Fourier Integral
Fourier Integral
È 6 •
È1 Ê np 2np ˆ ˘ np x ˘
Í Ans. : 2 Â Ín
n =1 Î
2 Á
Ë
sin
3
+ sin ˜
3 ¯˚
˙ sin
3 ˚
˙
Î p
1 l
2l Ú- l
where a0 = f ( t ) dt
1 l np t
an = Ú f (t ) cos dt
l -l l
1 l np t
bn = Ú f (t ) sin dt
l -l l
2.8 Fourier Integral 2.117
2l Ú - l
= f ( t ) dt +
p n =1 ...(2.6)
1 p
As l Æ •, Æ 0 and Dw n = Æ 0, the infinite series in Eq. (2.6) becomes an
l l
integral from 0 to •.
1 •È •
f (t ) cos w (t - x ) dt ˘˙ dw [Q l Æ •, Dw n Æ dw ]
p Ú0 ÍÎ Ú-•
f ( x) = ...(2.7)
˚
Equation (2.7) is called the Fourier integral of f (x).
Expanding cosw(t – x) in Eq. (2.7),
1 •È • ˘
f ( x) =
p Ú0 ÍÎÚ-• f (t )(cos w t cos w x + sin w t sin w x) dt ˙˚ dw
1 • • 1 • •
=
p Ú0 Ú-• f (t ) cos w tdt cos w x dw + p Ú0 Ú-• f (t )sin w t dt sin w x dw
• •
= Ú A(w ) cos w x dw + Ú B(w )sin w x dw ...(2.8)
0 0
1 •
where A(w ) =
p Ú-• f (t ) cos w t dt
1 •
and B(w ) =
p Ú-• f (t )sin w t dt
2.118 Chapter 2 Fourier Series and Fourier Integral
example 1
Using Fourier integral representation, show that
• cos w x + w sin w x
Ú0 dw = 0 x<0
1+ w2
p
= x=0
2
= p e - x x > 0 [Winter 2014; Summer 2015]
Solution
Let f ( x) = 0 x<0
1
= x=0
2
= e- x x>0
The Fourier integral of f(x) is given by
• •
f ( x ) = Ú A(w ) cos w x dw + Ú B(w )sin w x dw
0 0
1 •
p Ú-•
A(w ) = f (t ) cos w t dt
= ÈÍ Ú 0 ◊ cos w t dw + Ú e - t cos w t dw ˘˙
1 0 •
p Î -• 0 ˚
2.8 Fourier Integral 2.119
•
1 e- t
= (- cos w t + w sin w t
p 1+ w2 0
1
= [Q cos 0 = 1, sin 0 = 0]
p (1 + w 2 )
1 •
p Ú-•
B(w ) = f (t )sin w t dt
= ÈÍ Ú 0 ◊ sin w t dw + Ú e - t sin w t dw ˘˙
1 0 •
p Î -• 0 ˚
•
1 e- t
= (- sin w t - w cos w t )
p 1+w2 0
1
=- (-w )
p (1 + w 2 )
w
=
p (1 + w 2 )
1 • 1 1 • w
Hence, f ( x ) =
p Ú0 1+w 2
cos w x dw +
p Ú0 1+w2
sin w x dw
1 • cos w x + w sin w x
=
p Ú0 1+w2
dw
• cos w x + w sin w x
Ú0 1+w2
dw = p f ( x )
Ï0 x<0
Ô
Ôp
=Ì x=0
Ô2
ÔÓp e - x x>0
example 2
Express the function f ( x ) = 2 | x | < 2
= 0 |x| > 2
as Fourier integral. [Summer 2017, 2016]
Solution
The function f(x) is an even function. The Fourier cosine integral of f(x) is given by
•
f ( x ) = Ú A(w ) cos w x dw
0
2.120 Chapter 2 Fourier Series and Fourier Integral
2 •
A(w ) =
p Ú0 f (t ) cos w t dt
2 2
=
p Ú0 2 ◊ cos w t dt
2
4 sin w t
=
p w 0
4 sin 2w
= [Q sin 0 = 0]
p w
4 • sin 2w cos w x
Hence, f ( x) =
p Ú0 w
dw
• sin 2w cos w x p
Ú0 w
dw = f ( x )
4
Ïp
Ô |x| < 2
= Ì2
ÔÓ 0 | x | > 2 ...(1)
example 3
Find the Fourier integral representation of the function
f ( x) = 1 |x| < 1
=0 |x| >1
• sin w cos w x • sin w
Hence, evaluate (i) Ú0 w
dw (ii) Ú0w
dw
[Winter 2016, 2014, 2013]
Solution
The function f(x) is an even function. The Fourier cosine integral of f(x) is given by
•
f ( x ) = Ú A(w ) cos w x dw
0
2 •
A(w ) =
p Ú0 f (t ) cos w t dt
2 1
=
p Ú0 1 ◊ cos w t dt
1
2 sin w t
=
p w 0
2 sin w
= [Q sin 0 = 0]
p w
2 • sin w cos w x
Hence, f ( x) =
p Ú0 w
dw
At x = –1,
1
f ( x) = È lim f ( x ) + lim f ( x )˘
2 ÍÎ x Æ-1- x Æ-1+ ˙˚
1
=
(0 + 1)
2
1
=
2
Hence, from Eq. (1),
Ïp
Ô2 |x| < 1
Ô
• sin w cos w x Ôp
Ú0 dw = Ì |x| = 1
w Ô4
Ô0 |x| > 1
Ô
Ó
(ii) Putting x = 0 in Eq. (1),
• sin w p p
Ú0 w
dw = f (0) =
2 2
[Q f (0) = 1]
example 4
Find the Fourier integral representation of the function
2
f ( x) = 1 - x |x| £1
=0 |x| >1
Solution
f(x) is an even function. The Fourier cosine integral of f (x) is given by
•
f ( x ) = Ú A(w ) cos w x dw
0
2 •
p Ú0
A(w ) = f (t ) cos w t dt
2 •
= Ú (1 - t 2 ) cos w t dt
p 0
1
2 Ê sin w t ˆ Ê cos w t ˆ Ê sin w t ˆ
= (1 - t )2 Á - ( -2t ) Á - + ( -2) Á -
p Ë w ˜¯ Ë w 2 ˜ ¯ Ë w 3 ˜¯ 0
2 Ê 2 cos w 2 sin w ˆ
= - + [Q sin 0 = 0]
p ÁË w2 w3 ¯
˜
4 Ê sin w - w cos w ˆ
= Á ˜¯
pË w3
2.8 Fourier Integral 2.123
4 • sin w - w cos w
Hence, f ( x) =
p Ú0 w3
cos w x dw
example 5
Find the Fourier cosine integral of f (x) = e–kx, where x > 0, k > 0.
[Winter 2016]
Solution
The Fourier cosine integral of f(x) is given by
•
f ( x ) = Ú A(w ) cos w x dw
0
2 •
A(w ) =
p Ú0 f (t ) cos w t dt
2 • - kt
=
p Ú0 e cos w t dt
•
2 e - kt
= (- k cos w t + w sin w t
p k2 + w2 0
2Ê k ˆ
= Á 2 [Q cos 0 = 1, sin 0 = 0]
p Ë k + w 2 ˜¯
2k • 1
Hence, f ( x) =
p Ú0 k +w2
2
cos w x dw
• cos w x p
Ú0 2
w +k 2
dw =
2k
f ( x)
p - kx
= e x > 0, k>0
2k
example 6
p -x
Find the Fourier cosine integral of f(x) = e , x ≥ 0. [Winter 2015]
2
Solution
The Fourier cosine integral of f(x) is given by
•
f(x) = Ú A(w ) cos w x dw
0
•
2
A(w) =
p Ú f (t ) cos w t dt
0
2.124 Chapter 2 Fourier Series and Fourier Integral
•
2 p -t
=
p Ú2e cos w t dt
0
•
-t
= Úe cos w t dt
0
•
e- t
= (- cos w t + w sin w t )
1 + w2 0
1
= [Q cos 0 = 1, sin 0 = 0]
1 + w2
•
1
Hence, f(x) = Ú 1 + w2 cos w x dw
0
•
cosw x
Ú 1+ w2 dw = f(x)
0
•
cosw x p -x
Ú 1+w2 dw =
2
e
0
example 7
p
Find the Fourier cosine integral of the function f ( x ) = cos x | x | <
2
p
=0 |x| >
2
Solution
The Fourier cosine integral of f(x) is given by
•
f ( x ) = Ú A(w ) cos w x dw
0
2 •
A(w ) =
p Ú0 f (t ) cos w t dt
p
2
=
p Ú0
2 cos t cos w t dt
p
2 1
=
p Ú0
2
2
[cos(1 + w )t + cos(1 - w )t ]dt
2.8 Fourier Integral 2.125
p
1 sin(1 + w )t sin(1 - w )t 2
= +
p 1+w 1-w 0
È p p ˘
sin(1 + w ) sin(1 - w )
1Í 2 2 ˙
= Í + ˙ [Q sin 0 = 0]
p Î 1+w 1-w ˚
È Ê pw ˆ Ê pw ˆ ˘
cos Á
Ë 2 ˜¯
cos Á
1Í Ë 2 ˜¯ ˙
= Í + ˙
p Î 1+w 1-w ˚
Ê pw ˆ
2 cos Á
1 Ë 2 ˜¯
=
p 1-w2
Ê pw ˆ
cos Á
2 • Ë 2 ˜¯
Hence, f ( x) =
p Ú0 1- w2
cos w x dw
example 8
Express the function f ( x ) = 1 0£ x<p
=0 x >p
as a Fourier sine integral and hence, evaluate
• 1 - cos pw
Ú0 w
sin w x dw [Winter 2017]
Solution
The Fourier sine integral of f(x) is given by
•
f ( x ) = Ú B(w )sin w x dw
0
2 •
p Ú0
B(w ) = f (t )sin w t dt
= ÈÍ Ú 1 ◊ sin w t dt + Ú 0 ◊ sin w t dt ˘˙
2 p 0
pÎ 0 p ˚
p
2 cos w t
= -
p w 0
2 Ê - cos pw + 1ˆ
= Á ˜¯ [Q cos 0 = 1]
pË w
2 Ê 1 - cos pw ˆ
= Á ˜¯
pË w
2.126 Chapter 2 Fourier Series and Fourier Integral
2 • 1 - cos pw
p Ú0
Hence, f ( x) = sin w x dw
w
• 1 - cos pw p
Ú0 w sin w x dw = 2 f ( x)
Ïp
Ô 0£ x<p
= Ì2 ...(1)
ÔÓ0 x>p
At x = p, f(x) is discontinuous.
1
f ( x ) = È lim f ( x ) + lim f ( x )˘
2 Î x Æp - x Æp + ˚
1
= (1 + 0)
2
1
=
2
Hence, from Eq. (1),
Ïp
Ô2 0£ x<p
• 1 - cos pw Ô
Ú0 w sin w x dw = ÌÔ p x=p
4
Ô
Ó0 x >p
example 9
Express the function f ( x ) = sin x 0£ x£p
=0 x >p
as a Fourier sine integral and show that
• sin w x sin pw p
Ú0 1 - w 2 dw = 2 sin x 0£ x£p
Solution
The Fourier sine integral of f (x) is given by
•
f ( x ) = Ú B(w ) sin w x dw
0
2 •
B(w ) = Ú f (t )sin w t dt
p 0
= ÈÍ Ú sin t sin w t dt + Ú 0 ◊ sin w t dt ˘˙
2 p •
p Î 0 p ˚
2.8 Fourier Integral 2.127
2 1
Ú0 2 [cos(w - 1)t - cos(w + 1)t ]dt
p
=
p
p
1 sin(w - 1)t sin(w + 1) t
= -
p w -1 w +1 0
1 È sin(w - 1)p sin(w + 1)p ˘
= Í - [Q sin 0 = 0]
p Î w -1 w + 1 ˙˚
1 È sin pw sin pw ˘
= Í- +
p Î w -1 w + 1 ˙˚
1 Ê 2 sin pw ˆ
= Á- 2
p Ë w - 1 ˜¯
2 Ê sin pw ˆ
=
p ÁË 1 - w 2 ˜¯
2 • sin pw
Hence, f ( x) =
p Ú0 1-w2
sin w x dw , w π1
• sin w x sin pw p
Ú0 1-w 2
dw =
2
f ( x)
Ïp
Ô sin x 0£ x£p
= Ì2
ÔÓ0 x>p
example 10
Find the Fourier sine integral of f(x) = e–bx.
p • w sin w x
Hence, show that e- bx = Ú0 2 dw
2 b +w2
Solution
The Fourier sine integral of f (x) is given by
•
f ( x ) = Ú B(w )sin w x dw
0
2 •
B(w ) =
p Ú0 f (t )sin w t dt
2 • - bt
=
p Ú0 e sin w t dt
•
2 e - bt
= (-b sin w t - w cos w t )
p b2 + w 2 0
2.128 Chapter 2 Fourier Series and Fourier Integral
2Ê w ˆ
= [Q cos 0 = 1, sin 0 = 0]
p ÁË b2 + w 2 ˜¯
2 • w sin w x
p Ú0 b2 + w 2
Hence, f ( x) = dw
• w sin w x p
Ú0 b2 + w 2 dw = 2 f ( x)
p
= e - bx
2
example 11
•
l 3 sin l x p -x
Show that Ú 4
dl = e cos x, where x > 0. [Winter 2015]
0 l +4 2
Solution
p -x
f(x) = e cos x, x > 0
2
The Fourier sine integral of f(x) is given by
•
f(x) = Ú B(l )sin l x dl
0
•
2
B(l) =
p Ú f ( x) sin l x dx
0
•
2 p -x
=
p Ú2e cos x sin l x dx
0
•
-x
= Úe cos x sin l x dx
0
•
1 -x
2 Ú0
= e (2 cos x sin l x ) dx
•
1 -x
e [sin(l + 1) x + sin(l - 1) x ] dx
2 Ú0
=
1 È -x ˘
• •
= Í Ú e sin(l + 1) x dx + Ú e - x sin(l - 1) x dx ˙
2 ÍÎ 0 0 ˙˚
2.8 Fourier Integral 2.129
•
1È e- x
= Í {- sin (l + 1) x - (l + 1) cos(l + 1) x}
2 ÍÎ 1 + (l + 1)2
0
•˘
e- x ˙ , ( x > 0)
+ {- sin ( l - 1) x - ( l - 1) cos( l - 1) x}
1 + (l - 1)2 ˙
0 ˚
1 È (l + 1) (l - 1) ˘
= Í + ˙
2 ÍÎ 1 + (l + 1) 2
1 + (l - 1)2 ˙˚
1 È l +1 l -1 ˘
= +
2 ÍÎ l 2 + 2 l + 2 l 2 - 2 l + 2 ˙˚
1 È (l + 1) (l 2 - 2 l + 2) + (l - 1)(l 2 + 2 l + 2) ˘
= Í ˙
2 ÍÎ (l 2 + 2 l + 2)(l 2 - 2 l + 2) ˙˚
1 È l 3 - 2l 2 + 2l + l 2 - 2l + 2 + l 3 + 2l 2 + 2l - l 2 - 2l - 2 ˘
= Í ˙
2 ÍÎ l4 + 4 ˙˚
1 È 2l 3 ˘
= Í ˙
2 ÍÎ l 4 + 4 ˙˚
l3
=
l4 + 4
•
l3
Hence, f(x) = Ú l 4 + 4 sin l x dl
0
• 3
l p -x
Ú l 4 + 4 sin l x dl =
2
e cos x
0
exercIse 2.4
1. Find the Fourier integral representations of the following functions:
(i) f (x) = x |x| < 1 (ii) f (x) = -e ax x<0
- ax
=0 |x| > 1 =e x>0
È • sin w - w cos w ˘
Í Ans. : (i) Ú-• ipw 2
eiw x dw ˙
Í ˙
Í 2 • w
dw ˙˙
ÍÎ (ii)
p Ú0
sin w x 2
a +w 2
˚
2.130 Chapter 2 Fourier Series and Fourier Integral
Points to remember
Fourier Series in the Interval (0, 2p)
∞ ∞
f ( x) = a0 + ∑ an cos nx + ∑ bn sin nx
n =1 n =1
1 2p
2p Ú0
a0 = f ( x ) dx
1 2p
an = Ú f ( x ) cos nx dx
p 0
1 2p
bn = Ú f ( x )sin nx dx
p 0
1 c + 2l np x
an =
l Úc
f ( x ) cos
l
dx
1 c + 2l np x
bn = Ú f ( x )sin dx
l c l
where 2l is the length of the interval.
Fourier Series of Even Function in the Interval (–p, p)
•
f ( x ) = a0 + Â an cos nx
n =1
1 p
a0 =
p Ú0 f ( x ) dx
2 p
an =
p Ú0 f ( x ) cos nx dx
bn = 0
l Ú0
a0 = f ( x ) dx
2 l np x
an = Ú f ( x ) cos dx
l 0 l
2 •
A(w ) =
p Ú0 f (t ) cos w t dt
B(w ) = 0
6. If f(x) is an even function in (–p , p), then the graph of f(x) is symmetrical about
the ______.
(a) x-axis (b) y-axis (c) origin (d) none of these
7. If f(x) is an odd function in (–l, l), then the graph of f(x) is symmetrical about the
______
(a) x-axis (b) y-axis (c) origin (d) none of these
8. If f(x) is an even function in the interval (–l, l), then the value of bn is
p
(a) (b) p (c) 1 (d) 0
2
9. If f(x) is an odd function in (–l, l) , then the values of a0 and a1 are
p
(a) 0, 0 (b) p, p (c) ,p (d) 1, 1
2
10. If f(x) = x in (–p, p), then the Fourier coefficient a2 is
(a) p (b) 0 (c) 1 (d) –1
11. If f(x) = cos x in (–p, p), then the Fourier coefficient bn is
(a) 0 (b) p (c) 1 (d) none of these
12. In the Fourier series expansion of f(x) = x sin x in (–p, p), the ____ terms are
absent.
(a) sine (b) cosine (c) constant (d) none of these
13. If f(x) = x cos x in (–p, p), then b1 is
(a) 0 (b) p (c) 1 (d) none of these
14. Which of the following is neither an even function nor an odd function?
(a) x sin x (b) x2 (c) e–x (d) x cos x
15. Fundamental period of sin 2x is
p p
(a) (b) (c) 2p (d) p
4 2
16. Fundamental period of tan 3x is
p p p
(a) (b) (c) p (d)
2 3 4
17. If f(x + nT) = f(x) where n is any integer, then the fundamental period of f(x) is
T
(a) 2T (b) (c) T (d) 3T
2
18. For half-range sine series of f(x) = cos x, 0 £ x £ p and period 2p, Fourier series
•
is represented by  bn sin nx, then Fourier coefficient b1 is
n =1
1 2 2
(a) (b) 0 (c) (d) –
p p p
Multiple Choice Questions 2.135
•
(b) a0 + Â (an cos np x + bn sin np x)
n =1
•
(c) a0 + Â (an cos nx)(bn sin nx)
n =1
• •
np x
(c) a0 + Â an cos nx (d) Â bn sin l
n =1 n =1
26. For an odd function f(x) defined in the interval -p £ x £ p and f(x + 2p) = f(x),
the Fourier series is
• •
np x
(a) Â bn sin nx (b) a0 + Â an cos l
n =1 n =1
• •
np x
(c) a0 + Â an cos nx (d) Â bn sin l
n =1 n =1
2.136 Chapter 2 Fourier Series and Fourier Integral
27. Half-range Fourier cosine series for f(x) defined in the interval (0, p) is
• •
nx
(a) a0 + Â an cos nx (b) an + Â an cos l
n =1 n =1
• •
(c) Â an cos nx (d) an + Â (an cos nx + bn sin nx)
n =1 n =1
28. Half-range Fourier sine series for f(x) defined in the interval (0, p) is
• •
np x
(a) Â bn sin nx (b) Â bn sin l
n =1 n =1
• •
np x
(b) a0 + Â an cos l
(d) a0 + Â (an cos nx + bn sin nx)
n =1 n =1
Answers
1. (b) 2. (a) 3. (a) 4. (b) 5. (a) 6. (b) 7. (c) 8. (d)
9. (a) 10. (b) 11. (a) 12. (a) 13. (a) 14. (c) 15. (d) 16. (b)
17. (c) 18. (b) 19. (a) 20. (a) 21. (a) 22. (b) 23. (a) 24. (d)
25. (c) 26. (a) 27. (a) 28. (a) 29. (d) 30. (c) 31. (c) 32. (a)