Question 1:
Find the second order derivatives of each of the following functions:
  (i) x3 + tan x
  (ii) sin (log x)
  (iii) log (sin x)
  (iv) ex sin 5x
  (v) e6x cos 3x
  (vi) x3 log x
  (vii) tan−1 x
  (viii) x cos x
  (ix) log (log x)
Answer 1:
  (i) We have,
                      y = x3 + tan x
                      Differentiating w. r. t. x, we get
                      dy
                      dx
                             = 3x2 + sec2 x
                      Differentiating again w. r. t. x, we get
                      d2 y
                      d x2
                             = 6x + 2 sec2 x tan x
  (ii) We have,
                      y = sin (log x)
                      Differentiating w. r. t. x, we get
                      dy                            1
                      dx
                             = cos (log x) ×        x
                      Differentiating again w. r. t. x, we get
                      d2 y                                                    −1
                      d x2
                             = − sin (log x) 1x ×       1
                                                        x
                                                            + cos (log x) ×   x2
                                     −[sin(log x)+cos(log x)]
                                 =             x2
  (iii) We have,
                      y = log (sin x)
                      Differentiating w. r. t. x, we get
                      dy           1
                      dx
                             =   sin x
                                         × cos x = cot x
                      Differentiating again w. r. t. x, we get
                      d2 y
                      d x2
                             = − cosec2 x
  (iv) We have,
                   y = ex sin (5x)
                   Differentiating w. r. t. x, we get
                   dy
                   dx
                          = ex sin 5x + ex cos 5x × 5
                   Differentiating again w. r. t. x, we get
                   d2 y
                   d x2
                          = ex sin 5x + ex cos 5x × 5 + 5ex (− sin 5x × 5) + 5ex cos 5x
                              = −24ex sin 5x + 10ex cos 5x
                                = 2ex (5 cos 5x − 12 sin 5x)
(v) We have,
                  y = e6x cos 3x
                  Differentiating w. r. t. x, we get
                  dy
                  dx
                         = e6x × 6 × cos 3x + e6x (− sin 3x × 3)
                     = 6e6x cos 3x − 3e6x sin 3x
                  Differentiating again w. r. t. x, we get
                  d2 y
                  d x2
                         = 6e6x cos 3x × 6 − 6e6x sin 3x × 3 − 3 × 6 e6x sin 3x − 3e6x × 3 cos 3x
                          = 27e6x cos 3x − 36e6x sin 3x
                           = 9e6x (3 cos 3x − 4 sin 3x)
(vi) We have,
                   y = x3 log x
                   Differentiating w. r. t. x, we get
                   dy                             1
                   dx
                          = 3x2 log x + x3 ×      x
                       = 3x2 log x + x2
                   Differentiating again w. r. t. x, we get
                   d2 y                               1
                   d x2
                          = 6x log x + 3x2 ×          x
                                                          + 2x
                              = 6x log x + 5x
(vii) We have,
                   y = tan−1 x
                   Differentiating w. r. t. x, we get
                   dy          1
                   dx
                          =   1+x2
                   Differentiating again w. r. t. x, we get
                   d2 y                   1                 −2x
                   d x2
                          = − (2x) ×              =
                                       (1+x2 )2           (1+x2 )2
(viii) We have,
                   y = x cos x
                   Differentiating w. r. t. x, we get
                   dy
                   dx
                          = cos x − x sin x
                   Differentiating again w. r. t. x, we get
                   d2 y
                   d x2
                          = − sin x − sin x − x cos x
                           = − (2 sin x + x cos x)
  (ix) We have,
                      y = log (log x)
                      Differentiating w. r. t. x, we get
                       dy           1              1                  1
                       dx
                              =   log x
                                              ×    x
                                                               =   x log x
                      Differentiating again w. r. t. x, we get
                       d2 y        0−(log x+1)                          (1+log x)
                       d x2
                              =                     2              =−               2
                                     (x log x)                          (x log x)
Question 2:
                                      2
          −x                         d y                   −x
  If y = e     cos x, show that           2
                                                  = 2e             sin x.
                                     dx
Answer 2:
  Here,
                      y = e−x cos x
                      Differentiating w. r. t. x, we get
                       dy
                       dx
                              = −e−x sin x − e−x cos x
                          = − (e−x sin x + e−x cos x)
                      Differentiating again w. r. t. x, we get
                       d2 y
                       d x2
                              = − (e−x cos x − e−x sin x − e−x sin x − e−x cos x)
                                  = 2e−x sin x
  Hence proved.
Question 3:
                                                       2
                                              2     d y
  If y = x + tan x, show that cos x                        2
                                                               − 2y + 2x = 0.
                                                    dx
Answer 3:
  Here,
                      y = x + tan x
                      Differentiating w. r. t. x, we get
                       dy
                       dx
                              = 1 + sec2 x
                      Differentiating again w. r. t. x, we get
                       d2 y
                       d x2
                              = 2 sec2 x tan x
                      Dividing both sides by sec2 x, we get
                                   d2 y
                      cos2 x       d x2
                                              = 2 tan x
                                          d2 y
                      ⇒ cos2 x            d x2
                                                    = 2(y − x)                          [∵ y = x + tan x ⇒ tan x = y − x]
                                          d2 y
                      ⇒ cos2 x            d x2
                                                    − 2y + 2x = 0
  Hence proved.
Question 4:
                                    4
          3                       d y                6
  If y = x log x, prove that            4
                                             =       x
                                                         .
                                  dx
Answer 4:
  Here,
                     y = x3 log x
                     Differentiating w. r. t. x, we get
                     dy                                                      1
                     dx
                            = 3x2 log x + x3 ×                               x
                         = 3x2 log x + x2
                     Differentiating again w. r. t. x, we get
                     d2 y                                                    1
                     d x2
                            = 6x log x + 3x2 ×                               x
                                                                                 + 2x
                          = 6x log x + 5x
                     Differentiating again w. r. t. x, we get
                     d3 y                                                1
                     d x3
                            = 6 log x + 6x ×                             x
                                                                             + 5 = 6 log x + 11
                     Differentiating again w. r. t. x, we get
                     d4 y       6
                     d x4
                            =   x
  Hence proved.
Question 5:
                                             3
                                            d y                                  3
  If y = log (sin x), prove that                 3
                                                     = 2 cos x cosec x.
                                            dx
Answer 5:
  Here,
                     y = log (sin x)
                     Differentiating w. r. t. x, we get
                     dy           1
                     dx
                            =   sin x
                                             × cos x = cot x
                     Differentiating again w. r. t. x, we get
                     d2 y
                     d x2
                            = − cosec2 x
                     Differentiating again w. r. t. x, we get
                     d3 y
                     d x3
                            = −2 cosec x × (− cosec x cot x)
                                 = 2 cot x cosec2 x = 2 cos x cosec3 x
  Hence proved.
Question 6:
                                                              2
                                                             d y
  If y = 2 sin x + 3 cos x, show that                             2   + y = 0.
                                                             dx
Answer 6:
  Here,
                          y = 2 sin x + 3 cos x
                          Differentiating w. r. t. x, we get
                          dy
                          dx
                                 = 2 cos x − 3 sin x
                          Differentiating again w. r. t. x, we get
                          d2 y
                          d x2
                                  = −2 sinx − 3 cosx
                                 d2 y
                          ⇒      d x2
                                              = − ( 2 sin x + 3 cos x)
                                 d2 y
                          ⇒      d x2
                                              = −y
                                 d2 y
                          ⇒      d x2
                                              +y=0
  Hence proved.
Question 7:
                                     2
           log x                  d y               2 log x−3
  If y =    x
                   , show that           2
                                              =            3
                                                                .
                                  dx                   x
Answer 7:
  Here,
                                  log x
                          y=        x
                          Differentiating w. r. t. x, we get
                          dy                 1−log x
                          dx
                                 =             x2
                          Differentiating again w. r. t. x, we get
                          d2 y                −x−2x(1−log x)
                          d x2
                                  =                 x4
                                              −x−2x+2x log x
                                  =                  x4
                                              −3+2 log x
                                  =                x3
                                              2 log x−3
                                  =               x3
  Hence proved.
Question 8:
                                                                     2                4
                                                                    d y           b
  If x = a sec θ, y = b tan θ, prove that                                2
                                                                             =−    2 3
                                                                                          .
                                                                    dx            a y
Answer 8:
  Here,
                    x = a sec θ and y = b tan θ
                    Differentiating w. r. t. θ, we get
                    dx                                                    dy
                    dθ
                             = a sec θ tan θ and                          dθ
                                                                                 = b sec2 θ
                             dy             dy            dθ         b sec2 θ           b cosec θ
                    ∴        dx
                                      =     dθ
                                                    ×     dx
                                                               =   a sec θ tan θ
                                                                                    =       a
                    Differentiating w. r. t. x, we get
                    d2 y               b                                           dθ
                    d x2
                              =        a
                                             × − cosec θ cot θ ×                   dx
                                                                                         1
                                  = − ba × cosec θ cot θ ×                         a sec θ tan θ
                                  = − ab2 × cot θ ×                       1
                                                                        tan2 θ
                                                            1
                                  = − ab2 ×               tan3 θ
                                           −b4
                                  =        a2 y 3
                                                                [∵ y = b tan θ]
  Hence proved.
Question 9:
  If x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ), prove that
  d2x                                               d2y                                             d2y       sec3 θ
  dθ2
        = a (cos θ − θ sin θ),                      dθ2
                                                          = a (sin θ + θ cos θ) and                 dx2
                                                                                                          =    aθ
                                                                                                                     .
Answer 9:
  We have, x = a (cos θ + θ sin θ)
                    dx                d[a(cos θ+θ sin θ)]
                    dθ
                             =                dθ
                             dx
                    ⇒        dθ
                                      = −a sin θ + a sin θ + aθ cos θ = aθ cos θ                                             . . . . . (i)
                    d2x                 d      dx              d(aθ cos θ)
                    dθ2
                              =        dθ
                                             ( dθ )=               dθ
                             d2x
                    ⇒        dθ2
                                       = a cos θ − aθ sin θ = a (cos θ − θ sin θ)
                    y = a (sin θ − θ cos θ)
                    dy                d[a(sin θ−θ cos θ)]
                    dθ
                             =                 dθ
                             dy
                    ⇒        dθ
                                      = a cos θ − a cos θ + aθ sin θ = aθ sin θ                                          . . . . . (ii)
                    d2y                d       dy              d(aθ sin θ)
                    dθ2
                             =        dθ
                                             ( dθ ) =              dθ
                             d2y
                    ⇒        dθ2
                                       = a sin θ + aθ cos θ = a (sin θ + θ cos θ)
  From (i) and (ii), we have
                                      dy
                    dy                 /dθ
                                                        aθ sin θ
                    dx
                             =        dx
                                                 =      aθ cos θ
                                                                   = tan θ
                                       /dθ
                    d2y                d         dy            d(tan θ)
                         2    =        dx
                                             ( dx ) =              dx
                                                                             = sec2 θ dθ
                                                                                      dx
                    dx
                             d2y                       1
                    ⇒             2
                                       = (sec2 θ) ( aθ cos θ
                                                             )
                             dx
                             d2y              sec3 θ
                    ⇒                  =        aθ
                             dx2
  Hence proved.
Question 10:
                                       2
                                      d y               x                      π
          x
  If y = e cos x, prove that               2
                                               = 2 e cos (x +                  2
                                                                                      ).
                                      dx
Answer 10:
  Here,
                      y = ex cos x
                      Differentiating w. r. t. x, we get
                      dy
                      dx
                             = ex cos x − ex sin x = ex (cos x − sin x)
                      Differentiating again w. r. t. x, we get
                      d2 y
                      d x2
                              = ex (cos x − sin x) + ex (− sin x − cos x)
                              = ex cos x − ex sin x − ex sin x − ex cos x
                              = −2ex sin x
                              = 2ex cos (x + π2 )
  Hence proved.
Question 11:
                                                                 2                4
                                                                d y           b
  If x = a cos θ, y = b sin θ, show that                             2
                                                                         =−    2 3
                                                                                          .
                                                                dx            a y
Answer 11:
  Here,
                      x = a cos θ and y = b sin θ
                      Differentiating w. r. t. θ, we get
                      dx                                                 dy
                      dθ
                             = − a sin θ and                             dθ
                                                                               = b cos θ
                             dy        b cos θ                   −b
                      ∴      dx
                                  =    −a sin θ
                                                            =     a      cot θ
                      Differentiating w. r. t. x, we get
                      d2 y
                      d x2
                              = − ba × (− cosec2 θ)                          dθ
                                                                             dx
                                   b                                         1
                              =    a
                                       × cosec2 θ ×                       −a sin θ
                              = − ab2 ×              1
                                                   sin3 θ
                                                   b3
                              = − ab2 ×            y3
                                                                         [∵ y = b sin θ]
                                  −b4
                              =   a2 y 3
  Hence proved.
Question 12:
                                                                                2
                                                                                                                 π
                                                                                                        at θ =
                  3                            3                              d y                 32
  If x = a (1 − cos θ), y = a sin θ, prove that                                       2       =   27a            6
                                                                                                                     .
                                                                              dx
Answer 12:
  Here,
                      x = a (1 − cos3 θ), y = a sin3 θ
                      Differentiating w. r. t. θ, we get
                      dx                                                           dy
                      dθ
                             = 3a cos2 θ sin θ and                                 dθ
                                                                                            = 3a sin2 θ cos θ
                             dy            3a sin2 θ cos θ
                      ⇒      dx
                                     =     3a cos2 θ sin θ
                                                                         = tan θ
                      Differentiating w. r. t. x, we get
                      d2 y                       dθ
                      d x2
                              = sec2 θ           dx
                                         sec2 θ
                              =      3a cos2 θ sin θ
                                      sec4 θ
                              =      3a sin θ
                                  d2 y                          π
                      ∴           d x2
                                           at θ =               6
                                                            4
                                                    π
                              2              (sec       )
                             d y                    6                   32
                      ⇒      d x2
                                     =      3a sin      π           =   27a
                                                        6
Question 13:
                                                                               2
                                                                              d y                   a
  If x = a (θ + sin θ), y = a (1 + cos θ), prove that                              2   =−               2   .
                                                                              dx                    y
Answer 13:
  Here,
                      x = a (θ + sin θ) and y = a (1 + cos θ)
                      Differentiating w. r. t. θ, we get
                      dx                                                 dy
                      dθ
                             = a + a cos θ and                           dθ
                                                                              =        −a sin θ
                             dy             −a sin θ                    − sin θ
                      ∴      dx
                                    =      a+a cos θ
                                                                =       1+cos θ
                      Differentiating w. r. t. x, we get
                      d2 y                  (1+cos θ) cos θ+ sin2 θ
                      d x2
                              = −{                                      2              } dθ
                                                                                         dx
                                                    (1+cosθ)
                                     − cos θ−cos2 θ− sin2 θ                                1
                              =                                               ×        a+a cos θ
                                           (1+cos θ)2
                                         −(1+cos θ)
                              =                     3
                                     a(1+cos θ)
                                            −1
                              =                     2
                                     a(1+cos θ)
                                     −a
                              =      y2
                                                    [∵ y = a (1 + cos θ)]
  Hence proved.
Question 14:
                                                                                        2
                                                                                       d y
  If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find                                   2   .
                                                                                       dx
Answer 14:
  Here,
                    x = a (θ − sin θ) and y = a (1 + cos θ)
                    Differentiating w. r. t. θ, we get
                    dx                                   dy
                    dθ
                           = a − a cos θ,                dθ
                                                              = −a sin θ
                           dy            −a sin θ             − sin θ
                     ⇒     dx
                                  =     a−a cos θ
                                                         =    1−cos θ
                    Differentiating w. r. t. x, we get
                    d2 y          − cos θ+cos2 θ+ sin2 θ                dθ
                    d x2
                            =                     2               ×     dx
                                        (1−cos θ)
                                 − cos θ+cos2 θ+ sin2 θ                     1
                            =                                     ×     a−a cos θ
                                       (1−cos θ)2
                                 (1−cos θ)
                           =                 3
                                a(1−cosθ)
                                     1
                           =               2
                                a(1−cos θ)
Question 15:
                                                                         2
                                                                                                π
                                                                                 = − a at θ =
                                                                        d y          1
  If x = a(1 − cos θ), y = a(θ + sin θ), prove that                          2                  2
                                                                                                    .
                                                                        dx
Answer 15:
  Here,
                    x = a (1 − cos θ) and y = a (θ + sin θ)
                    Differentiating w. r. t. x, we get
                    dx                            dy
                    dθ
                           = a sin θ and          dθ
                                                       =a+              a cos θ
                           dy         a+a cos θ    1+cos θ
                    ∴      dx
                                =      a sin θ
                                                =    sin θ
                    Differentiating w. r. t. x, we get
                    d2 y              − sin2 θ−(1+cos θ) cos θ
                    d x2
                            ={                       2                } dd θx
                                                 sin θ
                                               (1+cosθ)cosθ            1
                                = (−1 −                  2        ) a sin θ
                                                     sin θ
                               d2 y                  π
                     ∴         d x2
                                       at θ =        2
                            d2 y                                             −1
                    ⇒[           ]
                            d x2 θ= π
                                           =     1
                                                 a
                                                     (−1 − 01 ) =             a
                                    2
  Hence proved.