Solution 2207799
Solution 2207799
PRACTICE SHEET
Class 12 - Mathematics
1. We observe that
(LHL at x = 2) = lim f (x) = lim(2x − 1) = 2 × 2 − 1 = 3
− x→2
x→2
and, f(2) = a
Since f(x) is continuous at x = 2.
Therefore,
lim f (x) = lim f (x) = f (2)
− +
x→2 x→2
⇒ 3 = 3 = a⇒ a= 3
′ 1 1
⇒ f (x) = ( )
loge x x
′ 1 1
⇒ f (e) = ( ) [∵ x = e]
log e e
e
′ 1
⇒ f (e) = [∵ loge e = 1]
e
2
x −3x+2
, if x ≠ 1
3. Given function is, f (x) = { x−1
k , if x = 1
If f(x) is continuous at x = 1, then,
lim f (x) = f (1)
x→1
2
x −3x+2
lim = k
x−1
x→1
(x−2)(x−1)
lim = k
x−1
x→1
lim(x − 2) = k
x→1
k = -1
4. Given:
x = f(t) and y = g(t)
dx dy
′ ′
= f (t); = g (t)
dt dt
dy
′
dy dt g (t)
= = ′
dx dx
f (t)
dt
d dy
( )
2 dt dx
d y
=
dx2 dx
dt
1 1 ′′ ′ ′′ ′
= { (g (t)f (t) − f (t)g (t))}
′ ′ 2
f (t) f (t )
′′ ′ ′′ ′
(g (t) f (t)− f (t) g (t))
=
′ 3
(f (t))
dx
(constant=0)]
6. Let, y = cos-1 2x and u = 2x
Therefore, y = cos-1 u
Differentiating above equation w.r.t. x,
dy dy du
∴
dx
=
du
⋅
dx
(By chain rule)
dy d d
∴
dx
= du
(cos
−1
u) ⋅
dx
(2x)
1/8
−1
= ⋅ 2
√1−u2
−2
=
2
√1−(2x)
−2
=
√1−4x2
dy −2
∴ =
dx √1−4x2
−−−−−
7. Given, y = log{sin (√x + 1)} .....(i) 2
dx
= 2
2
⋅ cos(√x + 1) ⋅
2
⋅ 2x
sin √x +1 2√x +1
dy −−−−− x
⇒ = cot 2
(√x + 1) ⋅
dx √x2 +1
2
dy x cot( √x +1)
∴ =
dx √x2 +1
dy
2 2
= 3a tan θ sec θ
dθ
dx
dθ
= 3a sec
2
θ
d
dθ
(sec θ)
dx
dθ
= 3a sec 2
θ sec θ tan θ = 3a sec
3
θ tan θ
dy
dy 2 2
dθ 3a tan θ sec θ
= =
dx dx 3
3a sec θ tan θ
dθ
tan θ
= = sin θ
sec θ
dy
= sin θ
dx
d dy
( )
2 dθ dx
d y
Now, 2
=
dx
dx
dθ
d
(sin θ)
dθ
=
3
3a sec θ tan θ
5
cos θ
=
3a sin θ
π
At θ = 4
5
1
( )
2
d y √2
1
= =
2 12a
dx 1
3a( )
√2
9. Given: f (x) = 2x − 1 2
2
Continuity at x = 3 lim f (x) = lim(2x 2
− 1) = 2(3) − 1 = 18 − 1 = 17
x→3 x→3
10. y = e tan
x
dy −1 y −1
dx
=e tan x
(
1
2
) = 2
[y = e tan
x ]
1+x 1+x
dy
(1 + x )
2
dx
=y
differentiating both sides w.r.t. x, we get
2
d y dy dy
⇒ (1 + x )
2
2
+ 2x
dx
= dx
dx
2
d y dy
⇒ (1 + x )
2
2
+ (2x − 1)
dx
=0
dx
⇒ y = ex + 10x + ex log x
Differentiating with respect to x,
dy d d d
x x x log x
= (e ) + (10 ) + (e )
dx dx dx dx
x x x log x d
= e + 10 log 10 + e (x log x)
dx
x x x log x d d
= e + 10 log 10 + e [x (log x) + log x (x)]
dx dx
x
x x log x 1
= e + 10 log 10 + e [x ( ) + log x]
x
2/8
= ex + 10xlog10 + xx [log e + log x] ... [∵ loge e = 1]
dx
= ⋅ (By chain rule)
ds
du
du
dx
∴
ds
dx
= d
du
(sin
−1
u) ⋅
d
dx
(cos x)
= 1
⋅ (− sin x)
√1−u2
= 1
⋅ (− sin x)
2
√1−(cos x)
= 1
⋅ (− sin x) (∵ sin2 x + cos2 x = 1)
√sin2 x
= 1
sin x
⋅ (− sin x)
= -1
∴
ds
dx
= -1 .....(i)
For cos-1 (sin x)
Let u = sin x
Therefore, t = cos-1 u
Differentiating above equation w.r.t.x,
∴
dt
dx
= ⋅ (By chain rule)
dt
du
du
dx
∴
dt
dx
= d
du
(cos
−1
u) ⋅
dx
d
(sin x)
−1
= ⋅ (cos x)
√1−u2
−1
= ⋅ (cos x)
2
√1−(sin x)
(∵ sin2 x + cos2 x = 1)
−1
= ⋅ (cos x)
√cos 2 x
−1
= cos x
⋅ (cos x)
= -1
∴
dt
dx
= -1 .....(i)
Differentiating eq(i) w.r.t. x,
dy d
∴ = (s + t)
dx dx
= ds
dx
+
dt
dx
Put, x = 1
2
sin θ
2
sin θ sin θ
⎡ 6× −4√1−4×( ) ⎤
2 2
Therefore, y = sin −1
⎢
5
⎥
⎣ ⎦
2
3 sin θ−4√1− sin θ
−1
= sin ( )
5
3/8
3
= sin
−1
(
5
sin θ −
4
5
cos θ) ...........(i)
−−−−−− −−
2
−−−−−−− −
Let cos ϕ = 3
5
, therefore,sinϕ = √1 − cos 2 3
ϕ = √1 − ( )
5
−−−−− −−
9 16 4
= √1 − = √ =
25 25 5
−1
= sin [sin(θ − ϕ)] = θ − ϕ
−1 −1 3
⇒ y = sin (2x) − cos ( )
5
2
=
√1−4x2
−−−−− −−−−−
14. According to the question, x = √a and y = √a
−1 −1
sin t cos t
1/2
−1
Consider, x = (a sin t
)
dt
=
1
2
(a
sin t
)
d
dt
(a
sin t
) [ Using chain rule of derivative]
−1/2
1 −1 −1 d
sin t sin t −1
= (a ) a log a (sin t)
2 dt
−1/2
−1 −1
1 sin t sin t 1
= (a ) a log a ⋅
2 √1−t2
1/2
1 −1 1
sin t
= (a ) log a ⋅
2 √1−t2
1 −1 t
√asin ⋅log a
dx
⇒ =
2
..........(i)
dt √1−t2
1/2
−1
Consider , y = (a cos t
)
dt
=
1
2
(a
cos t
)
dt
(a
cos t
) [Using chain rule of derivative]
−1/2
−1 −1
1 cos t cos t d −1
= (a ) a log a (cos t)
2 dt
1/2
1 −1 (−1)
cos t
= (a ) log a ⋅
2 √1−t2
1 −1 t
− √ac os ⋅log a
dy
⇒
dt
=
2
2
..........(ii)
√1−t
⇒ = =
dx dx 1 −1 t
( ) ⎛ √asin log a ⎞
dt 2
⎜ ⎟
⎝ √1−t2 ⎠
√ c os−1 t
a y
= − = −
x
−1 t
√asin
Hence proved
15. Let us differentiate the whole equation w.r.t. x
According to product rule of differentiation
d(xy) xd(y) yd(x) dy
dx
= dx
+
dx
=x× dx
,+ y
Therefore,
d(xy×log x+y) d(1)
dx
= dx
d(xy) d(log x+y) d(1)
⇒ log x + y × dx
+ xy × dx
= dx
dy dy
⇒ log x + y [x dx
+ y] + xy [ x+y
1
× (1 +
dx
)] =0
dy xy dy
⇒
dx
[x × log x + y] + y × log (x + y) + x+y
(1 +
dx
) =0
4/8
dy xy xy
⇒
dx
(x log(x + y) +
x+y
) = -(y log (x + y) + x+y
)
x
(Multiply and divide by x)
x[(x+y) log(x+y)+y]
2
dy −yxy log(x+y)−xxy log(x+y)− x y
⇒
dx
= 2
x [(x+y) log(x+y)+y]
2
dy −y(1)−x(1)− x y
⇒ =
dx x2 [(x+y) log(x+y)+y]
2
dy −(x+y+ x y)
⇒
dx
= 2
x {y+(x+y) log(x+y)}
dx
dx
2
= (na + b) [(n - 1) xn-2 cos (log x) - xn-2 sin (log x)] + (bn - a) (n - 1) xn-2 sin (log x) + xn-2 cos (log x)]
d y
2
dx
2
= (na + b) xn-2 [(n - 1) cos (log x) - sin (log x)] + (bn - a) xn-2 [(n - 1) sin (log x) + cos (log x)]
d y
2
dx
dy dy
2 2
x + (1 − 2n) + (1 + n ) y
2 dx
dx
= (na + b) xn [(n - 1) cos (log x) - sin (log x)] + (bn - a) xn [(n - 1) sin (log x) + cos (log x)]
+ (1 - 2n) xn-1 cos (log x) (na + b) + (1 - 2n) xn-1 sin (log x) (bn - a)
+ a(1 + n2) xn cos (log x) + b (1 + n2) xn sin (log x)
=0
2
d y dy
Hence x 2
2
+ (1 − 2n)
dx
+ (1 + n ) y = 0
2
dx
=1-1=0
lim f (x) = lim(1 − x)(2 − x) =0 [∵ f (x) = (1 − x)(2 − x), for 1 ≤ x ≤ 2]
+ x→1
x→1
(1−x)−0
⇒ (LHD at x = 1) = lim x−1
[Using definition of f(x)]
x→1
x−1
⇒ (LHD at x = 1) = − lim x−1
= −1
x→1
5/8
f (x)−f (1)
and (RHD at x = 1) = lim
x−1
+
x→1
(1−x)(2−x)−0
⇒ (RHD at x = 1) = lim x−1
[Using definition of f(x)[
x→1
(x−1)(x−2)
⇒ (RHD at x = 1) = lim x−1
x→1
⇒ (RHD at x = 1) = lim x − 2 = 1 − 2 = −1
x→1
For, u = xy
Taking log on both sides, we get
log u = log xy
⇒ log u = y ⋅ log(x)
1 du d d
⇒ = {y ⋅ (log x) + log x ⋅ (y)}
u dx dx dx
du 1 dy
⇒ = u [y ⋅ + log x ⋅ ( )]
dx x dx
du y dy
y
⇒ = x [ + log x ⋅ ( )]
dx x dx
For v = yx
Taking log on both sides, we get
log v = log yx
⇒ log v = x ⋅ log(y)
1 dv d d
⇒ = {x ⋅ (log y) + log y ⋅ x}
v dx dx dx
dv 1 dy dx
⇒ = v [x ⋅ ⋅ + log y ⋅ ( )]
dx y dx dx
dv x dy
x
⇒ = y [ ⋅ + log y]
dx y dx
du dv
because, dx
+
dx
= 0
y dy dy
So, x y
[
x
+ log x ⋅ (
dx
)] + y
x
[
x
y
⋅
dx
+ log y] = 0
dy
y x−1 y−1 x
⇒ (x log x + xy )⋅ + (yx + y log y) = 0
dx
dy
y x−1 y−1 x
⇒ (x log x + xy )⋅ = − (yx + y log y)
dx
y−1 x
dy (y x +y log y)
= −
dx y x −1
(x log x+x y )
−−−−− −−−−−
19. 2 2
y √x + 1 − log(√x + 1 − x) = 0
2
xy −−−−− dy 1
x− √x +1
2
+ √x + 1. − [ ]= 0
√x2 +1 dx √x2 +1−x √x2 +1
2
2 −( √x +1−x)
xy+( x +1) dy
=
√x2 +1 dx 2 2
( √x +1−x) √x +1
dy
2
xy + (x + 1) = −1
dx
dy
2
(x + 1) + xy + 1 = 0
dx
6/8
f (1+h)−f (1)
20. i. R.H.D. of f(x) at x = 1 = lim h
h→0
|1+h−3|−|−2| 2−h−2
= lim
h
= lim
h
= -1
h →0 h →0
f (1−h)−f (1)
ii. L.H.D. of f(x) at x = 1 = lim −h
h→0
2
(1−h) 3(1−h) 13
[ − + −2]
4 2 4
= lim −h
h→0
2
h −2h+1−6+6h+13−8
= lim [ −4h
]
h→0
2
h +4h
= lim [ −4h
] = -1.
h→0
f(x) = ⎨ 3 − x, 1 ≤ x < 3
⎪ 2
⎪
⎩
⎪ x 3 x 13
− + ,x< 1
4 2 4
[f'(x)]x=2 = 0 - 1 = -1
2(−1)
[f'(x)]x=–1 = 4
−
3
2
= -2
21. i. f'(x) = x
2
−
3
2
,x<1
−1
∴ f'(-1) = 2
−
3
2
= -2
ii. f'(x) = -1, 1 ≤ x ≤ 3
∴ f'(2) = - 1
⎧ x − 3, x ≥ 3
⎪
⎪
⎪
⎩ 2
⎪ x 3x 13
− + , x < 1
4 2 4
f (1−h)−f (1)
LHD at x = 1 = lim −h
h→0
2
−1 (1−h) 3(1−h) 13
= lim [ − + − 2]
h 4 2 4
h→0
2
1+ h −2h−6+6h+13−8
= lim ( )
−4h
h→0
2
h +4h
= limh→0 (
−4h
) =1
f (1+h)−f (1)
RHD at x = 1 = lim h
h→0
3−(1+h)−2
= lim h
h→0
3−(1+h)−2
= lim h
h→0
h
= lim − h
= -1
h→0
LHD at x = 1
f (1−h)−f (1)
f'(1) = lim −h
h→0
(1−h)−1−0
= lim −h
h→0
RHD at x = 1
f (1+h)−f (1)
f'(1) = lim h
h→0
3
(1+h ) −1−0
= lim h
h→0
7/8
= lim h2 + 3 + 3h = 3
h→0
3−(1+h)−2
= lim h
= lim − h
h
= -1
h→0 h→0
f (1−h)−f (1)
ii. Lf'(1) = lim −h
h→0
2
−1 (1−h) 3(1−h)
= lim h
[
4
−
2
+
13
4
− 2]
h→0
2
1+ h −2h−6+6h+13−8
= lim( −4h
)
h→0
2
h +4h
= lim( −4h
) =1
h→0
OR
we have
f'(x) = − , x < 1
x
2
3
2
−1
′
∴ f (−1) =
2
−
3
2
= -2
8/8