Solution 1620255
Solution 1620255
MATH
Class 12 - Mathematics
  Let, v = tan                        −1
                                               (
                                                        x
                                                               )
                                                   √1− cos 2 θ
                                  −1
  ⇒ v = tan                               (                        )
                                                      cos θ
                                  −1           sin θ
  ⇒ v = tan                               (             )
                                               cos θ
  ⇒  v = tan-1(tan θ) ...(ii)
  Here,
   1
        < x < 1
   2
         1
  ⇒              < cos θ < 1
         2
                                      π
  ⇒ 0 < θ<
                                      3
  ⇒  v = 3 cos-1x
  Differentiating it with respect to x,
   dv                      −1
         =                                 ...(iv)
   dx                 √1−x2
        du
  ∴
        dv
                  = 3         .
2. Given,
   x = a (cosθ + θ sinθ) ...(1)
   y = a (sinθ - θ cosθ) ...(2)
   To prove:
             2
         d       x
  (i)            2
                      = a(cos θ − θ sin θ),
         dθ
              2
          d       y
  (ii)            2
                          = a(sin θ + θ cos θ)
          dθ
                  2                        3
             d        y
  (iii)               2
                           =
                                  sec
                                          aθ
                                               θ
dx
  We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.
                                  2
                              d       y
  Let's find                          2
                              dx
              2
          d       y                            dy
  As              2
                          =
                               dx
                                  d
                                          (
                                               dx
                                                    )
          dx
   dx                 d
         =                 a(cos θ + θ sin θ)
   dθ                 dθ
                                                                                                                                   1/5
  Again differentiating w.r.t. θ using product rule:
       2
   d x
                = a(−θ sin θ + cos θ)
           2
   dθ
               2
  ∴
           d x
                   2
                           = a(cos θ − θ sin θ)                                ...proved (i)
           dθ
  Similarly,
   dy                      d                                                            d                           d
               =                a(sin θ − θ cos θ) = a                                       sin θ − a                   (θ cos θ)
   dθ                      dθ                                                          dθ                           dθ
  ∴
           d x
                   2
                           = a(sin θ + θ cos θ)                                ...proved (ii)
           dθ
                                dy
           dy                   dθ
  ∵                    =
           dx                   dx
dθ
                                        dx
                                             (
                                                 dx
                                                      )
               dx
                                dθ
  = sec
                       2
                            θ
                                dx
                                            [using chain rule]
           dx                                                     dθ               1
  ∵                    = aθ cos θ =>                                      =
           dθ                                                     dx           aθ cos θ
           2
                =
                            sec
                                aθ
                                        θ
                                             ...proved (iii)
   dx
                                                                                                                                                         2
                                                                                                                                                             )
                                                                                                                                                1+x
                                                          2
                                        log sin x                                        2x                                                      log b
                                                                              −1
  ⟹ y = [                                             ]       + sin                (                 ) … [∵ log                    b =                       ]
                                        log cos x                                                2                             a                 log a
                                                                                       1+x
                                                                                         d                                             d
                                                                      (log cos x)               (log sin x)−log sin x                          (log cos x)                                2                            2
               dy                           log sin x                                                                                                                               (1+ x )                    (1+ x )(2)−(2x)(2x)
                                                                                        dx                                             dx
  ⇒                        −2 [                           ][                                                                                                      ] +[                                 ][                                    ]
                                                                                                                         2                                                                                                       2
               dx                           log cos x                                                 (log cos x)                                                               √1+ x4 −2x2                                 2
                                                                                                                                                                                                                        (1+ x )
                                                                                             1        d                                           1          d
                                                                       log cos x×                         (sin x)−log sin x×                                     (cos x)                                   2                 2
               dy                            log sin x                                                                                          c os x                                     (1+ x )                      (1+ x )(2)−(2x)(2x)
                                                                                         sin x       dx                                                  dx
  ⇒                        = 2[                               ][                                                                                                               ] +[                                ][                            ]
               dx                            log cos x                                                                         2                                                                                                         2
                                                                                                           (log cos x)                                                                   √1+ x4 −2x2                                 2
                                                                                                                                                                                                                               (1+ x )
                                                                                   c os x                                    sin x
                                                              log cos x×(                        )+log sin x×(                         )                                   2                       2
               dy                   log sin x                                          sin x                                 c os x                              (1+ x )                 (1+ x )(2)−(2x)(2x)
  ⇒                        2[                         ][                                                                                   ] +[                                     ][                                     ]
               dx                   log cos x                                                               2                                                          4        2                              2   2
                                                                                        (log cos x)                                                      √1+ x −2x                                 (1+ x )
               dy                           log sin x
  ⇒
               dx
                           = 2
                                                          3
                                                                  (cot x log cos x + tan x log sin x) +                                                      2
                                                                                                                                                                 2
                                        (log cos x)                                                                                                    1+x
                                π
  put x =                       4
                                                              π
                                                 log sin
               dy                                             4                             π                   π                          π                      π                        1
  ⇒                        = 2{                                           } (cot                log cos              + tan                     log sin                ) + 2{                               }
               dx                                                     3                     4                   4                          4                      4                                    2
                                                              π                                                                                                                               π
                                              (log cos            )                                                                                                                     1+(        )
                                                              4                                                                                                                                4
                                        ⎧                              ⎫
                                        ⎪                              ⎪
               dy                                     1                                               1                                    1                               16
  ⇒                        = 2⎨                                        ⎬ (1 × log                           + 1 × log                            ) + 2(                             )
               dx                                                 2                                  √2                                    √2                                   2
                                                                                                                                                                      16+π
                                        ⎩
                                        ⎪     (log
                                                          1
                                                              )
                                                                       ⎭
                                                                       ⎪
                                                      √2
                                                                                                                                                                                                                                                     2/5
                                                              1
                                          2 log(                      )
         dy                                                √2                              32
  ⇒               = 2 ×                                                        +
         dx                                                               2                        2
                                                                                          16+π
                                                          1
                                         {log(                   )}
                                                         √2
         dy                              1                                32
  ⇒               = 4                                    +
         dx                                                                       2
                                             1                    16+π
                            log(                 )
                                          √2
         dy                          1                                32
  ⇒               = 4                                 +
         dx                      1                                            2
                                                                 16+π
                            −            log 2
                                 2
         dy                      8                            32
  ⇒               = −                         +
         dx                     log 2                    16+π 2
              dy
  So, (            )
                                 π
                                         = 8[
                                                                  4
                                                                               −
                                                                                           1
                                                                                                   ]   .
              dx                                           16+π 2                         log 2
                           x=
                                 4
   dt
         = a[2cos2t (1 + cos2t) + sin2t(-2sin2t)]
  = 2a[cos 2t + (cos2 2t - sin2 2t)]
  = 2a(cos 2t + cos 4t)
             dy
  and        di
                   = b[-2sin2t(1 - cos 2t) + cos2t(2sin 2t)
  = 2b[-sin 2t + 2 sin 2t cos 2t]
  = 2b(- sin 2t + sin 4t)
        dy             dy
  ∴           =
        dx             dt
dx
At t = π
                   4
                       ,
                                     π
                  b(− sin                +sin π)
   dy                                2
         =
   dx                           π
                  a(cos              +cos π)
                                 2
        b(−1+0)
  =                        =     b
                                 a
        a(0−1)
                                                                                  1
                                                 x                   (1+              )
5. Let y = (x +                          1
                                         x
                                             )        + x
                                                                               x
                                                                                                                1
                                                                      x                                (1+          )
  Also, Let u = (x +                                      1
                                                          x
                                                                 )        and v = x                             x
  ∴     y=u+v
         dy
  ⇒
         dx
                  =
                           du
                           dx
                                 +
                                             dv
                                             dx
                                                         ...(i)
                                                 1       x
  Then, u = (x +                                 x
                                                     )
                                                              1          x
  ⇒ log u = log (x +                                              )
                                                              x
                                                                     1
  ⇒ log u = x log(x +                                                     )
                                                                  x
         1    du                                             1                             1            d                    1
  ⇒                    = log(x +                                  )+ x                                      (x +                 )
         u    dx                                           x                                   1       dx                    x
                                                                                      (x+          )
                                                                                               x
         du                                                       1                        x                                 1
  ⇒               = u [log(x +                                        )+                               × (1 −                        )]
         dx                                                       x                            1                                 2
                                                                                                                             x
                                                                                      (x+          )
                                                                                               x
                                                                                                                     1
                                                                                                           (x−           )
                                                     x                                                               x
         du                                  1                                             1
  ⇒               = (x +                         )       [log(x +                              )+                            ]
         dx                                  x                                            x                          1
                                                                                                           (x+           )
                                                                                                                     x
                                                     x                                                      2
         du                                  1                                            1                x −1
  ⇒               = (x +                         )       [log(x +                              )+                       ]
         dx                                  x                                            x                 2
                                                                                                           x +1
                                                     x            2
         du                                  1                x −1                                              1
  ⇒               = (x +                         )       [                     + log(x +                            )]
         dx                                  x                    2                                             x
                                                              x +1
                                                 1
                                 (1+                 )
  Again, v = x                                   x
                                                              1
                                                 (1+              )
                                                              x
  ⇒ log v = log[x                                                     ]
                                                 1
  ⇒ log v = (1 +                                      ) log x
                                                 x
         1    dv                             1                                                     1         1
  ⇒                 = (−                         ) log x + (1 +                                        )(        )
         v   dx                              2                                                     x        x
                                          x
                                                                                                                                          3/5
              1    dv                 log x                    1               1
     ⇒                  = −                            +            +
              v   dx                       2                   x               2
                                       x                                    x
              dv                  − log x+x+1
     ⇒                 = v[                                         ]
              dx                                   2
                                               x
                                       1
                             (1+           )           x+1−log x
     ⇒
              dv
              dx
                       = x
                                       x
                                                   (
                                                                    2
                                                                                   )    ....(iii)
                                                                   x
        −−−−−        −−−−−
6.       2            2
     y √x + 1 − log(√x + 1 − x) = 0
          xy               −−−−−                               dy                      1            x− √x +1
                                                                                                            2
                            2
                        + √x + 1.                                      −                       [                     ]= 0
     √x2 +1                                                    dx              √x2 +1−x                 √x2 +1
                                                                       2
                   2                                   −( √x +1−x)
     xy+( x +1) dy
                                      =
          √x2 +1             dx
                                               ( √x2 +1−x) √x2 +1
                                           dy
                        2
     xy + (x                + 1)                      = −1
                                          dx
                            dy
          2
     (x       + 1)                + xy + 1 = 0
                            dx
              1    du                     d                                                                     d
     ⇒                  = x⋅                      log(log x)) + log(log x) ⋅                                         (x)
              u    dx                  dx                                                                       dx
              du                                   1       d
     ⇒                 = u [x ⋅                                    (log x) + log(log x) ⋅ (1)]
              dx                              log x dx
              du                              x            x               1
     ⇒                 = (log x)                   [                   ⋅        + log(log x) ⋅ (1)]
              dx                                       log x               x
                                                       1+log(log x)⋅(log x)
              du                               x
     ⇒                 = (log x)                   [                                          ]
              dx                                                           log x
              du                               x−1
     ⇒                 = (log x)                        [1 + log x ⋅ log(log x)]
              dx
     For, v =           xlog x
     Taking log on both sides, we get
     log v = log (xlog x)
     ⇒ log v = log x. log x
     Now, differentiate both sides with respect to x
      d                               d                                2
          (log v) =                        [(log x) ]
     dx                               dx
              1   dv                                       d
     ⇒                  = 2 ⋅ log x                            (log x)
              v   dx                                   dx
              dv                           log x
     ⇒                 = v [2 ⋅                         ]
              dx                                  x
              dv                                        log x
                             log x
     ⇒                 = x                [2 ⋅                         ]
              dx                                               x
              dv                      log x−1
     ⇒                 = 2 ⋅ x                             ⋅ log x
              dx
     Because, y = u + v
              dy            du             dv
     ⇒                 =          +
              dx            dx             dx
              dy
                                               x−1                                                                            log x−1
     ⇒                 = (log x)                        [1 + log x ⋅ log(log x)] + 2 ⋅ x                                                 ⋅ log x
              dx
8. We have,
     ax2 + 2 hxy + by2 + 2gx + 2fy + c = 0 ...(i)
     Differentiating both sides of this respect to x, we get
                                                                                                                                                   4/5
    d                2                d                                  d                2                d                   d                d               d
            (ax ) +                           (2hxy) +                           (by ) +                       (2gx) +              (2f y) +        (c) =           (0)
    dx                             dx                                    dx                            dx                      dx              dx              dx
                         d         2                            d                             d        2                d                 d
   ⇒                a         (x ) + 2h                             (xy) + b                      (y ) + 2g                   (x) + 2f        (y) + 0 = 0
                        dx                                  dx                               dx                        dx                dx
                                                        dy                                        dy                                    dy
   ⇒                2ax + 2h (x                                 + y) + b2y                             + 2g × 1 + 2f ×                        = 0
                                                        dx                                        dx                                    dx
                     dy
   ⇒
                     dx
                          (2hx + 2by + 2f) + 2a + 2hy + 2g = 0
                     dy                   2(ax+hy+g)                                      ax+hy+g
   ⇒
                     dx
                              = −                                    = −(
                                                                                          hx+by+f
                                                                                                               )   ...(ii)
                                          2(hx+by+f )
                         d         2                        d                                 d        2               d                 d               d
   ⇒                a         (x ) + 2h                             (xy) + b                      (y ) + 2g                  (x) + 2f         (y) +           (c) = 0
                        dy                                  dy                            dy                          dy                 dy              dy
                                   dx                                   dx                                                    dx
   ⇒                a (2x                  ) + 2h (y                             + x) + b(2y) + 2g                                  + 2f × 1 + 0 = 0
                                   dy                                   dy                                                    dy
                                          2(hx+by+f )                                     hx+by+f
   ⇒
                     dx
                     dy
                              = −
                                          2(ax+hy+g)
                                                                     = −(
                                                                                          ax+hy+g
                                                                                                               )   ...(iii)
   From (i) and (iii), we obtain
    dy                                        ax+hy+g                                     hx+by+f
    dx
            ⋅
                 dx
                 dy
                          = −(
                                              hx+by+f
                                                                    ) × −(
                                                                                          ax+hy+g
                                                                                                               ) = 1    .
                                                                                                                                                    dy               π
 9. If x = a (θ - sin θ) and y = a (1 + cos θ), then,we have to find find                                                                           dx
                                                                                                                                                         at θ =      3
                                                                                                                                                                          .
   Now, x = a (θ - sin θ)
   and y = a (1 + cos θ)
   On differentiating both sides w.r.t θ, we get
                                                                    dy
    dx
    dθ
            = a(1 − cos θ)                              and         dθ
                                                                         = −a sin θ
                 dy               dy/dθ                     −a sin θ
   ∴                      =                        =
                 dx               dx/dθ                    a(1−cos θ)
                                               θ            θ
                              −2a sin              cos
             dy                                2            2
   ⇒                 =
            dx                                     2   θ
                                  a×2 sin
                                                       2
             dy                                θ
   ⇒                 = − cot
            dx                                 2
On putting θ = π
                                               3
                                                   , we get
        dy                                             π         –
   [            ]             = − cot                       = − √3
        dx                π                            6
                 θ=
                          3
                         dy                        π                   –
   Hence,                dx
                               at θ =              3
                                                           is       − √3         .
                                                                                         −−
                                                                                          2
                                                                                           −−
                              dy                                                         x +1
10. We have,                  dx
                                   ,   if y = x             tan x
                                                                         + √
                                                                                              2
                                                                                     −−
                                                                                      2
                                                                                       −−
                                                                                         x +1
   Taking, u = x                          tan x
                                                       and          v = √
                                                                                          2
            du                        tan x                                          2
   ⇒                 = u[                          + log x. sec x]
            dx                            x
   = x
             tan x
                          [
                              tan x
                                  x
                                              + log x. sec x]
                                                                             2
                                                                                          ...(iv)
   also, differentiating Eq. (iii) w.r.t. x, we get
                dv            1                            dv            1
   2v.                  =         (2x) ⇒                            =            . (2x)
                dx            2                            dx            4v
             dv                       1                                  x. √2
   ⇒                 =                             .2x =
            dx                                                                   2
                                       x2 +1                         2√x +1
                              4. √
                                           2
   ⇒
             dv
            dx
                     =
                                       x
                                                        ...(v)
                                          2
                              √2(x +1)
   Now, y = u + v
            dy            du               dv
   ∴                =             +
            dx            dx               dx
             tan x            tan x                                          2                             x
   = x                    [                   + log x. sec x] +
                                  x                                                                        2
                                                                                                  √2(x +1)
5/5