0% found this document useful (0 votes)
13 views5 pages

Diffrentiation Revision

This document is a differentiation revision sheet containing a series of mathematical problems and their solutions related to calculus. It includes various differentiation techniques, proofs, and applications of derivatives. The problems range from basic to advanced levels, covering functions, implicit differentiation, and higher-order derivatives.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
13 views5 pages

Diffrentiation Revision

This document is a differentiation revision sheet containing a series of mathematical problems and their solutions related to calculus. It includes various differentiation techniques, proofs, and applications of derivatives. The problems range from basic to advanced levels, covering functions, implicit differentiation, and higher-order derivatives.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

DIFFERENTIATION REVISION SHEET 1

Q.1. If f ( x)  x  1 , find
d
( fof )( x) Q.10. If x  aet (sin t  cos t ) and y  aet (sin t  cos t ) , then
dx
dy x  y
Ans. 1 prove that  .
dx x  y
Q.2. If f ( x)  x  7 and g ( x)  x  7, x  R , then find
dy
Q.11. If (sin x) y  x  y , find
d dx
( fog)( x) .
dx 1  y( x  y) cot x
Ans.
Ans. 1 ( x  y) log(sin x)  1
dy Q.12. If y  (sec1 x)2 , x  0 , show that
Q.3. If y  x | x | , find for x  0 . Ans.  2 x
dx
d2y dy
dy x 2 ( x 2  1)  ( 2 x3  x)  2  0 .
Q.4. If y  log(cos e ) , then find
x
. dx2
dx
dx
Q.13. If x  sin t , y  sin pt, prove that
Ans.  e x tan e x
dy x  y d2y dy
1 
Q.5. If log( x  y )  2 tan   , show that  (1  x 2 )  x  p2 y  0 .
2 2 y
. dx 2
dx
 x dx x  y
1  cos x 
dy Q.14. Differentiate tan1  with respect to x.
Q.6. If x y  y x  ab , find .  sin x 
dx
1
dy y x log y  y x y 1 Ans. 
Ans.   2
dx x y log x  x y x 1
dy
Q.7. If y  (sin 1 x)2 , prove that Q.15. If ( x2  y 2 )2  xy , find .
dx
d2y dy dy y  4 x ( x 2  y 2 )
(1  x 2 ) 2
x 20 Ans.  
dx dx dx 4 y ( x 2  y 2 )  x

Q.8. If x  cos t  log tan , y  sin t , then find the


t dy
 2
Q.16. If x  a(2  sin 2 ) and y  a(1  cos 2 ) , find
dx
d2y d2y   1
values of 2
and 2
at t  . when   . Ans.
dt dx 4 3 3
Ans. 2 2 Q.17. If y  sin(sin x) , prove that
Q.9. If ( x  a)2  ( y  b)2  c 2 , for some c  0 , prove that d2y dy
2
 tan x  y cos2 x  0
3/ 2 dx dx
  dy  2 
1     d2y 
  dx   Q.18. If x  a sec3  and y  a tan3  , find at   .
is a constant independent of a and b. dx 2 3
d2y
dx2 1 cos4 
Ans.  
Ans. c, (c  0) . 3a tan
1 d2y dy
Q.19. If y  e tan x
, prove that (1  x 2 ) 2
 (2 x  1) 0
dx dx
.
DIFFERENTIATION REVISION SHEET 2

Q.20. If y  sin 1(6 x 1  9 x2 ) , 


1
x
1  1  x2  1 
, then Q.31. Differentiate tan1  w.r.t. sin 1 2 x ,
3 2 3 2  x  1  x2
 
dy 6
find . Ans. 1
dx 1  9 x2 if x  (1, 1) . Ans.
4
Q.21. Differentiate the function (sin x) x  sin 1 x with Q.32. If x  sin t and y  sin pt , prove that
respect to x .
d2y dy
(1  x 2 )  x  p2 y  0
dy 1 dx 2
dx
Ans.  (sin x) x ( x cot x  log sin x) 
dx 2 x  x2  1  x2  1  x2 
Q.33. If y  tan1 , x 2  1 then find
2
d y  1  x2  1  x2 
Q.22. If x m y n  ( x  y)m  n , prove that  0.  
dx2
dy dy x
dy . Ans. 
Q.23. If x  y  a , then find
y x b
. dx dx 1  x4
dx
dy  [ y x log y  yx y 1 ] Q.34. If x  a cos  b sin  , y  a sin   b cos , show that
Ans. 
dx [ x y log x  xy x 1 ] d2y dy
y2 2
x  y0.
2 dx dx
d 2 y  dy 
Q.24. If e y ( x  1)  1 , then show that   . 1
dx2  dx  Q.35. If y  em sin x , then
dy y ( x  1) dy
Q.25. If xy  e( x  y ) , then show that  . show that (1  x 2 )
dy dy
 x  x  m2 y  0 .
dx x( y  1) dx2
dx dx

Q.26. If f ( x)  sin 2 x  cos 2 x , find f '   . Q.36. If y  ( x  1  x2 )n , then show that
6
d2y dy
Ans.  1 3 (1  x 2 ) 2
x  n2 y .
dx dx

Q.27. If y  (cos x) x  sin 1 3x , find


dy
. Q.37. Find whether the following function is differentiable
dx
at x  1 and x  2 or not :
3
Ans.  (cos x) x { x tan x  log(cos x)}   x, x 1
2 3x 1  3x 
f ( x)   2  x, 1 x  2
d 2 y 1  dy 
2  2  3 x  x 2 , x2
Q.28. If y  x x , prove that
y
     0. 
dx 2
y  dx  x
 
1  1  x
2
Q.38. Differentiate tan  with respect to
Q.29. Differentiate x sin x
 (sin x) cos x
with respect to x .  x 
 
Ans.  xsin x  sin x  cos x log x 
 x  cos1 (2 x 1  x2 ) , when x  0 .
 (sin x)cos x {cos x  cot x  sin x log(sin x)} 1
Ans. 
Q.30. If y  2 cos(log x)  3sin(log x) , prove that 2
2
d2y  dy  y
x
d2y
2 dy
 x  y 0.
Q.39. If y  x x prove that 1     0
 dx 
2
2 dx x
dx dx
DIFFERENTIATION REVISION SHEET 3

Q.40. If y  Peax  Qebx , show that dy log(cos y)  y tan x


Ans. 
dx log(cos x)  x tan y
d2y dy
2
 (a  b)  aby  0 . 1 1 dy  y
dx dx Q.51. If x  asin t , y  a cos t
, show that  .
dx x
Q.41. If x  a cos  b sin  and y  a sin   b cos , show
Q.52. If x 1  y  y 1  x  0 ,  1  x  1 , then prove
d2y dy
that y 2
x  y0.
dx2
dx dy 1
that, 
dx (1  x)2
dy
Q.42. If e x  e y  e x  y , prove that  eyx  0 . 1
dx Q.53. If y  ea cos x ,  1  x  1 , show that
Q.43. If cos y  x cos(a  y), where cos a  1 , prove that
d2y dy
(1  x 2 ) 2
 x  a2 y  0
dy cos2 (a  y ) dx dx
 .
dx sin a dy 2 y
Q.54. If x16 y9  ( x2  y)17 , prove that  .
Q.44. Differentiate the following function with respect to dx x

x : (log x) x  xlog x . d x 2 a 2 1 x 
Q.55. Prove that  a  x  sin
2
 a x
2 2
dx  2 2 2
 1  log x  2 
Ans.  (log x) x log(log x)    x    log x 
 log x  x  Q.56. If y  log( x  x2  1) , then prove that

Q.45. If y  log[ x  x2  a2 ] , show that ( x 2  1)


d2y
x
dy
0.
2
dx dx
d2y dy
( x2  a2 ) x 0. dy
, if y  sin 1[ x 1  x  x 1  x2 ] .
2
dx dx Q.57. Find
dx
dy (1  log y ) 2
Q.46. If y x  e y  x , prove that  . 1 1
dx log y Ans.  y '  
1  x2 2 x 1 x
Q.47. If x  a cos  and y  a sin  , then find the value
3 3
 3x  4 1  x 2 
2
 Q.58. If y  cos1  , then find dy .
d y
at   .
32  5  dx
of 2
Ans.  
dx 6 27 a
Q.48. If x sin (a  y)  sin a cos(a  y)  0, prove that 1
Ans y ' 
1  x2
dy sin 2 (a  y )
 .
 x  dy
dx sin a Q.59. If y  log tan   , show that  sec x .
 4 2 dx
Q.49. Differentiate the following with respect to
 1  sin x  1  sin x 
d2y 
1  Also find the value of at x  .
x : tan  , 0 x . dx 2
4
 1  sin x  1  sin x  2
 t
1 Q.60. If x  a cos t  log tan  , y  a(1  sin t ) , find
Ans.   2
2
d2y 1
dy . Ans. sin t  sec4 t .
Q.50. If (cos x)  (cos y) , then find
y x
. dx 2 a
dx
Q 61. Differentiate the following functions with
DIFFERENTIATION REVISION SHEET 4

respect to x: 1 1 1 1
(i)  x (ii) x  (iii) x  
(i) sin (sin x), x  [0, 2]
-1
3 3 3 3
(ii) cos-1 (cos x), x  [0, 2] 3 3 3
ANS. (i) (ii) (iii)
1 x2 1 x2 1 x2
Q 62. Differentiate sin 1 (2x 1  x 2 ) with respect to
Q 68. Differentiate each of the following functions
1 1
x, if (i)  x with respect to x
2 2
 1 x2 
1 1 (i) cos1  2 
,0  x  1
 x  1 (iii) 1  x  
(ii)
2 2  1 x 
2 2 2  1 x2 
ANS.. (i) (ii)  (iii)  (ii) sin 1  2 
,0  x 1
1 x2 1 x2 1 x2  1 x 
Q 63. Differentiate sin-1 (3x – 4x3) with respect to 2 2
ANS. (i) (ii) 
1
x, if (i)   x 
1 1
(ii)  x  1 1 x 2
1 x2
2 2 2
Q 69. If y 1  x 2  x 1  y 2  1 , prove that
1
(iii) 1  x  
2 dy 1  y2
 .
3 3 3 dx 1 x2
ANS. (i) (ii)  (iii) 
1 x2 1 x2 1 x2 1  x 2 (2x  3)1/ 2 dy
Q 70. If y  , find
Q 64. Differentiate cos-1 (2x2 – 1) with respect to x, (x  2)
2 2/3
dx
if ANS.
(i) 0 < x < 1 (ii) -1 < x < 0
1  x 2 (2x  3)1/ 2  x 1 4x 
2 2     
ANS.. (i)  (ii) (x 2  2)2/ 3  1  x 2x  3 3(x  2) 
2 2

1 x2 1 x2
x (x  4)3/ 2
Q 65. Differentiate cos 1 (1  2x 2 ) with respect to x, Q 71. Find the derivative of w.r.t x.
(4x  3) 4 / 3
if
ANS.
(i) 0 < x < 1 (ii) -1 < x < 0

ANS. (i)
2
(ii) 
2 x (x  4)3/ 2  1 3 16 
4/3 
  
1 x2 1 x2 (4x  3)  2x 2(x  4) 3(4x  3) 
Q 66. Differentiate cos-1 (4x3 – 3x) with respect to
Q 72. If 1  x 2  1  y 2  a(x  y), prove that
x,if
dy 1  y2
 1 1 1   1 
(i) x    ,  (ii) x   ,1 (iii) x   1,   dx 1 x2
 2 2 2   2
3 3 3 Q 73. If y 1  x 2  x 1  y 2  1 , prove that
ANS.. (i) (ii)  (iii)
1 x2 1 x2 1 x2 dy 1  y2
 .
 3x  x 3  dx 1 x2
Q 67. Differentiate tan 1  2 
, if
 1  3x 
DIFFERENTIATION REVISION SHEET 5

x x x
Q 74. Given that cos .cos .cos ..... 
sin x  x 2  y2 
, Q 83. If cos1  2 2 
 tan 1 a , prove that
x y 
2 4 8 x
prove that
dy y
1 x 1 x 1 
2
sec 2  4 sec 2  ....  cos ec 2 x  2 dx x
2 2 2 4 x
Q 84. If 1  x 6  1  y 6  a(x 3  y3 ) , prove that
Q 75. If y  sin x  sin x  sin x  .....to  ,
dy x 2 1  y6
 , where -1 < x < 1 and -1 < y < 1.
prove that
dy cos x
 dx y 2 1  x 6
dx 2y  1
1 1
ax
.......  Q 85. If x 2  y 2  t  and x 4  y 4  t 2  2 , then
Q 76. If y  a x , prove that t t
dy 1
dy y2 log y prove that  3 .
 dx x y
dx x(1  y log x.log y)
x e x .........to 
Q 77. If y  e x  e , show that v
x )....... 
Q 78. If y  ( x )( x )(
, show that
dy y2

dx x(2  y log x)
1
Q 79. If y  x  , prove that
1
x
1
x
x  ....
dy y

dx 2y  x
sin x
Q 80. If y  , prove that
cos x
1
sin x
1
cos x
1
1  .......to 
dy (1  y) cos x  ysin x

dx 1  2y  cos x  sin x
y
Q 81. If log(x2 + y2) = 2 tan 1   , show that
x
dy x  y

dx x  y
Q 82. If x 1  y  y 1  x  0 and x  y, prove that
dy 1

dx (x  1) 2

You might also like