0% found this document useful (0 votes)
12 views9 pages

12 16

The document contains a series of mathematical problems and their solutions, primarily focused on finding derivatives of various functions. It includes detailed steps for calculating first, second, and higher order derivatives, as well as proving specific relationships between derivatives and functions. Each question is followed by a proof or solution that demonstrates the required mathematical principles.

Uploaded by

saishreesoumya
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
12 views9 pages

12 16

The document contains a series of mathematical problems and their solutions, primarily focused on finding derivatives of various functions. It includes detailed steps for calculating first, second, and higher order derivatives, as well as proving specific relationships between derivatives and functions. Each question is followed by a proof or solution that demonstrates the required mathematical principles.

Uploaded by

saishreesoumya
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

Question 1:

Find the second order derivatives of each of the following functions:

(i) x3 + tan x
(ii) sin (log x)
(iii) log (sin x)
(iv) ex sin 5x
(v) e6x cos 3x
(vi) x3 log x
(vii) tan−1 x
(viii) x cos x
(ix) log (log x)

Answer 1:
(i) We have,

y = x3 + tan x
Differentiating w. r. t. x, we get
dy
dx
= 3x2 + sec2 x
Differentiating again w. r. t. x, we get
d2 y
d x2
= 6x + 2 sec2 x tan x

(ii) We have,

y = sin (log x)
Differentiating w. r. t. x, we get
dy 1
dx
= cos (log x) × x
Differentiating again w. r. t. x, we get
d2 y −1
d x2
= − sin (log x) 1x × 1
x
+ cos (log x) × x2
−[sin(log x)+cos(log x)]
= x2

(iii) We have,

y = log (sin x)
Differentiating w. r. t. x, we get
dy 1
dx
= sin x
× cos x = cot x
Differentiating again w. r. t. x, we get
d2 y
d x2
= − cosec2 x

(iv) We have,
y = ex sin (5x)
Differentiating w. r. t. x, we get
dy
dx
= ex sin 5x + ex cos 5x × 5
Differentiating again w. r. t. x, we get
d2 y
d x2
= ex sin 5x + ex cos 5x × 5 + 5ex (− sin 5x × 5) + 5ex cos 5x
= −24ex sin 5x + 10ex cos 5x
= 2ex (5 cos 5x − 12 sin 5x)

(v) We have,

y = e6x cos 3x
Differentiating w. r. t. x, we get
dy
dx
= e6x × 6 × cos 3x + e6x (− sin 3x × 3)
= 6e6x cos 3x − 3e6x sin 3x
Differentiating again w. r. t. x, we get
d2 y
d x2
= 6e6x cos 3x × 6 − 6e6x sin 3x × 3 − 3 × 6 e6x sin 3x − 3e6x × 3 cos 3x
= 27e6x cos 3x − 36e6x sin 3x
= 9e6x (3 cos 3x − 4 sin 3x)

(vi) We have,
y = x3 log x
Differentiating w. r. t. x, we get
dy 1
dx
= 3x2 log x + x3 × x
= 3x2 log x + x2
Differentiating again w. r. t. x, we get
d2 y 1
d x2
= 6x log x + 3x2 × x
+ 2x
= 6x log x + 5x

(vii) We have,
y = tan−1 x
Differentiating w. r. t. x, we get
dy 1
dx
= 1+x2
Differentiating again w. r. t. x, we get
d2 y 1 −2x
d x2
= − (2x) × =
(1+x2 )2 (1+x2 )2

(viii) We have,
y = x cos x
Differentiating w. r. t. x, we get
dy
dx
= cos x − x sin x
Differentiating again w. r. t. x, we get
d2 y
d x2
= − sin x − sin x − x cos x
= − (2 sin x + x cos x)
(ix) We have,

y = log (log x)
Differentiating w. r. t. x, we get
dy 1 1 1
dx
= log x
× x
= x log x
Differentiating again w. r. t. x, we get
d2 y 0−(log x+1) (1+log x)
d x2
= 2 =− 2
(x log x) (x log x)

Question 2:
2
−x d y −x
If y = e cos x, show that 2
= 2e sin x.
dx

Answer 2:
Here,

y = e−x cos x
Differentiating w. r. t. x, we get
dy
dx
= −e−x sin x − e−x cos x
= − (e−x sin x + e−x cos x)
Differentiating again w. r. t. x, we get
d2 y
d x2
= − (e−x cos x − e−x sin x − e−x sin x − e−x cos x)
= 2e−x sin x

Hence proved.

Question 3:
2
2 d y
If y = x + tan x, show that cos x 2
− 2y + 2x = 0.
dx

Answer 3:
Here,

y = x + tan x
Differentiating w. r. t. x, we get
dy
dx
= 1 + sec2 x
Differentiating again w. r. t. x, we get
d2 y
d x2
= 2 sec2 x tan x
Dividing both sides by sec2 x, we get
d2 y
cos2 x d x2
= 2 tan x
d2 y
⇒ cos2 x d x2
= 2(y − x) [∵ y = x + tan x ⇒ tan x = y − x]
d2 y
⇒ cos2 x d x2
− 2y + 2x = 0
Hence proved.

Question 4:
4
3 d y 6
If y = x log x, prove that 4
= x
.
dx

Answer 4:
Here,
y = x3 log x
Differentiating w. r. t. x, we get
dy 1
dx
= 3x2 log x + x3 × x
= 3x2 log x + x2
Differentiating again w. r. t. x, we get
d2 y 1
d x2
= 6x log x + 3x2 × x
+ 2x
= 6x log x + 5x
Differentiating again w. r. t. x, we get
d3 y 1
d x3
= 6 log x + 6x × x
+ 5 = 6 log x + 11
Differentiating again w. r. t. x, we get
d4 y 6
d x4
= x

Hence proved.

Question 5:
3
d y 3
If y = log (sin x), prove that 3
= 2 cos x cosec x.
dx

Answer 5:
Here,
y = log (sin x)
Differentiating w. r. t. x, we get
dy 1
dx
= sin x
× cos x = cot x
Differentiating again w. r. t. x, we get
d2 y
d x2
= − cosec2 x
Differentiating again w. r. t. x, we get
d3 y
d x3
= −2 cosec x × (− cosec x cot x)
= 2 cot x cosec2 x = 2 cos x cosec3 x

Hence proved.

Question 6:
2
d y
If y = 2 sin x + 3 cos x, show that 2 + y = 0.
dx
Answer 6:
Here,
y = 2 sin x + 3 cos x
Differentiating w. r. t. x, we get
dy
dx
= 2 cos x − 3 sin x
Differentiating again w. r. t. x, we get
d2 y
d x2
= −2 sinx − 3 cosx
d2 y
⇒ d x2
= − ( 2 sin x + 3 cos x)
d2 y
⇒ d x2
= −y
d2 y
⇒ d x2
+y=0

Hence proved.

Question 7:
2
log x d y 2 log x−3
If y = x
, show that 2
= 3
.
dx x

Answer 7:
Here,

log x
y= x
Differentiating w. r. t. x, we get
dy 1−log x
dx
= x2
Differentiating again w. r. t. x, we get
d2 y −x−2x(1−log x)
d x2
= x4
−x−2x+2x log x
= x4
−3+2 log x
= x3
2 log x−3
= x3

Hence proved.

Question 8:
2 4
d y b
If x = a sec θ, y = b tan θ, prove that 2
=− 2 3
.
dx a y

Answer 8:
Here,
x = a sec θ and y = b tan θ
Differentiating w. r. t. θ, we get
dx dy

= a sec θ tan θ and dθ
= b sec2 θ
dy dy dθ b sec2 θ b cosec θ
∴ dx
= dθ
× dx
= a sec θ tan θ
= a
Differentiating w. r. t. x, we get
d2 y b dθ
d x2
= a
× − cosec θ cot θ × dx
1
= − ba × cosec θ cot θ × a sec θ tan θ
= − ab2 × cot θ × 1
tan2 θ
1
= − ab2 × tan3 θ
−b4
= a2 y 3
[∵ y = b tan θ]

Hence proved.

Question 9:
If x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ), prove that
d2x d2y d2y sec3 θ
dθ2
= a (cos θ − θ sin θ), dθ2
= a (sin θ + θ cos θ) and dx2
= aθ
.

Answer 9:
We have, x = a (cos θ + θ sin θ)
dx d[a(cos θ+θ sin θ)]

= dθ
dx
⇒ dθ
= −a sin θ + a sin θ + aθ cos θ = aθ cos θ . . . . . (i)
d2x d dx d(aθ cos θ)
dθ2
= dθ
( dθ )= dθ
d2x
⇒ dθ2
= a cos θ − aθ sin θ = a (cos θ − θ sin θ)

y = a (sin θ − θ cos θ)
dy d[a(sin θ−θ cos θ)]

= dθ
dy
⇒ dθ
= a cos θ − a cos θ + aθ sin θ = aθ sin θ . . . . . (ii)
d2y d dy d(aθ sin θ)
dθ2
= dθ
( dθ ) = dθ
d2y
⇒ dθ2
= a sin θ + aθ cos θ = a (sin θ + θ cos θ)

From (i) and (ii), we have


dy
dy /dθ
aθ sin θ
dx
= dx
= aθ cos θ
= tan θ
/dθ

d2y d dy d(tan θ)
2 = dx
( dx ) = dx
= sec2 θ dθ
dx
dx
d2y 1
⇒ 2
= (sec2 θ) ( aθ cos θ
)
dx
d2y sec3 θ
⇒ = aθ
dx2

Hence proved.

Question 10:
2
d y x π
x
If y = e cos x, prove that 2
= 2 e cos (x + 2
).
dx

Answer 10:
Here,
y = ex cos x
Differentiating w. r. t. x, we get
dy
dx
= ex cos x − ex sin x = ex (cos x − sin x)
Differentiating again w. r. t. x, we get
d2 y
d x2
= ex (cos x − sin x) + ex (− sin x − cos x)
= ex cos x − ex sin x − ex sin x − ex cos x
= −2ex sin x
= 2ex cos (x + π2 )

Hence proved.

Question 11:
2 4
d y b
If x = a cos θ, y = b sin θ, show that 2
=− 2 3
.
dx a y

Answer 11:
Here,

x = a cos θ and y = b sin θ


Differentiating w. r. t. θ, we get
dx dy

= − a sin θ and dθ
= b cos θ
dy b cos θ −b
∴ dx
= −a sin θ
= a cot θ
Differentiating w. r. t. x, we get
d2 y
d x2
= − ba × (− cosec2 θ) dθ
dx
b 1
= a
× cosec2 θ × −a sin θ

= − ab2 × 1
sin3 θ
b3
= − ab2 × y3
[∵ y = b sin θ]
−b4
= a2 y 3

Hence proved.

Question 12:
2
π
at θ =
3 3 d y 32
If x = a (1 − cos θ), y = a sin θ, prove that 2 = 27a 6
.
dx

Answer 12:
Here,
x = a (1 − cos3 θ), y = a sin3 θ
Differentiating w. r. t. θ, we get
dx dy

= 3a cos2 θ sin θ and dθ
= 3a sin2 θ cos θ
dy 3a sin2 θ cos θ
⇒ dx
= 3a cos2 θ sin θ
= tan θ
Differentiating w. r. t. x, we get
d2 y dθ
d x2
= sec2 θ dx
sec2 θ
= 3a cos2 θ sin θ
sec4 θ
= 3a sin θ
d2 y π
∴ d x2
at θ = 6
4
π
2 (sec )
d y 6 32
⇒ d x2
= 3a sin π = 27a
6

Question 13:
2
d y a
If x = a (θ + sin θ), y = a (1 + cos θ), prove that 2 =− 2 .
dx y

Answer 13:
Here,
x = a (θ + sin θ) and y = a (1 + cos θ)
Differentiating w. r. t. θ, we get
dx dy

= a + a cos θ and dθ
= −a sin θ
dy −a sin θ − sin θ
∴ dx
= a+a cos θ
= 1+cos θ
Differentiating w. r. t. x, we get
d2 y (1+cos θ) cos θ+ sin2 θ
d x2
= −{ 2 } dθ
dx
(1+cosθ)
− cos θ−cos2 θ− sin2 θ 1
= × a+a cos θ
(1+cos θ)2
−(1+cos θ)
= 3
a(1+cos θ)
−1
= 2
a(1+cos θ)
−a
= y2
[∵ y = a (1 + cos θ)]

Hence proved.

Question 14:
2
d y
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find 2 .
dx

Answer 14:
Here,
x = a (θ − sin θ) and y = a (1 + cos θ)
Differentiating w. r. t. θ, we get
dx dy

= a − a cos θ, dθ
= −a sin θ
dy −a sin θ − sin θ
⇒ dx
= a−a cos θ
= 1−cos θ
Differentiating w. r. t. x, we get
d2 y − cos θ+cos2 θ+ sin2 θ dθ
d x2
= 2 × dx
(1−cos θ)
− cos θ+cos2 θ+ sin2 θ 1
= × a−a cos θ
(1−cos θ)2
(1−cos θ)
= 3
a(1−cosθ)
1
= 2
a(1−cos θ)

Question 15:
2
π
= − a at θ =
d y 1
If x = a(1 − cos θ), y = a(θ + sin θ), prove that 2 2
.
dx

Answer 15:
Here,
x = a (1 − cos θ) and y = a (θ + sin θ)
Differentiating w. r. t. x, we get
dx dy

= a sin θ and dθ
=a+ a cos θ
dy a+a cos θ 1+cos θ
∴ dx
= a sin θ
= sin θ
Differentiating w. r. t. x, we get
d2 y − sin2 θ−(1+cos θ) cos θ
d x2
={ 2 } dd θx
sin θ
(1+cosθ)cosθ 1
= (−1 − 2 ) a sin θ
sin θ
d2 y π
∴ d x2
at θ = 2
d2 y −1
⇒[ ]
d x2 θ= π
= 1
a
(−1 − 01 ) = a
2

Hence proved.

You might also like