Diffrentiation Revision
Diffrentiation Revision
Q.1. If f ( x) x 1 , find
d
( fof )( x) Q.10. If x aet (sin t cos t ) and y aet (sin t cos t ) , then
dx
dy x y
Ans. 1 prove that .
dx x y
Q.2. If f ( x) x 7 and g ( x) x 7, x R , then find
dy
Q.11. If (sin x) y x y , find
d dx
( fog)( x) .
dx 1 y( x y) cot x
Ans.
Ans. 1 ( x y) log(sin x) 1
dy Q.12. If y (sec1 x)2 , x 0 , show that
Q.3. If y x | x | , find for x 0 . Ans. 2 x
dx
d2y dy
dy x 2 ( x 2 1) ( 2 x3 x) 2 0 .
Q.4. If y log(cos e ) , then find
x
. dx2
dx
dx
Q.13. If x sin t , y sin pt, prove that
Ans. e x tan e x
dy x y d2y dy
1
Q.5. If log( x y ) 2 tan , show that (1 x 2 ) x p2 y 0 .
2 2 y
. dx 2
dx
x dx x y
1 cos x
dy Q.14. Differentiate tan1 with respect to x.
Q.6. If x y y x ab , find . sin x
dx
1
dy y x log y y x y 1 Ans.
Ans. 2
dx x y log x x y x 1
dy
Q.7. If y (sin 1 x)2 , prove that Q.15. If ( x2 y 2 )2 xy , find .
dx
d2y dy dy y 4 x ( x 2 y 2 )
(1 x 2 ) 2
x 20 Ans.
dx dx dx 4 y ( x 2 y 2 ) x
x : (log x) x xlog x . d x 2 a 2 1 x
Q.55. Prove that a x sin
2
a x
2 2
dx 2 2 2
1 log x 2
Ans. (log x) x log(log x) x log x
log x x Q.56. If y log( x x2 1) , then prove that
respect to x: 1 1 1 1
(i) x (ii) x (iii) x
(i) sin (sin x), x [0, 2]
-1
3 3 3 3
(ii) cos-1 (cos x), x [0, 2] 3 3 3
ANS. (i) (ii) (iii)
1 x2 1 x2 1 x2
Q 62. Differentiate sin 1 (2x 1 x 2 ) with respect to
Q 68. Differentiate each of the following functions
1 1
x, if (i) x with respect to x
2 2
1 x2
1 1 (i) cos1 2
,0 x 1
x 1 (iii) 1 x
(ii)
2 2 1 x
2 2 2 1 x2
ANS.. (i) (ii) (iii) (ii) sin 1 2
,0 x 1
1 x2 1 x2 1 x2 1 x
Q 63. Differentiate sin-1 (3x – 4x3) with respect to 2 2
ANS. (i) (ii)
1
x, if (i) x
1 1
(ii) x 1 1 x 2
1 x2
2 2 2
Q 69. If y 1 x 2 x 1 y 2 1 , prove that
1
(iii) 1 x
2 dy 1 y2
.
3 3 3 dx 1 x2
ANS. (i) (ii) (iii)
1 x2 1 x2 1 x2 1 x 2 (2x 3)1/ 2 dy
Q 70. If y , find
Q 64. Differentiate cos-1 (2x2 – 1) with respect to x, (x 2)
2 2/3
dx
if ANS.
(i) 0 < x < 1 (ii) -1 < x < 0
1 x 2 (2x 3)1/ 2 x 1 4x
2 2
ANS.. (i) (ii) (x 2 2)2/ 3 1 x 2x 3 3(x 2)
2 2
1 x2 1 x2
x (x 4)3/ 2
Q 65. Differentiate cos 1 (1 2x 2 ) with respect to x, Q 71. Find the derivative of w.r.t x.
(4x 3) 4 / 3
if
ANS.
(i) 0 < x < 1 (ii) -1 < x < 0
ANS. (i)
2
(ii)
2 x (x 4)3/ 2 1 3 16
4/3
1 x2 1 x2 (4x 3) 2x 2(x 4) 3(4x 3)
Q 66. Differentiate cos-1 (4x3 – 3x) with respect to
Q 72. If 1 x 2 1 y 2 a(x y), prove that
x,if
dy 1 y2
1 1 1 1
(i) x , (ii) x ,1 (iii) x 1, dx 1 x2
2 2 2 2
3 3 3 Q 73. If y 1 x 2 x 1 y 2 1 , prove that
ANS.. (i) (ii) (iii)
1 x2 1 x2 1 x2 dy 1 y2
.
3x x 3 dx 1 x2
Q 67. Differentiate tan 1 2
, if
1 3x
DIFFERENTIATION REVISION SHEET 5
x x x
Q 74. Given that cos .cos .cos .....
sin x x 2 y2
, Q 83. If cos1 2 2
tan 1 a , prove that
x y
2 4 8 x
prove that
dy y
1 x 1 x 1
2
sec 2 4 sec 2 .... cos ec 2 x 2 dx x
2 2 2 4 x
Q 84. If 1 x 6 1 y 6 a(x 3 y3 ) , prove that
Q 75. If y sin x sin x sin x .....to ,
dy x 2 1 y6
, where -1 < x < 1 and -1 < y < 1.
prove that
dy cos x
dx y 2 1 x 6
dx 2y 1
1 1
ax
....... Q 85. If x 2 y 2 t and x 4 y 4 t 2 2 , then
Q 76. If y a x , prove that t t
dy 1
dy y2 log y prove that 3 .
dx x y
dx x(1 y log x.log y)
x e x .........to
Q 77. If y e x e , show that v
x ).......
Q 78. If y ( x )( x )(
, show that
dy y2
dx x(2 y log x)
1
Q 79. If y x , prove that
1
x
1
x
x ....
dy y
dx 2y x
sin x
Q 80. If y , prove that
cos x
1
sin x
1
cos x
1
1 .......to
dy (1 y) cos x ysin x
dx 1 2y cos x sin x
y
Q 81. If log(x2 + y2) = 2 tan 1 , show that
x
dy x y
dx x y
Q 82. If x 1 y y 1 x 0 and x y, prove that
dy 1
dx (x 1) 2