Unit 3
Unit 3
Chapter Outline
13.1 Filter Transmission, Types and Specification
13.2 The Filter Transfer Function
13.3 Butterworth and Chebyshev Filters
13.4 First-Order and Second-Order Filter Functions
13.5 The Second-Order LCR Resonator
13.6 Second-Order Active Filters Based on Inductor Replacement
13.7 Second-Order Active Filters Based on the Two-Integrator-Loop Topology
13.8 Single-Amplifier Biquadratic Active Filters
13.9 Sensitivity
13.10 Transconductance-C Filters
13.11 Switched-Capacitor Filters
13.1 Filter Transmission, Types and Specifications
Transfer Function
The filter transfer function is written as the ratio of two polynomials:
aM s M aM 1s M 1 ... a0
T ( s)
s N bN 1s N 1 ... b0
The degree of the denominator → filter order
To ensure the stability of the filter → N M
The coefficients ai and bj are real numbers
The transfer function can be factored and expressed as:
aM ( s z1 )(s z2 )...(s z M )
T ( s)
( s p1 )(s p2 )...(s p N )
Zeros: z1 , z2 , … , zM and (NM) zeros at infinity
Poles: p1 , p2 , … , pN
Zeros and poles can be either a real or a complex number
Complex zeros and poles must occur in conjugate pairs
The poles have to be on the LHP of s-plane
13.3 Butterworth and Chebyshev Filters
1
1 2
p
Natural Modes of the Butterworth Filter
The natural modes (poles) locate on a circle
The radius of the circle is 0 p (1 / )1/ N
Equal angle space
N
K
T (s)
s s s
1 1 ...1
p1 p 2 p N
K0N
where 0 p (1 / )1/ N
( s p1 )(s p2 )...(s p N )
Design Procedure of the Butterworth Filters
Design Specifications
Amax, Amin, p, s
Design Procedure
1. Determine (from Amax)
1
| T ( j p ) | Amax [dB] 20 log 1 2 10 Amax /10 1
1 2
2. Determine the required filter order N (from p , s , Amin)
Attenuation A( s )[dB] 20 log[1 / 1 2 ( s / p ) 2 N ] 10 log[1 2 ( s / p ) 2 N ] Amin
3. Determine the N natural modes (poles) with 0 p (1 / )1/ N
p1 , p2 , .... p N
4. Determine T(s)
K0N
T (s) where 0 p (1 / )1/ N
( s p1 )( s p2 )...( s p N )
13.4 First-Order and Second-Order Filter Functions
a2 s 2 a1s a0
T ( s)
s 2 (0 / Q) s 02
Pole frequency: 0
Pole quality factor: Q
Poles:
0 1
p1 , p2 j0 1
2Q 4Q 2
Bandwidth:
0
BW 2 1
Q
Second-Order Filters (Cont’d)
Second-Order Filters (Cont’d)
13.5 The Second-Order LCR Resonator
Vo 1 1 s/C
Current Excitation 2 0 1 / LC
I i Y 1 / sL sC 1 / R s (1 / RC ) s 1 / LC
Vo ( R || 1 / sC ) 1 / LC
Voltage Excitation 2 Q 0 RC
Vi ( R || 1 / sC ) sL s (1 / RC ) s 1 / LC
Vo 1 / LC Vo s2 Vo (1 / RC ) s
T (s) 2 T (s) 2 T (s) 2
Vi s (1 / RC ) s 1 / LC Vi s (1 / RC ) s 1 / LC Vi s (1 / RC ) s 1 / LC
Notch Filter
All-Pass Filter
13.10 Transconductance-C Filters
Vo Gm1 G /G
m1 m 2
Vi sC Gm 2 1 sC / Gm 2
Second-Order Gm-C Low-Pass Filter
Gm 2
V2 V1
sC2
V1 sGm 4 / C1 G Gm1Gm 2
2 BP center - freq gain m 4 0
Vi s sGm3 / C1 Gm1Gm 2 / C1C2 Gm3 C1C2
V2 Gm 2Gm 4 / C1C2 Gm 4 Gm1Gm 2 C1
2 LP dc gain Q
Vi s sGm3 / C1 Gm1Gm 2 / C1C2 Gm1 Gm3 C2
Simplified Circuit
Gm1 = Gm2 = Gm
C1 = C2 = C
Gm
0
C
G
Q m
Gm 3
Basic Principle
A capacitor switched between two nodes at a sufficiently high rate is equivalent to a resistor
The resistor in the active-RC integrator can be replaced by the capacitor and the switches
Equivalent resistor:
C1vi v T
iav Req i c
Tc iav C1
Assistant Professor
Dept. of ECE
SRM UNIVERSITY AP
Butterworth and Chebyshev filters
1
|H(jΩ)|2 = 2N
1 + ΩΩ
c
π kπ
Sk = 1 2N
+ N jΩ
S-plane
s1
π 3π Unit circle s0
S0 = 1 4, S1 = 1 4
5π 7π
S2 = 1 σ
4 , S3 = 1 4
1 1
HN (s) = Q =
[s − sk ] [s − (s2 )][s − (s3 )][s − (s4 )]
LHP
1
H3 (s) =
[s − (−0.5 + j0.866)][s − (−1)][s − (−0.5 − j0.866)]
1
=
[s + 1][s + 0.5 − j0.866][s + 0.5 + j0.866)]
1 1
= =
[s + 1][(s + 0.5)2 − (j0.866)2 ]] (s + 1)(s 2 + s + 1)
The poles are distributed on unit circle in the s plane
They are distributed half on the left half plane and half on the right half plane.
1 1
HN (s) = Q =
(s − sk ) BN (s)
LHP
20 log H a ( jω )
0
KP
Ks
Ω
ΩP ΩS
1
|H(jΩ)| =
2N 12
Ω
1+ Ωc 2N
ΩP −Kp
= 10 10 −1 (1)
Ωc
Taking 20 log on both sides
Ω = Ωs and K = Ks
1 " 2N #
20 log |H(jΩ)| = 20 log
ΩS
2N 12 KS = −10 log 1 +
Ωc
1 + ΩΩ
c
" 2N # 12
ΩS
2N
−KS
Ω = 10 10 −1 (2)
= −20 log 1 +
Ωc Ωc
" 2N #
Ω Dividing Equation 1 by Equation
= −10 log 1 +
Ωc 2
2N −Kp
Ω = Ωp and K = Kp Ωp 10 10 −1
= −KS
" # ΩS 10 10 −1
2N
ΩP
Kp = −10 log 1 +
Ωc
−Kp
Ωp 10 10 − 1
2N log = log
−KS
ΩS 10 10 − 1
" −K #
p
10 10 −1
log −KS
10 10 −1
N= h
Ωp
i
2log ΩS
OR
ΩS
ΩC = 1
−KS 2N
10 10 − 1
Design steps for Butterworth Lowpass Filter
From the given specifications
1 Determine the order of the Filter using
−Kp
" #
10 10 −1
log −KS
10 10 −1
N= h i
Ω
2log Ωp
S
4 From analog lowpass to lowpass frequency transformation, find the desired transfer
function by substituting the following
Ha (s) = HN (s)|s→ s
ΩC
Butterworth Filter Design
Design an analog Butterworth low pass filter to meet the following specifications T=1 second
Solution:
Passband edge frequency ωp = 0.3π rad/sample
Stopband edge frequency ωs = 0.75π rad/sample
ω
Passband edge analog frequency Ωp = 1p = 0.3π
1
= 0.3π rad/second
Stopband edge analog frequency Ωs = ω1s = 0.75π
1
= 0.75π rad/second
Kp =20log(0.707)=-3.01 dB, Ks =20log(0.2)=-13.97 dB,
The order of the filter is
Gain in dB
20 log H a ( jω )
−Kp
" #
10 10 −1
log −KS
10 10 −1 0
N = h i
Ω K P = −3.01dB
2log Ωp
S
3.01
10 10 −1 K s = −13.97dB
log 13.97
1
10 10 −1 log 24 Ω
= 0.3π = ΩP = 0.9425 rad/sec ΩS = 2.356 rad/sec
2log 0.75π
2 × (−0.398)
−1.38 Figure 8: LPF specifications
= = 1.7336 ' 2
−0.796
OR
N=2 ∴ k=0,1,2,3 N is Even
For even N
π + kπ
Sk = 1 2N N
N
2
Y 1
H(sn ) = S0 = 1 π
4 , S1 = 1 3π
4
k=1
s 2 + bk s + 1
5π
S2 = 1 4 , S3 = 1 7π
4
Ωs jΩ
Ωc = −ks 1 S-plane
(10 10 − 1) 2N Unit circle s1
s0
2.3562
= 13.97 1 σ
(10 10 − 1) 4
= 1.0664 rad/sec s2 s3
LHP of H2(s) RHP of H2(-s)
Ha (s) = H2 (s)|s→ s
Ωc
= H2 (s)|s→ s
1.0644
1
=
s2
Ωc 2
+ 1.4142 Ωs + 1
c
1
=
s 2 +1.4142Ωc s+Ωc 2
Ω2c
Ω2c
=
s2 + 1.4142Ωc s + Ωc 2
1.06442
=
s 2 + 1.4142 × 1.0644s + 1.06442
1.133
=
s 2 + 1.5047s + 1.133
Butterworth Filter Design
Design an analog Butterworth low pass filter to meet the following specifications T=1 second
Solution:
Passband edge frequency ωp = 0.35π rad/sample
Stopband edge frequency ωs = 0.7π rad/sample
ω
Passband edge analog frequency Ωp = 1p = 0.35π
1
= 0.35π rad/second
Stopband edge analog frequency Ωs = ω1s = 0.7π
1
= 0.7π rad/second
Kp =20log(0.9)=-0.9151 dB, Ks =20log(0.2)=-11.2133 dB,
The order of the filter is
Gain in dB
" −Kp
# 20 log H a ( jω )
10 10 −1
log −KS
10 10 −1 0
N = h i
Ω K P = −0.915dB
2log Ωp
S
0.9151
10 10 −1 K s = −11.213dB
log 11.213
0.234
10 10 −1 log 12.21 Ω
= 0.35π = ΩP = 1.0996 rad/sec ΩS = 2.1991 rad/sec
2log 0.7π
2 × (−0.301)
−1.717 Figure 10: LPF specifications
= = 2.852 ' 3
−0.602
For odd N=3
N−1 OR
2 N=3 ∴ k=0,1,2,3,4,5 N is Even
1 Y 1
H(sn ) =
(s + 1) k=1 s 2 + bk s + 1 π + kπ
Sk = 1 2N N
S0 = 1 π S1 = 1 3π
h i
(2k−1)π 4 ,
where bk = 2sin 2N
4
N=3 S2 = 1 5π
4 , S3 = 1 7π
4
k = N−1
2
= 3−1
2
=1 The poles lying on left half of s plane
k=1 h i
(2−1)π
bk = b1 = 2sin 2×3 =1 1 1
HN (s) = Q =
[s − sk ] [s − (s1 )][s − (s2 )]
LHP
1 1
H(sn ) = =
[s − (−0.707 + j0.707)][s − (−0.707 − j0.707)]
(s + 1)(s 2
+ s + 1)
1
=
s 3 + 2s 2 + 2s + 1
jΩ
S-plane
Unit circle s1
s0
Ωs σ
Ωc = −ks 1
(10 10 − 1) 2N
s2 s3
2.2 2.2 LHP of H2(s)
= 11.21 1
= RHP of H2(-s)
(10 − 1)
10 6 1.515
= 1.45 rad/sec
Figure 11: Poles of H2 (s)H2 (−s)
Unnomalized transfer function, H(s) and Ωc = 1.45 rad/sec
1
Ha (s) = H3 (s)|s→ s = |s→ s
Ωc s 3 + 2s 2 + 2s + 1 Ωc
= H3 (s)|s→ s
Ωc
1
=
s3 2
Ωc 3
+ 2 Ωs 2 + 2 Ωs + 1
c c
1
=
s 3 +2Ωc s 2 +2Ω2c s+Ω3c
Ω3c
Ω3c
=
s 3 + 2Ωc s 2 + 2Ω2c s + Ω3c
1.453
=
s 3 + 2 × 1.45s 2 + 2 × 1.452 s + 1.453
3.048
=
s 3 + 2.9s 2 + 4.205s + 3.048
Design an analog Butterworth low pass filter to meet the following specifications T=1 second
Solution:
Passband edge frequency ωp = 0.2π rad/sample
Stopband edge frequency ωs = 0.32π rad/sample
ω
Passband edge analog frequency Ωp = 1p = 0.35π
1
= 0.6283 rad/second
Stopband edge analog frequency Ωs = ω1s = 0.7π
1
= 1.0053 rad/second
Kp =20log(0.8)=-1.9 dB, Ks =20log(0.2)=-13.97 dB,
The order of the filter is
Gain in dB
20 log H a ( jω )
−Kp
" #
10 10 −1
log −KS
10 10 −1 0
N = h i
Ω K P = −1.9dB
2log Ωp
S
1.9
10 10 −1 K s = −13.97dB
log 13.97
0.548
10 10 −1 log 24 Ω
= 0.6283 = ΩP = 0.6283 rad/sec ΩS = 1.0053 rad/sec
2log 1.0053
2 × (−0.204)
−1.641 Figure 12: LPF specifications
= = 4.023 ' 4
−0.408
For Even N=4
N
2
Y 1
H(sn ) =
k=1
s 2 + bk s + 1
h i
(2k−1)π
where bk = 2sin 2N
N=4
k = N2 = 42 = 2
k=1 h i
(2−1)π
bk = b1 = 2sin 2×4 =0.7654
k=2 h i
(4−1)π
bk = b2 = 2sin 2×4 =1.8478
1
H(sn ) =
(s 2 + 0.764s + 1)(s 2 + 1.8478s + 1)
1
=
s 4 + 2.6118s 3 + 3.4117s 2 + 2.6118s + 1
Ωs
Ωc = −ks 1
(10 10 − 1) 2N
1.0053 1.0053
= 13.97 1
=
(10 10 − 1) 8 1.4873
= 0.676 rad/sec
Unnomalized transfer function, H(s) and Ωc = 0.676 rad/sec
1
Ha (s) = H4 (s)|s→ s = |s→ s
Ωc s 4 + 2.6118s 3 + 3.4117s 2 + 2.6118s + 1 Ωc
= H4 (s)|s→ s
Ωc
1
=
s4 3 2
Ωc 4
+ 2.6118 Ωs 3 + 3.4117 Ωs 2 + 2.6118 Ωs + 1
c c c
1
=
s 4 +2.6118Ωc s 3 +3.4117Ω2c s 2 +2.6118Ω3c s+Ω4c
Ω4c
Ω4c
=
s 4 + 2.6118Ωc s 3 + 3.4117Ω2c s 2 + 2.6118Ω3c s + Ω4c
0.6764
=
s 4 + 1.7655s 3 + 1.559s 2 + 0.8068s + 0.2088
0.2088
=
s 4 + 1.7655s 3 + 1.559s 2 + 0.8068s + 0.2088
Design an analog Butterworth low pass filter which has -2 dB attenuation at frequency 20
rad/sec and at least -10 dB attenuation at 30 rad/sec.
Solution:
Passband edge analog frequency Ωp = 20 rad/second
Stopband edge analog frequency Ωs = 30 rad/second
Kp =-2 dB, Ks =-10 dB,
The order of the filter is
Gain in dB
20 log H a ( jω )
−Kp
" #
10 10 −1
log −KS
10 10 −1 0
N = h i
Ω K P = −1.9dB
2log Ωp
S
2
10 10 −1 K s = −13.97dB
log 10
0.584
10 10 −1 log 9 Ω
= = ΩP = 0.6283 rad/sec ΩS = 1.0053 rad/sec
2log 20
30
2 × (−0.176)
−1.1878 Figure 13: LPF specifications
= = 3.374 ' 4
−0.352
For Even N=4
N/2
Y 1
H(sn ) =
k=1
sn2 + bk sn + 1
h i
(2k−1)π
where bk = 2sin 2N
N=4
k = N2 = 42 = 2
k=1 h i
(2−1)π
bk = b1 = 2sin 2×4 =0.7654
k=2 h i
(4−1)π
bk = b2 = 2sin 2×4 =1.8478
1
H(sn ) =
(s 2 + 0.764s + 1)(s 2 + 1.8478s + 1)
1
=
s 4 + 2.6118s 3 + 3.4117s 2 + 2.6118s + 1
Ωs
Ωc = −ks 1
(10 10 − 1) 2N
30 30
= 10 1
=
(10 10 − 1) 8 1.316
= 22.795 rad/sec
Unnomalized transfer function, H(s) and Ωc = 22.795 rad/sec
1
Ha (s) = H4 (s)|s→ s = |s→ s
Ωc s 4 + 2.6118s 3 + 3.4117s 2 + 2.6118s + 1 22.795
1
=
s4 3 2
Ωc 4
+ 2.6118 Ωs 3 + 3.4117 Ωs 2 + 2.6118 Ωs + 1
c c c
1
=
s 4 +2.6118Ωc s 3 +3.4117Ω2c s 2 +2.6118Ω3c s+Ω4c
Ω4c
Ω4c
=
s4 + 2.6118Ωc s3 + 3.4117Ω2c s 2 + 2.6118Ω3c s + Ω4c
22.7954
=
s4 + 59.535s 3
+ 1772.76s 2 + 30935.611s + 22.7954
22.7954
=
s + 59.535s + 1772.76s 2 + 30935.611s + 22.7954
4 3
Problems Problems
Gain in dB
Kp =-1 dB, Ks =-20 dB, 20 log H a ( jω )
The order of the filter is
0
−Kp
" #
10 10 −1 K P = −1dB
log −KS
10 10 −1
N = h i
Ω
2log Ωp K P = −20dB
S
Ω
1 ΩP = 4 rad/sec ΩS = 8 rad/sec
10 10 −1
log 20
=
10 10
4
−1
= 4.289 ' 5 Figure 14: LPF specifications
2log 8
Problems Problems
Sk = 1∠θk k = 0, 1 . . . 2N − 1
For odd N θk is
πk
θk =
N
jΩ
Unit circle S-plane
S0 = 1 0=1 0= s3 s2
S1 = 1 π
36◦ = 0.809 + j0.588 s4
5 =1 s1
2π
S2 = 1 5 =1
72◦ = 0.309 + j0.951 s5 s0
3π σ
S3 = 1 5 =1
108◦ = −0.309 + j0.951 s6
4π s9
S4 = 1 5 =1
144◦ = −0.809 − j0.588
S5 = 1 π=1 180◦ = −1 s7 s8
6π Left half poles of H5(s) Right half poles of H5(-s)
S6 = 1 5 = 1 216◦ = −0.809 − j0.588
7π
S7 = 1 5 = 1 252◦ = −0.309 − j0.951
8π
S8 = 1 5 = 1 288◦ = 0.309 − j0.951
9π
S9 = 1 5 = 1 324◦ = −0.809 − j0.588
Problems Problems
1
H5 (s) = Q
(s − sk )
LHPonly
1
=
(s − s3 )(s − s4 )(s − s5 )(s − s6 )(s − s7 )
1
=
(s − 0.309 + j0.951)(s + 0.809 + j0.588)(s + 1)
(s + 0.809 − j0.588)(s + 0.309 + j0.951)
1
=
[(s − 0.309)2 + (0.951)2 ][(s + 0.809)2 + (0.588)2 ](s + 1)
1
=
[(s 2 + 0.618s + 1)(s 2 + 1.618s + 1)(s + 1)
1
=
s 5 + 3.236s 4 + 5.236s 3 + 5.236s 2 + 3.236s + 1
Ωp
Ωc = −kp
= 4.5784 rad/sec
1
(10 10 − 1) 2N
Ha (s) = H5 (s)|s→ s
4.5787
Problems Problems
Ha (s) = H5 (s)|s→ s
Ωc
= H5 (s)|s→ s
4.5787
1
= s s s
( 4.5787 )5 + 3.236( 4.5787 )4 + 5.236( 4.5787 )3 +
s 2 s
5.236( 4.5787 ) + 3.236( 4.5787 ) + 1
2012.4
=
s 5 + 14.82s 4 + 109.8s 3 + 502.6s 2 + 1422.36s + 2012.4
Verification
2012.4
Ha (jΩ) =
(jΩ)5 + 14.82(jΩ)4 + 109.8(jΩ)3 + 502.6(jΩ)2 + 1422.3(jΩ) + 2012.4
2012.4
=
(14.82Ω4 − 502.6Ω2 + 2012.4) + j(Ω5 − 109.8Ω3 + 1422.3Ω)
2012.4
|Ha (jΩ)| = p
(14.82Ω4 − 502.6Ω2 + 2012.4)2 + j(Ω5 − 109.8Ω3 + 1422.3Ω)2
20 log |Ha (jΩ)|4 = −1 dB
20 log |Ha (jΩ)|8 = −24 dB
Analog Filter Design Chebyshev Filter Design
H ( jω ) H ( jω )
Gain
Gain
1 1
1 δp 1 δp
1+ ε 2 1+ ε 2
δs δs
Ω Ω
ΩP ΩS ΩP ΩS
N N−1
2 2
Y Bk B0 Y Bk
H(sn ) = H(sn ) =
k=1
s 2 + bk s + ck s + c0 k=1 s 2 + bk s + ck
h i h i
(2k−1)π (2k−1)π
where bk = 2yN sin 2N
, ck = yN2 + cos 2 2N
c0 = yN
"
1 # N1 " 1 #− N1
1 1 2 1 1 2 1
yN = +1 + − +1 +
2 2 2
1
where = (1/Kp2 ) − 1 2
H(sn )|s=0 = 1
Chebyshev Filter Design
Ha (s) = HN (s)|s→ s
ΩC
where ΩC = ΩP
Chebyshev Filter Design
Jan 2013, June 2015: Design a Chebyshev IIR analog low pass filter that has -3.0 dB frequency
100 rad/sec and stopband attenuation - 25 dB or grater for all radian frequencies past 250
rad/sec
Solution:
Passband ripple Kp =-3.0 dB or in normal value is Kp = 10Kp /20 = 10−3/20 = 0.707
Stopband ripple Ks =25.0 dB or in normal value is Ks = 10Ks /20 = 10−25/20 = 0.056
Passband edge frequency =100 rad/sec Stopband edge frequency =250 rad/sec
" 1 #
(1/Ks2 )−1 2
cosh−1 (1/Kp2 )−1
H ( jω )
Gain
N1 =
Ωs
cosh−1 Ωp 1
" # 1 δp
i1
(1/0.0562 )−1
h
2
cosh−1 1+ ε 2
(1/0.7072 )−1
= 250
cosh−1 100
1 δs
−1 317
cosh 1
2
cosh−1 [17.8] Ω
= = ΩP ΩS
cosh−1 (2.5) cosh−1 [2.5]
3.57 Figure 16: LPF specifications
= = 2.278 ' 3
1.566
N=3
Chebyshev Filter Design
When N is odd
B0 Bk
H(sn ) = × 2
s + c0 s + b1 s + c1
N−1
2
B0 Y Bk
H(sn ) = 1
s + c0 k=1 s 2 + bk s + ck
(1/Kp2 ) − 1 2 =
1
(1/0.7072 ) − 1 2 = 1
=
N=3 k = N−1
2
= 3−1
2
= 1
——————————————————————————————————–
"
1 # N1 " 1 #− N1
1 1 2 1 1 2 1
yN = +1 + − +1 +
2 2 2
"
1 # 13 " 1 #− 13
1 1 2 1 1 2 1
= +1 + − +1 +
2 12 1 12 1
1 h 1
i1 h 1
i− 1
3 3
= (2) 2 + 1 − (2) 2 + 1
2
1h 1 1
i 1
= [1.414 + 1] 3 − [1.414 + 1]− 3 = [1.341 − 0.745] ' 0.298
2 2
h i
(2k−1)π
C0 = yN = 0.298 k=1 bk = 2 × yN sin 2×N
Chebyshev Filter Design
k=1 h i
(2−1)π
b1 = 2 × 0.298sin 2×3 = 0.298
k=2
B0 B1
H(sn ) = × 2
s + c0 s + b1 s + c1
h
(2k−1)π
i B0 B1
ck = yN2 + cos 2 2N
H(sn ) = ×
s + 0.298 s 2 + 0.298s + 0.838
k=1
When N is odd the values of parameter Bk
(2 − 1)π
are evaluated using
c1 = 0.2982 + cos 2
2×3 H(sn )|s=0 = 1
2 π
h i
= 0.088 + cos
6
" # B0 B1
1 + cos( 2π
6
) H(sn ) = =1
= 0.088 + 0.298 × 0.838
2
= 0.088 + 0.75 = 0.838 B0 B1 = 0.25
B0 = B1
B02 = 0.25
√
B0 = 0.25 = 0.5
Chebyshev Filter Design
B0 B1
H(sn ) = × 2
s + 0.298 s + 0.298s + 0.838
0.25
H(sn ) =
s 3 + 0.596s 2 + 0.926s + 0.25
Unnomalized transfer function, H(s) and Ωp = 100 rad/sec
0.25
Ha (s) = H3 (s)|s→ s = |s→ s
Ωp s 3 + 0.596s 2 + 0.926s + 0.25 Ωp
= H3 (s)|s→ s
Ωp
0.25
=
s3 2
Ωp 3
+ 0.596 Ωs 2 + 0.926 Ωs + 0.25
p p
0.25
=
s 3 +0.596Ωp s 2 +0.926Ω2c s+0.25Ω3p
Ω3p
0.25 × Ω3p
=
s3 + 0.596Ωp s 2 + 0.926Ω2c s + 0.25Ω3p
0.25 × 1003
=
s3 + 0.596 × 100s 2
+ 0.926 × 1002 s + 0.25 × 1003
0.25 × 1003
=
s + 59.6s + 926s + 0.25 × 1003
3 2
Chebyshev Filter Design
Design a Chebyshev IIR low pass filter that has to meet the following specifications
i) passband ripple ≤0.9151 dB and passband edge frequency 0.25π rad/sec
ii) Stopband attenuation ≥12.395 dB and Stopband edge frequency 0.5π rad/sec
Solution:
Passband ripple Kp =0.9151 dB
or in normal value is Kp = 10Kp /20 = 10−9151/20 = 0.9
Stopband ripple Ks =12.395 dB
or in normal value is Ks = 10Ks /20 = 10−12.395/20 = 0.24
Passband edge frequency 0.25π=0.7854 rad/sec
Stopband edge frequency 0.5π =1.5708rad/sec
" 1 #
(1/Ks2 )−1 2
cosh−1 (1/Kp2 )−1
N1 =
Ωs
cosh−1 Ωp
" #
i1
(1/0.242 )−1
h
2
cosh−1 (1/0.92 )−1
=
cosh−1 1.5708
0.7854
−1 16.3611
1
cosh 0.2346
2
cosh−1 [8.35] 2.8118
= 1.5708
= = = 2.135 ' 3
cosh−1 [2]
cosh−1 0.7854
1.3169
N=3
Chebyshev Filter Design
When N is odd
B0 Bk
H(sn ) = × 2
s + c0 s + bk s + ck
N−1
2
B0 Y Bk
H(sn ) =
s + c0 k=1 s 2 + bk s + ck
1
(1/Kp2 ) − 1 2
=
N=3 k = N−1
2
= 3−1
2
=1 =
1
(1/0.92 ) − 1 2 = 0.4843
——————————————————————————————————–
"
1 # N1 " 1 #− N1
1 1 2 1 1 2 1
yN = +1 + − +1 +
2 2 2
"
1 # 13 " 1 #− 13
1 1 2 1 1 2 1
= +1 + − +1 +
2 0.48432 0.4843 0.48432 0.4843
1 h 1
i1 h 1
i− 1
3 3
= (5.2635) 2 + 2.064 − (5.2635) 2 + 2.064
2
1h 1 1
i 1
= [2.294 + 2.064] 3 − [2.294 + 2.064]− 3 = [1.6334 − 0.6122] ' 0.5107
2 2
h i
(2−1)π
C0 = yN = 0.5107 k=1 bk = 2 × 0.5107sin 2×3
= 0.5107
Chebyshev Filter Design
h i
(2k−1)π
ck = yN2 + cos 2 2N
B0 B1
H(sn ) = ×
k=1 s + 0.5107 s 2 + 0.5107s + 1.0108
B0 B1 1
H(sn ) = × 2 B0 B1 = = 0.5162
s + c0 s + bk s + ck 1.9372
B0 = B1
B02 = 0.5162
B0 B1 √
H(sn ) = × 2
s + 0.5107 s + b1 s + c1 B0 = 0.5162 = 0.7185
Chebyshev Filter Design
B0 B1 0.7185 0.7185
H(sn ) = × 2 = × 2
s + 0.5107 s + 0.5107s + 1.0108 s + 0.5107 s + 0.5107s + 1.0108
0.5162
H(sn ) =
s 3 + 1.0214s 2 + 1.2716s + 0.5162
Unnomalized transfer function, H(s) and Ωp = 0.7854 rad/sec
0.5162
Ha (s) = H3 (s)|s→ s = |s→ s
Ωp s 3 + 1.0214s 2 + 1.2716s + 0.5162 Ωp
0.5162
=
s3 2
Ωp 3
+ 1.0214 Ωs 2 + 1.2716 Ωs + 0.5162
p p
0.5162
=
s 3 +1.0214Ωp s 2 +1.2716Ω2p s+Ω3p
Ω3p
Ω3p
=
s3 + 1.0214Ωp s2 + 1.2716Ω2p s + Ω3p
0.5162 × 0.78543
=
s 3 + 1.0214 × 0.7854s 2 + 1.2716 × 0.78542 s + 0.78543
0.250
=
s 3 + 0.80229s 2 + 0.7844s + 0.2501
Chebyshev Filter Design
Design a Chebyshev IIR low pass filter that has to meet the following specifications
i) passband ripple ≤1.0 dB and passband edge frequency 1 rad/sec
ii) Stopband attenuation ≥15.0 dB and Stopband edge frequency 1.5 rad/sec
Solution:
Passband ripple Kp =1.0 dB or in normal value is Kp = 10Kp /20 = 10−1/20 = 0.891
Stopband ripple Ks =15.0 dB or in normal value is Ks = 10Ks /20 = 10−15/20 = 0.177
Passband edge frequency =1 rad/sec Stopband edge frequency =1.5rad/sec
" 1 #
(1/Ks2 )−1 2
cosh−1 (1/Kp2 )−1
H ( jω )
Gain
N1 =
Ωs
cosh−1 Ωp 1
" # 1 δp
h 2 i1
(1/0.177 )−1 2
cosh−1 1+ ε 2
(1/0.8912 )−1
= 1.5
cosh−1 1.0
1 δs
−1 31.0
cosh 0.26
2
cosh−1 [11.0] Ω
= = ΩP ΩS
cosh−1 (1.5) cosh−1 [1.5]
3.08 Figure 17: LPF specifications
= = 3.2 ' 4
0.96
N=4
Chebyshev Filter Design
When N is Even B1 B2
H(sn ) = × 2
N s 2 + b1 s + c1 s + b2 s + c2
2
Y Bk
H(sn ) =
k=1
s 2 + bk s + ck
1
(1/Kp2 ) − 1 2
=
N 4
N=4 k = 2
= 2
=2 1
(1/0.8912 ) − 1 2 = 0.51
=
——————————————————————————————————–
"
1 # N1 " 1 #− N1
1 1 2 1 1 2 1
yN = +1 + − +1 +
2 2 2
"
1 # 14 " 1 #− 14
1 1 2 1 1 2 1
= +1 + − +1 +
2 0.512 0.51 0.512 0.51
1 h 1
i1 h 1
i− 1
4 4
= (4.84) 2 + 1.96 − (4.84) 2 + 1.96
2
1h 1 1
i 1
= [2.2 + 1.96] 4 − [2.2 + 1.96]− 4 = [1.428 − 0.7] ' 0.364
2 2
h i
(2k−1)π
C0 = yN = 0.364 k=1 bk = 2 × yN sin 2×N
Chebyshev Filter Design
k=1 h i
(2−1)π
b1 = 2 × 0.364sin 2×4 = 0.278
k=2 h i
(2×2−1)π
b2 = 2 × 0.364sin 2×4
= 0.672
h i
2 2 (2k−1)π
ck = yN + cos 2N
k=2
k=1
(2 × 2 − 1)π
c2 = 0.3642 + cos 2
(2 − 1)π
c1 = 0.3642 + cos 2 2×4
2×4
3π
2 π = 0.132 + cos 2
h i
= 0.132 + cos 8
8 " #
1 + cos( 6π )
" #
1 + cos( 2π
8
) = 0.132 + 8
= 0.132 + 2
2
= 0.132 + 0.853 = 0.132 + 0.146 = 0.278
= 0.132 + 0.853 = 0.985
Chebyshev Filter Design
B1 B2
H(sn ) = × 2
s 2 + b1 s + c1 s + b2 s + c2
B1 B2
H(sn ) = ×
s 2 + 0.278s + 0.985 s 2 + 0.672s + 0.278
When N is odd the values of parameter Bk
are evaluated using
1 1
H(sn )|s=0 = = = 0.89
(1 + 2 )1/2 (1 + 0.512 )1/2
B1 B2
H(sn ) = = 0.89
0.985 × 0.278
B1 B2 = 0.244
B1 = B2
B12 = 0.244
√
B1 = 0.264 = 0.493
Chebyshev Filter Design
B1 B2 0.493 0.493
H(sn ) = × = 2 ×
s 2 + 0.278s + 0.985 s 2 + 0.672s + 0.278 s + 0.278s + 0.985 s 2 + 0.672s + 0.278
0.243
H(sn ) =
s 4 + 0.95s 3 + 1.45s 2 + 1.434s + 0.2738
Unnomalized transfer function, H(s) and Ωp = 1.0 rad/sec
0.243
Ha (s) = H4 (s)|s→ s = |s→ s
Ωp s 4 + 0.95s 3 + 1.45s 2 + 1.434s + 0.2738 1
0.263
=
s 4 + 0.95s 3 + 1.45s 2 + 1.434s + 0.2738
Chebyshev Filter Design
July 2014, Dec 2014 Design a Chebyshev IIR low pass filter that has to meet the following
specifications
i) passband ripple ≤2 dB and passband edge frequency 1 rad/sec
ii) Stopband attenuation ≥20 dB and Stopband edge frequency 1.3 rad/sec
Solution:
Passband ripple Kp =2 dB
or in normal value is Kp = 10Kp /20 = 10−2/20 = 0.7943
Stopband ripple Ks =12.395 dB
or in normal value is Ks = 10Ks /20 = 10−20/20 = 0.1
Passband edge frequency 1 rad/sec
Stopband edge frequency 1.3 rad/sec
" 1 #
(1/Ks2 )−1 2
cosh−1 (1/Kp2 )−1
N1 =
Ωs
cosh−1 Ωp
" #
i1
(1/0.12 )−1
h
2
cosh−1 (1/0.79432 )−1
=
cosh−1 1.3
1.0
−1 99.0
1
cosh 0.585
2
cosh−1 [13.00] 3.256
= 1.3
= = = 4.3 ' 5
cosh−1 [1.3]
cosh−1 1.0
0.756
N=5
Dr. Manjunatha. P (JNNCE) UNIT - 5: Analog Filter Design November 8, 2017 51 / 69
Chebyshev Filter Design
When N is odd
B0 B1 B2
H(sn ) = × ×
s + c0 s 2 + b1 s + c1 s 2 + b2 s + c2
N−1
2
B0 Y Bk
H(sn ) =
s + c0 k=1 s 2 + bk s + ck
1
(1/Kp2 ) − 1
= 2
N−1 5−1 1
N=5 k = = =2 2 = (1/0.79432 ) − 1 2 = 0.7648
2
——————————————————————————————————–
"
1 # N1 " 1 #− N1
1 1 2 1 1 2 1
yN = +1 + − +1 +
2 2 2
"
1 # 15 " 1 #− 15
1 1 2 1 1 2 1
= +1 + − +1 +
2 0.76482 0.7648 0.76482 0.7648
1 h 1
i1 h 1
i− 1
5 5
= (2.71) 2 + 1.307 − (2.71) 2 + 1.307
2
1h 1 1
i 1
= [1.646 + 1.307] 5 − [1.646 + 1.307]− 5 = [1.241 − 0.805] ' 0.218
2 2
h i h i
(2k−1)π (2−1)π
C0 = yN = 0.218 bk = 2 × yN sin 2×N
k=1 b1 = 2 × 0.218sin 2×5
= 0.134
Chebyshev Filter Design
k=2 h i
(4−1)π
b2 = 2 × 0.218sin 2×5 = 0.352
h
(2k−1)π
i k=2
ck = yN2 + cos 2 2N
(4 − 1)π
k=1 c2 = 0.2182 + cos 2
2×5
(2 − 1)π
3π
c1 = 0.2182 + cos 2 = 0.047 + cos 2
2×5 10
" #
2 π 1 + cos( 2×3π )
h i
= 0.047 + cos = 0.047 + 10
10 2
" #
1 + cos( 2π
10
) = 0.047 + 0.345 = 0.392
= 0.047 +
2
= 0.047 + 0.904 = 0.951
————————————————————–
B0 B1 B2
H(sn ) = × 2 × 2
s + c0 s + b1 s + c1 s + b2 s + c2
B0 B1 B2
H(sn ) = × 2 × 2
s + 0.218 s + 0.134s + 0.951 s + 0.352s + 0.392
When N is odd the values of parameter Bk are evaluated using
H(sn )|s=0 = 1
Chebyshev Filter Design
H(sn )|s=0 = 1
B0 B1 B2
H(sn ) = = 12.3B0 B1 B2 = 1
0.218 × 0.951 × 0.392
1
B0 B1 B2 = = 0.081
12.3
√
3 1
B0 = B1 = B2 Then B03 = 0.081 B0 = 0.081 = 0.081 3 = 0.432
0.432 0.432 0.432
H(sn ) = × 2 × 2
s + 0.218 s + 0.134s + 0.951 s + 0.352s + 0.392
0.081
H(sn ) =
s 5 + 0.7048s 4 + 1.496s 3 + 0.689s 2 + 0.456s + 0.081
Unnomalized transfer function, H(s) and Ωp = 1 rad/sec
Hence
0.081
H(sn ) = 5
s + 0.7048s 4 + 1.496s 3 + 0.689s 2 + 0.456s + 0.081
Chebyshev Filter Design
Dec 2014: Design A Chebyshev I low pass filter that has to meet the following specifications
i) passband ripple ≤2 dB and passband edge frequency 1 rad/sec
ii) Stopband attenuation ≥20 dB and Stopband edge frequency 1.3 rad/sec
Solution:
Ωp =1 rad/sec, Ωs =1.3 rad/sec,
Kp =–2 dB, Ks =–20 dB,
H ( jω )
Gain
1
Kp = 20 log √ = −2 1
1 + 2 1 δp
=0.76478 1+ ε 2
1
δp = 1 − √ = 0.20567
1 + 2 δs
Ω
ΩP ΩS
Ks = 20 log δs = −20
δs =0.1 Figure 18: LPF specifications
s
(1 − δp )−2 − 1 The order of the filter is
d= = 0.077
δs−2 − 1
1
cosh−1
d
N= = 4.3 ' 5
Ωp 1 cosh−1 1
K = = = 0.769 K
Ωs 1.3
√ !1
N
√ !− 1
N
1 1+ 1 + 2 1 1+ 1 + 2
a= − = 0.21830398
2 2
√ !1
N
√ !− 1
N
1 1+ 1 + 2 1 1+ 1 + 2
b= + = 1.0235520
2 2
h π i h πi
Ωk = b cos (2k − 1) = b cos (2k − 1)
2N 10
h π i h πi
σk = −a sin (2k − 1) = −a sin (2k − 1)
2N 10
where k = 1, 2, . . . 2N i.e., k = 1, 2, . . . 10
The poles those are lie on left half of the s plane is
k σk Ωk
1 -0.0674610 0.9734557
2 -0.1766151 0.6016287
3 -0.2183083 0
4 -0.1766151 -0.6016287
5 -0.0674610 -0.9734557
Chebyshev Filter Design
KN KN
H5 (s) = Q =
(s − sk ) (s − s1 )(s − s2 )(s − s3 )(s − s4 )
LHPonly
KN
=
(s + 0.067461 − j0.9734557)(s + 0.067461 + j0.9734557)
(s + 0.1766151 − j0.6016287)(s + 0.1766151 + j0.6016287)(s + 0.2180383)
KN
=
(s 2 + 0.134922s + 0.95215)(s 2 + 0.35323s + 0.393115)(s + 0.2183083)
KN
=
s 5 + 0.70646s 4 + 1.4995s 3 + 0.6934s 2 + 0.459349s + 0.08172
N is odd KN = bo =0.08172
0.08172
H5 (s) =
s 5 + 0.70646s 4 + 1.4995s 3 + 0.6934s 2 + 0.459349s + 0.08172
Verification
0.08172
Ha (jΩ) =
(jΩ)5 + 0.70646(jΩ)4 − 1.49(jΩ)3 − 0.693(jΩ)2 + 0.4593(jΩ) + 0.08172
0.08172
|Ha (jΩ)| = p
(.7064Ω4 − .693Ω2 + .0817)2 + j(Ω5 − 1.499Ω3 + .4593Ω)2
20 log |Ha (jΩ)|1 = −2 dB
20 log |Ha (jΩ)|1 .3 = −24.5 dB
References