forced Continuous Mode
FIN
REG1
29 12 REF
※MCTL pin is connected to AGND pin with 500kΩ
VIN FB2
30 11 resistor ( pull down) internal IC
LG2 FS2
31 10
PGND2 CTL
32 9
1 2 3 4 5 6 7 8
HG2
BOOT2
PGOOD2
EN2
SS2
Vo2
ILIM2
SW2
www.rohm.com
6/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
HG
10V/div HG
SW 10V/div HG
10V/div SW 10V/div
10V/div SW
10V/div
LG
5V/div LG
5V/div LG
5V/div
2us 2us 10us
Fig.1 Switching Waveform Fig.2 Switching Waveform Fig.3 Switching Waveform
(Vo=5V, PWM, Io=0A) (Vo=5V, PWM, Io=8A) (Vo=5V, QLLM, Io=0A)
HG
10V/div HG HG
SW 10V/div 10V/div
10V/div SW SW
10V/div 10V/div
LG
5V/div LG LG
10us 2us 5V/div 2us 5V/div
HG
10V/div HG HG
SW 10V/div 10V/div
10V/div SW SW
10V/div 10V/div
LG
5V/div LG LG
10us 10us 5V/div 2us 5V/div
HG HG
10V/div HG
10V/div 10V/div
SW SW
10V/div SW
10V/div 10V/div
LG LG
2us 5V/div 10us 10us LG
5V/div 5V/div
www.rohm.com
7/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
80 80 80 7V
7V 12V
60 60 12V 60
7V 12V
η[%]
21V
η[%]
η[%]
40 21V 40 21V
40
20 20 20
0 0 0
1 10 100 1000 10000 1 10 100 1000 10000 1 10 100 1000 10000
Io[mA] Io[mA] Io[mA]
η[%]
12V
21V 21V
40 40 40
21V
20 20 20
0 0 0
1 10 100 1000 10000 1 10 100 1000 10000 1 10 100 1000 10000
Io[mA] Io[mA] Io[mA]
7V 7V
80 7V 80 80
η[%]
η[%]
20 20 20
0 0 0
1 10 100 1000 10000 1 10 100 1000 10000 1 10 100 1000 10000
Io[mA] Io[mA] Io[mA]
IL
IL 5A/div
5A/div IL Io
Io 5A/div 5A/div
5A/div Io
5A/div
Fig.22 Transient Response Fig.23 Transient Response Fig.24 Transient Response
(Vo=5V, PWM, Io=0→8A) (Vo=5V, PWM, Io=8→0A) (Vo=3.3V, PWM, Io=0→8A)
www.rohm.com
8/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
Vo Vo
100mV/div Vo
100mV/div 100mV/div
IL
IL 5A/div
Io IL
5A/div 5A/div
Io 5A/div
Io
5A/div 5A/div
Fig.25 Transient Response Fig.26 Transient Response Fig.27 Transient Response
(Vo=3.3V, PWM, Io=8→0A) (Vo=1V, PWM, Io=0→8A) (Vo=1V, PWM, Io=8→0A)
Vo Vo Vo
50mV/div 50mV/div 50mV/div
Vo Vo
Vo 50mV/div 50mV/div
50mV/div
Vo Vo
50mV/div Vo
50mV/div 50mV/div
www.rohm.com
9/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
Vo Vo
50mV/div Vo
50mV/div 50mV/div
2V/div
frequency [kHz]
frequency [kHz]
400 400
EN2 VIN=7.5V VIN=7.5V
VIN=12V VIN=12V
5V/div VIN=18V VIN=18V
350 350
PGOOD2
2V/div
300 300
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
IOUT [A] IOUT [A]
5.000
600
VOUT=5V VOUT=5V 4.500
2 VIN=7.5V(-5℃)
VOUT=3.3V 500 VOUT=3.3V 4.000 VIN=21V(-5℃)
VIN=7.5V(75℃)
frequency [kHz]
ONTIME [usec]
3.500
VIN=21V(75℃)
1.5
400
VOUT [V]
3.000
2.500
300
1
2.000
200 1.500
0.5 1.000
100
0.500
0 0 0.000
0 2 4 6 8 10 12 14 16
0 50 100 150 0 50 100 150
RFS [kΩ] RFS [kΩ] IOUT [A]
www.rohm.com
10/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
3.000
5 3.3
VIN=7.5V(-5℃)
4.8 3.1
1.500
4.7 3
1.000
2.9
4.6
0.500
2.8
4.5
0.000 0 50 100 150 200 250
0 2 4 6 8 10 12 14 16
0 50 100 150 200 250
IOUT [mA]
IOUT [A] IOUT [mA]
www.rohm.com
11/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
●Pin Descriptions
・VIN (30 pin)
This is the main power supply pin. The input supply voltage range is 5.5V to 25V. The duty cycle of BD9528MUV is
determined by input voltage and control output voltage. Therefore, when VIN voltage fluctuated, the output voltage also
becomes unstable. Since VIN line is also the input voltage of switching regulator, stability depends on the impedance of the
voltage supply. It is recommended to establish bypass capacitor and CR filter suitable for the actual application.
・CTL (9 pin)
When CTL pin voltage is at least 2.3V, the status of the linear regulator output becomes active (REG1=5V, REG2=3.3V).
Conversely, the status switches off when CTL pin voltage goes lower than 0.8V. The switching regulator doesn’t become
active when the status of CTL pin is low, if the status of EN pin is high.
(※CTL pin is connected to VIN pin with 1MΩ resistor(pull up) internal IC)
・EN1, 2 (21 pin, 4 pin)
When EN pin voltage is at least 2.3V, the status of the switching regulator becomes active. Conversely, the status switches
off when EN pin voltage goes lower than 0.8V.
(※EN pin is connected to AGND pin with 1MΩ resistor(pull down) internal IC)
www.rohm.com
12/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
www.rohm.com
13/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
●Explanation of Operation
3
The BD9528MUV is a 2ch synchronous buck regulator controller incorporating ROHM’s proprietary H REG CONTROLLA
control system. Because controlling of output voltage by a comparator, high response is realized with not relying on the
switching frequency. And, when VOUT drops due to a rapid load change, the system quickly restores VOUT by extending
the TON time interval. Thus, it serves to improve the regulator’s transient response. Activating the Light Load Mode will also
exercise Simple Light Load Mode (SLLM) control when the load is light, to further increase efficiency.
VIN
H3RegTM control
Comparator for
output voltage Vout/Vin
control Circuit HG
FB
A VOU
SW T
B Driver
Internal LG
reference Transient
voltage Circuit
REF
(Normal operation)
FB When FB falls to a reference voltage (REF), the drop is
detected, activating the H3REG CONTROLLA
REF
system.<Route A>
( tON= VOUT × 1 [sec]・・・(1) )
HG
VIN f
HG output is determined by the formula above.
LG After the status of HG is OFF, LG go on outputting until
output voltage become FB=REF.
H3RegTM
HG
tOFF1 t OFF2 t OFF3 tOFF4=tOFF3 tOFF4=t OFF3
LG
FB
REF FB=REF
Output voltage drops
If VIN voltage drops because of the battery voltage fall, ontime tON and offtime tOFF is determined by the following formula:
tON=VOUT/VIN×I/f and tOFF=(VIN-VOUT)/VIN×f so that tON lengthen and tOFF shorten to keep output voltage constant. However,
if VIN still drops and tOFF equals to tminoff (tminoff:Minimum OFF time, regulated inside IC) , because tOFF cannot shorten any
3 TM
more, as a result output voltage drops. In H Reg system, lengthening tON time than regulated tON (lengthen tON time until FB>REF)
www.rohm.com
14/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
enables to operate stable not to drop the output voltage even if VIN turns to be low. With the reason above, it is suitable for
2-cell battery.
0A
(QLLM) FB
REF In QLLM, when the status of LG is OFF and the coil
current is within 0A (it flows to SW from VOUT.), QLLM
HG function is operated to prevent output next HG.
Then, FB falls below the output programmed voltage
within the programmed time (typ=40μs), the status of HG
LG is ON. In case FB doesn’t fall in the programmed time, the
status of LG is ON forcedly and VOUT falls. As a result,
he status of next HG is ON.
0A
MCTL1 MCTL2 Control mode Running The BD9528MUV operates in PWM mode until SS pin
L L SLLM PWM reaches cramp voltage (2.5V), regardless of the control
L H QLLM PWM mode setting, in order to operate stable during the
operation. .
H X PWM PWM
3 TM
*Attention: H Reg CONTROLLA monitors the supplying current from
capacitor to load, using the ESR of output capacitor, and realize
the rapid response. Bypass capacitor used at each load (Ex.
Ceramic capacitor) exercises the effect with connecting to each COUT Load
load side. Do not put a ceramic capacitor on COUT side of power
supply.
● Timing Chart
• Soft Start Function Soft start is exercised with the EN pin set high. Current
control takes effect at startup, enabling a moderate
EN
output voltage “ramping start.” Soft start timing and
TSS incoming current are calculated with formulas (2) and
(3) below.
SS Soft start time
[sec] ・・・(2)
REF×Css
Tss=
2.3μA(typ)
VOUT
Incoming current
www.rohm.com
15/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
REG1 REG2 FB
VIN
CTL Inner BG
reference
circuit SCP circuit
Delay SCP
REF
SCP_REF 1ms(typ.)
SCP
PWM
SS (Switching control signal)
CTL
(VIN)
REG1
REG2
REG1 UVLO cancellation
REG1, REG2
BG
0.49V(typ)
SCP_REF
(REF start-up time<SS start-up time)
SCP function masked SCP mask cancellation
REF FB starts up as SS reference
SS
FB
SS
FB
(REF start-up time>SS start-up time)
www.rohm.com
16/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
●Output Discharge
www.rohm.com
17/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
EN / UVLO
FB REF×1.2
When output rise to or above REF×1.2 (typ), output
over voltage protection is exercised, and low side FET
goes up maximum for reducing output.(LG=High,
HG HG=Low).When output falls, output voltage can be
restored., and go back to the normal operation.
LG
Switching
・Over current protection circuit
IL
www.rohm.com
18/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
※Passing a current larger than the inductor’s rated current will cause magnetic saturation in the inductor and decrease
system efficiency. In selecting the inductor, be sure to allow enough margin to assure that peak current does not exceed the
inductor rated current value.
※To minimize possible inductor damage and maximize efficiency, choose a inductor with a low (DCR, ACR) resistance.
Please give due consideration to the conditions in formula (8) below for output capacity, bear in mind that output rise time
must be established within the soft start time frame. Capacitor for bypass capacitor is connected to Load side which connect
to output in output capacitor capacity (CEXT, figure above). Please set the soft start time or over current detecting value,
regarding these capacities.
Tss×(Limit-IOUT) Tss: Soft start time
Co≦ ・・・(8)
VOUT Limit: Over current detection
VIN The input capacitor selected must have low enough ESR resistance to fully
support large ripple output, in order to prevent extreme over current. The
Cin
formula for ripple current IRMS is given in (9) below.
VOUT √VIN(VIN-VOUT)
L IRMS=IOUT× [A]・・・(9)
Co VIN
IOUT
Where VIN=2×VOUT, IRMS=
2
Input Capacitor
A low ESR capacitor is recommended to reduce ESR loss and maximize efficiency.
www.rohm.com
19/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
4. MOSFET Selection
MOSFET may cause the loss as below, so please select proper FET for each.
VIN <Loss on the main MOSFET>
Pmain=PRON+PGATE+PTRAN
main switch
2
VOUT VIN ×Crss×IOUT×f
= ×RON×IOUT2+Ciss×f×VDD+ ・・・(10)
VOUT VIN IDRIVE
L
(Ron: On-resistance of FET; Ciss: FET gate capacitance;
Co f: Switching frequency Crss: FET inverse transfer function;
IDRIVE: Gate peak current)
synchronous switch
<Loss on the synchronous MOSFET>
Psyn=PRON+PGATE
VIN-VOUT
= ×RON×IOUT2+Ciss×f×VDD ・・・(11)
VIN
<Output Voltage>
(R1 R2) 1 (⊿VOUT:Output ripple voltage)
V OUT REF(0.7V) ⊿V OUT (⊿Iripple: ripple current of coil, ESR: ESR of output capacitor)
R2 2
⊿V OUT ⊿I Ripple ESR (L:inductance[H] f:switching frequency[Hz])
V OUT
⊿I Ripple (V IN V OUT )
(L V IN f)
Ex. VIN=20V,VOUT=5V,f=300kHz,L=2.5uH,ESR=20mΩ,R1=56KΩ,R2=9.1kΩ
-6 3
⊿Iripple=(20V-5V)×5V/(2.5×10 H×20V×300×10 Hz)=5[A]
-3
⊿VOUT=5A×20×10 Ω=0.1[V]
VOUT=(51kΩ+9.1kΩ)/9.1kΩ+1/2×0.1V=5.057[V]
VIN VIN
H3REG R Q SLLM
Output voltage
CONTROLLA Driver
S
SLLM Circuit
FB
VIN
R1
R2
www.rohm.com
20/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
VIN
PGND 10×103
RILIM ILIM_REF = [A]・・・(12)
RILIM[KΩ]×RON[mΩ]
3.5
2.5 1
VIN=7V VIN=7V
3 0.9
VIN=12V VIN=12V VIN=7V
2 0.8
VIN=21V VIN=21V
2.5 VIN=12V
0.7
VIN=21V
ontime[us]
ontime[us]
0.6
ontime[us]
2 1.5
0.5
1.5
1 0.4
1 0.3
0.5 0.2
0.5
0.1
0 0 0
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
RFS[kΩ] RFS[kΩ] RFS[kΩ]
www.rohm.com
21/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
(Ronh : ON resistance of high side MOSFET, Ronl : ON resistance of low side MOSFET,
ESR : Output capacitor equivalent cascade resistance)
However, real-life considerations (such as parasitic resistance element of Layout pattern) must be factored in as they affect
the loss, please confirm in reality by the instrument.
www.rohm.com
22/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
BOOT BOOT
BOOT
HG
HG
SW
SW
REG1
12pin (REF) 11, 14pin (FB2, FB1) 10, 15pin (FS2, FS1)
REG1
16, 18pin (MCTL2, MCTL1) 9pin (CTL) 26, 31pin (LG1, LG2)
VIN
REG1
www.rohm.com
23/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
REG1
VIN VIN
www.rohm.com
24/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
12
REF Vo1
27
C4 VIN VIN
19
SS1 R12
3
BOOT2
6 SS2 C8
R13 C11 C12
2 Q4
C5 C6 HG2 VO2
SW2
L2
1
17
ILIM1 SW2
C18 C19 C20 C21 C22
R5 R14
Q3 R19 C25
31 D2
8
LG2
ILIM2 32
PGND2
R6
11
FB2
15 C26
FS1 R20
R7
7
Vo2 REG1 PGOOD1
10
FS2
R15
R8
MCTL1 PGOOD1 20
REG1 PGOOD2
18
MCTL1
R28 R16
5
PGOOD2
MCTL2
16
MCTL2 AGND
R27
13
DESIGNATION RATING PART No. COMPANY DESIGNATION RATING PART No. COMPANY
R1 0Ω - - C7 0.47uF(10V) GRM188B11A474KD MURATA
R2 - - - C8 0.47uF(10V) GRM188B11A474KD MURATA
R3 0Ω - - C9 10uF(25V) CM32XR7106M25A KYOCERA
R4 0Ω - - C10 - - -
R5 68kΩ MCR03 ROHM C11 10uF(25V) CM32XR7106M25A KYOCERA
R6 68kΩ MCR03 ROHM C12 - - -
R7 75kΩ MCR03 ROHM C13 330uF 6TPE330MI SANYO
R8 75kΩ MCR03 ROHM C14 - - -
R9 0Ω - - C15 - - -
R10 0Ω - - C16 - - -
R11 0Ω - - C17 - - -
R12 0Ω - - C18 330uF 6TPE330MI SANYO
R13 0Ω - - C19 - - -
R14 0Ω - - C20 - - -
R15 100kΩ MCR03 ROHM C21 - - -
R16 100kΩ MCR03 ROHM C22 - - -
R17 91kΩ MCR03 ROHM C23 - - -
R18 15kΩ MCR03 ROHM C24 - - -
R19 30kΩ MCR03 ROHM C25 - - -
R20 8.2kΩ MCR03 ROHM C26 - - -
R27 0Ω - - D1 Diode RSX501L-20 ROHM
R28 0Ω - - D2 Diode RSX501L-20 ROHM
C1 10uF(25V) CM32X7R106M25A KYOCERA L1 2.5uH CDEP105NP-2R5MC-32 Sumida
C2 10uF(6.3V) GRM21BB10J106KD MURATA L2 2.5uH CDEP105NP-2R5MC-32 Sumida
C3 10uF(6.3V) GRM21BB10J106KD MURATA Q1 FET uPA2709 NEC
C4 0.1uF(6.3V) GRM21BB10J104KD MURATA Q2 FET uPA2709 NEC
C5 2200pF(50V) GRM188B11H102KD MURATA Q3 FET uPA2709 NEC
C6 2200pF(50V) GRM188B11H102KD MURATA Q4 FET uPA2709 NEC
U1 - BD9528MUV ROHM
www.rohm.com
25/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
●Evaluation Board Circuit for Low input voltage(Vo1=5V/8A f1=300kHz Vo2=3.3V/8A f2=300kHz)
VIN VIN VIN
6V~28V
BD9528MUV
R1
30
VIN
VIN CTL R9
C1 22
CTL R2 BOOT1 C9 C10
9
CTL R10
C7
REG1 EN1 23 Q2
HG1 SW1 VO1
EN1 R3 L1
21 24
EN1 SW1
REG1 EN2 C13 C14 C15 C16 C17
D1
EN2 R4 C23
4 R17
EN2 26
R11 Q1
REG1
LG1
29
5V REG1
C2 25
PGND1
REG2
3.3V 28 14
REG2 FB1 C24
C3
R18
12
REF Vo1
27
C4 VIN VIN
19
SS1 R12
3
BOOT2
6 SS2 C8
R13 C11 C12
2 Q4
C5 C6 HG2 VO2
SW2
L2
1
17
ILIM1 SW2
C18 C19 C20 C21 C22
R5 R14
Q3 R19 C25
31 D2
8
LG2
ILIM2 32
PGND2
R6
11
FB2
15 C26
FS1 R20
R7
7
Vo2 REG1 PGOOD1
10
FS2
R15
R8
MCTL1 PGOOD1 20
REG1 PGOOD2
18
MCTL1
R28 R16
5
PGOOD2
MCTL2
16
MCTL2 AGND
R27
13
DESIGNATION RATING PART No. COMPANY DESIGNATION RATING PART No. COMPANY
R1 0Ω - - C7 0.47uF(10V) GRM188B11A474KD MURATA
R2 - - - C8 0.47uF(10V) GRM188B11A474KD MURATA
R3 0Ω - - C9 10uF(25V) CM32XR7106M25A KYOCERA
R4 0Ω - - C10 - - -
R5 68kΩ MCR03 ROHM C11 10uF(25V) CM32XR7106M25A KYOCERA
R6 68kΩ MCR03 ROHM C12 - - -
R7 75kΩ MCR03 ROHM C13 330uF 6TPB330ML SANYO
R8 75kΩ MCR03 ROHM C14 - - -
R9 0Ω - - C15 - - -
R10 10Ω - - C16 - - -
R11 10Ω - - C17 - - -
R12 0Ω - - C18 330uF 6TPE330MI SANYO
R13 10Ω - - C19 - - -
R14 10Ω - - C20 - - -
R15 100kΩ MCR03 ROHM C21 - - -
R16 100kΩ MCR03 ROHM C22 - - -
R17 56kΩ MCR03 ROHM C23 10pF(50V) - -
R18 9.1kΩ MCR03 ROHM C24 - - -
R19 30kΩ MCR03 ROHM C25 - - -
R20 8.2kΩ MCR03 ROHM C26 - - -
R27 0Ω - - D1 Diode RSX501L-20 ROHM
R28 0Ω - - D2 Diode RSX501L-20 ROHM
C1 10uF(25V) CM32X7R106M25A KYOCERA L1 2.5uH CDEP105NP-2R5MC-32 Sumida
C2 10uF(6.3V) GRM21BB10J106KD MURATA L2 2.5uH CDEP105NP-2R5MC-32 Sumida
C3 10uF(6.3V) GRM21BB10J106KD MURATA Q1 FET uPA2709 NEC
C4 0.1uF(6.3V) GRM21BB10J104KD MURATA Q2 FET uPA2709 NEC
C5 2200pF(50V) GRM188B11H102KD MURATA Q3 FET uPA2709 NEC
C6 2200pF(50V) GRM188B11H102KD MURATA Q4 FET uPA2709 NEC
U1 - BD9528MUV ROHM
www.rohm.com
26/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
If using only 1ch DC/DC and 2ch pin is set to be off at all times, please manage the unused pin as diagram below.
12
REF Vo1
27
C4
19
SS1
3
BOOT2
6 SS2
2
C5 HG2
1
17
ILIM1 SW2
R5
8
LG2
ILIM2 32
PGND2
10
FB2
15
FS1
R7
7
Vo2 REG1 PGOOD1
10
FS2
R15
MCTL1 PGOOD1 20
18
MCTL1
R28
5
PGOOD2
MCTL2
16
MCTL2 AGND
R27
13
www.rohm.com
27/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
L Vo1
Co
⑥
③ ⑤
L-FET
(CH1) ‘Silent’GND
C
C
R
H-FET
④
Cin
BOOT1
SS1
SW1
HG1
EN1
PGOOD1
ILMI1
MCTL1
PGND1
LG1
MCTL2
FS1
R
Vo1 FB1 R
VIN ①
REG2
REG1
VIN
AGND
REF
FB2
R
R
C
LG2 FS2
PGOOD2
BOOT2
PGND2
ILIM2
CTL
Cin
SW2
HG2
EN2
SS2
Vo2
R
H-FET R
②
C
C
(CH2)
High current GND
⑤
‘Silent’GND
L-FET
(CH2)
③
⑥
Co
L Vo2
①Because high pulse current rush into power loop, consisted of input capacitor Cin, Output inductor L, and Output capacitor
Co, this part layout should be built, including GND pattern, at parts side (upper side). Also ,please avoid to draw via formation in
power loop line. (The reason is that it will be a factor of noise because via oneself holds some nH parasitic inductance)
②FB pin has comparatively high impedance, so floating capacity should be minimum as possible. And feedback wiring from
output should be taken properly, and put on shield, not going through around L (because of magnetic). Please be careful in
drawing)
③Trace from SW node pin to inductor should be cut short . And both inductor element pattern should be kept away. (Closer
wiring has SW node noise influence Vo by parasitic capacity between wiring ). This layout example shows that SW node is
outside, but if the application board will be like that , SW node should be shielding, and consider the influence to other circuit.
④Input capacitor Cin should be placed cloase to IC with low inductance and low impedance . If that is difficult, please place a
capacitor for high frequency removal with PKG size small like 0.1uF (ESL small).
⑤2 layer and 3 layer are plain GND, so connect from parts side GND to plain GND by low impedance with many via as possible.
Inner GND is only for shielding, so that not to form loop for high current .
⑥Please take GND pattern space widely, and design layout to be able to increase radiation efficiency.
⑦FS pin nad ILIM pin has high impedance. External resistor should be connected to “Silent GND”.
www.rohm.com
28/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
Input current A
Input current B
Vin
SW pin voltage
DC/DC Inductor current
H3Reg Vout
controller
Vin
Current leveled Pulsed current flows by
current
current
Cin
t t
Input current A Input current B
Noise output !!
This part is shortened. The noise has decreased
by LC filter
L
SW Vout
Inductor ripple current
Voltage
current
Vin
Cout
Output current
0V t t
SW pin voltage Inductor current
www.rohm.com
29/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
L
SW Vout
FB Cout
www.rohm.com
30/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
2. In some modes of operation, power supply voltage and pin voltage are reversed, giving rise to possible internal circuit
damage. For example, when the external capacitor is charged, the electric charge can cause a VCC short circuit to the
GND. In order to avoid these problems, inserting a VCC series countercurrent prevention diode or bypass diode between
the various pins and the VCC is recommended.
Bypass diode
VCC
Pin
4.GND potential
Make sure the potential for the GND pin is always kept lower than the potentials of all other pins, regardless of the operating
mode.
5. Thermal design
In order to build sufficient margin into the thermal design, give proper consideration to the allowable loss (Power Dissipation)
in actual operation.
www.rohm.com
31/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
[mW]
1000
600
IC Only θj-a=328.9℃/W
400
380mW
200
www.rohm.com
32/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
BD9528MUV Technical Note
B D 9 5 2 8 M U V - E 2
VQFN032V5050
<Tape and Reel information>
5.0±0.1
Tape Embossed carrier tape
5.0 ± 0.1
Quantity 2500pcs
E2
Direction
1PIN MARK The direction is the 1pin of product is at the upper left when you hold
of feed ( reel on the left hand and you pull out the tape on the right hand )
1.0MAX
S
(0.22)
+0.03
0.02 -0.02
0.08 S
3.4±0.1
C0.2
1 8
32 9
0.4 ± 0.1
3.4 ± 0.1
25 16
24 17
0.75
+0.05 1pin Direction of feed
0.5 0.25 -0.04
(Unit : mm) Reel ∗ Order quantity needs to be multiple of the minimum quantity.
www.rohm.com
33/33 2010.03 - Rev.A
© 2010 ROHM Co., Ltd. All rights reserved.
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
The Products specified in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, office-automation equipment, commu-
nication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, fire or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-
controller or other safety device). ROHM shall bear no responsibility in any way for use of any
of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
R1010A