Probability
Probability
1.1 Probability
1.2 Events
The events that we look at, at Matric level are Inclusive, Mutually Exclusive
Events, Exhaustive, Complementary Events, Dependent Events and
Independent Events.
These events can occur at the same time. The following rule applied when dealing
with inclusive events:
Unlike Inclusive events, Mutually Exclusive events are those that cannot occur at
the same time. Therefore, the intersection of these events is zero. Using Probability
Notation, it follows:
A B
1 4
1.3.3 Dependent Events
2 5
In a given sample space (Universal set) for exhaustive events it is such that:
𝑃(𝐴 𝑜𝑟 𝐵) = 1. The Venn diagram for it looks like this:
A B
1 4
3
2 5
Mutually Exclusive, Exhaustive events are called complementary events such that:
𝑃(𝑛𝑜𝑡 𝐴) 𝑤ℎ𝑖𝑐ℎ 𝑐𝑎𝑛 𝑏𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑎𝑠 𝑃(𝐴′ ) is the compliment of A.
𝑃(𝑛𝑜𝑡𝐴) + 𝑃(𝐴) = 1
A B
1 4
2 5
3 7
3
Page
Since 𝑃(𝐴) + 𝑃(𝐵) = 1 𝑖𝑡 𝑚𝑒𝑎𝑛𝑠 𝐴 𝑎𝑛𝑑 𝐵 𝑎𝑟𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦
There are some experiments that have to be done repeatedly then we can determine
the probability of an even. A typical example is the tossing of a coin three times.
There are eight possible results that can be gotten from such an experiment and
tree diagrams make it easier to identify the probability space. An example of a tree
diagram being used is below:
A coin was tossed two times; represent this information on a tree diagram
Using the results of the sample space is S = {HH, HT, TH, TT}
Therefore, we can use the results from the sample space to calculate the different
probabilities. In this case the probability of getting a head or a tail is:
1 1 2 1
𝑃(𝐻 𝑜𝑟 𝑇) = 𝑃(𝐻𝑇) + 𝑃(𝑇𝐻) = + = =
4 4 4 2
4
Page
1.5 Dependent and Independent Events
Tree diagrams are useful when dealing with Independent events such as the tossing
of a coin and rolling a dice. These two events are independent since they can
happen simultaneously since the outcome of the first even has no effect on the
outcome of the second event.
On the other end, dependent events are such that the occurrence of one event
depends on what has happened with another event. An example of dependent
events is to draw two diamond cards consecutively from a deck of 52 cards
without replacement. Since the probability space reduces from the first event
(picking a card) it follows these are dependent events.
5
Page
𝑬𝒙𝒂𝒎𝒑𝒍𝒆 𝟏. 𝟏 𝑎 𝐶𝑜𝑖𝑛 𝑤𝑎𝑠 𝑡𝑜𝑠𝑠𝑒𝑑 𝑎𝑛𝑑 𝑎 𝑑𝑖𝑒 𝑤𝑒𝑟𝑒 𝑟𝑜𝑙𝑙𝑒𝑑 𝑜𝑛𝑒 𝑎𝑓𝑡𝑒𝑟 𝑎𝑛𝑜𝑡ℎ𝑒𝑟
𝑎𝑠 𝑠ℎ𝑜𝑤𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑎𝑏𝑜𝑣𝑒. 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 ∶
𝑎) 𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑎 𝐻 𝑎𝑛𝑑 𝑎 6
𝑏) 𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑎 𝑇 𝑎𝑛𝑑 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
Answer
𝑎) 𝑃(𝐻 𝑎𝑛𝑑 6) 𝑢𝑠𝑖𝑛𝑔 𝑎 𝑡𝑟𝑒𝑒 𝑑𝑖𝑎𝑔𝑟𝑎𝑚, 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑎𝑐𝑟𝑜𝑠𝑠 𝑤𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝑤ℎ𝑖𝑙𝑠𝑡 𝑔𝑜𝑖𝑛𝑔
𝑑𝑜𝑤𝑛 𝑤𝑒 𝑠𝑢𝑚 𝑢𝑝 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠.
1 1
𝑃(𝐻) = 𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 2 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑡𝑜 𝑎 𝑐𝑜𝑖𝑛𝑡 𝑎𝑛𝑑 𝑃(6) =
2 6
1 1 1
∴ 𝑃(𝐻 𝑎𝑛𝑑 6) = 𝑃(𝐻) × 𝑃(6) = × =
2 6 12
𝑏) 𝑃(𝑇 𝑎𝑛𝑑 𝐸𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟). 𝑇ℎ𝑖𝑠 𝑡𝑖𝑚𝑒 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑒𝑒𝑑 𝑡𝑜 𝑙𝑜𝑜𝑘 𝑎𝑡 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑎𝑛𝑑 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑡ℎ𝑒 𝑜𝑛𝑒𝑠 𝑤𝑖𝑡ℎ 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟𝑠. 𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒 𝑑𝑖𝑎𝑔𝑟𝑎𝑚𝑠
𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 3 𝑜𝑢𝑡 𝑜𝑓 12 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑎𝑓𝑡𝑒𝑟 𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑎 𝑇𝑎𝑖𝑙 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟𝑠
1 1 1
𝑃(𝑇 𝑎𝑛𝑑 𝐸𝑣𝑒𝑛) = × 𝑏𝑢𝑡 𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 3 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑖𝑡 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 3 ×
2 6 12
3 1
𝑃(𝑇 𝑎𝑛𝑑 𝐸𝑣𝑒𝑛) = =
12 4
A lunch box contains four sandwiches and three bananas. A person chooses at
6
random an item of food and eats it. They then choose another item at random and
Page
Eats it. Find the probability that the first choice was a banana and the second was a
sandwich. P (B and S)
Answer:
𝐴𝑏𝑜𝑣𝑒 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑠ℎ𝑜𝑤𝑖𝑛𝑔 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡.
𝑊𝑒 𝑤𝑎𝑛𝑡 𝑡ℎ𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑜𝑓 𝑝𝑖𝑐𝑘𝑖𝑛𝑔 𝑎 𝑏𝑎𝑛𝑎𝑛𝑎 𝑡ℎ𝑒𝑛 𝑠𝑎𝑛𝑑𝑤𝑖𝑐ℎ.
3
𝑃(𝐵) = 𝑛𝑜𝑤 𝑛𝑜𝑡𝑒 ℎ𝑜𝑤 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑏𝑎𝑛𝑎𝑛𝑎 𝑡𝑎𝑘𝑒𝑛
7
𝑎
𝑖𝑠 𝑒𝑎𝑡𝑒𝑛. 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑝𝑎𝑐𝑒 𝑠ℎ𝑟𝑖𝑛𝑘𝑠 𝑓𝑟𝑜𝑚 7 𝑡𝑜 6 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑃(𝑋) =
7
𝑤𝑒𝑟𝑒 𝑋 = 𝑒𝑖𝑡ℎ𝑒𝑟 𝐵𝑎𝑛𝑎𝑛𝑎 𝑜𝑟 𝑆𝑎𝑛𝑑𝑤𝑖𝑐ℎ 𝑎𝑛𝑑 𝒂 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
𝑏𝑎𝑛𝑎𝑛𝑎𝑠 𝑜𝑟 𝑠𝑎𝑛𝑑𝑤𝑖𝑐ℎ𝑒𝑠.
3 4 12 2
𝑃(𝐵 𝑎𝑛𝑑 𝑆) = 𝑃(𝐵) × 𝑃(𝑆) = × = =
7 6 42 7
𝑁𝑜𝑡𝑒: 𝑇ℎ𝑒 𝑜𝑟𝑑𝑒𝑟 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡𝑠 𝑎𝑟𝑒 𝑛𝑒𝑒𝑑𝑒𝑑 ℎ𝑎𝑠 𝑡𝑜 𝑏𝑒 𝑡𝑎𝑘𝑒𝑛. 𝑃(𝑆 𝑎𝑛𝑑 𝐵)
𝑖𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒 𝑐𝑜𝑢𝑙𝑑 ℎ𝑎𝑣𝑒 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑎𝑛𝑠𝑤𝑒𝑟 𝑏𝑢𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑤𝑟𝑜𝑛𝑔 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑐𝑎𝑟𝑒
𝑠ℎ𝑜𝑢𝑙𝑑 𝑎𝑙𝑤𝑎𝑦𝑠 𝑏𝑒 𝑡𝑎𝑘𝑒𝑛.
7
Page
1.6.1 Exercise 1: Independent Events
1. 𝐴 𝑏𝑎𝑔 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 8 𝑏𝑙𝑢𝑒 𝑚𝑎𝑟𝑏𝑙𝑒𝑠 𝑎𝑛𝑑 2 𝑟𝑒𝑑 𝑚𝑎𝑟𝑏𝑙𝑒𝑠. 𝑂𝑛𝑒 𝑚𝑎𝑟𝑏𝑙𝑒 𝑖𝑠 𝑡𝑎𝑘𝑒𝑛 𝑎𝑡 𝑟𝑎𝑛𝑑𝑜𝑚
𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑. 𝐴 𝑠𝑒𝑐𝑜𝑛𝑑 𝑚𝑎𝑟𝑏𝑙𝑒 𝑖𝑠 𝑑𝑟𝑎𝑤𝑛 𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑.
𝑎) 𝐷𝑟𝑎𝑤 𝑎 𝑡𝑟𝑒𝑒 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑡𝑜 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠.
𝑏) 𝑊ℎ𝑎𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑜𝑏𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑤𝑜 𝑟𝑒𝑑 𝑚𝑎𝑟𝑏𝑙𝑒𝑠?
𝑐) 𝑊ℎ𝑎𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑜𝑏𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑛𝑒 𝑟𝑒𝑑 𝑚𝑎𝑟𝑏𝑙𝑒 𝑎𝑛𝑑 𝑜𝑛𝑒 𝑏𝑙𝑢𝑒 𝑚𝑎𝑟𝑏𝑙𝑒?
2. 𝑆𝑒𝑎𝑛′ 𝑠 𝑙𝑢𝑛𝑐ℎ 𝑏𝑜𝑥 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑓𝑜𝑢𝑟 𝑠𝑎𝑛𝑑𝑤𝑖𝑐ℎ𝑒𝑠 𝑎𝑛𝑑 𝑡ℎ𝑟𝑒𝑒 𝑏𝑎𝑛𝑎𝑛𝑎𝑠. 𝐻𝑒 𝑐ℎ𝑜𝑜𝑠𝑒𝑠 𝑎𝑛
𝑖𝑡𝑒𝑚 𝑜𝑓 𝑓𝑜𝑜𝑑 𝑎𝑛𝑑 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑠 𝑖𝑡. 𝐻𝑒 𝑡ℎ𝑒𝑛 𝑐ℎ𝑜𝑜𝑠𝑒𝑠 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑖𝑡𝑒𝑚 𝑎𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜
𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑠 𝑖𝑡.
𝑎) 𝐷𝑟𝑎𝑤 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠.
𝑏) 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 ℎ𝑒 𝑤𝑖𝑙𝑙 𝑐ℎ𝑜𝑜𝑠𝑒 𝑎 𝑏𝑎𝑛𝑎𝑛𝑎 𝑓𝑖𝑟𝑠𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑎 𝑠𝑎𝑛𝑑𝑤𝑖𝑐ℎ.
𝑐) 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 ℎ𝑒 𝑤𝑖𝑙𝑙 𝑐ℎ𝑜𝑜𝑠𝑒 𝑎 𝑠𝑎𝑛𝑑𝑤𝑖𝑐ℎ 𝑓𝑖𝑟𝑠𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑎 𝑏𝑎𝑛𝑎𝑛𝑎.
𝑑) 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 ℎ𝑒 𝑤𝑖𝑙𝑙 𝑐ℎ𝑜𝑜𝑠𝑒 𝑡𝑤𝑜 𝑠𝑎𝑛𝑑𝑤𝑖𝑐ℎ𝑒𝑠.
𝑒) 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 ℎ𝑒 𝑤𝑖𝑙𝑙 𝑐ℎ𝑜𝑜𝑠𝑒 𝑒𝑖𝑡ℎ𝑒𝑟 𝑎 𝑠𝑎𝑛𝑑𝑤𝑖𝑐ℎ 𝑜𝑟 𝑎 𝑏𝑎𝑛𝑎𝑛𝑎 𝑖𝑛 𝑎𝑛𝑦
𝑜𝑟𝑑𝑒𝑟.
3. 𝑆𝑒𝑎𝑛 𝑡ℎ𝑒𝑛 𝑑𝑒𝑐𝑖𝑑𝑒𝑠 𝑡𝑜 𝑡𝑎𝑘𝑒 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑖𝑡𝑒𝑚 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑢𝑛𝑐ℎ 𝑏𝑜𝑥. 𝑇ℎ𝑖𝑠 𝑚𝑒𝑎𝑛𝑠 ℎ𝑒 ℎ𝑎𝑠
𝑛𝑜𝑤 𝑚𝑎𝑑𝑒 𝑡ℎ𝑟𝑒𝑒 𝑐ℎ𝑜𝑖𝑐𝑒𝑠 𝑜𝑛𝑒 𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑡ℎ 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡.
𝑎) 𝐷𝑟𝑎𝑤 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛.
𝑏) 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 ℎ𝑒 𝑤𝑖𝑙𝑙 𝑓𝑖𝑟𝑠𝑡 𝑐ℎ𝑜𝑜𝑠𝑒 𝑎 𝑏𝑎𝑛𝑎𝑛𝑎, 𝑡ℎ𝑒𝑛 𝑎 𝑠𝑎𝑛𝑑𝑤𝑖𝑐ℎ 𝑎𝑛𝑑
𝑡ℎ𝑒𝑛 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑠𝑎𝑛𝑑𝑤𝑖𝑐ℎ.
𝑐) 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 ℎ𝑒 𝑤𝑖𝑙𝑙 𝑐ℎ𝑜𝑜𝑠𝑒 𝑡ℎ𝑟𝑒𝑒 𝑏𝑎𝑛𝑎𝑛𝑎𝑠.
𝑑) 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 ℎ𝑒 𝑤𝑖𝑙𝑙 𝑐ℎ𝑜𝑜𝑠𝑒 𝑡𝑤𝑜 𝑏𝑎𝑛𝑎𝑛𝑎𝑠 𝑎𝑓𝑡𝑒𝑟 ℎ𝑖𝑠 𝑡ℎ𝑖𝑟𝑑 𝑐ℎ𝑜𝑖𝑐𝑒.
5. 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑟𝑒𝑒 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 𝑠𝑜𝑐𝑐𝑒𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠. 𝑊ℎ𝑎𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒
𝑐𝑎𝑝𝑡𝑎𝑖𝑛 𝑤𝑖𝑙𝑙 𝑤𝑖𝑛 𝑎 𝑡𝑜𝑠𝑠:
𝑖) 𝑒𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒?
𝑖𝑖) 𝑜𝑛𝑙𝑦 𝑜𝑛𝑐𝑒?
𝑖𝑖𝑖) 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑐𝑒?
1. 𝐴 𝑏𝑎𝑔 ℎ𝑎𝑠 6 𝑟𝑒𝑑 𝑎𝑛𝑑 4 𝑏𝑙𝑢𝑒 𝑚𝑎𝑟𝑏𝑙𝑒𝑠. 𝐴 𝑚𝑎𝑟𝑏𝑙𝑒 𝑖𝑠 𝑑𝑟𝑎𝑤𝑛 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑
𝐴 𝑠𝑒𝑐𝑜𝑛𝑑 𝑚𝑎𝑟𝑏𝑙𝑒 𝑖𝑠 𝑡ℎ𝑒𝑛 𝑑𝑟𝑎𝑤𝑛 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 . 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠:
𝑎) 𝑃(𝑓𝑖𝑟𝑠𝑡 𝑚𝑎𝑟𝑏𝑙𝑒 𝑑𝑟𝑎𝑤𝑛 𝑖𝑠 𝑟𝑒𝑑)
𝑏) 𝑃(𝑏𝑜𝑡ℎ 𝑚𝑎𝑟𝑏𝑙𝑒𝑠 𝑎𝑟𝑒 𝑏𝑙𝑢𝑒)
𝑐) 𝑃(𝑜𝑛𝑒 𝑚𝑎𝑟𝑏𝑙𝑒 𝑖𝑠 𝑟𝑒𝑑 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑖𝑠 𝑏𝑙𝑢𝑒)
2. 𝑇ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑠𝑖𝑥 𝑔𝑟𝑒𝑒𝑛 𝑝𝑒𝑛𝑐𝑖𝑙𝑠 𝑎𝑛𝑑 𝑓𝑖𝑣𝑒 𝑝𝑢𝑟𝑝𝑙𝑒 𝑝𝑒𝑛𝑐𝑖𝑙𝑠 𝑜𝑛 𝑎 𝑡𝑎𝑏𝑙𝑒. 𝐽𝑎𝑚𝑒𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑠
𝑎 𝑝𝑒𝑛𝑐𝑖𝑙 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑡𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝑑𝑜𝑒𝑠𝑛′ 𝑡 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑖𝑡. 𝐻𝑒 𝑡ℎ𝑒𝑛 𝑟𝑒𝑚𝑜𝑣𝑒𝑠 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑝𝑒𝑛𝑐𝑖𝑙.
𝐷𝑟𝑎𝑤 𝑎 𝑡𝑟𝑒𝑒 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 . 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡:
𝑎) 𝑏𝑜𝑡ℎ 𝑝𝑒𝑛𝑐𝑖𝑙𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑎𝑟𝑒 𝑝𝑢𝑟𝑝𝑙𝑒
𝑏) 𝑏𝑜𝑡ℎ 𝑝𝑒𝑛𝑐𝑖𝑙𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑎𝑟𝑒 𝑔𝑟𝑒𝑒𝑛
𝑐) 𝑎 𝑔𝑟𝑒𝑒𝑛 𝑎𝑛𝑑 𝑝𝑢𝑟𝑝𝑙𝑒 𝑝𝑒𝑛𝑐𝑖𝑙 𝑖𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑.
𝑑) 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑔𝑟𝑒𝑒𝑛 𝑝𝑒𝑛𝑐𝑖𝑙 𝑖𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑.
9 Page
3. 𝐴 𝑏𝑎𝑔 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 3 𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑟𝑏𝑙𝑒𝑠, 4 𝑏𝑙𝑢𝑒 𝑚𝑎𝑟𝑏𝑙𝑒𝑠 𝑎𝑛𝑑 3 𝑟𝑒𝑑 𝑚𝑎𝑟𝑏𝑙𝑒𝑠. 𝑇𝑤𝑜 𝑚𝑎𝑟𝑏𝑙𝑒𝑠
𝑎𝑟𝑒 𝑡𝑎𝑘𝑒𝑛 𝑜𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑔 𝑠𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠𝑙𝑦. 𝐷𝑟𝑎𝑤 𝑎 𝑡𝑟𝑒𝑒 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑎𝑛𝑑 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒
𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡:
𝑎) 𝑏𝑜𝑡ℎ 𝑚𝑎𝑟𝑏𝑙𝑒𝑠 𝑎𝑟𝑒 𝑤ℎ𝑖𝑡𝑒 .
𝑏) 𝑏𝑜𝑡ℎ 𝑚𝑎𝑟𝑏𝑙𝑒𝑠 𝑎𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑜𝑙𝑜𝑢𝑟.
𝑐) 𝑏𝑜𝑡ℎ 𝑚𝑎𝑟𝑏𝑙𝑒𝑠 𝑑𝑖𝑓𝑓𝑒𝑟 𝑖𝑛 𝑐𝑜𝑙𝑜𝑢𝑟.
4. 𝐹𝑟𝑜𝑚 𝑎𝑛 𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑐𝑘 𝑜𝑓 52 𝑐𝑎𝑟𝑑𝑠, 𝑡ℎ𝑒 𝑠𝑒𝑣𝑒𝑛 𝑜𝑓 𝑑𝑖𝑎𝑚𝑜𝑛𝑑𝑠 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑙𝑜𝑠𝑡. 𝐴
𝑐𝑎𝑟𝑑 𝑖𝑠 𝑑𝑒𝑎𝑙𝑡 𝑓𝑟𝑜𝑚 𝑎 𝑤𝑒𝑙𝑙 𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑 𝑑𝑒𝑐𝑘 𝑜𝑓 𝑐𝑎𝑟𝑑𝑠. 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡:
𝑎) 𝑖𝑡 𝑖𝑠 𝑎 𝑑𝑖𝑎𝑚𝑜𝑛𝑑.
𝑏) 𝑎 𝑑𝑖𝑎𝑚𝑜𝑛𝑑 𝑜𝑟 𝑎 𝑞𝑢𝑒𝑒𝑛.
𝑐) 𝑎 𝑑𝑖𝑎𝑚𝑜𝑛𝑑 𝑜𝑟 𝑎 𝑠𝑒𝑣𝑒𝑛.
10
Page
1.7 Venn Diagram Problems
1.7.1 Example
𝑇ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 420 𝑙𝑒𝑎𝑟𝑛𝑒𝑟𝑠 𝑖𝑛 𝑎 𝑠𝑐ℎ𝑜𝑜𝑙. 190 𝑙𝑒𝑎𝑟𝑛𝑒𝑟𝑠 𝑝𝑙𝑎𝑦 𝑠𝑜𝑐𝑐𝑒𝑟. 260 𝑙𝑒𝑎𝑟𝑛𝑒𝑟𝑠 𝑝𝑙𝑎𝑦
𝑐𝑟𝑖𝑐𝑘𝑒𝑡 𝑎𝑛𝑑 60 𝑝𝑙𝑎𝑦 𝑏𝑜𝑡ℎ 𝑠𝑜𝑐𝑐𝑒𝑟 𝑎𝑛𝑑 𝑐𝑟𝑖𝑐𝑘𝑒𝑡.
𝑑) 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑎 𝑙𝑒𝑎𝑟𝑛𝑒𝑟 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑙𝑎𝑦𝑠 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑜𝑓
𝑡ℎ𝑒 𝑡𝑤𝑜 𝑠𝑝𝑜𝑟𝑡𝑠.
𝑒) 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑎 𝑙𝑒𝑎𝑟𝑛𝑒𝑟 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑝𝑙𝑎𝑦
𝑏𝑜𝑡ℎ 𝑠𝑝𝑜𝑟𝑡𝑠.
Answer
11
Page
130 + 60 + 200 390
𝑏) 𝑃(𝑆 𝑜𝑟 𝐶) = = = 0.92
420 420
30
𝑐) 𝑃(𝑛𝑜𝑡 𝑆 𝑜𝑟 𝑛𝑜𝑡 𝐶) = = 0.07
420
130
𝑑) 𝑃(𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑠𝑝𝑜𝑟𝑡) = = 0.31
420
130 200 30 360
𝑒) 𝑃(𝑛𝑜𝑡 𝑝𝑙𝑎𝑦𝑖𝑛𝑔 𝑏𝑜𝑡ℎ 𝑠𝑝𝑜𝑟𝑡𝑠) = + + = = 0.86
420 420 420 420
60 1
𝑓) 𝑃(𝑆 𝑎𝑛𝑑 𝐶) = =
420 7
1. 𝐼𝑡 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝑃(𝐴) = 0.35 , 𝑃(𝐵) = 0.8 𝑎𝑛𝑑 𝑃(𝐴 𝑎𝑛𝑑 𝐵) = 0.25.
𝑈𝑠𝑒 𝑎 𝑉𝑒𝑛𝑛 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑎𝑛𝑑 𝑎 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 𝑡𝑜 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒:
𝑎) 𝑃(𝐴 𝑜𝑟 𝐵)
𝑏) 𝑃(𝐴′ 𝑎𝑛𝑑 𝐵)
𝑐) 𝑃(𝐴′ 𝑜𝑟 𝐵)
𝑑) 𝑃(𝐴 𝑎𝑛𝑑 𝐵)
𝑒) 𝑃(𝐴 𝑜𝑟 𝐵)′
1.8.1 Example
A Durban gym recorded the number of members (men and women) who use
or do not use the gym on a regular basis. The results are recorded in the
following contingency table.
Calculate the probability that a member selected at random from the sample
of 370 members:
Answer:
220
𝑎) 𝑃(𝑔𝑦𝑚 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑙𝑦) = = 0.59
370
150
𝑏) 𝑃(𝑔𝑦𝑚 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑔𝑖𝑣𝑒𝑛 𝑖𝑡𝑠 𝑎 𝑤𝑜𝑚𝑎𝑛) = = 0.79
190
14
110
Page
15
Page
1.9 The Counting Principle
There are two types of problems where the counting principle can be applied. The
first is when there is no repetition, the second is in which repetition is allowed.
𝑃𝑒𝑟𝑠𝑜𝑛 𝐴 ℎ𝑎𝑠 𝑡𝑜 𝑝𝑖𝑐𝑘 𝑎𝑛 𝑎𝑡𝑡𝑖𝑟𝑒 𝑡𝑜 𝑤𝑒𝑎𝑟 𝑓𝑜𝑟 𝑎 𝑤𝑒𝑑𝑑𝑖𝑛𝑔. 𝑇ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 3 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑠ℎ𝑜𝑒𝑠
5 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑠ℎ𝑖𝑟𝑡𝑠 𝑎𝑛𝑑 4 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑡𝑖𝑒𝑠. 𝐻𝑜𝑤 𝑚𝑎𝑛𝑦 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑐𝑎𝑛 𝑏𝑒
𝑐ℎ𝑜𝑠𝑒𝑛?
𝐴𝑛𝑠𝑤𝑒𝑟:
𝐼𝑛 𝑡ℎ𝑖𝑠 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜, 𝐴 𝑐𝑎𝑛 𝑜𝑛𝑙𝑦 𝑝𝑖𝑐𝑘 1 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑖𝑠𝑡 𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒𝑦 𝑐𝑎𝑛𝑛𝑜𝑡 𝑏𝑒
𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑. 𝑆𝑜 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 𝐴 𝑤𝑖𝑙𝑙 𝑝𝑖𝑐𝑘 1 𝑠ℎ𝑜𝑒, 1 𝑠ℎ𝑖𝑟𝑡 𝑎𝑛𝑑 1 𝑡𝑖𝑒, 𝑜𝑢𝑡 𝑜𝑓 𝑎
16
Factorial Notation
Given a word MOUSE, how many possible ways can these letters be arranged
without repetition? Since it’s a five letter word, it follows there are 5 x 4 x 3 x 2 x
1 ways of arranging the positions of each letter. This is known as a pure
arrangement
𝑻𝒉𝒆 𝒇𝒐𝒓𝒎𝒖𝒍𝒂 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒇𝒂𝒄𝒕𝒐𝒓𝒊𝒂𝒍 𝒏𝒐𝒕𝒂𝒕𝒊𝒐𝒏 𝒊𝒔 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒈𝒊𝒗𝒆𝒏 𝒏 𝒕𝒆𝒓𝒎𝒔:
𝒏! = 𝒏(𝒏 − 𝟏)(𝒏 − 𝟐) … (𝟏)
Probability
Example 3: Probability
Five men and four women are seated on a bench together. What is the probability
that the four women will be seated together?
𝑨𝒏𝒔𝒘𝒆𝒓:
𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒.
Page
𝑏) 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑒𝑡𝑡𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑤𝑜𝑟𝑑 𝑎𝑟𝑒 𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦, 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 𝑤𝑜𝑟𝑑 𝑤𝑖𝑙𝑙 𝑠𝑡𝑎𝑟𝑡 𝑎𝑛𝑑 𝑒𝑛𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑙𝑒𝑡𝑡𝑒𝑟 𝐵.
2. 𝐹𝑖𝑣𝑒 𝑙𝑒𝑎𝑟𝑛𝑒𝑟𝑠 (𝑡ℎ𝑟𝑒𝑒 𝑏𝑜𝑦𝑠 𝑎𝑛𝑑 𝑡𝑤𝑜 𝑔𝑖𝑟𝑙𝑠) 𝑎𝑟𝑒 𝑡𝑜 𝑏𝑒 𝑠𝑒𝑎𝑡𝑒𝑑 𝑖𝑛 𝑎 𝑟𝑜𝑤 𝑓𝑜𝑟
𝑎 𝑝ℎ𝑜𝑡𝑜𝑔𝑟𝑎𝑝ℎ.
3. 𝑇ℎ𝑒 𝑑𝑖𝑔𝑖𝑡𝑠 3,4,6,7,8 𝑎𝑛𝑑 9 𝑎𝑟𝑒 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑎 𝑓𝑜𝑢𝑟 − 𝑑𝑖𝑔𝑖𝑡 𝑛𝑢𝑚𝑏𝑒𝑟.
𝐻𝑜𝑤 𝑚𝑎𝑛𝑦 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑎𝑟𝑒 𝑡ℎ𝑒𝑟𝑒 𝑖𝑓:
𝑎) 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑖𝑔𝑖𝑡𝑠 𝑖𝑠 𝑎𝑙𝑙𝑜𝑤𝑒𝑑.
𝑏) 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑖𝑔𝑖𝑡𝑠 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑙𝑙𝑜𝑤𝑒𝑑.
𝑐) 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑖𝑔𝑖𝑡𝑠 𝑖𝑠 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 2.
𝑑) 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑖𝑔𝑖𝑡𝑠 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 2.
20
Page
Page
21
Page
22
Solutions
1.11.1 Exercise 1
2 2 4
𝑏) 𝑃(𝑅𝑅) = × =
10 10 10
2. 𝑇𝑟𝑒𝑒 𝐷𝑖𝑎𝑔𝑟𝑎𝑚
23
Page
3 4 12
𝑏) 𝑃(𝐵𝑎𝑛𝑎𝑛𝑎 𝑡ℎ𝑒𝑛 𝑆𝑎𝑛𝑑𝑤𝑖𝑐ℎ) = 𝑃(𝐵𝑆)𝑜𝑛 𝑡ℎ𝑒 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 = × =
7 7 49
3 4 12
𝑐) 𝑃(𝑆𝑎𝑛𝑑𝑤𝑖𝑐ℎ 𝑡ℎ𝑒𝑛 𝐵𝑎𝑛𝑎𝑛𝑎) = 𝑃(𝑆𝐵) = × =
7 7 49
4 4 16
𝑑) 𝑃(𝑡𝑤𝑜 𝑆𝑎𝑛𝑑𝑤𝑖𝑐ℎ𝑒𝑠) = 𝑃(𝑆𝑆) = × =
7 7 49
12 12
𝑒) 𝑃(𝑆𝑎𝑛𝑑𝑤𝑖𝑐ℎ 𝑜𝑟 𝐵𝑎𝑛𝑎𝑛𝑎) = 𝑃(𝑆𝐵) + 𝑃(𝐵𝑆)𝑡ℎ𝑒 𝑡𝑤𝑜 𝑝𝑜𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = +
49 49
24
𝑃(𝐵𝑆) + 𝑃(𝑆𝐵) =
49
3. 𝑇𝑟𝑒𝑒 𝐷𝑖𝑎𝑔𝑟𝑎𝑚
3 4 4 48
𝑏) 𝑃(𝑏𝑎𝑛𝑎𝑛𝑎 𝑡ℎ𝑒𝑛 𝑆𝑎𝑛𝑑𝑤𝑖𝑐ℎ 𝑡ℎ𝑒𝑛 𝑆𝑎𝑛𝑑𝑤𝑖𝑐ℎ) = 𝑃(𝐵𝑆𝑆) = × × =
7 7 7 343
3 3 3 27
𝑐) 𝑃(𝑡ℎ𝑟𝑒𝑒 𝑏𝑎𝑛𝑎𝑛𝑎𝑠) = 𝑃(𝐵𝐵𝐵) = × × =
7 7 7 343
24
3 3 4
𝑑) 𝑃(2 𝑏𝑎𝑛𝑎𝑛𝑎𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑) = 𝑃(𝐵𝐵𝑆) + 𝑃(𝐵𝑆𝐵) + 𝑃(𝑆𝐵𝐵) = × × ×3
7 7 7
Page
36 108
𝑃(2 𝑏𝑎𝑛𝑎𝑛𝑎𝑠) = ×3=
343 343
1 1 1
𝑏) 𝑃(4 𝑎𝑛𝑑 4) = × =
6 6 36
1 1 2
𝑐) 𝑃(𝑔𝑒𝑡𝑡𝑖𝑛𝑔 2 𝑎𝑛𝑑 𝑎 5) = 𝑃(2 𝑎𝑛𝑑 5) + 𝑃(5 𝑎𝑛𝑑 2) = × ×2=
6 6 36
1 1 35
𝑒) 𝑃(𝑛𝑜 𝑡𝑤𝑜 3𝑠 𝑓𝑎𝑐𝑖𝑛𝑔 𝑢𝑝) = 𝑃(33′ ) = 1 − 𝑃(33) = 1 − × =
6 6 36
1 1 1 1
5. 𝑃(𝑇 𝑒𝑣𝑒𝑟𝑦𝑡𝑖𝑚𝑒) = 𝑃(𝑇𝑇𝑇) = × × =
2 2 2 8
25
1 3
𝑏) 𝑃(𝑇 𝑜𝑛𝑐𝑒) = 𝑃(𝑇𝑇 ′ 𝑇 ′ ) + 𝑃(𝑇 ′ 𝑇 ′ 𝑇) + 𝑃(𝑇 ′ 𝑇𝑇 ′ ) = ×3=
Page
8 8
1
𝑐) 𝑃(𝑇 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑐𝑒): 𝐹𝑖𝑟𝑠𝑡 𝑃(𝑇 𝑛𝑒𝑣𝑒𝑟) = 𝑃(𝑇 ′ 𝑇 ′ 𝑇 ′ ) =
8
1 7
∴ 𝑃(𝑇 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑐𝑒) = 1 − =
8 8
1.11.2 Exercise 2
6
1𝑎) 𝑃(𝑓𝑖𝑟𝑠𝑡 𝑚𝑎𝑟𝑏𝑙𝑒 𝑑𝑟𝑎𝑤𝑛 𝑖𝑠 𝑟𝑒𝑑) = 𝑃(𝑅) =
10
4 3 12 2
𝑏) 𝑃(𝑏𝑜𝑡ℎ 𝑚𝑎𝑟𝑏𝑙𝑒𝑠 𝑎𝑟𝑒 𝑏𝑙𝑢𝑒) = 𝑃(𝐵𝐵) = × = =
10 9 90 15
𝑐) 𝑃(𝑜𝑛𝑒 𝑚𝑎𝑟𝑏𝑙𝑒 𝑖𝑠 𝑟𝑒𝑑 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑖𝑠 𝑏𝑙𝑢𝑒) = 𝑃(𝑅𝐵) + 𝑃(𝐵𝑅)
6 4 48 8
= × ×2= =
10 9 90 15
5 4 20 2
𝑎) 𝑃(𝑏𝑜𝑡ℎ 𝑃𝑢𝑟𝑝𝑙𝑒) = 𝑃(𝑃𝑃) = × = =
11 10 110 11
6 5 30 3
𝑏) 𝑃(𝐺𝐺) = × = =
11 10 110 11
26
6 5 5 6 60 6
𝑐) 𝑃(𝐺𝑃)𝑜𝑟 𝑃(𝑃𝐺) = × + × = =
Page
11 10 11 10 110 11
5 4 2 2 9
𝑑) 𝑃(𝐺 ′ 𝐺 ′ ) = × = 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑃(𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑔𝑟𝑒𝑒𝑛) = 1 − =
11 10 11 11 11
12 4 1 15
𝑏) 𝑃(𝐷𝑖𝑎𝑚𝑜𝑛𝑑 𝑜𝑟 𝑄𝑢𝑒𝑒𝑛) = + − =
51 51 51 51
12 4 16
𝑐) 𝑃(𝐷𝑖𝑎𝑚𝑜𝑛𝑑 𝑜𝑟 7) = + =
51 51 51
1.11.3 Exercise 3
27
50 5
2𝑖) 𝑃(𝐵𝑖𝑜𝑙𝑜𝑔𝑦) = =
130 13
32 16
2𝑖𝑖) 𝑃(𝑀𝑎𝑡ℎ𝑠 𝑎𝑛𝑑 𝐵𝑖𝑜𝑙𝑜𝑔𝑦) = =
130 65
28
Page
𝑏) 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑜𝑝𝑙𝑒 𝑤ℎ𝑜 𝑒𝑛𝑡𝑒𝑟𝑒𝑑 200𝑚 = 33 (𝑠𝑢𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑒𝑛𝑛 𝑑𝑖𝑎𝑔𝑟𝑎𝑚)
16
𝑐) 𝑃(𝐴𝑡ℎ𝑙𝑒𝑡𝑒 𝑟𝑢𝑛𝑠 2 𝑒𝑣𝑒𝑛𝑡𝑠) = (𝐴𝑙𝑙 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠)
80
4. 𝑉𝑒𝑛𝑛 𝐷𝑖𝑎𝑔𝑟𝑎𝑚
8 42
𝑏) 𝑃(𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒) = 1 − 𝑃(𝑟𝑒𝑎𝑑𝑠 𝑛𝑜𝑛𝑒) = 1 − = = 0.84
50 50
16 + 9 + 6
𝑐) 𝑃(𝑟𝑒𝑎𝑑𝑠 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒) = 𝑃(𝐴 𝑜𝑛𝑙𝑦) + 𝑃(𝐵 𝑜𝑛𝑙𝑦) + 𝑃(𝐶 𝑜𝑛𝑙𝑦) =
50
31
𝑃(𝑟𝑒𝑎𝑑𝑠 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒) = = 0.62
50
16
𝑑) 𝑃(𝑟𝑒𝑎𝑑𝑠 𝑜𝑛𝑙𝑦 𝐴) = = 0.32
50
1.11.4 Exercise 4
25 1
1𝑎) 𝑃(𝑙𝑎𝑡𝑒) = =
100 4
29
25 5
1𝑑) 𝑃( 𝑜𝑛 𝑡𝑖𝑚𝑒 𝑖𝑓 𝑔𝑖𝑟𝑙) = =
65 13
25 10 35 7
1𝑒) 𝑃(𝐿𝑎𝑡𝑒 𝑜𝑓 𝐴𝑏𝑠𝑒𝑛𝑡) = + = =
100 100 100 20
25 7 95 19
1𝑓) 𝑃(𝐿𝑎𝑡𝑒 𝑜𝑟 𝐴𝑏𝑠𝑒𝑛𝑡 𝑖𝑓 𝐵𝑜𝑦) = + = =
100 10 100 20
305
2. 𝑎) 𝑃(𝑖𝑠 𝑎 𝑐𝑎𝑟 𝑝ℎ𝑜𝑛𝑒 𝑢𝑠𝑒𝑟) =
755
685
𝑏) 𝑃(𝑛𝑜 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔 𝑓𝑒𝑒𝑠) =
755
25
𝑐) 𝑃(𝑐𝑎𝑟 𝑝ℎ𝑜𝑛𝑒 𝑢𝑠𝑒𝑟 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑠𝑜𝑛 ℎ𝑎𝑑 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔 𝑓𝑖𝑛𝑒) =
70
405
𝑑) 𝑃(𝑛𝑜 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔 𝑓𝑖𝑛𝑒 𝑔𝑖𝑣𝑒𝑛 𝑑𝑖𝑑 𝑛𝑜𝑡 𝑢𝑠𝑒 𝑐𝑎𝑟 𝑝ℎ𝑜𝑛𝑒) =
450
1.11.5 Exercise 5
1𝑎) 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑟𝑒 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑎𝑟𝑒 𝑡𝑎𝑘𝑒𝑛 𝑜𝑢𝑡
11!
𝑃𝑅𝑂𝐵𝐴𝐵𝐼𝐿𝐼𝑇𝑌 ℎ𝑎𝑠 11 𝑙𝑒𝑡𝑡𝑒𝑟𝑠 ℎ𝑒𝑛𝑐𝑒 𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑙𝑒𝑡𝑡𝑒𝑟𝑠 𝐼 𝑎𝑛𝑑 𝐵 𝑎𝑟𝑒 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑
2! 2!
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑒𝑠 = 9 979 200
1𝑏) 𝐹𝑖𝑠𝑡 𝑤𝑒 𝑛𝑒𝑒𝑑 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑖𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑎𝑛𝑑 𝑙𝑎𝑠𝑡 𝑙𝑒𝑡𝑡𝑒𝑟𝑠 𝑎𝑟𝑒 𝐵:
𝑤𝑒 𝑛𝑜𝑤 ℎ𝑎𝑣𝑒 9 𝑙𝑒𝑡𝑡𝑒𝑟𝑠 𝑡𝑜 𝑟𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑒 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦:
9!
𝑃𝑅𝑂𝐴𝐼𝐿𝐼𝑇𝑌 ∶ 𝑠𝑖𝑛𝑐𝑒 𝐼 𝑖𝑠 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑎𝑛𝑑 𝑖𝑡 𝑔𝑖𝑣𝑒𝑠 181 440
2!
30 Page
181 400 1
∴ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑠 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒: =
9 979 200 55
1.1 𝑇𝑜 𝑠𝑒𝑒 𝑤ℎ𝑒𝑡ℎ𝑒𝑟 𝑡ℎ𝑒𝑦 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡: 𝑃(𝐴) × 𝑃(𝐵) = 0.2 × 0.63
𝑃(𝐴) × 𝑃(𝐵) = 0.126 = 𝑃(𝐴 𝑎𝑛𝑑 𝐵) ℎ𝑒𝑛𝑐𝑒 𝑡ℎ𝑒𝑦 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑒𝑣𝑒𝑛𝑡𝑠
52
𝑃(𝑂𝑂) + 𝑃(𝑌𝑌) = 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔:
100
𝑡 𝑡 2 2 52
× + × = 𝑒𝑥𝑝𝑎𝑛𝑑𝑖𝑛𝑔 𝑎𝑛𝑑 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦𝑖𝑛𝑔 𝑔𝑖𝑣𝑒𝑠:
𝑡 + 2 𝑡 + 2 𝑡 + 2 𝑡 + 2 100
52(𝑡 2 + 4𝑡 + 4) = 100(𝑡 2 + 4) 𝑤ℎ𝑖𝑐ℎ 𝑟𝑒𝑑𝑢𝑐𝑒𝑠 𝑡𝑜
4
3𝑡 2 − 13𝑡 + 12 = 0 𝑎𝑛𝑑 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑔𝑖𝑣𝑒𝑠 𝑡 = 3 𝑜𝑟 𝑡 = 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑡 = 3.
3
32
Page
1 2 1
2.2.2 𝑃(𝐴𝑌) = × =
2 5 5
1 3 1 5 26
2.2.3 𝑃(𝑃) = × + × =
2 5 2 9 45
3.1 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎 𝑎𝑛𝑑 𝑏: 𝑎 + 12 = 32 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑎 = 20
𝑏 = 80 + 48 = 128
20
3.2 𝑆𝑖𝑛𝑐𝑒 𝑃(𝑀 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑤𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑇𝑉) = ≠ 0 ℎ𝑒𝑛𝑐𝑒 𝑁𝑜 𝑖𝑡𝑠 𝑛𝑜𝑡
160
128 4
3.3.1 𝑃(𝑊𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑡𝑣) = = = 0.8
160 5
12 3
33
49 − 𝑥 + 4 + 8 + 5 + 𝑥 + 60 − 𝑥 + 2 + 14 = 100 𝑎𝑛𝑑 𝑥 = 42
7 + 2 + 18 27
4.3 𝑃(𝑢𝑠𝑒 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛) = = = 0.27
100 100
34
Page