0% found this document useful (0 votes)
23 views15 pages

Differentiation

This document contains a practice sheet for differentiation, featuring a series of mathematical problems and their corresponding answer keys. Each problem involves finding derivatives or solving equations related to calculus concepts. The solutions to the problems are provided at the end of the document.

Uploaded by

shashwat7r
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
23 views15 pages

Differentiation

This document contains a practice sheet for differentiation, featuring a series of mathematical problems and their corresponding answer keys. Each problem involves finding derivatives or solving equations related to calculus concepts. The solutions to the problems are provided at the end of the document.

Uploaded by

shashwat7r
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 15

Chapter-25

DIFFERENTIATION

PRACTICE SHEET
1. If u = sin1 (x  y ), x = 3t, y = t3, then what is the dy
derivative of u with respect to ? 8. If y= sin1 x + sin1, 1  x 2 what is equal to?
1
dx

(a) 3(1  t 2 ) (b) 3(1  t 2 ) 1 1
2
(a) cos1 x  cos1 1  x 2 (b) 
1 cos x cos 1  x 2

(c) 5(1  t 2 ) 2 (d) 5 (1  t2) 
(c) (d) 0
2 2
2. If y = x + ex, then what is d x equal to?
dy 2 9. If f (x) = loge [loge x], then what is f’ (e) equal to?
(a) e1 (b) e
ex (c) 1 (d) 0
(a) ex (b) 
(1  e x )3
dy
10. For the curve x  y  1, what is the value of at
ex ex dx
(c)  (d) 
(1  e x ) (1  e x ) 2 1 1
 , ?
4 4
1 1 dy
3. If, x  y  t  , x 2  y2  t 2  What is equal to? 1
t t 2
dx (a) (b) 1
2
1 1 (c) 1
(a) (b)  (d) 2
x x
1
1 1 11. If y  ,then what is dy equal to
(c) (d)  log10 x dx
x2 x2 (a) x (b) x loge 10
What is the derivative of cos 1  2 cos x  3sin x  ?
(log x 10) 2 (log10e )
4. (c)  (d) x log10 e
 13  x

(a)
1
(b)  1 12. If xy = ex  y, then dy /dx is equal to which one of the
1 x2 1 x2 following ?
(c) 0 (d) 1 ( x  y) y
(a) (b)
5. What is the solution of y’ = 1 + x + y2 + xy2, y(0) = 0? (1  log x) 2
(1  log x)
 x2  (x  y) (log x)
(a) y  tan 2   x (b) y = tan2 (x2 +x) (c) (d)
 2  (1  log x) (1  log x) 2
 x2 
(c) y = tan (x2 + x) (d) y  tan   x 13. If f  x   cos x,g  x   log x,and y   gof  x  , then what is
 2 
the value of
dy at x = 0 ?
dy dx
6. If x 1  y  y 1  x  0, what is equal to?
dx (a) 0 (b) 1
(c) 1 (d) 2
1 1
(a)  (b) 
1 x (1  x) 2 14. What is the derivative of log x 5 respect to log 5 x ?

(a)   log 5 x   log5 x 


2 2
1 x (b)
(c) (d)
(1  x) 2 1 x (c)   log x 5  log x 5
2 2
(d)
dy
If f  x   sin x , then what is f   x  equal to?
2 2
7. If x = sin t  t cost t and y = t sin t + cos t, then what is 15.
dx
    
(a) 4x sin x 2 cos x 2    
(b) 2sin x 2 cos x 2
at point t  ?
2 (c) 4sin  x  sin x
2 2
(d) 2x cos  x 
2 2


(a) 0 (b) 16. If f  x   tan x  e 2x  7x 3 , then what is the value of
2
 f  0 ?
(c)  (d) 1
2 (a) 2 (b) 1

SANDEEP SINGH BRAR Ph:- +91 9700900034 - 386 -


(c) 0 (d) 3 dy
22. If x  y  2, then what is at y  1 equal to ?
17. If 3  3  3
x y xy
, then what is dy equal to? dx
dx (a) 5 (b) 4

3x  y  3x 3 xy
3 y
 1
(c) 2 (d) 1

If x  k    sin   and y  k 1  cos   , then what is


(a) (b)
3y 1 3 x 23.
3x  3 y 3  3y x
the derivative of y with respect to x at    / 2 ?
(c) x (d)
3  3y 1  3x  y (a) 1 (b) 0
(c) 1 (d) 2
18. If y  sin  msin 1 x  , then what is the value of
d2 y
If x  t , y  t , what is
2 3
24. equal to ?
d y / dx at x  0?
2 2
dx 2
(a) m (b) m2 3
(c) m2 + 2 (d) 0 (a) 1 (b)
2t
dy d2 y d2 x 3 3
19. If y  f  x  , p  and q  2 , then what is equal (c) (d)
dx dx dy 2 4t 2
to ?
If y  sin 1 
q q 4x  dy
(a)  (b)  25. 2 
then what is equal to?
p2 p3  1  4x  dx
1 1
1 q (a) (b) 
(c) (d) 1  4x 2 1  4x 2
q p2
4 4x
(c) (d)
If f  x   e  and g  x   log cos x, then what is
sin log cos x 
20. 1  4 x2 1  4 x2
the derivative of f  x  g  x  ? x
26. What is the derivative of x a 2  x 2  a 2 sin 1   ?
(a) f  x  cos g  x  (b) f  x  sin g  x   a

(c) g  x  cos f  x  (d) g  x  sin f  x   (a) a 2  x 2 (b) 2 a 2  x 2


(c) x2  a2 (d) 2 x  a
2 2
2
21. What is the derivative of sin x with respect to cos2 x?
(a) tan2 x (b) cot2 x
(c) 1 (d) 1

ANSWER KEYS
1. b 2. b 3. c 4. d 5. d 6. b 7. a 8. d 9. a 10. c
11. c 12. d 13. a 14. a 15. a 16. b 17. b 18. d 19. b 20. a
21. c 22. d 23. a 24. c 25. c 26. b

SANDEEP SINGH BRAR Ph:- +91 9700900034 - 387 -


Solutions
Sol. 1. (b) 3 1 1
u = sin 1 (x  y) and x = 3t, y = 4t3 Where  = tan–1  2  =  0
  2
So, u = sin1(3t  4t3) 1 x 1  x2
Let t = sin    = sin1 t, =cos–1 (cos(x–)) = x –  Sol. 9. (a)
So, u = sin1, (3 sin  4 sin3) Hence, f' (x) = 1 ( is constant) The given function is : f (x) = loge [loge x]
= sin1 (sin 3) = 3 Sol. 5. (d) Differentiating w.r.t. x, we get
Hence, u = 3 sin1 t Given differential equation is 1 1 1 1 1
f '(x)  .  f '(e)  .   e1
du 1 dy loge x x loge e e e
3  3(1  t 2 ) 1/2 =1 + x + y2 + xy2
dx Sol. 10. (c)
dt 1 t2
dy Given function: x  y  1
Sol. 2. (b)  =(1+x) (1+y2)
Given that y = x + ex dx is an implicit function
Differentiating w.r.t.x dy Differentiating both sides w.r.t.x, we get
 =(1+x)dx 1 1 dy
dy
 1 e x 1  y2  0
dx 2 x 2 y dx
x2

dx

1 tan–1 y = +x+c dy y
dy 1  e x x  
Given that when x = 0, y(0)= 0. dx x
Differentiating w.r.t.
1e x 
Hence, c=0 dy 1 1
d2x Value of at x  , y 

dx  x2 
 
. dx 4 4
dy 2 x 2 dy y=tan   x
1 e  2   dy  1/ 4
      1
 dx  1 , 1 
x
e 1 ex 1/ 4
1  e . 1  e    1  e 
=– Sol. 6. (b)
x x x 3 Given equation 4 4

x 1 y  y 1 x  0 Sol. 11. (c)


Sol. 3. (c)
1
Given that x + y = t – 1/t and Can be written as: Differentiating the given function, y 
x 1  y  y 1  x log10 x
x2 + y2 = t2 + 1
t2 dy 1 1
Squaring both sides, we get We get,  . log10 e
(x+y)2 = x2 + y2 + 2xy x2 (1+y)=y2 (1+x) dx log10 x 2 x
 2  x2 + x2 y = y2 + y2 x
  t  1    t 2  1   2xy logx 102.log10 e
 t  2  x2 – y2 = y2 x – x2y 
dy

 t 
(x–y) (x+y)= – xy (x–y) dx x
–2 = 2xy  xy = – 1 x+y = – xy y(1+x)= – x Sol. 12. (d)
(x–y)2 = (x+y)2 – 4xy xy = ex–y
2 2
x
 1 1  1 y= which is in explicit from Taking log both sides, we get
=  t    4  1  t 2   2 4  t   1 x
 t t2  t y, log x = x–y
Differentiating w.r.t.x, we get
x–y = t + 1/t dy 1  x 1  x 1 1 y=
x
x = t, y = –1/t
xy = – 1
dx

1  x 2


1  x2  1  log x

dy
Sol. 7. (a) 1  log x   x 0  1 
x y0 As given

dy
  x
dx x = sin t  t cos t and y = t sin t + cost dx 1  log x  2
dy y 1 1 On differentiating w.r.t.x, we get

dx
 
x t2 x2

dx =
1  log x   1

log x

Sol. 4. (d) dt
=cos t – {cos t + t (–sin t)} 1  log x 2 1  log x 2
The given function dx Sol. 13. (a)
 =cot t – cos t + t sin t = 1 sin t y = gof(x) = g {f(x)}log(cos x)
 2cos x  3sin x 
f (x)  cos 1  
dt
 13  dy  dy  1
  sin x    tan x
Can be written as and = t cos t + sin t – sin t = t cos t dx cos x
dt
 2 3  Hence, =cot t   dy  =  tan 0 = 0
cos–1  cos x.  sin x.   
 dx at x  0
 
 
 dy 
 13 13   cot  0
 dt  t   2 Sol. 14. (a)
2 3
let  cos  and =sin 2 Let u = logx 5, and v = log5 x
13 13 Sol. 8. (d) u = loge 5 ,and v  loge x
3 Given function is : loge x loge 5
13 3 y=sin–1 x + sin–1 1 x 2 On differentiating w. r. t. x., we get
tan =  du log e 5 dv 1
2 2 on differentiating, w.r.t.x, we get  , and 
x  log e x 
2
dx dx x log e 5
13 dy

1

1
.
1
 2x 
dx
So, (i), cos–1 (cosx cos + sinx sin) 1  x2 1  1  x2 2 1  x2

SANDEEP SINGH BRAR Ph:- +91 9700900034 - 388 -


 du
2
du/dx log e 5  log e 5  d2 y dy y
   x log e     0   1
dv dv/dx x  log e x 2  log e x  dx 2 dx x
=  (logx 5)2 =  (log5 x)2 Sol. 19. (b) Sol. 23. (a)
x = k ( + sin) and y = k (1 + cos)
Sol. 15. (a) We have, dy  p
f  x   sin 2 x 2 , dx  dy = k(1 + cos) and dy =  k sin
  cos  x  d2 x d d
f   x  = 4x sin x
2 2 dx 1 1 dp
  2  2  
dy p dy p dy
 dy 2sin cos
Sol. 16. (b) k sin  2 2   tan 
2  
f  x   tan x  e 2x  7x 3 , 
d x 1 dp
 2
1 dp dx
 2
q
 3 dx k 1  cos   2 cos 2  2
dy 2 p dy p dx dy p 2
f '(x) = sec2x - 2e-2x - 21x2
Sol. 20. (a)   dy  
f '(0) = 1 - 2 = -1      tan  1
Sol. 17. (b) f(x) = esin(log cos x)  dx  4
2
3x + 3y = 3x+y f(x) =esin(log cos x).cos(log cos x). 1 (sin x) Sol. 24. (c)
On differentiating w. r. t. x., we get cos x
x  t 2 , y  t3 ,
3x log3 + 3y log3 dy =3(x+y) log3 1  dy  =  esin(log cos x). cos(log cos x). tan x
  dx dy dy 3
dx  dx  and g(x) = log cos x  2t,  3t 2 ,  t,
3x + 3y dy =3x+y + 3(x+y) dy g(x) = 1 (sin x) =  tan x dt dt dx 2
dx dx cos x d 2 y 3 dt 3
 
Hence, f '  x   e .cos  log cos x  .tan x
sin  log cos x 
 dy (3x+y + 3y) = 33+y  3x dx 2 2 dx 4t
dx g ' x   tan x Sol. 25. (c)
 dy  3 3  1  3
x y

xy
x y 1    =esin(log cosx).cos(log cos x)  4x 
y  sin 1  2 
dx 3 1  3
y x
1  3x    =f(x).cos[g(x)]  1  4x 
Sol. 21. (c) put 2x = tan t
Sol. 18. (d) Let u= sin2 x, and v = cos2 x
y  sin  msin 1 x  , y = Sin-1(Sin 2t) = 2t = 2tan-1 (2x)
 du =2 sin x cos x dy 4
put m = 2 dx  ,
1 dx 1  4x 2
y  Sin(2Sin x) dv
and   2sin x cos x Sol. 26. (b)
y  Sin(Sin 1 2x 1  x 2 )  2 x 1  x 2 dx dy 1 a2 1
 x. .  2x   a 2  x 2  .
dy 2x(2x)  du  du/dx  2sin x cos x  1 dx 2 a2  x2 x2 a
 2 1 x2  1 2
dx 2 1 x2 dv dv/dx 2sin x cos x a
2(1  x 2 )  2 x 2 2  4x 2 Sol. 22. (d)
dy
  x 2 a 2 .a 1
dx 1 x2 1 x2 x  y  2,   a2  x2  .
at y = 1 , x = 1 a x
2 2
a x
2 2 a
2x
1  x 2 (8x)   2  4x 2 
= a  x  a2  x2  2 a2  x2
2 On differentiating w. r. t. x., we get 2 2
d y
 2 1 x2 1 1 dy
dx 2 (1  x 2 )   0, a2  x2
2 x 2 y dx
put x = 0

SANDEEP SINGH BRAR Ph:- +91 9700900034 - 389 -


NDA PYQ
If f  x   2 , then what is the double derivative of f ''(x)?
x

 
1. dy
10. If y  ln e mx  e  mx , then what is the value of at
(b) x  x  1 2
x 2 x 2 dx
(a) 2 (ln 2)
x2 x 2
x  0?
(c) 2 (ln 2) (d) 2 (ln10 2) (a) 1 (b) 0
[NDA (I) - 2011] (c) 1 (d) 2
[NDA (II) - 2012]
2.    
If y  1  x1/ 4 1  x1/ 2 1  x1/ 4 , then what is
dy
dx
equal 11. Consider the following statements :
dy
to ? I. If y  ln  sec x  tan x  , then  sec x
(a) 1 (b) 1 dx
(c) 0 (d) 2x dy
[NDA (II) – 2011] II. If y  ln  cosec x  cot x  , then  cosec x
dx
dy 
3. If y=ln tan x, then what is the value of at x  ? Which of the above statements is/are correct ?
dx 4 (a) Only I (b) Only II
(a) 0 (b) –1 (c) Both I and II (d) Neither I nor II
(c) 1/2 (d) 1 [NDA (II) - 2012]
[NDA-2011(2)] dy
If 2x  3y  7, then what is
3 2
dy 12. equal to (where,
4. If y = cos t and x = sin t, then what is the value of ? dx
dx y  0 )?
(a) xy (b) x/y
(c) y/x (d) x/y x2 x
(a) (b)
[NDA (I) - 2012] 2y 2y
x 1 dy x2
5. If y  , then what is the value of ? (c) (d) None of these
x 1 dx y
2 2 [NDA (I) - 2013]
(a) (b)
x 1  x  1
2 2 2
13. The derivation of sec x w.r.t tan x is
2 2 (a) 1 (b) 2
(c) (d)
 x  1
2
 x  1 (c) 2sec x tan x (d) 2sec x tan x
2

[NDA (I) - 2013]


[NDA (I) - 2012]
14. What is the differentiation on log x x ?
6. What is the rate of change of x 2  16 w.r.t. x2 at x = 3 ? [NDA (I) - 2013]
1 1 (a) 0 (b) 1
(a) (b) (c) 1/x (d) x
5 10
dy
1 1 15. If y  x , then what is the value of
x
at x  1?
(c) (d) dx
20 15
(a) 0 (b) 1
[NDA (I) - 2012]
(c) 1 (d) 2
7. If f(x)=x2 – 6x + 8 and there exists a point c in the interval [NDA (I) - 2013]
[2, 4] such that f’(c)=0, then what is the value of c?
d2 y b
(a) 2.5 (b) 2.8 16. If y  sin  ax  b  , then what is 2
at x   , where
(c) 3 (d) 3.5 dx a
[NDA-2012(1)] a and b are constants and a  0?
If f  x   2 , then what is the derivative of f '  x  ?
sin x
8. (a) 0 (b) 1
(a) 2
sin x
ln 2 (b) sin x 2 sin x 1 (c) sin  a  b  (d) sin  a  b 

(c) cos x 2 sin x 1


(d)None of these [NDA (I) - 2013]
17. What is the derivation of x3 w.r.t. x2 ?
[NDA (II) - 2012]
3x
dy x (a) 3x2 (b)
If x  y  1, such that   , then what should be
m m
9. 2
dx y
3
the value of m? (c) x (d)
(a) 0 (b) 1 2
(c) 2 (d) 1 [NDA (II) - 2013]
[NDA (II) - 2012]

SANDEEP SINGH BRAR Ph:- +91 9700900034 - 390 -


18. What is the derivation of sin  sin x  ? [NDA-2014(2)]
27. f'(a), f'(b), f'(c) are in
(a) cos  cos x  (b) cos  sin x  (a) A.P
(c) cos  sin x  cos x (d) cos  cos x  cos x
(b) G.P
(c) H.P
[NDA (II) - 2013] (d) Arithmetic co-geometric progression
19. What is the derivation of x  1 at x = 2? [NDA-2014(2)]
28. f”(a), f”(b), f”(c) are:
(a) 1 (b) 0 (a) in A.P. only
(c) 1 (d) does not exist (b) in G.P. only
[NDA (II) - 2013] (c) in both A.P. and G.P.
20. If f(x) = 2x2 + 3x - 5 , then what is f'(0) + 3f '(-1) = (d) neither in A.P. nor in G.P.
(a) 1 (b) 0 [NDA-2014(2)]
(c) 1 (d) 2 Direction (for next two) : Given that,
[NDA (II) - 2013]
d  1 x2  x4 
1  cos x    Ax  B
21. What is the derivative of dx  1  x  x 2 
1  cos x
29. What is the value of A ?
1 2x (a) 1 (b) 1
(a) sec
2 2 (c) 2 (d) 4
1 2 x
[NDA (I) - 2015]
(b)  cosec 30. What is the value of B ?
2 2 (a) 1 (b) 1
2 x (c) 2 (d) 4
(c)  cosec
2 [NDA (I) - 2015]
(d) None of the above  
What is the derivative of tan 1  1  x  1  with respect to
2

[NDA (I) - 2014] 31.  


 x 
dz
22. If z = fo f(x) where f(x) = x2, then what is equal to? 1
dx tan x ?
(a) x3 (b) 2x3 1
(c) 4x3 (d) 4x2 (a) 0 (b)
2
[NDA-2014(1)]
(c) 1 (d) x
Direction (for next two): Consider the curve
[NDA (I) - 2015]
x  a  cos    sin   and y  a  sin    cos   . Direction (for next three)
dy Consider the parametric equation
23. What is equal to? a(1  t 2 ) and 2at
dx x y
1 t 2
1 t2
(a) tan  (b) cot 
32. What does the equation represent?
(c) sin 2 (d) cos 2 (a) It represents a circle of diameter a
[NDA (II) - 2014] (b) It represents a circle of radius a
2
d y (c) It represents a parabola
24. What is equal to ? (d) None of the above
dx 2
[NDA (I) - 2015]
(a) sec2θ (b) -cosec2θ dy
33. What is equal to?
sec3  dx
(c) (d) None of these
a (a) y/x (b) - y/x
[NDA (II) - 2014] (c) x/y (d) - x/y
[NDA (I) - 2015]
dy
25. If y  x ln x  xe , then what is the value of
x
at x = 2

dx 34. What is d y2 equal to


dx
1?
(a) 1+ e (b) 1 e a2 a2
(a) (b)
(c) 1 + 2 e (d) None of these y2 x2
[NDA (II) - 2014] 2 2
(c)  a (d)  a
For the next three (03) items that follow: x2 y2
Let f(x)=ax2+bx+c such that f(1)=f(–1) and a, b, c are in [NDA (I) - 2015]
Arithmetic progression.  1  sin x  1  sin x  
26. What is the value of b? 35. If y  cot 1   , where 0 < x < ,
(a) –1  1  sin x  1  sin x  2
(b) 0 dy
then is equal to
(c) 1 dx
(d) cannot be determined due to insufficient data

SANDEEP SINGH BRAR Ph:- +91 9700900034 - 391 -


1 (a) p3 (b) 3p3
(a) (b) 2 (c) 6p3 (d) 6p3
2
[NDA (I) - 2016]
(c) sin x  cos x (d) sin x  cos x 44. What is the value of p for which f ”(0) = 0?
[NDA (II) - 2015] 1
d 2s (a)  or 0 (b) 1 or 0
36. If s  t  1, , then
2
is equal to 6
dt 2
1
1 1 (c) or 0 (d) 1 or 1
(a) (b) 2 6
s s [NDA (I) - 2016]
1 1 For the next four (4) items that follow:
(c) 3 (d) 4 Let f:RR be a function such that f(x) = x3 + x2 f’(1) + xf
s s
”(2) + f "'(3) for xR
[NDA (II) - 2015]
45. What is f(1) equal to:
37. The derivative of ln  x  sin x  with respect to (a) 2 (b) 1
 x  cos x  is (c) 0 (d) 4
[NDA (I) - 2016]
(a) 1  cos x (b) 1  cos x 46. What is f ’(1) is equal to ?
 x  sin x 1  sin x   x  sin x 1  sin x  (a) 5 (b) 1
(c) 1 (d) 0
(c) 1  cos x (d) 1  cos x
[NDA (I) - 2016]
 x  sin x 1  cos x   x  sin x 1  cos x  47. What is f '''(10) equal to?
[NDA (II) - 2015] (a) 1 (b) 5
dy y (c) 6 (d) 0
38. If xayb=(x–y)a+b, then the value of  is equal to:
dx x [NDA (I) - 2016]
(a) a/b (b) b/a 48. Consider the following:
(c) 1 (d) 0 1.f(2) = f(1)  f(0)
[NDA (II)-2015] 2.f ”(2)  2f’ (1) = 12
For the next two (2) items that follow: Which of the above is / are correct?
Consider the function (a) Only 1 (b) Only 2
f(x) = |x2  5x + 6| (c) Both 1 and 2 (d) Neither 1 nor 2
39. What is f  (4) equal to? [NDA (I) - 2016]
(a) 4 (b) 3 49. If y = log10 x + logx 10 + logx x + log10 10 then what is
(c) 3 (d) 2  dy 
[NDA (I) - 2016]   x = 10 equal to ?
 dx 
40. What is f  (2.5) equal to? (a) 10 (b) 2
(a) 3 (b) 2 (c) 1 (d) 0
(c) 0 (d) 2 [NDA (I) - 2016]
[NDA (I) - 2016] Direction (for next three): Consider the following for the
Direction (for next two): next two items that follow:
Consider the equation x + |y| = 2y Let f(x) = [|x|  |x  1|]2
41. Which of the following statements are not correct? 50. What is f ’(x) equal to when x > 1?
1.y as a function of x is not defined for all real x.
(a) 0 (b) 2x 1
2.y as a function of x is not continuous at x = 0
(c) 4x  2 (d) 8x  4
3. y as a function of x is differentiable for all x.
Select the correct answer using the code given below: [NDA (II) - 2016]
51. What is f ’(x) equal to when 0 < x < 1 ?
(a) 1 and 2 (b) 2 and 3
(c) 1 and 3 (d) 1,2 and 3 (a) 0 (b) 2x 1
[NDA (I) - 2016] (c) 4x  2 (d) 8x  4
42. What is the derivative of y as a function of x with respect x [NDA (II) - 2016]
for x < 0? 52. Which of the following equation is/are correct?
(a) 2 (b) 1 1. f(2) = f(5)
2. f ”(2) + f ” (0.5) + f ” (3) = 4
1 1
(c) (d) Select the correct answer using the codes given below:
2 3 (a) Only 1 (b) Only 2
[NDA (I) - 2016] (c) Only 1 and 2 (d) Neither 1 nor 2
For the next two (2) items that follow: [NDA (II) - 2016]
Consider the function 53. Let f(x+y) = f(x) f(y) for all x and y. Then what is f’(5) equal
x3 sin x cos x to [where f’ (x)] is the derivative of f(x)]?
f(x) = 6 1 0 where p is a constant. (a) f(5)f’(0) (b) f(5)f’(0)
(c) f(5) f(0) (d) f(5) +f’ (0)
p p2 p3
[NDA (I) - 2017]
43. What is the value of f ’(0)?

SANDEEP SINGH BRAR Ph:- +91 9700900034 - 392 -


d 2x  2 x  0
54. What is equal to? 61. Consider the function f  x    x n x  what is f(0)
dy 2
 0 x  0
1 1 equal to ?
 d 2 y   dy  3  d 2 y   dy  2
(a) –     (b)  2    (a) 0 (b) 1
 dx 2   dx   dx   dx 
    (c) 1 (d) It does not exist
1 [NDA (I) - 2018]
 d 2 y   dy  3  d2y 
(c) –    (d)  2 
2

 dx 2   dx   dx 
62. If y = ex then, what is dy at x = π equal to
    dx
2
(b) 2π e
2
[NDA-2017(1)] (a) (1 + π) e
55. What is the derivative of log10 (5x2+3) with respect to x?
(c) 2 e (d) e
2 2

x log10 e 2x log10 e
(a) (b) [NDA (I) - 2018]
5x 2  3 5x 2  3
63. What is the derivative of the function f(x) =
10x log10 e 10x loge 10
(c) (d) 
5x 2  3 5x 2  3 e tan x  n  sec x   e nx at x  ?
4
[NDA-2017(1)]
(a) e/2 (b) e
 cos x  dy
 cos x 
cos x  (c) 2e (d) 4e
56. If y = , then is equal to:
dx [NDA (I) - 2018]
 y tan x
2
y 2 tan x  5  2 tan x  dy
If y  tan 1 
 2  5 tan x  ,
(a) (b) 64. then what is equal to ?
1  yIn  cos x  1  yIn  cos x    dx
y 2 tan x y 2 sin x 1
(c) (d) (a)  (b) 1
1  yIn  sin x  1  yIn  sin x  2 x
[NDA (II) - 2017] (c) 1 (d) 1
57. A function is defined in (0, ∞)by : 2 x
 1 x2 for 0  x  1 [NDA (II) - 2018]
f(x) = 
 Inx for 1  x  2 65. If u  e sin bx ax
and ve ax,
cos bx, then what is
In 2  1  0.5x for 2  x  
 u
du
v
dv
equal to ?
Which one of the following is correct in respect of the dx dx
derivative of the function, i.e., f’ (x)?
(a) f’(x) = 2x for 0 < x  1
(a) a e
2ax

(b) a  b
2 2
e ax

(b) f’(x) = 2x for 0 < x  1 (c) ab e


2ax
(d)  a  b  eax
(c) f’(x) = 2x for 0 < x < 1 [NDA (II) - 2018]
(d) f’(x) = 0 for 0 < x < ∞
dy
y  sin x , then what is the value of
x
[NDA (II) - 2017] 66. If at
1  x  1  1  x  1  dy dx
58. If y = sec    sin   ,then is equal to:

 x 1   x 1 dx x ?
(a) 0 (b) 1 6
x 1 x 1  

 6 ln 2    

(c) (d) 2 6
3 2 6 6 ln 2  3
x 1 x 1 (a) (b)
[NDA (II) - 2017] 6 6

 

 6 ln 2  
59. Consider the following statement; 
2 6
3 2 6 ln 2  3
1.Derivative of f(x) may not exist at some point.
(c) (d) 6
2.Derivative of f(x) may exist finitely at some point. 6 6
3.Derivative of f(x) may be infinite (geometrically) at some point. [NDA (II) - 2018]
Which of the following statements is / are correct?
 
(a) 1 and 2 (b) 2 and 3 67. What is d 1  sin 2x equal to, where x ?
(c) 1 and 3 (d) 1, 2, and 3 dx 4 2
[NDA (II) - 2017] (a) cos x  sin x (b)   cos x  sin x 
 2x  dy
60. If y = cos1
 2 
, then is equal to: (c)   cos x  sin x  (d)None of the above
1 x  dx
[NDA (II) - 2018]
2 2
(a)  for all |x| < 1 (b)  for all |x| > 1 68. Let f  x  y   f  x  f  y  and where f  x   1  xg  x    x  ,
1 x 2
1 x2
lim g  x   a and lim   x   b. Then what is f '(x) equal
2 x 0 x 0
(c) for all |x| < 1 (d) None of these
1 x2 to?
[NDA (II) - 2017] (a) 1  abf  x  (b) 1  ab
(c) ab (d) abf(x)

SANDEEP SINGH BRAR Ph:- +91 9700900034 - 393 -


[NDA (II) - 2018] (c) 2e (d) −1
69. Derivative of sec2(tan-1x) w.r.t. x is [NDA (I) - 2021]
(a) 2x (b) x2 + 1 ex
(c) x + 1 (d) x2 80. What is the derivative of e with respect to ex?
x
[NDA (I) - 2019] e
70. If f(x) = sin(cosx) than f'(x) = (a) e (b) ex
(a) cos(cosx) (b) sin(-sinx) ex
(c) e ex (d) eex
(c) (sinx)cos(cosx) (d) (-sinx)cos(cosx)
[NDA (II) - 2021]
[NDA (I) - 2019]
81. If y=(1+x) (1+ x2) (1 + x4) (1 + x8) (1 + x16) then what is
(sin x )2
71. What is the derivative of 2 with respect to sinx? dy at x = 0 equal to?
2 2
(a) sin x.2(sin x ) .ln4 (b) 2sin x.2(sin x ) .ln4 dx
(c) ln(sin x)2(sin x )
2
(d) 2sin x cos x2(sin x )
2
(a) 0 (b) 1
(c) 2 (d) 4
[NDA (II) - 2019] [NDA (II) - 2021]
If y = cos x. cos4x.cos8x, then what is dy at x   equal
Direction (for next two): 1
Consider the equation xy = ex−y 82.
y dx 4
dy
72. What is at x = 1 equal to to?
dx (a) –1 (b) 0
(a) 0 (b) 1 (c) 1 (d) 3
(c) 2 (d) 4 [NDA (II) - 2021]
[NDA (II) - 2019] 83. Let f(x) be a polynomial function such that fof(x) = x4.
2
73. What is d y2 at x = 1 equal to ? What is f '(1)=
dx (a) 0 (b) 1
(a) 0 (b) 1 (c) 2 (d) 4
(c) 2 (d) 4 [NDA (II) - 2021]
𝑑𝑦
[NDA (II) - 2019] 84. If xyyx = 1, then what is at (1, 1) equal to?
𝑑𝑥
74. What is the derivative of tan-1xwith respect to cot-1x ? (a) –1 (b) 0
(a) −1 (b) 1 (c) 1 (d) 4
1 x [NDA (I) - 2022]
(c) (d)
1 x2 1 x2 85.
𝑑𝑦
If y = (xx)x, then what is the value of at x = 1?
[NDA 2020] 𝑑𝑥
1
dy equal to ? (a) (b) 1
2
75. If xmyn = am+n , then what is (c) 2 (d) 4
dx [NDA (I) - 2022]
(a) my (b)  my 86. Let y = [x + 1], –4 < x < – 3 where [.] is the greatest integer
nx nx function. What is the derivative of y with respect to x at x =
(c) mx (d)  mx – 3.5?
ny (a) –4 (b) –3.5
ny
(c) –3 (d) 0
[NDA 2020] [NDA (I) - 2022]
76. If eθφ = c + 4θφ, where c is an arbitrary constant and φ is a 𝑚
function of θ, then what is φdθ equal to ? 87. If the derivative of the function f(x)= +2nx + 1 vanishes
𝑥
(a) θ d φ (b) – θ d φ at x = 2, then what is the value of m + 8n?
(c) 4 θ d φ (d) −4 θ d φ (a) –2
[NDA 2020] (b) 0
77. What is the derivative of ex w.r.t. xe ? (c) 2
(d)cannot be determined due to insufficient data
(a)
xe x (b)
ex [NDA (I) - 2022]
ex e xe 88. Let f(x) be a function such that f'(x) = g(x) and f"(x) = –
ex f(x). Let h(x) = {f(x)}2 + {g(x)}2. Then consider the
(c)
xe x (d) following statements:
xe ex e 1. h'(3) = 0 2. h(1) = h(2)
[NDA (I) - 2021] Which of the statements given above is/are correct?
78. What is the derivative of sin(lnx) + cos(lnx) with respect to (a) 1 only (b) 2 only
x at x =e? (c) both 1 and 2 (d) neither 1 nor 2
(a) cos1  sin1 (b) sin1  cos1 [NDA 2022 (II)]
e e  x 2  x 1 dy
89. If y = ln 
2
 , then what is at x = 0 equal to?
cos1  sin1  x 2  x 1 dx
(c) (d) 0  
e (a) –2 (b) 0
[NDA (I) - 2021] (c) 1 (d) 2
79. If x = etcost and y = etsint, then what is the value of dx/dy [NDA 2022 (II)]
at t = 0 equal to ?
(a) 0 (b) 1

SANDEEP SINGH BRAR Ph:- +91 9700900034 - 394 -


(a) –2 (b) –1
d  1  x 4  x 8 
 = ax + bx3, then which one of the
90. If (c) 0 (d) 2
dx  1  x 2  x 4 
 [NDA-2023 (2)]
following is correct?  2x  3 
98. If f’(x) = cos (ln x) and y = f   , then what is dy/dx
(a) a = b (b) a = 2b  x 
(c) a + b = 0 (d) 2a = b equal to?
[NDA 2022 (II)]
  2x  3     2x  3  
dy (a)cos  n   (b) –3/x2 sin  n  
If y = x x  16  8 ln x  x 2  16 , then what is
2
91. equal   x    x 
2 dx   2x  3     2x  3  
to? (c) 3/x2 cos  n   (d) –3/x2 cos  n  
  x    x 
(a) x x 2  16 (b) x- x 2  16 [NDA-2023 (2)]
(c) x  16
2
(d) 4 x  16 2 Consider the following for the next two (02) items that
follow:
[NDA 2022 (II)]
1
92. What is the derivative of sin2x with respect of cos2x? Let f(x) and g(x) be two functions such that g(x) = x 
(a) –1 (b) 1 x
(c) sin2x (d) cos2x 1 .
[NDA – 2023 (1)] and fog(x)  x 3 
x3
93. What is the derivative of cosec (x°)?
99. What is g[f(x)  3x] equal to?
(a) –cosec(x°) cot(x°) (b) –  cos ecx cotx
1 1
180 (a) x3  (b) x3 
 x3 x3
(c)  cos ecx cotx (d) – cos ecx  cotx 
180 180 1
(c) x 2  2 (d) x 2  1
[NDA – 2023 (1)] x x2
Consider the following for the next three (03) items that [NDA-2024 (1)]
follow: 100. What is f(x) equal to?
Let f(x) = |lnx|, x  1.
(a) 
2 (b) 2x  2
94. What is the derivative of f(x) at x = 0.5? 3
(a) –2 (b) –1 x x3
(c) 1 (d) 2 (c) 6x + 3 (d) 6x
[NDA – 2023 (1)] [NDA-2024 (1)]
95. What is the derivative of f(x) at x = 2? Direction: Consider the following for the two items given
(a) –1/2 (b) –1 below
(c) 1/2 (d) 2 let f: (–1,1) → R be a differentiable function with f(0) = –1
[NDA – 2023 (1)] and f’(0) = 1. Let h(x) = f(2f(x)+2) and g(x) = (h(x))2
96. What is the derivative of fof (x), where 1 < x < 2? 101. What is h’(0) equal to?
1 (a) –2 (b) –1
(a) (b) 1
(c) 0 (d) 2
ln x x ln x [NDA – 2024 (2)]
(c) – 1 (d) – 1 102. What is g’(0) equal to?
ln x x ln x (a) –4 (b) –2
[NDA – 2023 (1)] (c) 0 (d) 4
97. If f(x) = |ln|x|| where 0 < x < 1, then what is f’(0.5) equal [NDA – 2024 (2)]
to?

ANSWER KEY

1. a 2. b 3. d 4. d 5. b 6. b 7. c 8. d 9. c 10. b
11. c 12. c 13. a 14. a 15. b 16. a 17. b 18. c 19. c 20. b
21. b 22 c 23. a 24. c 25. c 26. b 27. a 28. c 29. c 30. a
31. b 32. b 33. d 34. d 35. a 36. c 37. a 38. d 39. c 40. b
41. d 42. d 43. d 44. a 45. d 46. a 47. c 48. c 49. d 50. a
51. d 52. a 53. a 54. c 55. c 56. a 57. c 58. a 59. d 60. a
61. a 62. b 63. c 64. a 65. a 66. a 67. a 68. d 69. a 70. d
71. a 72. a 73. b 74. a 75. b 76. b 77. a 78. a 79 b 80. a
81. b 82. a 83. c 84. a 85. b 86. d 87. d 88. c 89. b 90. d
91. c 92. a 93. b 94. a 95. c 96. d 97. a 98. c 99. a 100. d
101. d 102. a

SANDEEP SINGH BRAR Ph:- +91 9700900034 - 395 -


Solutions
Sol.1. (a) dy dy mx m 1 Sol.14. (a)
f(x) = 2x mx m 1  mym 1 0  Let u = logx x = 1
dx dx mym 1
f(x) = 2x loge 2 m 1
 xm  y   du =0, and v = log x
f (x) = 2x log2 2. 2loge 2 = 2x (loge 2)2 = x   m   dx
Sol.2. (b) y m 1 y  x 
y = (1 + x1/4) (1 + x1/2)(1x1/4)  dv  1
Given,  x    x   y 
m
=(1 + x1/2)(1  x1/2) =1  x dx x
 m  
 dy  1
y  y  x   du  du/dx  0
m2 dv dv/dx
 x 
dx
Sol.3. (d)   1 Sol.15. (b)
y Given curve, y = xx
y  ln tan x
Which is true when m= 2. Taking log on both sides,
1 1
y . sec2 x Sol.10. (b) log y = x log x
tan x 2 tan x y = In(emx + emx) on differentiating both sides w. r. t. x., we get
put x = π/4 On differentiating it w. r. t. x., we get 1 dy 1
y=1 .  x. + log x
.  emx  e mx 
dy 1 d
Sol.4. (d)  y dx x
Given that, y = cot t and x = sin t dx emx  e mx dx
=  dy =(1+logx).y
Then, dy   sin t,and dx  cos t  m e  e
dx
mx  mx
 
 mx 
me mx  me  mx    mx
dt dt 1
 mx
 dy  x x (1+log x)
dy dy/dt  sin t x e mx
e  e  e  dx
Now,   
dx dx/dt cost y  1 1    dy  =(1)1 (1+log1) = 1(1+0) = 1
  dy   m  
Sol.5. (b)   0  dx at x 1
 dx at x  0  11 
We have, y = x  1 Sol.11. (c) Sol.16. (a)
x 1 Statement I.
Given curve,
Now, differentiating w. r. t. x., we get y = sin(ax + b), where a and b are constants, and
Given, y = In (sec x + tan x)
d 1 a ≠ 0.
dy 
x  1  x  1   x  1  x  1 On differentiating it w. r. t. x., we get
Now, differentiating both sides w. r. t. x., we get
 dx dx dy 1
 x  1   sec x  tan x  dy =cos(ax + b).a
dx  sec x  tan x 
2
dx
dx
=  x  1 .1   x  1 .1  x  1  x  1  2 = 1 (sec x. tan x + sec2 x) Again, differentiating both sides w. r. t. x., we
 x  1  x  1  x  1  sec x  tan x 
2 2 2
get
Sol.6. (b) 1 d 2 y =  sin(ax + b) a.a. = a2 sin (ax + b)
= sec x (tan x + sec x) = sec x
Let u = x 2  16, and v = x2  sec x  tan x  dx 2
=  a2 y.
Now, du  1
 2x
Statement II.
dx 2 x 2  16 Given, y = log (cosec x  cot x) [ y = sin (ax + b)]
dy 1 d (cosec x  cot x)   d2 y    b  
= x dv   2  a sin a.    b 
2

and  2x dx  cosec x  cot x  dx  dx at x   b   a  


x  16 2 dx a

Now, rate of charge of u w. r. t. x., is = 1 (cosec x. cot x + cosec2 x) =  a2 .sin(b + b) = a2. sin0 =  a2. 0=0
dx du/dx x 1  cosec x  cot x  Sol.17. (b)
   Let f(x) = x3 and g(x) = x2
dv dv/dx x 2  16 2x =cosec x.  cosec x  cot x  =cosec x
 cosec x  Now, df  x   3x 2 and dg  x   2x
du 1
 So, statements I and II both are true.
dx dx
dv 2 x 2  16
Sol.12. (c) Derivative of x3 w. r. t. x2
du
at  x  3 
1

1

1

1 Given curve is 2x3  3y2 = 7, y ≠ 0. df  x   df  x    dx 
 1 3x
     3x 
2

dv 2 9  16 2 25 2   10 Now, differentiating both sides w. r. t. x, we get dg  x       
 dx   dg x  2x 2
d  x  16 1 at x = 3
2
2.3.x2  3.2.y dy  0 Sol.18. (c)

dx  2
10 dx Let f(x) = sin(sin x)
dy dy x 2 On differentiating w. r. t. t. x, we get
Sol.7. (c) x  y
2
0  
f(x) = x2 – 6x + 8 dx dx y f(x) = cos (sin x). d (sin x)
f '(x) = 2x – 6 Sol.13. (a) dx
f '(c) = 2c – 6 = 0 Let u = sec2 x and v = tan2 x = cos x. cos (sin x)
c = 3 that is lie between [2, 4] Sol.19. (c)
Now, du =2 sec x. sec x. tan x = 2 sec2 x. tan x Let f(x) = |x 1|
Sol.8. (d) dx Redefined the function f(x),
f  x   2sin x ,
and dv =2tan x. sec2x f(x) = 1  x, x  1  f '  x   1, x  1
f'(x)  2sin x (ln 2) cos x    
dx  x  1, x  1  1, x  1

 du  d  sec x   du/dx  2sec x.tan x =1


Sol.9. (c) 2 2 f(2) = 1
Given, xm + ym = 1
On differentiating both sides w. r. t. x., we get dv d  tan 2 x  dv/dx 2 tan x.sec2 x Sol.20. (b)
f(x) = 2x2 + 3x - 5 ,

SANDEEP SINGH BRAR Ph:- +91 9700900034 - 396 -


f '(x) = 4x +3 so answer is AP and GP both d2 y a2
f '(0) + 3f '(-1) = 3 + 3(-1) = 0 2
 2
dx y
Sol.21. (b) Solutions (for next two)
Sol.35. (a)
x
We have, d  1  x  x  =Ax + B …(i)
2 4
2cos 2
1  cos x 2  cot x  2  y = cot1  1  sin x  1  sin x 
y  dx  1  x  x   
1  cos x 2sin 2 x 2  1  sin x  1  sin x 
2 Let us first divide x4+x2 +1 by x2 + x + 1 1
or y = cot
Thus, x  x  1 = x2  x + 1
4 2
dy 1 x 
  
2
  cosec2 x2  x 1 1  sin x  1  sin x
 
  
dx 2 2 
From equation (i), we have
 1  sin x  1  sin x 1  sin x  1  sin x 
Sol.22. (c) 
d (x2  x + 1) = Ax + B
f(x) = x2  
or y = cot1 1  sin x  1  sin x  2 1  sin x 
2
z = fof(x) = x4 dx
z '(x) = 4x3 2x  1 = Ax + B…(ii)  1  sin x  1  sin x 
Sol.23. (a) Sol.29. (c)
We have, x = a (cos + sin) On comparing, the coefficient of A, we get A = 2 or y = cot1  2 1  cos x  
and y = a (sin  cos) Sol.30. (a) 2sin x
On comparing the coefficient of constant terms  2 x 
 dx  a (sin +  cos + sin) in equation (ii), we get B = 1. =cot1  2 cos
d 2 
Sol.31. (b)  
 2sin x cos x 
 dx =a cos Let u = tan1  1  x  1 
2
 2 2
d  
 x   x
and dy  a (cos + sin  cos) 1
or y = cot1 cot 2 
d
and v = tan x  
To find : du
 dy
 a sin  dv on differentiating y = x
d 2
Consider, u = tan1  1  x  1 
2
dy dy 1
 dy   
a sin 
 d   x  dx 2
 tan 
dx dx a cos  Sol.36. (c)
On putting x = tan, we get
d
u = tan1  1  tan 2   1  s = t 2  1  s2  t 2  1
Sol.24. (c)  
 tan   2s ds  2t
We have, dy = tan  
 sec   1 
dt
dx = tan 1 1  1  cos  
   tan   ds t t
 d 2
y d  tan    sin    
 sec 2  dt s t2 1
dx 2   
=tan1  tan    
dx
=tan1  2sin 2
2  t  2t
 
 d y sec2   1    1 t2 
2
dx    2 2
   a cos    
 2sin cos  d 2s 2 t2 1
dx 2  a cos    d   2 
 
2
dt 2 t2 1
2

 d y  sec 
2 3
u = 1 tan1x
dx 2
a 2 = t2 1 t2 1 1
Sol.25. (c)  du  1  1  …(i)  
Given, y = x log x + xex dx
 
2  1 x2 
t 2  1.  t 2  1 s.s2 s3
On differentiating both sides w. r. t. x, we get
Now consider v = tan1 x Sol.37. (a)
dy 1 y1 = log (x + sin x)
 x.  log x  xe x  e x  dv  1 …(ii)
dx x y2 = (x + cos x)
dx 1  x 2
dy1 1 1  cos x 
 dy =1 + logx + xex + ex We have, du  du  dx [by using equation (i)  1  cos x  
dx dx  x  sin x   x  sin x 
dv dx dv
  dy  = 1 + log1 + 1.e1 + 1 and (ii)] …(i)
 
=1 1  dy2 = (1-sin x) …(ii)
 . 1  x 
 dx  x 1 2 1

=1 + 2e (log1=0) 2  1 x2  2 dx
Sol.32. (b) Dividing equation (i) by (ii), we get
dy1
Sol.26. (b) a(1  t 2 ) 2at
f(x) = ax2 + bx + c x y = dy1
 dx
1 t2 1 t2 dy 2 dy 2
f(1) = f(1)
after squaring and addition of both equations dx
a+b+c=ab+c
1  cos x
2b = 0 x2 + y2 = a2
b=0 this equation represent a circle. =  x  sin x  1  cos x 

Sol.27. (a) Sol.33. (d) 1  sin x   x  sin x 1  sin x 
f(x) = ax2 + bx + c x2 + y2 = a2 1
f '(x) = 2ax + b diff. both side w,r,t x Sol.38. (d)
f '(a) = 2aa + b, f '(b) = 2ab + b, f '(c) = 2ac + b 2x + 2yy ' = 0 xa yb = (x – y) a+b
given that a, b, c are in AP dy x taking log both side
than after multiply with 2a  a logx + b logy = (a + b) log(x – y)
dx y
2aa, 2ab, 2ac will be in AP differentiate w.r.t. x
now add b in each term Sol.34. (d) a b dy 1  dy 
d2 y y  xy ' y  x( x / y)   (a  b). .1  
2aa + b, 2ab + b, 2ac + b will be in AP   x y dx x y  dx 
Sol.28. (c) dx 2 y2 y2 by solving it
f '' (x) = 2a
f '' (a) = f '' (b) = f '' (c) = 2a

SANDEEP SINGH BRAR Ph:- +91 9700900034 - 397 -


dy y Sol.45. (d) So, statement II incorrect.
 Putting this value in equation (v) Sol.53. (a)
dx x
dy y f(2) = 12 + 2 (5) f(x+y) = f(x).f(y)
 0 f(2) = 2 f(0) = f(0+0) = f(0)  f(0)
dx x
Sol.39. (c) and f  (3) = 6 or f(0) = f(0). f(0) + f(0).f(0){by product rule}
f(x) = |x2  5x + 6| Now the f(x) is or f(0) = 2f(0).f(0)
f(x) = |2x  5| f(x) = x3 + x2 (5) + 2x + 6 or f(0) = 0
f(4) = |2.45| f(x) = x3  5x2 + 2x + 6 Now f(5) = f(0+5) = f(0). f(5)
Sol.46. (a) f(5) = f(0). f(5) + f(5). f(0)
f(4) = |85|
Put x = 1 in f(x) f(5) = 0 + f(5). f(0) {from (i)}
f(4) = |3| = 3
f(1) = 1  5 + 2 + 6 f(5) = f(5). f(0)
Sol.40. (b)
f(1) = 4 Sol.54. (c)
f  (x) = |2|
Put x = 2 2
f (2.5) = 2 let y  f  x  , p  dy and q  d y ,
f(2) = 8  20 + 4 + 6 dx dx 2
Sol.41. (d)
f(2) =  2
This function is continuous for all values of x dx 1 d2 x 1 dp
and not differentiable at origin.
Sol.47. (c)   2  2
From equation (iii) dy p dy p dy
Sol.42. (d)
For x < 0 f (10) = 6 d2 x 1 dp 1 dp dx q
Now, f(0) = 6   2  2  3
dy f 0  h   f 0 dy 2 p dy p dx dy p
 lim Sol.48. (c)
dx h 0 5 I. f(2) =  2  d 2 y   dy  3
1
 h   0 f(1)  f(0) = 4  6 =  2 =   
 dx 2   dx 
= lim 3  lim
1 f(2) = f(1)  f(0) (True)  
h 0 h h 0 3
II. f(2)  2 f(1) = 2  2 (5) Sol.55. (c)
 
dy 1 = 2 + 10
 2x e  x
2

xe  x
2

dx 3 = 12
f(x) =
Sol.49. (d)
Sol.43. (d) 2 1  e x 1  e x
2 2

y = log10 x + logx 10 + logx x + log10 10


3 which is defined xR, except x = 0
x sin x cos x y = log10 x + 1  1  1
f(x) = 6 1 0 log10 x f(x) is differentiable on (,0)  (0, )
Sol.56. (a)
p p2 p3 y = log10 x + (log10 x)1 + 2  cos x .... 
dy 1 log10 e  (log10 x)2. 1 y =  cos x  cos x 
Expanding corresponding to C3  log10 e  0
f(x) = cos x (6p2 + p) + 0 + p3 dx x x …(i)
(x3  6sinx) dy 1 log e  (log x)2. 1 log e or y = (cos x)y
On differentiating w. r. t. to x.
 10 10 10
Taking log on both the sides,
dx x x
f(x) =  sin x (6p2 + p)  p3 (3x2 + 6cosx) log y = y.log (cos x)
At x = 10, differentiating w. r. t. x., we get
…(i)
 dy  2 1
 log10 10  (log10 10) . log10 e   sin x 
1 1 dy dy
  log  cos x  .
Put x = 0    y
f(0) = 0  p3 = (0 + 6 cos0°)  dx x 10 10 x y dx  cos x  dx
f(0) =  p3 (6) = 1 .1  12 . 1 .1  1  1  0
or dy log  cos x   1   y tan x
f(0) =  6p3 10 10 10 10
dx  y 
Sol.44. (a) Sol.50. (a)
Again differentiation of equation (i) We have, f(x) = (|x|)  (|x1|)2 or dy  y 2 tan x  y 2 tan x

f  (x) =  cos x(6p2 + p)  p3 (6x  6sin x) When x > 1, f(x) = [x  (x  1)]2 = 1 dx y.log  cos x   1 1  y.log  cos x 
f  (x) =  cos x (6p2 + p)  6p3 (x  sinx) f(x) = 0
Sol.57. (c)
Pitting x = 0 Sol.51. (d)
f  (0) =  cos 0° (6p2 + p)  6p3 (0  sin 0)  1 x2 for 0  x  1
 f(x) = (|x|  |x1|)2 
f  (0) =  (6p2 + p)  6p3 (0) When 0 < x < 1 f (x)   Inx for 1  x  2
f  (0) =  (6p2 + p) f(x) = [x  (x  1)}]2 = (2x  1)2 In 2  1  0.5x for 2  x  0

Since, f  (0) = 0 f(x) = 2 (2x  1) (2) = 8x  4
2x for 0  x  1
(6p2 + p) = 0 Sol.52. (a) 
f '(x)  1/ x for 1  x  2
p(6p + 1) = 0  1, x0  0.5 for 2  x  0
p = 0, p = 1 |x|  |x1| = 2x 1 0  x  1 
 function is not differentiable at x = 1
6  1, 1 x
Solutions (for next three)  so f(x) = –2x for 0 < x < 1
Sol.58. (a)
f(x) = x3 + x2 f(1) + xf(2) + f (3) f(x) =  1, when 0  x or x  1
On differentiating w. r. t. ‘x’  y = sec1  x  1   sin 1  x  1 
 2x  1 , when  x 1    
2

f(x) = 3x2 + 2x f(1) + f(2) …(i)  x 1   x 1


f(x) = 6x + 2f(1) …(ii) f(x) =  0, when 0  x or x  1
=cos1  x  1   sin 1  x  1 
f (x) = 6     
4  2x  1 , when
…(iii)   x 1  x 1  x 1
Putting x = 1 in equation (ii) and x = 3 in
equation (iii) f (x) = 0, when 0  x or x  1 
=  sin 1 x  cos 1 x   

f(1) = 3 + 2 f(1) + f(2) 8, when  x 1 2  2
f(1) + f(2) =  3 …(iv) I. f(2) = 1 and f(5) = 1
 dy  0
Now, f(2) = 12 + 2f (1) …(v) So, f(2) = f(5) = 1
dx
From equations (iv) and (v) Statement I is correct
Sol.59. (d)
f(1) + 12 + 2 f(1) =  3 II. f  (20 = 0 All statements are correct.
3f(1) =  15 f (0.5) = 8 and f  (3) = 0 Sol.60. (a)
f(1) =  5 Then, f (2) + f  (0.5) + f  (3) = 0 + 8 + 0 = 8

SANDEEP SINGH BRAR Ph:- +91 9700900034 - 398 -


y = cos1  2x  f(x) = dX
 ex e1
 2 
f x  h  f x f x f h  f x
1 x  dx
lim  lim
h 0 h 0
Put x = tan, h h dY ex xe x
 e1  e
y = cos1  2x  f  x  f  h   1 f  x   h g  h    h  dX ex ex
 2 
= lim  lim
1 x  h 0 h h 0 h Sol.78. (a)
Put x = tan, =abf (x) y = sin(lnx) + cos(lnx)
dy 1 1
y = cos1  2 tan   = cos1 (sin2) Sol.69. (a)  cos(ln x).  sin(ln x).
  f(x) = sec2(tan-1x) dx x x
 1  tan  
2

f(x) = 1 + tan2(tan-1x) at x = e
=cos1 cos    2  f(x) = 1 + x2 dy 1 1
   cos(lne).  sin(lne).
2  f '(x) = 2x dx e e
=   2    Sol.70. (d)
dy cos1  sin1
 where 0    2    f(x) = sin(cosx) 
2  2  f'(x) =cos (cosx) (–sinx) dx e
Sol.61. (a) Sol.71. (a) Sol.79. (b)

f(0) = lim    
f h f 0 x = et cost
dY
Y  2(sin x )   2(sin x ) 2sin x cos x ln 2
2 2
y = et sint
h 0 h dX dx
2  et ( sin t )  et cos t
= lim h log h  0 X  sin x 
dX
 cos x dt
h 0 h dx dy
Sol.62. (b)  et (cos t )  et sin t
dY dt
 2sin x.2(sin x ) ln 2  sin x.2(sin x ) ln 4
2 2
2
y= ex dX dx et ( sin t )  et cos t
Sol.72. (a) 
y'  2xex
2
dy et (cost)  et sin t
xy = ex−y
2 dx  sint  cos t
at x = π, y' = 2π e
taking log both sides 
y.logx = x − y ...(i) dy cost  sin t
Sol.63. (c) at t = 0
put x = 1 then y = 1
f(x) = etanx + n(sec x)  x differentiate (i) w.r.t. x dx
1
f(x) = etanx.sec2 x + sec x tan x  1 1 dy dy ..(ii) dy
sec x y.  log x.  1 
x dx dx Sol.80. (a)
f(/4) = 2e + 1  1 = 2e put x = y = 1 in this equation Y = e e  dY  e e .e x
x x
Sol.64. (a)
dy dx
y = tan1  5  2 tan x  0
  dx
X = ex  dX  e x
 2  5 tan x  Sol.73. (b)
dx
 5  Diff. equation (ii) of above question x

= tan1  2  tan x  dy dY e x .e x x

  x log y y   ee
dx d 2 y 1 dy d2y dX ex
 5   log x. 2  .  2
 1   2  tan x  x2 dx x dx dx Sol.81. (b)
    If y = (1 + x) (1 + x2) (1 + x4) (1 + x8) (1 + x16)
dy
5
put x = y = 1 and  0 in above equation then dy at x = 0
= tan1 tan1 tan x  tan 1 5  x dx T.f.
2 2 d2y dx
1 Multiply both sides by (1 – x)
 dy   1 dx 2
(1 – x) y = (1 – x) (1 + x) (1 + x2) (1 + x4) (1 +
dx 2 x Sol.74. (a) x4) (1 + x16)
Sol.65. (a)   (1 – x)y = (x – x6) (1 + x16)
d   co t 1 x 
u du  v dv d (tan 1 x)  2   1 ( 1 – x)y = 1 – x32

dx dx d (co t 1 x) d (co t 1 x) dy  32 x 31  y
=eax sin bx [aeax sin bx + beax cos bx] Sol.75. (b) (1 – x) 
dx 1 x
+ eax cos bx [aeax cos bx  beax sin bx] xmyn = am+n
y at x = 0 is 1
=e2ax [a sin2 bx + b sin bx cos bx + differentiate w.r.t. x
mxm-1 yn + nyn-1.xm y' =0 dy  323  1 = 1
a cos2 bx  b sin bx cos bx] 
=ae2ax xm-1.yn-1.my + nyn-1.xm-1 x. y' = 0 dx 1
y’ = −my/nx Sol.82. (a)
Sol.66. (a) Sol.76. (b) 1 𝑑𝑦 
y = cos x. cos4x. cos8x then at x = taking
y = (sin x)x e  c  4
𝑦 𝑑𝑥 4
log both sides
x  x
  cos x   log  subx  .  1
dy
   sin   diff. w.r.t. 𝛉 log y = log [cosx . cos4x cos 8x]
dx  sin x   d   d  log y = log cos x + log cos 4x + log cos 8x
/ 2 e       4   
 dy   1   1  d   d  1 dy
 dx  x   6   2    6 3  log 2 
       d 
e 
 4 
 d
   0 y dx
2/6  6 log 2  3  
  = 1  sin x   1
sin 4x.4  1  sin 8x.8
 6  d cos x cos 4x cos 8x
   0
Sol.67. (a) d dy
 y tan x  4 tan 4 x  8 tan 8 x 
For   x   , 1  sin 2 x  sin x  cos x  d  d dx
4 2 Sol.77. (a) T.f. dy at x  
Result = cos x + sin x Y = ex dx 4
Sol.68. (d) X = xe
Here 1 dy   1  4 tan   8 tan 2 
dY
 ex y dx
dx

SANDEEP SINGH BRAR Ph:- +91 9700900034 - 399 -


1 dy =[-1-0-0] dy  x 2  x  1   d  x 2  x  1  for 1 < x < 2 , f(x) is positive but fof(x) is
 2 ln 2   2  negative
 x  x  1  dx  x  x  1 
y dx dx so fof(x) = – ln(lnx)
1 dy differentiation of fof(x) =  1
 1 let differentiation of last step is g(x), than put x =
y dx 0 x ln x
 2 ln1g (0)  0
Sol.83. (c) dy Sol.97. (a)
fof(x) = x4 then f(x) = x2 dx f(x) = |ln|x||
f ’(x) = 2x Sol.90. (d) at x = 0.5 , lnx is negative
f ’(1) = 2 d  1  x 4  x8  so f(x) = – lnx
 
Sol.84. (a) dx  1  x 2  x 4  f’(x) = – 1/x
xy.yx = 1 f’(0.5) = – 2
take log both sides  
 
d  1  x2  x4 1  x2  x4   Sol.98. (c)
y log x + nlog y = 0 dx  1  x2  x4 
  2x  3   3
diff. w.r.t. x both sides y f   f 2  
1 1
y. + y' log x + log y + x. . y' = 0 
d
 
1  x  x  2 x  4 x  ax  bx3
2 4 3  x   x
𝑥 𝑦 dx dy  3  3 
put x = y =1 a = 2 and b = 4  f '  2   2 
dx  x  x 
1 + 0 + 0 + y' = 0 Sol.91. (c)
y' = –1 given that f’(x) = cos (ln x)
x x 2  16
Sol.85. (b) y  8 ln x  x 2  16  3   3 
f '  2    cos ln 2   
x 
2
y= x x  x   x 
dy x 2  16 x.2 x 1  2x 
  8 1   dy 3   3  3   2x  3  
x2 dx 2 2.2 x 2  16 x  x 2  16  2 x 2  16   cos ln 2     2 cos ln  
y= x dx x 2   x  x   x 
log y = x2 log x dy x 2  16 x2  1 
1 𝑑𝑦 1    8 

Sol.99. (a)
= x2. + 2x. log x dx 2 2 x 2  16  x 2  16  let
𝑦 𝑑𝑥 𝑥
𝑑𝑦 1
= y (x + 2x log x) solve by taking LCM g ( x)  x   y
𝑑𝑥
𝑝𝑢𝑡 𝑥 = 𝑦 = 1 dy x 2  16 x
  x 2  16
dx x 2  16 1
dy
1 fog(x)  x  3
3

dx Sol.92. (a) x
Sol.86. (d) differentiation of sin2x w.r.t. cos2x than
y= [x + 1] 1  1
3
d (sin2 x) 2 sin x cos x  1
  1 f ( y)  x 3    x    3 x  
 
G.I.f. is constant function between
x= – 3 to x = –4 d cos2 x  2 sin x cos x x3  x  x
so its derivative is 0 Sol.93. (b) f ( y)  y 3  3 y
Sol.87. (d)    so f(x) = x3 + 3x
𝑚 cos cex  cos ec x
f(x)= +2nx + 1
𝑥  180  g[f(x)  3x] = g(x3)
f'(x)= m  2n  0 differentiate by chain rule
= x3  1
x2 d d    x3
cos cex  cos ec x
 m dx dx  180 
=  2n  0 Sol.100. (d)
4        f(x) = x3 + 3x
8n = m  cos ec x  cot x f '(x) = 3x2
180  180   180 
m + 8n = m + m =2m f ''(x) = 6x

It depends upon m. so can not find due to  cos ecxcotx Sol.101. (d)
sufficient data 180 h(x) = f(2f(x)+2)
Sol.88. (c) Sol.94. (a) differentiate w.r.t. x
h(x) = {f(x)}2 + {g(x)}2 f(x) = |lnx| h'(x) = f '(2f(x)+2).2f '(x)
h’(x) = 2f(x).f '(x) + 2g(x).g '(x) ……(i) at x = 0.5 , lnx is negative h'(0) = f '(2f(0)+2).2f '(0)
given that f '(x) = g(x) so f(x) = – lnx given that f(0) = – 1
differentiate both sides f’(x) = – 1/x h'(0) = f '(0).2f '(0) = 2
f "(x) = g'(x) = – f(x) f’(0.5) = – 2 Sol.102. (a)
by equation (i) Sol.95. (c) g(x) = (h(x))2
h'(x) = 2f(x).g(x) – 2g(x).f(x) = 0 f(x) = |lnx| g '(x) = 2h(x).h'(x)
so h'(3) = 0 at x = 2 , lnx is positive
g '(0) = 2h(0).h'(0)
if h'(x) = 0, than h(x) is a constant function so f(x) = lnx
f’(x) = 1/x by above question h'(0) = 2
so h(1) = h(2)
Sol.89. (b) f’(2) = 1/2 and h(0) = f(2f(0)+2) = f(0) = - 1
 x2  x  1  Sol.96. (d) so g '(0) = – 4
y  ln 2  2  f(x) = |lnx|
 x  x 1 fof(x) = |ln|lnx||

SANDEEP SINGH BRAR Ph:- +91 9700900034 - 400 -

You might also like