0% found this document useful (0 votes)
88 views5 pages

Class - Xii Differentiation: CBSE Sample Paper 2017 Two Marks Questions

This document contains 25 questions related to differentiation from CBSE sample papers from years 2015-2017. The questions cover a variety of differentiation topics including finding derivatives of functions, using differentiation rules to simplify expressions, implicit differentiation, and related rates problems. They range from 2 to 4 marks in difficulty.

Uploaded by

ANURAG
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
88 views5 pages

Class - Xii Differentiation: CBSE Sample Paper 2017 Two Marks Questions

This document contains 25 questions related to differentiation from CBSE sample papers from years 2015-2017. The questions cover a variety of differentiation topics including finding derivatives of functions, using differentiation rules to simplify expressions, implicit differentiation, and related rates problems. They range from 2 to 4 marks in difficulty.

Uploaded by

ANURAG
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 5

CLASS – XII

DIFFERENTIATION 1

CBSE sample paper 2017


Q4. If y  log x  log x  log x  ..... prove that
Two marks questions
2 y  1 dy  1 .
dx x
dy
Q1. If e y x  1  1 , show that  e y .
dx
 2 x 1 
Q5. Differentiate: sin 1  x 
.
dy 1  4 
Q2. Find if x 3  x 2 y  xy 2  y 3  81 .
dx
dy
Q6. Find if y  x log x loglog x  .
5x 1 1 dx
Q3. If y  tan 1 , x , then prove
1  6x 2
6 6
𝑑2 𝑦
dy 2 3 Q7. If 𝑥 = 𝑠𝑖𝑛𝑡 and 𝑦 = 𝑠𝑖𝑛𝑝𝑡, then show that(1 − 𝑥 2 ) 𝑑𝑥 2 −
that   .
dx 1  4 x 2 1  9 x 2 𝑑𝑦
𝑥 𝑑𝑥 + 𝑝2 𝑦 = 0.

dy sin ax  b 
Q4. Find if y  . d  1 1  x  1
dx coscx  d  Q8. Prove that cos  .

dx  
2  2 1 x 2
dy
Q5. Find when x  a  sin  , y  a1  cos  . 4 marks questions
dx
(2017)
dy
Q6. Find if sin 2 y  cos xy   .
dx Q1. Differentiate the function sin x  x  sin 1 x with respect
f  x  g  x  h x  to x. (2015)
Q7. If y  l m n prove that
d2y
a b c Q2. If x m y n  x  y m n , prove that  0.
dx 2
f  x  g  x  h x 
dy
 l m n (2016)
dx
a b c
Q3. If x  a sin 2t 1  cos 2t  and y  b cos 2t 1  cos 2t  ,
dy  sin x  dy  
Q8. Find y  tan 1   find the value of at t  and t  .
dx  1  cos x  dx 4 3

2
Four marks questions d 2 y 1  dy  y
Q4. If y  x , prove that 2      0 .
x
dx y  dx  x
dy 2  1 x 
Q1. Find , if y  e sin x 2 tan 1 .
dx 
 1  x 
 Q5. Differentiate xsin x  sin x cos x with respect to x.

 1 x 2  1 x 2  Q6. If y  2 coslog x   3sinlog x , prove that


Q2. If y  tan 1  , find dy .
 2  dx d2y dy
 1 x  1 x 
2
x2 2
x y0. (2015)
dx dx
Q3. If x  a cos   b sin  , y  a sin   b cos  , show
 1  x2  1  x2 
d2ydy Q7. If y  tan1 ' x 2  1, then find dy
that y 2
x  y o.  2  dx
 1 x  1 x 
2 2
dx dx
. (2008)

BHAGYODAY ACADEMY EMAIL:edu.bhagyoday@gmail.com PH. NO: 9871018316


CLASS – XII
DIFFERENTIATION 2

1
Q9. If y  e m sin x dy
, then show that Q24. If e x  e y  e x y , prove that  e y x  0
dx
1  x  ddx y  x dy
2
2
2
m y 0. 2
dy

log x dy ex e y 1
 y x
 
 
dx or or, .
dx 1  log x 2
dx e e 1
x cos 1 x
Q10. If y   log 1  x 2 , then prove that dy y
1 x 2
Q25. If x m y n  ( x  y) m n , prove that  . (2012)
dx x
dy cos 1 x
 .

dx 1  x 2 3 2  Q27. If x  cost (3  2 cos2 t ) and y  sin t (3  2 sin 2 t ),
dy 
find the value of at t  .
d y 2
 dx 4
Q11. If x  a sec3  , y  a tan 3  , find at   .
dx 2 4
Q28. If x  a sin 2t (1  cos 2t ) and y  b cos 2t (1  cos 2t ), .
Q12. If x  ae sin t  cost  and y  ae sin t  cost ,
t t
  dy  b
show that at t  ,  
dy x  y 4  dx  a
prove that  .
dx x  y
 1 x2 1
Q13. If y  Aemx  Benx , show that Q29. Differentiate tan 1   with respect to
 x 
 
d2y
 m  n   mny  0
dy
 2x 
dx 2
dx sin 1  , when x  0 .
1 x 2 
x 1
Q14. If f x   x 2  1 ; g ( x)  and hx   2 x  3 , then dy 
x2  1 Q31. Find the value of at   , if
dx 4
find f hg x .
x  ae sin   cos  and y  ae sin   cos  .
(2014)
 x xa
Q32. If y  tan 1    log , prove that
Q18. If y  sin 1  x 1  x  x 1  x 2  a xa
 
dy 2a 3
dy  4 .
and 0  x  1, then find . (2010) dx x  a 4
dx
(2013)
dy
Q19. If (tan 1 x) y  y cot x  1, then find .
dx
t d2y
Q33. If x  a sin t and y  a(cos t  log tan ) find .
Q20. If x  a(cost  t sin t ) and y  a(sint  t cost ), then 2 dx 2

d2y  Q35. Differentiate the following function with


find the value of 2
at t  .
dx 4
respect to x: (log x) x  x log x
x
x y dy Q36. Differentiate the following function w.r.t.x:
Q21. If ( x  y) . e  a, prove that y  x  2 y.
dx  2 x 1.3 x 
sin 1  
 1  36  x 
Q23. If cos y  x cos(a  y), where cos a  1,  

dy cos 2 (a  y)
prove that  .
dx sin a

BHAGYODAY ACADEMY EMAIL:edu.bhagyoday@gmail.com PH. NO: 9871018316


CLASS – XII
DIFFERENTIATION 3

Q37. If x  a cos3  and y  a sin 3  , then find the Q48. If y  (tan1 x) 2


d2y  d2y dy
value of 2
at   . show that ( x 2  1) 2 2
 2 x( x 2  1)  2.
dx 6 dx dx

1
 x  y  e a cos x
,  1  x  1,
Q38. If y  x log   , then prove that Q49. If
 a  bx 
2
d2y  dy  d2y dy
x3  x  y . show that (1  x 2 ) x  a 2 y  0.
dx 2
 dx  dx 2 dx

Q39. If x  2 cos  cos 2 and y  2 sin   sin 2 , thenQ50. If x 1  y  y 1  x  0,  1  x  1, x  y, .


dy  3  dy 1
prove that:  tan  . then prove that 
dx  2  dx (1  x) 2

dy
Q40. If y  (sin x) x  sin 1 x , then find . (2009) Q51. If x  a sin1 t , y  a cos1 t , show that dy   y .
dx dx x

Q41. If y  log  x  x 2  a 2  , then prove that  


1  x 2  1
  Q52. Differentiate tan 1  with respect to x.
 x 
x  ddx y  x dy  
2
2
 a2 2
 0.
dx
Q53. If x  a(cos t  t sin t ) and y  a(sin t  t cos t )
m
 d2y d2y
Q42. If y   x  x 2  1 , then show that 0t  , find and .
  2 dt 2 dx 2

x  1 ddx y  x dy
2
2
m y 0. 2

  ddx y  x dy
2 2
dx Q55. If y  sin 1 x , show that 1  x 2 2
0.
dx
1 
 
2
d y
Q44. If x = tan  log y  , then show that 1  x 2 + (2011)
a  dx 2

2 x  a  dy
=0 (2011) x2 1
dx Q56. Differentiate: x x cos x  w.r.t. x .
x2 1
Q45. If x  cos and y  sin 3  , then prove that
d2y
Q57. If x  a(  sin  ), y  a(1  cos ), find
 
d y  dy 
2 2 .
y     3 sin 2  5 cos 2   1 . dx 2
dx 2  dx 
dy log x
Q58. If x y  e x  y , show that  .
(2012) dx log( xe)2

dy
Q46. If (cos x) y  (cos y) x , find . (2009) d x a2  x 
dx Q59. Prove  a2  x2  sin 1    a 2  x 2
dx  2 2  a 
dy sin 2 (a  y)
Q47. If sin y  x sin(a  y) prove that  .
d2y
Q60. If y  log  x  x 2  1, prove that ( x 2  1) 2  x  0.
dx sin a dy
  dx dx
(2009)
1  tan x dy
Q61. If y  log , prove that  sec 2 x .
1  tan x dx

BHAGYODAY ACADEMY EMAIL:edu.bhagyoday@gmail.com PH. NO: 9871018316


CLASS – XII
DIFFERENTIATION 4

(2010) Q76. Differentiate the following with respect to x:


 1  sin x  1  sin x 
y  cot 1  
, if y  cos x x  sin x 1 x
dy
Q62. Find  1  sin x  1  sin x 
dx  .

   
3x  4 1  x 2
Q64. If y  cos 1   dy 5x  12 1  x 2
 , find dx . Q77. If y  sin 1   , find dy .
 5  
  
13

dx

Q65. If y  cos ec 1x, x  1, then show that 


Q78. If x  a(cos   log tan ) and y  a sin  , find the
  ddx y  2x  1 dydx  0 . 2
2
x x2 1 2
2 dy 
value of at  
dx 4
 
2x  3 1  x 2 
Q66. If y  cos 1 
dy (2007)
 , find
 13  dx
 
Q79. Find the derivative of cos(2 x  1) w.r.t. x from
(2009) first principle.

dy
Q67. Find if ( x 2  y 2 ) 2  xy. 2 mark questions
dx

Q68. If y  3 cos(log x)  4 sin(log x) then show that (2017)


2
d y dy
x2. x  y0
Q81. If y  sin 1  6 x 1  9 x 2 , 
1 1
dx 2 dx x , then
  3 2 3 2
sin 1 x
 d
2 dy
y dy
Q70. If y  , show that 1  x 2 2
 3x  y  0 . find dx .
1 x2 dx dx

1 mark questions
d2y dy
Q71. If y  3e 2x
 2e 3x
, prove that 5  6y  0 .
dx 2 dx (2014)

Q72. If y  e x sin x  cos x , then show that Q82. Write the derivative of Sin x w .r .t cosx.

d2y dy Some other questions


2
2  2y  0 .
dx dx
Q1. Differentiate with respect to x from first principle:
x
e
(2008) Q2. Differentiate with respect to x:
1 1  dy  x 
Q73. If y  x 2  1  log  1  2 
, find . (a) log tan  
x x  dx  4 2
(b) log x  a 2  x 2 
sec x  1    
Q74. If f ( x)  , find f ' ( x). Also find f '  .
sec 1 2 1  cos x
(c) log
1  cos x

BHAGYODAY ACADEMY EMAIL:edu.bhagyoday@gmail.com PH. NO: 9871018316


CLASS – XII
DIFFERENTIATION 5


 1  sin x  1  sin x 

(d) tan 1  , 0  x  

 1  sin x  1  sin x 

1 x 
(e) cot 1  
1  x 
2x 2  3
(f) x cot x 
x2  x  2
(g) y  sin x tan x  cos x sec x

n
Q3.If y  x  a 2  x 2  , then prove that
dy ny
 .
  dx a  x2
2

Q4.If y 
1 x
1 x

, prove that 1  x 2
dy
dx
y0.

Q6. If y  x  tan x , then show that


d2y
cos 2 x  2 y  2x  0 .
dx 2

BHAGYODAY ACADEMY EMAIL:edu.bhagyoday@gmail.com PH. NO: 9871018316

You might also like