Differentiation
Differentiation
DIFFERENTIATION
PRACTICE SHEET
1. If u = sin1 (x y ), x = 3t, y = t3, then what is the dy
derivative of u with respect to ? 8. If y= sin1 x + sin1, 1 x 2 what is equal to?
1
dx
(a) 3(1 t 2 ) (b) 3(1 t 2 ) 1 1
2
(a) cos1 x cos1 1 x 2 (b)
1 cos x cos 1 x 2
(c) 5(1 t 2 ) 2 (d) 5 (1 t2)
(c) (d) 0
2 2
2. If y = x + ex, then what is d x equal to?
dy 2 9. If f (x) = loge [loge x], then what is f’ (e) equal to?
(a) e1 (b) e
ex (c) 1 (d) 0
(a) ex (b)
(1 e x )3
dy
10. For the curve x y 1, what is the value of at
ex ex dx
(c) (d)
(1 e x ) (1 e x ) 2 1 1
, ?
4 4
1 1 dy
3. If, x y t , x 2 y2 t 2 What is equal to? 1
t t 2
dx (a) (b) 1
2
1 1 (c) 1
(a) (b) (d) 2
x x
1
1 1 11. If y ,then what is dy equal to
(c) (d) log10 x dx
x2 x2 (a) x (b) x loge 10
What is the derivative of cos 1 2 cos x 3sin x ?
(log x 10) 2 (log10e )
4. (c) (d) x log10 e
13 x
(a)
1
(b) 1 12. If xy = ex y, then dy /dx is equal to which one of the
1 x2 1 x2 following ?
(c) 0 (d) 1 ( x y) y
(a) (b)
5. What is the solution of y’ = 1 + x + y2 + xy2, y(0) = 0? (1 log x) 2
(1 log x)
x2 (x y) (log x)
(a) y tan 2 x (b) y = tan2 (x2 +x) (c) (d)
2 (1 log x) (1 log x) 2
x2
(c) y = tan (x2 + x) (d) y tan x 13. If f x cos x,g x log x,and y gof x , then what is
2
the value of
dy at x = 0 ?
dy dx
6. If x 1 y y 1 x 0, what is equal to?
dx (a) 0 (b) 1
(c) 1 (d) 2
1 1
(a) (b)
1 x (1 x) 2 14. What is the derivative of log x 5 respect to log 5 x ?
(a) 0 (b) 16. If f x tan x e 2x 7x 3 , then what is the value of
2
f 0 ?
(c) (d) 1
2 (a) 2 (b) 1
3x y 3x 3 xy
3 y
1
(c) 2 (d) 1
ANSWER KEYS
1. b 2. b 3. c 4. d 5. d 6. b 7. a 8. d 9. a 10. c
11. c 12. d 13. a 14. a 15. a 16. b 17. b 18. d 19. b 20. a
21. c 22. d 23. a 24. c 25. c 26. b
dy
Sol. 7. (a) 1 log x x 0 1
x y0 As given
dy
x
dx x = sin t t cos t and y = t sin t + cost dx 1 log x 2
dy y 1 1 On differentiating w.r.t.x, we get
dx
x t2 x2
dx =
1 log x 1
log x
Sol. 4. (d) dt
=cos t – {cos t + t (–sin t)} 1 log x 2 1 log x 2
The given function dx Sol. 13. (a)
=cot t – cos t + t sin t = 1 sin t y = gof(x) = g {f(x)}log(cos x)
2cos x 3sin x
f (x) cos 1
dt
13 dy dy 1
sin x tan x
Can be written as and = t cos t + sin t – sin t = t cos t dx cos x
dt
2 3 Hence, =cot t dy = tan 0 = 0
cos–1 cos x. sin x.
dx at x 0
dy
13 13 cot 0
dt t 2 Sol. 14. (a)
2 3
let cos and =sin 2 Let u = logx 5, and v = log5 x
13 13 Sol. 8. (d) u = loge 5 ,and v loge x
3 Given function is : loge x loge 5
13 3 y=sin–1 x + sin–1 1 x 2 On differentiating w. r. t. x., we get
tan = du log e 5 dv 1
2 2 on differentiating, w.r.t.x, we get , and
x log e x
2
dx dx x log e 5
13 dy
1
1
.
1
2x
dx
So, (i), cos–1 (cosx cos + sinx sin) 1 x2 1 1 x2 2 1 x2
1. dy
10. If y ln e mx e mx , then what is the value of at
(b) x x 1 2
x 2 x 2 dx
(a) 2 (ln 2)
x2 x 2
x 0?
(c) 2 (ln 2) (d) 2 (ln10 2) (a) 1 (b) 0
[NDA (I) - 2011] (c) 1 (d) 2
[NDA (II) - 2012]
2.
If y 1 x1/ 4 1 x1/ 2 1 x1/ 4 , then what is
dy
dx
equal 11. Consider the following statements :
dy
to ? I. If y ln sec x tan x , then sec x
(a) 1 (b) 1 dx
(c) 0 (d) 2x dy
[NDA (II) – 2011] II. If y ln cosec x cot x , then cosec x
dx
dy
3. If y=ln tan x, then what is the value of at x ? Which of the above statements is/are correct ?
dx 4 (a) Only I (b) Only II
(a) 0 (b) –1 (c) Both I and II (d) Neither I nor II
(c) 1/2 (d) 1 [NDA (II) - 2012]
[NDA-2011(2)] dy
If 2x 3y 7, then what is
3 2
dy 12. equal to (where,
4. If y = cos t and x = sin t, then what is the value of ? dx
dx y 0 )?
(a) xy (b) x/y
(c) y/x (d) x/y x2 x
(a) (b)
[NDA (I) - 2012] 2y 2y
x 1 dy x2
5. If y , then what is the value of ? (c) (d) None of these
x 1 dx y
2 2 [NDA (I) - 2013]
(a) (b)
x 1 x 1
2 2 2
13. The derivation of sec x w.r.t tan x is
2 2 (a) 1 (b) 2
(c) (d)
x 1
2
x 1 (c) 2sec x tan x (d) 2sec x tan x
2
dx 2 dx dx
62. If y = ex then, what is dy at x = π equal to
dx
2
(b) 2π e
2
[NDA-2017(1)] (a) (1 + π) e
55. What is the derivative of log10 (5x2+3) with respect to x?
(c) 2 e (d) e
2 2
x log10 e 2x log10 e
(a) (b) [NDA (I) - 2018]
5x 2 3 5x 2 3
63. What is the derivative of the function f(x) =
10x log10 e 10x loge 10
(c) (d)
5x 2 3 5x 2 3 e tan x n sec x e nx at x ?
4
[NDA-2017(1)]
(a) e/2 (b) e
cos x dy
cos x
cos x (c) 2e (d) 4e
56. If y = , then is equal to:
dx [NDA (I) - 2018]
y tan x
2
y 2 tan x 5 2 tan x dy
If y tan 1
2 5 tan x ,
(a) (b) 64. then what is equal to ?
1 yIn cos x 1 yIn cos x dx
y 2 tan x y 2 sin x 1
(c) (d) (a) (b) 1
1 yIn sin x 1 yIn sin x 2 x
[NDA (II) - 2017] (c) 1 (d) 1
57. A function is defined in (0, ∞)by : 2 x
1 x2 for 0 x 1 [NDA (II) - 2018]
f(x) =
Inx for 1 x 2 65. If u e sin bx ax
and ve ax,
cos bx, then what is
In 2 1 0.5x for 2 x
u
du
v
dv
equal to ?
Which one of the following is correct in respect of the dx dx
derivative of the function, i.e., f’ (x)?
(a) f’(x) = 2x for 0 < x 1
(a) a e
2ax
(b) a b
2 2
e ax
6 ln 2
(c) (d) 2 6
3 2 6 6 ln 2 3
x 1 x 1 (a) (b)
[NDA (II) - 2017] 6 6
6 ln 2
59. Consider the following statement;
2 6
3 2 6 ln 2 3
1.Derivative of f(x) may not exist at some point.
(c) (d) 6
2.Derivative of f(x) may exist finitely at some point. 6 6
3.Derivative of f(x) may be infinite (geometrically) at some point. [NDA (II) - 2018]
Which of the following statements is / are correct?
(a) 1 and 2 (b) 2 and 3 67. What is d 1 sin 2x equal to, where x ?
(c) 1 and 3 (d) 1, 2, and 3 dx 4 2
[NDA (II) - 2017] (a) cos x sin x (b) cos x sin x
2x dy
60. If y = cos1
2
, then is equal to: (c) cos x sin x (d)None of the above
1 x dx
[NDA (II) - 2018]
2 2
(a) for all |x| < 1 (b) for all |x| > 1 68. Let f x y f x f y and where f x 1 xg x x ,
1 x 2
1 x2
lim g x a and lim x b. Then what is f '(x) equal
2 x 0 x 0
(c) for all |x| < 1 (d) None of these
1 x2 to?
[NDA (II) - 2017] (a) 1 abf x (b) 1 ab
(c) ab (d) abf(x)
ANSWER KEY
1. a 2. b 3. d 4. d 5. b 6. b 7. c 8. d 9. c 10. b
11. c 12. c 13. a 14. a 15. b 16. a 17. b 18. c 19. c 20. b
21. b 22 c 23. a 24. c 25. c 26. b 27. a 28. c 29. c 30. a
31. b 32. b 33. d 34. d 35. a 36. c 37. a 38. d 39. c 40. b
41. d 42. d 43. d 44. a 45. d 46. a 47. c 48. c 49. d 50. a
51. d 52. a 53. a 54. c 55. c 56. a 57. c 58. a 59. d 60. a
61. a 62. b 63. c 64. a 65. a 66. a 67. a 68. d 69. a 70. d
71. a 72. a 73. b 74. a 75. b 76. b 77. a 78. a 79 b 80. a
81. b 82. a 83. c 84. a 85. b 86. d 87. d 88. c 89. b 90. d
91. c 92. a 93. b 94. a 95. c 96. d 97. a 98. c 99. a 100. d
101. d 102. a
Now, rate of charge of u w. r. t. x., is = 1 (cosec x. cot x + cosec2 x) = a2 .sin(b + b) = a2. sin0 = a2. 0=0
dx du/dx x 1 cosec x cot x Sol.17. (b)
Let f(x) = x3 and g(x) = x2
dv dv/dx x 2 16 2x =cosec x. cosec x cot x =cosec x
cosec x Now, df x 3x 2 and dg x 2x
du 1
So, statements I and II both are true.
dx dx
dv 2 x 2 16
Sol.12. (c) Derivative of x3 w. r. t. x2
du
at x 3
1
1
1
1 Given curve is 2x3 3y2 = 7, y ≠ 0. df x df x dx
1 3x
3x
2
dv 2 9 16 2 25 2 10 Now, differentiating both sides w. r. t. x, we get dg x
dx dg x 2x 2
d x 16 1 at x = 3
2
2.3.x2 3.2.y dy 0 Sol.18. (c)
dx 2
10 dx Let f(x) = sin(sin x)
dy dy x 2 On differentiating w. r. t. t. x, we get
Sol.7. (c) x y
2
0
f(x) = x2 – 6x + 8 dx dx y f(x) = cos (sin x). d (sin x)
f '(x) = 2x – 6 Sol.13. (a) dx
f '(c) = 2c – 6 = 0 Let u = sec2 x and v = tan2 x = cos x. cos (sin x)
c = 3 that is lie between [2, 4] Sol.19. (c)
Now, du =2 sec x. sec x. tan x = 2 sec2 x. tan x Let f(x) = |x 1|
Sol.8. (d) dx Redefined the function f(x),
f x 2sin x ,
and dv =2tan x. sec2x f(x) = 1 x, x 1 f ' x 1, x 1
f'(x) 2sin x (ln 2) cos x
dx x 1, x 1 1, x 1
d y sec
2 3
u = 1 tan1x
dx 2
a 2 = t2 1 t2 1 1
Sol.25. (c) du 1 1 …(i)
Given, y = x log x + xex dx
2 1 x2
t 2 1. t 2 1 s.s2 s3
On differentiating both sides w. r. t. x, we get
Now consider v = tan1 x Sol.37. (a)
dy 1 y1 = log (x + sin x)
x. log x xe x e x dv 1 …(ii)
dx x y2 = (x + cos x)
dx 1 x 2
dy1 1 1 cos x
dy =1 + logx + xex + ex We have, du du dx [by using equation (i) 1 cos x
dx dx x sin x x sin x
dv dx dv
dy = 1 + log1 + 1.e1 + 1 and (ii)] …(i)
=1 1 dy2 = (1-sin x) …(ii)
. 1 x
dx x 1 2 1
=1 + 2e (log1=0) 2 1 x2 2 dx
Sol.32. (b) Dividing equation (i) by (ii), we get
dy1
Sol.26. (b) a(1 t 2 ) 2at
f(x) = ax2 + bx + c x y = dy1
dx
1 t2 1 t2 dy 2 dy 2
f(1) = f(1)
after squaring and addition of both equations dx
a+b+c=ab+c
1 cos x
2b = 0 x2 + y2 = a2
b=0 this equation represent a circle. = x sin x 1 cos x
Sol.27. (a) Sol.33. (d) 1 sin x x sin x 1 sin x
f(x) = ax2 + bx + c x2 + y2 = a2 1
f '(x) = 2ax + b diff. both side w,r,t x Sol.38. (d)
f '(a) = 2aa + b, f '(b) = 2ab + b, f '(c) = 2ac + b 2x + 2yy ' = 0 xa yb = (x – y) a+b
given that a, b, c are in AP dy x taking log both side
than after multiply with 2a a logx + b logy = (a + b) log(x – y)
dx y
2aa, 2ab, 2ac will be in AP differentiate w.r.t. x
now add b in each term Sol.34. (d) a b dy 1 dy
d2 y y xy ' y x( x / y) (a b). .1
2aa + b, 2ab + b, 2ac + b will be in AP x y dx x y dx
Sol.28. (c) dx 2 y2 y2 by solving it
f '' (x) = 2a
f '' (a) = f '' (b) = f '' (c) = 2a
xe x
2
dx 3 = 12
f(x) =
Sol.49. (d)
Sol.43. (d) 2 1 e x 1 e x
2 2
f(x) = 1 + tan2(tan-1x) at x = e
=cos1 cos 2 f(x) = 1 + x2 dy 1 1
cos(lne). sin(lne).
2 f '(x) = 2x dx e e
= 2 Sol.70. (d)
dy cos1 sin1
where 0 2 f(x) = sin(cosx)
2 2 f'(x) =cos (cosx) (–sinx) dx e
Sol.61. (a) Sol.71. (a) Sol.79. (b)
f(0) = lim
f h f 0 x = et cost
dY
Y 2(sin x ) 2(sin x ) 2sin x cos x ln 2
2 2
y = et sint
h 0 h dX dx
2 et ( sin t ) et cos t
= lim h log h 0 X sin x
dX
cos x dt
h 0 h dx dy
Sol.62. (b) et (cos t ) et sin t
dY dt
2sin x.2(sin x ) ln 2 sin x.2(sin x ) ln 4
2 2
2
y= ex dX dx et ( sin t ) et cos t
Sol.72. (a)
y' 2xex
2
dy et (cost) et sin t
xy = ex−y
2 dx sint cos t
at x = π, y' = 2π e
taking log both sides
y.logx = x − y ...(i) dy cost sin t
Sol.63. (c) at t = 0
put x = 1 then y = 1
f(x) = etanx + n(sec x) x differentiate (i) w.r.t. x dx
1
f(x) = etanx.sec2 x + sec x tan x 1 1 dy dy ..(ii) dy
sec x y. log x. 1
x dx dx Sol.80. (a)
f(/4) = 2e + 1 1 = 2e put x = y = 1 in this equation Y = e e dY e e .e x
x x
Sol.64. (a)
dy dx
y = tan1 5 2 tan x 0
dx
X = ex dX e x
2 5 tan x Sol.73. (b)
dx
5 Diff. equation (ii) of above question x
= tan1 2 tan x dy dY e x .e x x
x log y y ee
dx d 2 y 1 dy d2y dX ex
5 log x. 2 . 2
1 2 tan x x2 dx x dx dx Sol.81. (b)
If y = (1 + x) (1 + x2) (1 + x4) (1 + x8) (1 + x16)
dy
5
put x = y = 1 and 0 in above equation then dy at x = 0
= tan1 tan1 tan x tan 1 5 x dx T.f.
2 2 d2y dx
1 Multiply both sides by (1 – x)
dy 1 dx 2
(1 – x) y = (1 – x) (1 + x) (1 + x2) (1 + x4) (1 +
dx 2 x Sol.74. (a) x4) (1 + x16)
Sol.65. (a) (1 – x)y = (x – x6) (1 + x16)
d co t 1 x
u du v dv d (tan 1 x) 2 1 ( 1 – x)y = 1 – x32
dx dx d (co t 1 x) d (co t 1 x) dy 32 x 31 y
=eax sin bx [aeax sin bx + beax cos bx] Sol.75. (b) (1 – x)
dx 1 x
+ eax cos bx [aeax cos bx beax sin bx] xmyn = am+n
y at x = 0 is 1
=e2ax [a sin2 bx + b sin bx cos bx + differentiate w.r.t. x
mxm-1 yn + nyn-1.xm y' =0 dy 323 1 = 1
a cos2 bx b sin bx cos bx]
=ae2ax xm-1.yn-1.my + nyn-1.xm-1 x. y' = 0 dx 1
y’ = −my/nx Sol.82. (a)
Sol.66. (a) Sol.76. (b) 1 𝑑𝑦
y = cos x. cos4x. cos8x then at x = taking
y = (sin x)x e c 4
𝑦 𝑑𝑥 4
log both sides
x x
cos x log subx . 1
dy
sin diff. w.r.t. 𝛉 log y = log [cosx . cos4x cos 8x]
dx sin x d d log y = log cos x + log cos 4x + log cos 8x
/ 2 e 4
dy 1 1 d d 1 dy
dx x 6 2 6 3 log 2
d
e
4
d
0 y dx
2/6 6 log 2 3
= 1 sin x 1
sin 4x.4 1 sin 8x.8
6 d cos x cos 4x cos 8x
0
Sol.67. (a) d dy
y tan x 4 tan 4 x 8 tan 8 x
For x , 1 sin 2 x sin x cos x d d dx
4 2 Sol.77. (a) T.f. dy at x
Result = cos x + sin x Y = ex dx 4
Sol.68. (d) X = xe
Here 1 dy 1 4 tan 8 tan 2
dY
ex y dx
dx
dx Sol.92. (a) x
Sol.86. (d) differentiation of sin2x w.r.t. cos2x than
y= [x + 1] 1 1
3
d (sin2 x) 2 sin x cos x 1
1 f ( y) x 3 x 3 x
G.I.f. is constant function between
x= – 3 to x = –4 d cos2 x 2 sin x cos x x3 x x
so its derivative is 0 Sol.93. (b) f ( y) y 3 3 y
Sol.87. (d) so f(x) = x3 + 3x
𝑚 cos cex cos ec x
f(x)= +2nx + 1
𝑥 180 g[f(x) 3x] = g(x3)
f'(x)= m 2n 0 differentiate by chain rule
= x3 1
x2 d d x3
cos cex cos ec x
m dx dx 180
= 2n 0 Sol.100. (d)
4 f(x) = x3 + 3x
8n = m cos ec x cot x f '(x) = 3x2
180 180 180
m + 8n = m + m =2m f ''(x) = 6x
It depends upon m. so can not find due to cos ecxcotx Sol.101. (d)
sufficient data 180 h(x) = f(2f(x)+2)
Sol.88. (c) Sol.94. (a) differentiate w.r.t. x
h(x) = {f(x)}2 + {g(x)}2 f(x) = |lnx| h'(x) = f '(2f(x)+2).2f '(x)
h’(x) = 2f(x).f '(x) + 2g(x).g '(x) ……(i) at x = 0.5 , lnx is negative h'(0) = f '(2f(0)+2).2f '(0)
given that f '(x) = g(x) so f(x) = – lnx given that f(0) = – 1
differentiate both sides f’(x) = – 1/x h'(0) = f '(0).2f '(0) = 2
f "(x) = g'(x) = – f(x) f’(0.5) = – 2 Sol.102. (a)
by equation (i) Sol.95. (c) g(x) = (h(x))2
h'(x) = 2f(x).g(x) – 2g(x).f(x) = 0 f(x) = |lnx| g '(x) = 2h(x).h'(x)
so h'(3) = 0 at x = 2 , lnx is positive
g '(0) = 2h(0).h'(0)
if h'(x) = 0, than h(x) is a constant function so f(x) = lnx
f’(x) = 1/x by above question h'(0) = 2
so h(1) = h(2)
Sol.89. (b) f’(2) = 1/2 and h(0) = f(2f(0)+2) = f(0) = - 1
x2 x 1 Sol.96. (d) so g '(0) = – 4
y ln 2 2 f(x) = |lnx|
x x 1 fof(x) = |ln|lnx||