0% found this document useful (0 votes)
23 views89 pages

Variable Valve

Uploaded by

chunguang.wang
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
23 views89 pages

Variable Valve

Uploaded by

chunguang.wang
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 89

2011 Automobile Maintenance

Advanced Course for the


Industrial Technical
Instructors

--
Class No. : - - - - - - -

Name: tkn ~V\~~ \v-\e'(\C\V\n

Instructor : _~~La~i,~Zu~ei..;..;.-ha.;;;;;.;.;....i_~
CLOSED

~
INTAKE VALVE CLOSED ':~j>----l--~-;:'EXHAUST VALVE OPEN
F~D( '

Fig 1 Valve timing . (Toyota)

1
28') 28°
BI)C

\/T·C ' .'

···,fti minti;" (S~tl!~9n. .. . . .


'''.

,. ,<-"-,. ';;;:'\-~(-<'> " , ......


rTll
LnJ
I -- AIR FLOW fv'lETER
VALVE TIMING CONTROL -11
SOLENOID VALVE
11 i
!
,

Ml
III
[J
i
i
I
I.C \I .
... - CAtv1SHAFT POSITION SENSOR
- - ENGINE COOLNH TEf'v1P. SHlSOR
- THROTTLE POSITION SEr~SOR
. - -- VEHICLE SPEED SENSOR

CONTROLLER ~_J
'- I
······f-n---
II ;I 1
I i
1 .
~~

INTAKE CAMSHAFT

v.C INTAKE VALVE TORQUE


ENGINE (GNDmON SOLENOID

COGLANT 1E]>1P,
70 C OR HIGHER
RPr-., BET\NEEN \) " ADVANCE YES !l
:>

1500 AND S1DO RPfvj

I
HEf·\;'Y '~c;., o
,-
Cll- f NORt<1p,L r~ o

OVERLAP
NO OVERLAP '- I ll'
11)' .
, ,: "- '
~ ~' ~~''-
~
"' (~J( t.o

t I F
TORQUE

RPM
intake exhaust
Advance Lock pi n

(advance)

housing
Oil control valve
I ()( ' \ ' )

Timing chain

Retard chamber

operation of the continuous valve timing control system(C-VTCS). (Nissan)

Ii
I
I
VVT PHASING
EXHAUST VALVE 1,- -----1,
,
0
1

\ r\
\
rI/j\\'v
r f\\ INTAKE VALVE
VALVE UFT

'--__-""'-/
. /
I. /V /
____.......t£".'-L---'J
/ \\ '\ \
\ ____.
I \
,,~
\ \
'~
CRANK ANGLE

Fig 7 Variation of the valve timing. (Toyota)

MASS AIR FLOW METER l--~~-:,,:,:r::·==:===:-::::==~

CAfv1SHAFT POSITION SENSOR ; CAr·'lSHAFT Tlf\1ING


OIL CONTR.OL VALVE
THROTTLE POsmorJ SENSOR ._----;-
,
: OUT,' cmHROL
COOLANT TEf"1P. SENSOR

CRANKSHAFT
--- ......... -:::...:.... -:::.:...:.:..:..:

VEHICLE SPEED SENSOR !mm.;

Fig 8 A block diagram of a VVT-i system control. (Toyota)

6
VVT- j CONTROLLER
_____ ___ .~ M.*~ _____ • ___ ~'M _ _ _ • _ _ __ • __ )

1 1
I I
J

VVT-i SENSOR r - - ' - - --.---,

CAMSHAFT TIMING
OIL CONTROL VALVE

CRANKSHAFT
PosmON
SENSOR

Fi!J !} Wiring diagram for a WT-i system. (Toyota)

.!!"'-
"-~~'~':-

LOCK PIN INTAKE CAMSHAFT

VANE(FIXED ON
INTAKE CArvlSHl\FT)
HOUSING
LOCK PIN

OIL PRESSURE

AT A STOP IN OPERATION

Fig 10 Construction of a WT-i controilier (or actuator). (Toyota)

7
ADVANCE SIGNAL

DUlY RATIO

IN OUT CAMSHAFT TIMING


FLUID PRESSURE OIL CONTROL VALVE

Fig 11 Advance operation of a WT-i controller. (Toyota)

HOLD SIGNAL

DUlY RAT10

CAMSHAFT TIMING
OIL CONTROL VALVE

Fig 12 Hold operation of a WT-i controller. (Toyota)


8
DELAY SIGNAL
IN

-++----, VANE DUlY RATIO

OUT

IN OUT CAMSHAFT TIf\lIN


OIL CONTROL VAl

Fig 13 Retard operation of a WT-i controller. (Toyota)

IDLE
:IIN I STABLE IDLE RPMl
BEITER FU EL ECONOMY

LIGHT LOAD ENSURED ENGINE STABILITY


i

MEDIUr-1 LOAD i '''"""-~~--~-r-''-'"' BElTER FUEL ECON Otv1Y


IMPROVED CONTROL
LOW/MID SPEED , i

HEAVY LOAD i
,-_.L._~~_'
i IMPROVED TORQUE/OUTPUT
l-,------~-!::::::::::::::!: -----'-y-----'---------{
HIGH SPEED
HEAVY LOAD I IMPROVED OUTPUT

LOW TEMPERATURE STABLE FAST IDLE I


BETTER FUEL ECONOMY
STARTING/STOPPING IMPROVED STARTING
I

Fig 14 VVT-i operating conditions and advantages. (Toyota)

9
o
VVT- j ADVANCED GENERAL VALVE TIMING

VOLUMEfRIC EFFICIENCY

Fig 15 Volumetric efficiency_


"',1 -1 1'

\ !I : \ ' ,: \ :i ·1

(1 o o (l
VALVES
EXHAUST x x x X
lNTAKE fMEDIUM . IMEDlUlJI
SMALL ~.,1;)!EfW SMALL 1 VERY SMAU
LOW ,.
SPEED EXHAUSjf 2,.$MALL

LIFT 1'lEOlUf,1 INTAKE


SPEED '
EXHAUST

HIGH . INTIl.KE 2 BIG,


SPEED EXHfl.UST
:

COOIJ.,NT Ln. Med. Hi


1(" 1
TH1P. r>'1ed. Ili.
:10 '~~utj l ;d "11 Lo. Iv1ed. ~{:( lO{ pn:

CONDITIONS
DEPENDING ON !'.1ea , Hi. {,:Ii''' , 1' ,1,
tl;ANIFOLD PRESSURE
VEHICLE AI 1i;L;nhr :
SPEED

LOAD
DEPENDING ON
DEPENDING ON MANIFOLD PRESSURE j THROTTLE VALVE
( IVle \'. ( ' III D ( 1\' i(
vX .I',

r- '-N\ { ( l )I(lr~t
MID CAt>1(HIGH SPEED)
PRlj\1ARY CAM(LOW SPEE D) SECOND,l\RY CA~"1(LO\lV SPEED)
f"",~..:L"- '1 ,J..;....
r~'! I-I (
Al e • ~B i
lJ-,~
SECONDARY ROCKER ARM

STOPPER PISTON

SYNCHRONIZING PISTON B
" SYNCHRONIZING PISTON A
TIf\lING PISTON
~...",--.;~ INTAKE VALVE

CAMSHAFT

PRIMARY ROCKER ARM

PRIHARY CAM SECONDARY CAM

PRHv1ARY
ROCKER {l,R!\-1 SECONDARY
i ~" ROCKER ARt"l
. . > '-.,. '"
" f"
.. " .'

THv1ING PISTON /

SYNCHRONIZING PISTON A STOPPER PISTON

SYNCHRONIZING PISTON R
MID ROCKER ARM

OIL PRESSURE

PRESSURE
SWITCH SOLENOID

RPM
l~~=~, ;
L _ _ ••' 1
; , (.•.. _.. ·····-'···"~··~ .."i
f~"--1 LOAD
i
, !
~-"-4

,
~.J t
,
-'-"'""''''''-..... ".

J
: r-~·~~·~ .......

OIL PRESSURE [- . I-L.C~~T TEfV1P.


!
.----,
HICLE SPEED
VALVE LIFT
: LOW HIGH I.•
I
_________1 j ~HAuST'I~~ I
I \

EXHAUSTINTAKE EXHAUST IN~AKE _~


i ~6w'-:~~~~!O __l-=-_·~~~-"" '.-"-.-'l--.-
UDLING S~ABILITY ~ _~J,, _ .
. --:~-

. __ ~__
. ___._. _._.. _~
1

- - \!TEe ENGINE
.- - , -- 4-VALVE ENGINE
-- - -- - - 2-VALVE ENGINE
LOW RPM "'1" HIGH RPM

TORQUE
I RACING ENGIN E DOHC VTEC ENGINE STANDARD ENGINE ,
r-----'--'
,
I

, LOW HIGH LOW


II VALVE LIFT
~

i
!,/I?-~
"\'--.'=-~~ I~~'~-

' \I{"\
\~ ',/1.,
-- ,r----

-.- '1\
L..:<! ' '\-'\.
I EXHAUST INTAKE EXHAUST INTAKE EXHAUST INTAKE
, - ------1---
MAX. POWER _____ '_ _ ~~ ___ _ _ ~ __~ _____._._ _ _-+-_
1 _ _ _ __0 ____
1-
._-_._----
LOW RPM TORQUE I • •
l IDLING STABILITY J. ____ - -
--~---.---+---------'.=--_ .-

Fig 24 Three types of engines. (Honda)

LOVv RPf\1..... ~ HIGH RPr"l

;.__ ........ __.......-....................... _.........._...... _-_ ........_


.. .
VARIABLE VALVE TIMING
AND LIFT ENGINE

TORQUE

\
\ STANDARD ENGINE
\

A RPM
SWITCH OVER POINT

Fig 25 Torque of a DOHC VTEC engine. (Honda)

15
(1) CAHSHAFT
(2) CAf'1 LOBE FOR LOW RPl'l
(3) CAr", LOBE FOR HIGH RPH
(4) PRH"l,A.RY ROCKER ARf¥!
(5) t-1ID ROCKER ARt"1
(6) SECONDARY ROCKER ARf'1
(7) HYDRAULIC PISTON A
(8) HYDRA.UUC PISTON B
(9) STOPPER PIN
(10) LOST-MOTION SPRING
(11) EXHAUST VALVE
(12) INTAKE VALVE

'Fig 26 Construction of a DOHC VTEC engine. (Honda)

Fig 27 Construction of a DOHC VTEC engine. (Honda)


16
Cam lobe for
low rpm

Retum spring
Hydrauli . A Stopper pin
Hydraulic piston B
Primary rocker arm
Secondary rocker ann Mid rocker ann

Fig 28 Operation at low speed. (Honda)

Cam lobe for high


rpm

01 pressure Stopper pin

Hydraulic piston A Hydraulic piston B


Fig 29 Operation at high speed. (Honda)

17
LOST ['10110N ,4SSEMBLY STOPPER PISTON

PISTO N C

PISTON B
SECONDARY ROCKER ,lI.R[.1
PISTON 1\
.....:...:c,c·r _ __

MID ROCKER AR!v1


PRIf"iARY ROCKER AR[vJ

SWIRL
S E cOr~DARY PRIHARY
?OCKER ARr-~ ROCKER APJ-1
, OIL PRESSURE " : ", OIL PRESSURE
• ~ <"",

:<~j~t'";'~
.::\.,,, ;,{
,.,.. . .: . . .... PISTON C
' , ," .,.,.,' ~'"
-,...... " ".

PISTON B
MID ROCKER ARJYl . "::, ... :..

STOP CAM LOW SPEED CMII LOW SPEED CArv! HIGH SPEED e Mil

t ...l'---'H-:-k-;I
~ i !;,.tr

SECONDARY ROCKER ARM


RPM
MID ROCKER AR~1
LOAD
I ! VEHICLE SPEED
I , PRIfV1ARY
f-i COOLANT TEr-1P ROCKER P,RH
'--,---,--'j "---

SOLENOID
Fig 34 Two types of engines. (Mitsubishi)

20
In~cylinder direct injection range
14
In-cylinder direct injection

4G69 engine
(Port injection)

/ Port injection
o Ji{ 0
o 0 o
o
8
1550 1600 1650 1700
Vehicle curb weight(kg)

Fig 35 10-15 mode fuel consumption . (Mitsubishi)

Item Exhaust f:missinfls


Power
(cold s13rtingJ
improved corr,bustion stability tJy means
,-If re0UC2(J iPlornai [CR
:';;;JrC\'Cd coml)us!!orl ,;ta bi ): ty by mean<,
Low- oJ! bilGS18G Ir;-cyimder flGWS

:Ti}lG\:'t~C ··/QllET18UtC c-friclency Ly i:'IEtn"!.::


(A i f~~juCP() ~:pith.j[ k

Exhaust intake

./& - 1i

Low-speed mode
.
-----i : - Small valve overlap ----+i
High-speed mode
;... - Large valve overlap

Fig 36 Aims of MIVEC system. (Mitsubish.)


21
~ -------------------------------------------------------------------------------------,

Exhausi rocker Arm spring holder

MEKliurn-iift cam Lubricatirlg


oil

High..Jjft cam
Low-iiftcam

c.orrespoooing to rocker shaft


high-rift cam

~:-:7-~""""C-::C'7:::-':""t:-:'":-rl'r'7:~~4 y-" --~ Oil pressure


(lubricating Gi!)
Piston
Spring

Rocker arm Rocker ann


r.orresponciing to correspondfng to
medium-lift cam low-lift cam

Fig 37 Structure of MIVEC system. (Mitsubishi)

Fig 38 Structure of MIVEEC system. (Mitsubishi)


22
hoWer
ILow-speed mode!

A·A
IHigh-speed mode I

Fig 39 Operation of MIVEC system. (Mitsubishi)

Fig 40 Operation of MIVEC system. (Mitsubishi)

23
VVT -i actuator

"',
" Rocker arm
", Rocker arm
Valve spring

Intake valve
Valve overlap

Rocker arm Needle roller

" ',~~f)
Rocker arm pin

Low and medium cam


High speed cam High speed cam

, \
Needle } 1

roller \. <~ j
'-'........
rod '~.- / ,,//

~)~" '£1
Rocker arm p111 " Moves
To rocker arms

plunger Oil drain


coil pressure

i \( \

drain

Hi gh s peed
., I
...,
3/'
:::-
7:;

L-___________________________________ ~

Engine speed

1> Idling stability


2. Balanced for fuel consumption, emission and output
3. Best outpu t

Fig 46 Efficiency of a i-VTEC engine. (Honda)


27
Slnall amount

exhaust

Fig 47 Small amount advancement. (Honda)

Big alTIOunt
advancelnent

\ intake

Fig 48 Big amount advancement. (Honda)

28
r. __----------------------------------------------------------------------- ,

Flexible amount
advancelnent

exhaust

Fig 49 Flexible amount advancement. (Honda)

~~~ - --------------- --- ~-----~


Lock ;in

H.:>,r~
~~ ;- 3:. ~ ," -'-. :

Fig 50 Structure of a i-
VTEC system . (Honda)

29
3

1. Lock pin spring


2. lock pin
3, Timing gear
4. Vane
5. Seal spring
6. Spring
7. Front plate
7

Fig 51 Structure of a VTC actuator. (Honda)

,3

1, Connector
2. Coli
3. TmNard drain
4. To retard chamber
5. To advance chamber
6. Spool valve
7. Spring
8. From oil pump
9. O-ring

Fig 52 Structure of a VTC OCv. (Honda)

30
ECM/PCM

D
Fig 53 A block diagram of the VTC control. (Honda)

Retard Locked ~'j


!

r '.' ,." "- ",,,,", ,~ ,,"",-,


• ILock
I
forc e

... i Oli PCSc,CI0

1. Lock Pin
2. Oil passage to Advance Chamber
3. VTC Strainer
4. OiJPump
5. VTC OCV
6. Oi! passage to Retard Chamber

Fig 54 VTC actuator operation. (Honda)


31
Camshaft turns to advance
~ 1

_I;
4
1. Advance charnber 4. Vane
2. Toward drain 5. Retard chamber
3. From oil pump

Fig 55 VTC actuator operation. (Honda)

Camshaft turns to retard

rT···-··-··-g=~--·---=- I!

l'~~~~I~.~_~U I: f~~~~~CJ
LJ ~ I lJ

1. Advance chamber 4. Vane


2. Tovv'ard drain 5. Retard chamber
3. From oil pump

Fig 56 VTC actuator operation. (Honda)

32
L

T1w \'<'hid,>',
K2,lA cn(! i ne dis·
pJ<1<;t's 1')98 em' with
~qUill'<' S(Hl)l1\ (33<)·in) bore
iln d st.roke

Fig 57 DOHC i-VTECengine. (Honda)


BMW Vafvetronic variable"vaive lift ist1ccomplished by a lever between the
camshaft and tvvo intake valves on each cyfinde,~ the distance betvveen the
lever and the camshaft being infindeiy adjustable by an additional,
electrically controlled, eccentric shaft
," .. ...

J
.~

f
I

(a) (b)
8MW bst to go throttlelcs5
'.. ., .
~. ;. -: "
1·\ ; . •
. "" _. ',:: t ~, '. --, ~ ~ .••.

~.·r !. ~!':;r·· '. !i:!".;· ,."' ( " :; \· ~'~t't·;!-:'<i,~·,, : j n:··


." ~ ·, . ; :-,, 'l:n ': u:~ it ::' i~h.' \'.' ; >I L~ h' dt, ; <:i tlk' t:!.~
;;~:jlt;\' htt1:t,:- j!\' I~\r,\ '"

it'- Th,: tbrl,t dv k :·... . ';"~~L \' \' i ) I :,- hpJ ~ l, -> t"l ~· (~n ·
~ lll~',',·: ... ln·. . t ;,,...J L t1 .,"'" ~;'d l'i I.-\\.'ry ;!l.i t..YV Ih.2 mi1lH
tl w LL \..\I:1:1r~ .1~ i l1. ' i..'l'l l'"1l11JFt i<Hl k'~:-·- U. 7
L 2p!,:,·",lh.,l1 t1wj.'r,·\j,,,,,::-7-U\ I
jl\ ~ \·I'lp l ( '(' rnr'i1\" t /1;i -J r~ ·t ~--, ~'(' ti:{'i:\
1 L in.~ ~.;li :l" ';" th;Hi \}tht'r
'.-., > ill
'.",L. ~,),"~h.' .'·
r~h!>. -, "'it>
;h i·· "}." - . F\j\\'
;t -~!·,\, s.· , ~!~·l'
th t· Fl i\
C
/

;·tni~':'> i\ rn:-. ~Und,:II\:L -' " . '


G\"l\Y b~ ' lic\· (·.'" tlh' infn!'
,il,. tit \ !1 ,. 11 \'.-: h t't('.:>lll,'!-.. ~h '~l .\:: ( ~r'i-
1: ,1:11 J.:-: tl1t.' !.r i)n >i!;\\~l if', ll}:- 1hv ~~ill'l"urd~_H'
\~; tU f'l i n J ~'d-if. liL fr,ln; ! ~.\' \i- !,) f~ lur" \ ' <!l\' l' h'~:-hni,[-
\lg:, ,lnd r:·ptn l t'L'ctnln ic vn~irh ' t11,Hl ,i r!('-
!l1n:' h d11 1,: "dl h _
llh'nt, :\I \) ll~ \\,ith hdt.. 'r fUl'; ('(,>n(ln;~: .lnJ L,Ylxcr ~! \)L1"o ; !"-t
Tfle316ti
!:'lnj,;>~ipt l~ <'I Hl'W ~~h';ltvr .,n~i.)t J.thn('~;:. ;-;nd rcflrH'n1( ~n ! undt.~ r n~­ (ornpar.t's
du(~>.j In,,,d ~jn<,:c U'l(~ \';lh~~'~ n1{~\ 'F only ~)Hy;htl~c und(>I' SHt~ h valvetronic engine-
dri\" ~ng n~n,Jjti {- ~n~..;,. Inanagerneni;
!)\1\V \nil iit V'l1v{:trp!-iic h'l..'bn-Ohl~~" lo ,:dl (){ it~ e,i:.:;i'tt- ~Hld systern infinitely
! \yi.J.\· f:'-(ylin .. L~r t'n/~int's ;'dthin tht.} lll.,'\.t tV,,'i) \'1..':1r:-;. . H1,\-1King, the aclju5ts intake-valve
trl, l1sith,'l n tht:! nl~\s t ~j f~;'l.!fL"~J.rlt iHhl hl,r};Vst d1gine prpjl.'d in thv lift and allows tor
('~·)rnpf.H1~··~
hi:-,!'pry. "Ap{'H't' fr\~rn tHJr f,j(u~ ,o n hy~jn.)gt.'n d:-- n·ll.:" elimination of the
throttle butterfly.
flh'l nf the fut'ur,-', VtJ;;etrf'ft11c 'i::. ,,\ dt.~d5-i'\'P tl,'d~ r't(1h!t.!.\' for H:vJVV
in l\\n"C{J ,nbkdivesofdh:'fuhJrf'," \ ,-
38
Vh Swept vo!ume, VR !ntake~runner volume
(VR ::::: Vh ), I Intake-runne r length. ""-
~:- I

I \
T- -T

F,ig 1 Induction boost from manifold geometry (intake-


wave ram effect).
39
CONTROL V.A,LVE

"'""-"-~----"" VACUUf\1

INTAKE IvlANIFOLD

AIR CHAfvJBER

u' , CONTROL VALVE CLOSED ihi CONTROL VALVE OPEN


CONTROL VALVE CLOSED CONTROL VALVE OPEN
I
" '''..
~
TORQUE

pJR CHAMBER
SOLENOID VALVE

SECONDA.RY INTAXE !\jll~.NTFOLD

~:::;;~/ PRIMARY INTAKE MANIFOLD


CONTROL SOLENOID

VACUUf\1 CHArviBER
TPS
(THROTTLE
PosmON
SENSOR) PRIlviARY INTAKE f"lANIFOLD

CONTROL VALVE

Fig 6 Structure of variable induction system. (Honda)

VACUUM CHAMBER

RPfV1
MANIFOLD
VACUUM

~}

ATMOSPHERE
PRIMARY INTAKE MANIFOLD
SECONDARY INTAKE MANIFOLD
I\,IR CHAr"1B ER 1

AIR

INTAKE f\1ANIFOLD - -....

THROTTLE VALVE
CONTROL VALVE CLOSED
CONTROL VALVE OPE~·J

ACTUI\TOR

VACUUf"1 CHAf'.18ER

!:I ) LOVJ/MEDIUM SPEED HI GH SPEED


CONTROL VP,LVE(CLOSE)

ACTUATOR
INTAKE f'1ANIFOLD

\:'-\ VACUUM CHAMBER


( :>l i
Fig 10 Operation of
!i CONTROL VALVE CLOSED variable induction
system. (Toyota)
CONTROL VALVE(OPEN)

ACTUATOR

VACUUM CHAMBER

1.1>1 CONTROL VALVE OPEN

CONTRO L VALVE
CLOSED CONTROL VALVE OPEN
TORQUE

RPM

Fig 11 Function of variable induction system. (Toyota)

44
CONTROL VALVE 1
CONTROL VALVE 2

CONTROL VALVE OPEN


,
I

'---____ J
CONTROL VALVE

.dr'~ VVIDE-OPEN

TORQUE

CLOSED _.-
.,
-+

L...-.-_ _ _ _• _ _. _ ------,

RPM
I
/
I
i
J

I
!
\
\
\ \
".
Conventional MPI engine Gasoline direct injection engine
Other loss
,
:
l-

e
11

e
r Exhaust loss
a
b

y
Friction loss

output

''.-----1 STRAIGHT UPRIGHT INTAKE PORT


~........./'/~ /
I
....

TUfVIBLE FLO\N
CONTROL VALVE

CONTROL VALVE
SPIRAL PORT

CONNECTIVE HOLE

ta ) LOW LOAD (b) HIGH LOAD

Fig 4 Air flow in cylinder. (Toyota)

Spray /.~---
--' . ...:::~ New combustion
. d , . I"',,/, I 1-

pattern f.~t- :~d\., ;..&~.!/-'\~.~ c lamoer


h
\
, ,' I I:
Hel ical port ~ swi rl !" ~
. L . !
!;
~
1
t
,1

control yah'e Stra ig ht port + air \ ,\" .'·V II l


fl ow co ntro l valve ' ~<.::~_;:+:{
(ON/OFF)

Fig 5 Spray pattern and air flow in cylinder. (Toyota)

49
CONTROL VALVE EXHAUST VALVE

INTAKE PORT

HIGH PRESSURE SWIRL INJECTOR PISTON

SWIRL CONTROL
VALVE CLOSED
Fig 9 Several kinds of piston.

51
ENGmE
TYPE :,1) 1 Er~GWE 1), ENGINE ;) - 2. ENGrr~E

INJEcrION PRESSURE

TOP OF PISTON CURVED-TOP

IN-CYLINDER SWIRL FLOW


TUMBLE FLOW SWIRL FLOW
AIRFLOW TUMBLE FLOW (Tumble flow now)
_ _ _ _ _ _ - ...... _ _ _ ••• _ _ _.¥
.
_.~_,. __~ . , • •• _ • • ¥ _ _ ••~_ . . . ,·'v . . . _ _ _ _ _ _ _ _ •

, ';.
A'"'

40:1 AT LAYERED · 1
! MlxtURECOMBUS,T!C)N 25"-50:1
,
20"'30:1
' 14.7;1,ATEV .;. '~

DE' ';[ MI1~RE C


lS.t23:1

35%~ 20-30'10 .. 30%i


35% .~ 20-30% .; 30% j
MAX. HORSEPOWER 10% t 5-7% ;
MAX. TORQUE 10%1' 10% ';
ITEfvl CONVENTIONAL MPI
BORExSTRO
DISPLACEMENT( cc 1834 <. ~
NUMBER OF CYLINDE L-4 < .
CONFIGURATION DOHC -E~.-

NUMBER OF VALVE INTAKE:2 EXHAUST:2 -E:- .

PORT INJECTION
5 0.33

Fig 11 Major specifications of the GOI engine. (Mitsubishi)

MANUAL TRANSMISSION VEHICLE

i
I
I
FUEL. CONSU rv1PTI~N I
,
,;
'7 \
. 1 I
i

Fig 12 Fuel consumption during idling. (Mitsubishi)

53
. _~!!~J!:_2~_::r:9..~g_~~.~!:~_c:!~_~1.:~~~______ FUEL CONSUfv1PTION
J:, AT 40 km/h
TORQUE FLUCTUATION 1

,: =4I
LEAN LIf'1IT OF
CONVENTIONAL MPI
. : GDl ,
CONVENTIONAL MPI ! (INJEmON IN COMPRESSION STROKE)
-... . -_. -----r;------- ~--i- -------------------------- -r---l
: 1.', : 'f ~ I'
'\ "'I ) (}
1
~
I
:
........
~~J.
I
-- -
\
.~ 1
FUEL CONSUMPTION :, :,
j" !!

(gPSh))
STOICHIOMETRIC
! I
,
! :I I
't I

10 15 20 ::~ :0 40

Fig 13 Fuel consumotion during cruising drive. (Mitsubishi)

ENGINF 10/15 MODF FUEL FCONOMY-MT(km/l)

1.8L

2.0 L DIESEL

Fig 14 Fuel consumption during city driving. (Mitsubishi)

54
-~

"'\ "
I
I

I
VOLUMETRIC EFFICIENCY
CONVENTIONAL MPI

o 2000 4000 6000 8000


ENGINE SPEED (rpm)

Fig 15 Improved volumetric efficiency. (Mitsubishi)

.:1r;.:

HIGH
i
f.
I

OCTONE REQUIREMENT

COMPRESSION RATIO

() q j() 11 1:2
COf\1PRESSION RATIO

Fig 16 Increased compression ratio. (Mitsubishi)

55
.
r~----· --~... 1

POWER /
/\---=-
\ == .C ! .rl'.!.!}
' I!
(PS)
GDI y~

~
I (COMPRESSION , /f
RATIO 12.0:1) /
\ ~""---.-
\ --~~" JOO"I
/=~w__/
TORQUE
(kgrn)
," \
\
"", \
'\\ \
\
'. -- '
CONVENTIONAL MPI \
(COMPRESSION RATIO 10.5:1)

o 2000 4000 6000 8000


ENGINE SPEED
Fig 17 Engine performance. (Mitsubishi)

MANUAL TRANSMISSION VEHICLE


'
u<J I"Tn .n
1 ('{
..( j - ", l
ENGIN t (\
I I f)
,
! !
'.

Fig 18 Time of vehicle acceleration. (Mitsubishi)

S6
EFFECT OF UPRIGHT
r'<:_~."~ "w~w~m..www+w_ww"w STRAIGHT INTAKE PORT
TORQUE
,w ___~,~"._", ...•"'ww ww.•._".•. ~~.•• w~_._· THE COOLING EFFECT Of
INTAKE AIR
TWO-STAGE MIXING
SUPPRESSION OF
TRANSIENT KNOCKING

·jO PIi cOOO


ENGINE SPEED (rpm ,

Fig 19 Compares the GOI engine total power output with a


conventional MPI engine. (Mitsubishi)

HIGH"PRESSURE SWIRL

HIGH-PRESSURE FUEL PU:''lP

UPRiGHT STRAIGHT JNTp,KE PORTS

CURVED·TOP PISTONS

Fig 20 Four key technological innovations. (Mitsubishi)

57
~~~~
.<
/ ~
I
~ 'iE1
iI / . . ~,,! " .<
/ \,
'I
:

PISTON ATOMISED FUEL ATOMISED FUEL ATOMISED FUEL

\ ~i j INITIAL INJECTJON Ii' ! WHILE INJECTION i( ) END OF INJECTJON

Fig 21 Injection at the end of compression stroke. (Mitsubishi)

':, tJltra-Lean Combustion Mode.,


',<. ...... . ~; > } .. , ", " ' , . ~ ...... , " "" ,.- > t ,~ ,~~ t, ~.

Ul tr~l - LC\Ul Cll l1bu')tion tvIndc


1. Piston move; downward. I 2. Piston reaches bottom and begms
compression stroke.
3.Fuel is injected late in compression stroke. I 4. Sparkplug ignites
mixture.

Convcntic1nal engines; 14.7: 1


Lean-burn engines: 22: 1
Ivlitsubishi GDI engine: 40: 1.
1. Piston 1110VeS dovn1ward.
2, Fuel is injected.
3. Piston Inoves up.
4. Sparkplug ignites nl1xture.

TWO-STAGE tvUXING

SUPPRESSION
NG

AGE OF FUEL INJECTION


~-----------------------------------.~

Fig 22 Function of the two-stage mixing. (Mitsubishi)

59
I~--
ADVANCED
~~
.....£::r-~~~~===o=
'-~=::c
· ;::':::::=::::.:Jl/.e
IGNITION TIMING G ~

TWO-STAGE MIXING

CONVENTIONAL
ENGINE TORQUE
(N-m )

~~--~--~----~--~----~
500 1000 1500 2000 2500 3000
ENGINE SPEED (rpm)

Fig 23 The difference of ignition timing and torque curves. (Mitsubishi)

l
I

fUEL PUIViP (HIGH-PRESSURE) ASSEMBLY


~
------ ---- -------- --- ----- -.,
,,
,
DELIVERY PIPE (HIGH-PRESSU RE )
;' 1 :
< -' ·--·-·~l·-r-~---'----·l
FUEL PRESSURE REGULATOR -------- --.: I I
INJECTOR ---U-iiGH-:P-REsSUREj----] I FUEL PRESSURE REGUL4TOR
(LOW-PRESSURE)
,,

------. _______ ,
I
I

- -~ .r --- - ..J

FUEL HIGH PRESSURE


REGULATOR ASSEMBLY ( LOW-PRESSURE)
FUEL PRESSURE SENSOR
FUEL TANK

Fig 24 Layout of the GOI fuel system. (Mitsubishi)

60
FUEL HIGH PRESSURE REGULATOR

INJECfOR

Fig 25 Location of the high pressure fuel pump. (Mitsubishi)

COIL

Fig 26 High pressure injector. (Mitsubishi)


61
OPERATION r'10DE HIGH POWER

ULTRA-LEAN COMBUSTION HIGH EFFICIENCY INTAKE

EVHJ MIXTURE

i~~~6~ION STROKE INTAKE STROKE INJECTION

INJECTION PRESSURE
CYLINDER PRESSURE AT
START OF INJECTION BAROMETRJC PRESSURE

1 .~ -'.~

COMPACT SPHERICAL CONICAL PATTERN


PATTERN
LJ
LJ

o 6
SPRAY PATTERN

Fig 27 Operation of a high pressure injector. (Mitsubishi)

IGNITION I
SWITCH I CONTROL RELAY .

INJECTOR

INJECTOR DRIVER

Fig 28 Wiring diagram of the high pressure injector. (Mitsubishi)

62
TVJO-STAGE COMBUSTION
(HEATING OF EXHAUST GAS)

REACnVE-TYPE EXHAUST MANIFOLD


(HEATING OF EXHAUST GAS)

LEAN NCX CATALYST

THREE-WAY CATALYST

Fig 29 He emissions control. (Mitsubishi)

TI'VO-STAGE COMBUSTION +
REACTIVE-TYPE EXHAUST 1\1ANIFOLD
TEMPERATURE OF hil()

c/\TALYST :r\/VO-STAGE
COMBUSTION
STANDARD fv1ETHOD

VEHICLE SPEED
ikmhl

TIME(sec)

Fig 30 Actions of the two-stage combustion. (Mitsubishi)

63
,' i I
ACCELERATOR PEDAL POSrnON
!' SEN
" ':::"::C"'",',::'" ,'':"',,,,,,,, ,

INTAKE ~JjANIFOLD
SWIRL

(il) INmAL INJECDON (bi LAYERED MIXTURE L) IGf'JITION

D-4 ENGIN

POWER MPI ENGINE

D-4 ENGINE

TORQUE MPI
ENGINE

o
ENGINE SPEED(x lOOOrpm)
High pressure injector

solenoid

Fuel
High pressure
tank
fuel pump

cam

05,..':

High pressure fuel pUl11p


solenoid
Exhaust camshaft
. Drive
cam

High pressure Intake camshaft ··-R61uctor (for


gasoline camshaft
Return Low pressure gasoline (from
to fuel position
fuel tank)
tank sensor)

Fig 35 A high pressure fuel pump. (Toyota)

66
Plunger lift
Solenoid ON

solenoid

Low pressure
gaso li ne

plunger To injector
Check \'alve

cam

t c) Fuel to injector

Fig 37 A split injector. (Toyota)

67
LEAN LAYERED MIXTURE
COMBUSTION
EVEN MIXTUREl
COM BUSTION
12 '-.- IS

I
TORQUE I
"'~~-\- CRUISING !

URN + EVEN
I
LAYERED MIXTURE COMBUSTI ON
COMBUSTION
25 ------50

ENGIN E SPEED

/~'::-~:;::~\ . SWIRL
l/
I
} \

-< .;'/ >.>'~ '.~> i .. l . . ;H/


... .(~ -":'''-. "-
<.. i/", "'"
" "( '.

t: i ) INTAKE STROKE !!"I COl\1PRESSION STROKE (':i IG NITION


SWIRL

INTAKE COMPRESSION
CliINTAKE STROKE hl STROKE ' STROKE !}.! COMPRESSION STROKE <,') IGNITION

SWIRL

i;i) INTAKE STROKE :h i COMPRESSION STROKE rel IGNmON


I NOx.
He
co
Blow-bv;./ {r<li t<
ba~
Cars and trucks an actuaHy en1it pol-
lutants three different \vavs: .;

Gasoline vapors frorn the fllel tank and carbu-


retor, or '"evaporative enlissions.~'
COl1lbustion byproducts and vapors fron1 the en-
gine's crankcase, or ublowbyn enlissions.
Exhaust gases produced by c0111bustion or
'· tai1pipe~' enlissions. 'These include unburned
hydrocarbons (H C), carbon 1110noxide (CC),
carbon dioxide (C02), oxides of nitrogen
(NO x) ,water vapor (H20), particulates (soot or
chunks of carbon), various sulfur compounds
and other substances.

EXH UST E ISSI NS

Exhaust enlissions are the 1110st difficult to control


so 1-11"1n\1 '-Jal'h'l' 01)1 f",';;;, tl1· a, "'I' ~lffe' l't,.' t'he" 1~r'
1
'OP("'::tl'
,- ' a S'P
<. ' ~ c ,_ _, ~ 4,,' 'Ii 0 ,• _ ,_ '_ ~ ,,'_ ~ , ,_ __.l _

fOflna on , ~fhe rnOSl irnportant factors


are, t_'l"1 f" air
, ''---,
I'~11Pl I-afl"n
,1.,"--2.~" :nTl]·t"~Oll
i ,
6 LJ _ L:~l~
tILL"

ing and advance ) and Inechanical con-


siderations. Sonle of these factors are the design of
the C0111bustion chalnber, calTIshaft tiIning, valve
duration and overlap, intake manifold design and
temperature, engine con1pression, piston-to-cylin-
derwall clearances, the type of valve seals used (and
. their condition), etc.
RiCH LCA h
17 '\ 22 1

Fig 2 The comooslt'on o f HiO various exhaust


gas";;:; V(;l rics with tho air/fuel rallO. The dolted \Jo1lcal
line ~s at trv3 idea! 'j fL,?: 1 ratio .

12 14 l 10 1$
STOICHIOMETR IC:

MEASURED AiR*FUEL RATIO

72
lEAN
MISFIRE
POINT~

10/1 15/1 20/1


AIR ...FUEl RATIO
Fig 4 He and air/fue! ratio .

I
,
-i
~,

~~oo
1 F,\ (H)
. U .JI_ 100

10 11 12 13 ] 4 15 16 17 18 ] 92021 21

Air-fuel ratio
- - - Side:mountedsp<Jrk plug
. - Cet:ltr2I ry~!o,6aled spar:k plug
--

" 600
c
.9
el. 550
f:
::J
(f)
c
500
0
(.)

(i) 450
::J
L
400

gikWh

g/Il

100
(/J
~

0 80
' ~~
.f.£!.
r-
C 60
tj)

0
..!.. 40

20
o
0.80.9 to 1.1 1.2 1,3 1.4 1.5 1.6
Excess-a.'!' factor i.

g/kWh r---
! 2-valve engine
i
r ' ~' !; -valve engine
!
600 f·-

u- j
~ OO !.

U
I

1.5 1.6
16
::'1
":?
"~ 12

>:
Fig 8 Effect of
0
z 8 excess-air
4-
factor A and
ignition timing
0,8 1.0 12 1.1
az on exhaust
E>:CCSS <lir factor ?_ emissions and
fuel
consumption.

'!1 600
\!? 9
0
'in
.~ ~

Ci 8 ~ 400
0 o
:r::
4 200

0
0.8 1.0 1.2 14

g/kvvh

\
580
c
0
".p
0..
r
C
"'"""''
-
(j)
c 500
0 30"'
U
ill /
::l
'+-
u
/
'-+=
"[5
420
ill
0..
(j)

340
0.8 1.0 1.2 1.4
Excess-air factor I\,

Fig 9

75
g/kWh

16
..--.
0 \ \ ex Z

--
LL

c
(f)
12
\.

\5~O
0 "\ 40° I
j
~O~\, I~/
'U5
.~

0
I
E
CD
8

4
20° " ",>,
", "
"""""'---/
"-- -:;:::/;
II
,,_/

0.8 1.0 1.2 1.4


Excess-air factor II.

Fig 10

g/kWh

20

(j)
16
c
0
(j)
(j)
12
E
CD
>(
.~;,,~,~,
0 8
z

o
0.8 1.0 1.2 1.4
Excess-air factor 'J\.

Fig 11

76
g/ kWh

800 50°\
40° \
30° \ \
C/) 600 \ \ \
c
0 20° \
'(i)
(/)

'E
Q)
400
0
u

200

o
0.8 to 1.2 1.4
Excess-air factor l'v

Fig 12

a Single'oed oXida tion cataly('c converter. b Dual·bf:d catalytic converte r, c Single-bed catalytic convener.
i t/.ixlu,,, iorm ak:m ';niccl,on system, 2 Secondary-air injection, 3 Oxidation catal'ftic COClV2 r iD r for HC, CO .
4 NOt Idduc1i0n catalytic C0nv~?:th::r. 5 EI-?ttfQn ~C C0nt r()~ t)r:i! 6 La.mbda O ~J S6rtSOf.
7 3~\';2J.y C~)l a!yt~": (,onVt::rt0f lr.H NO ~· . He;, CO. C~~ Sensor voltag-'?, ; \' va!'.'!? ".:~onuo! \'o1!(~"Je.

b
a Sinqle-bed oxid8tion catDiytir: r.Qnverier. b Dual -bed catAlytic converter, C Sin~]le-bed catalytic converter.
1 Mixtve Tcrmalion!inJection system, 2 Secondary-ai r irljection, 3 Oxidation e2talytic converter for HC CO,
4 r~ox reduction catalytic converter . 5 Eiectroqic conl;'(11 unit, 6 Lambda O 2 SOr'1sor .
7 :'~-way catalytic conver ter for NO>~ , He, co i " Sensol' volt2ge , f'v valve cor;~ r::;1 voltage.
i ~
\' ~

/'{J:~
~::.?<) 2
~;~ ...
a tJ

f~
....~~:-:/
~=:::::::,.,:' """--";-"7 '.t:=::::;:::;~,.~ ~

, .' -'}

H'" " . . . , " ' " _ ><.- ,:. -_",.", ,'".,' .


:,.~.<.,.,. , ..;~

c
1 Larnlxla 0-, S(~nS()I, 2 Commie monolith . 3 Flexible Pl .?t;;;1 ~;; c !C'cn. 4 H C :Jt · ir: s u I 2t(}l~ jl.F3i ::,hc il.
5 PI.'11i1l!! rn ;h()(iilJl1'i CORUr lq , 6 Ceram'c or metall:c substrate.

C:'ernicci reaction
2 Gf) ~ O~, ..... . ... 2 CO2
2 C2H6 + 7 02 -.... 4 C02 + 6 H2Cj
2 NO ~ 2 C O , 2 CO~

1 Mass airflow sensor, 2 Engine, 3a Oxygen


sensor 1: 3b Oxygen sensor 2 (only if required),
4 Catalytic converter, 5 Injectors, 6 ECU ,
Us Sensor voltage, L Valve control voltage ,
\ E InjecHon quantity.

Exhaust
,A,ir

Fuel

.l l •
I ! I
1 Without ca ta lytic exhaust treatment.
2 With cataiytic E:x haust treatmGl"1t.
3 Lambda oxygen sensQr' voltage c;un/e.

Ie control range (catalyst window)


'--._- ---1I 1i- - - - --
- ..--- ------;
1
, I NO x
; .':.---+---

0.975 1.0 1.025 1.05


..... - rich Excess-air factQr' i. lean .-...-

The stoichiometric air-fuel ratio is the rTlaSS ratio of


14.7 kg air to 1 kg gasoline theoretically necessary
for cornplete combustion. The excess-air factor or air
ratio /l (lambda) indicates the deviation of the actual
air-fuel ratio rronl the theoretically required ratio:
'\ actual inducted air mass
tv= theoretical air requirement
HC

BEST OPERATING
AREA FOR 3-WA Y
CATALYST
CONVERSION
EFFICI ENCY %

'13: 1 14: 1 14,7:1 15:1 16: 1


AIR-FUEL MIXTURE RATIO
. . .1------ RICH LEAN ----~......
Fig 19 The air-fuel-mixture ratio "window:' within which the
air-fue J ratio must remain if the three-way catalytic converter is to
work efficiently.

~ ., '

.;-- 1..q--
d
f - -.- .-. -~

'" ~--r-' ,

Catalytic
converter

Fig 20 The location of oxygen sensor.

81
1 Ceramic c03.ting, 2 E!ectrodes, 3 Contacts,
4 Housing contacts , 5 Exl1au st pipe .
6 Ceramic support sllie!d (porou s),
7 Exhaust gas , 8 Amb ient air, { i Voltage,
1 Zirconium dioxide (Zr0 2 )

Fig 21 Lambda
oxygen sensor
5

1.0 r-

voltage

!
I

v (i ~~ . -
-I

Rich Lean
Fig 22 Lambda oxygen sensor voltage curve.

82
1 Sensor housinq, 2 Ceramic support tube, 3 Connection wire, 4 Cuard tube with slots, 5 Active ceramic
sensor layer. 6 C-ontact 7 Protective cap, 8 Heater elemen t. 9 Crimped coronections for heater element,
10 Spring washer 2

5 6 789 10

Fig 23 Heated O 2 sensor.

Heater element

~, \
\....."
ground
signal
b L , 2~~"----'21
c=,L_-.!'---"<, r\,_,,_,-r-
'--1 -
J "
Titanium di oxide
element
---,-- -...,.~ ..
~- -- - ... .
-1'- 5V Ii
!! L(',,:
Vo ltage ~i gn al
--+---,,~
- ground

Fig 24 Titanium dioxide (Ti0 2) 02 sensor.

83
Fresh air
Blow-by
"·~,T I::) LE !~ND lOW SPEED
V /~f'>i! FOLD V /',CUUM PU LLS
THi: ',,',\ L\' E TOWARD T H E
:~O.sED POSITIOr •.

t.:.. T H ! Cr'?;; R Sf' E C: D C ~:~ n~ /"


@ SPRING r QRCE :"'EAV''{ t-O;..I,D COt";:;~~' IO'~ , 8 i>.CKf· IRi: DLJRi'~G
Ob ::T~!-\T£S TO O ~> f.:..N ~~~}~NI FOLD VA( CltJM OHOPS .
:H~ CR~.NKiNG CAUS~S A
i ~ ::.::rh ;-.j{.: "v1Q'y'C S 'f HE: fI> T~E ::--!_O\'\' =:4 ''r E -- HICiH P"lESSURE IN
V/,. L/E.: T ~ f'·r (>F EN POSiTI C\ 'T:-; E( ~j is L ~H ';
;H E iNT AKE MA '\dFOLD

VALVE 1f\CR E/\ SES Vi'<

FROM:'. TO 6 CUSIC (I) PF"SSURE CAUSES THE VA LVE:


Fi:F..T PER M!NUT E . TO "8 l,C 1<:' SEAT" AND SEAL Of'F
T HE IN L!:, TO KEEP BACK;:iRE 0_'-
CF THE CR.l'.r'-JKC.t.,S E.
Thmtt lc \"1
,- ',\(,
..
Fuel tank

engine

I '
f\1 ain rcla v
!i Pur"c
:= .s (l Ieno .ld
;r
1

'.
l '
;!

Iv':;'::::::::::::" .- . _ .......... -.~ fl--· 1: ( .\ !

) L,-,-
Charcoa l
cani ster

Fresh air
V,c,POR FROM
Air
fl ow ECT
sensor sensor

TPS
~
):7-)
senso r ~ CKP
sensor

Exhaust

EGR solenoid
EG R regul ation valve

Vacuum from EGR control


Intake manifold va lve

Sensors signal EGR solenoid


e /
~ECM ]-

EGR valve
I
-------_.._ - . /
jI
/
Intake
manifold '" ~ Exhaust manifold
~ '~
~,­
~

You might also like