50 MATLAB Loop 7. Sum of digits of 456.
Questions n = 456;
sum = 0;
while n > 0
1. Print numbers 1 to 10 using a for loop. sum = sum + mod(n,10);
n = floor(n/10);
for i = 1:10
end
disp(i)
disp(sum)
end
8. Squares of numbers 1 to 10.
2. Print numbers from 10 to 1 using a while loop.
for i = 1:10
i = 10;
fprintf('%d^2 = %d\n', i, i^2);
while i >= 1
end
disp(i)
i = i - 1;
end
9. Count odd numbers from 1 to 100.
3. Print even numbers from 2 to 20. count = 0;
for i = 1:2:100
for i = 2:2:20 count = count + 1;
disp(i) end
end disp(count)
4. Sum of first 100 natural numbers.
10. Reverse a vector.
sum = 0;
for i = 1:100 v = [5 4 3 2 1];
sum = sum + i; rev = [];
end for i = length(v):-1:1
disp(sum) rev(end+1) = v(i);
end
disp(rev)
5. Factorial of 5.
n = 5;
fact = 1; 11. Largest element in array.
for i = 1:n
fact = fact * i; arr = [3, 8, 1, 5];
end maxVal = arr(1);
disp(fact) for i = 2:length(arr)
if arr(i) > maxVal
maxVal = arr(i);
end
6. Multiplication table of 7. end
disp(maxVal)
for i = 1:10
fprintf('7 x %d = %d\n', i, 7*i);
end
12. Print characters of string.
str = 'MATLAB'; n = 10;
for i = 1:length(str) fib = zeros(1,n);
disp(str(i)) fib(1) = 0;
end fib(2) = 1;
for i = 3:n
fib(i) = fib(i-1) + fib(i-2);
end
13. Average of array. disp(fib)
arr = [2, 4, 6, 8];
sum = 0;
for i = 1:length(arr) 18. Count vowels in a string.
sum = sum + arr(i);
end str = 'MATLAB Programming';
avg = sum / length(arr); vowels = 'aeiouAEIOU';
disp(avg) count = 0;
for i = 1:length(str)
if contains(vowels, str(i))
count = count + 1;
14. While loop stops when sum exceeds 100. end
end
i = 1;
disp(count)
sum = 0;
while sum <= 100
sum = sum + i;
i = i + 1; 19. Rotate a matrix clockwise by 90 degrees.
end
disp(sum) A = [1 2; 3 4];
rotated = A';
rotated = rotated(:, end:-1:1);
disp(rotated)
15. Count positive numbers in array.
arr = [-1, 2, 5, -3, 4];
count = 0; 20. Find GCD of two numbers using loop.
for i = 1:length(arr)
if arr(i) > 0 a = 48; b = 18;
count = count + 1; while b ~= 0
end temp = b;
end b = mod(a, b);
disp(count) a = temp;
end
disp(a)
16. Print a 5x5 multiplication table using nested
loops.
21. Reverse a number using while loop.
for i = 1:5
for j = 1:5 n = 1234;
fprintf('%d\t', i*j); rev = 0;
end while n > 0
fprintf('\n'); rev = rev * 10 + mod(n, 10);
end n = floor(n / 10);
end
disp(rev)
17. Generate a Fibonacci series up to 10 terms.
n = 5;
for i = 0:n-1
22. Find all prime numbers between 1 and 50. for j = 0:i
fprintf('%d ', nchoosek(i,j));
for n = 2:50 end
isPrime = true; fprintf('\n');
for i = 2:sqrt(n) end
if mod(n, i) == 0
isPrime = false;
break;
end 26. Check if a number is a palindrome.
end
if isPrime n = 121;
disp(n) temp = n;
end rev = 0;
end while n > 0
rev = rev * 10 + mod(n, 10);
n = floor(n / 10);
end
23. Sum of all primes below 100. disp(rev == temp)
sum = 0;
for n = 2:99
isPrime = true; 27. Simulate dice roll 100 times and plot frequency.
for i = 2:sqrt(n)
if mod(n, i) == 0 rolls = randi([1 6], 1, 100);
isPrime = false; histogram(rolls, 6);
break; xlabel('Dice Face'); ylabel('Frequency');
end
end
if isPrime
sum = sum + n;
28. Count a specific number in a matrix.
end A = [1 2 3; 4 5 2; 2 6 7];
end count = sum(A(:) == 2);
disp(sum) disp(count)
24. Bubble sort using a loop. 29. Sum of diagonal elements of matrix.
arr = [5 2 9 1 5 6]; A = [1 2 3; 4 5 6; 7 8 9];
n = length(arr); sum_diag = 0;
for i = 1:n-1 for i = 1:min(size(A))
for j = 1:n-i sum_diag = sum_diag + A(i,i);
if arr(j) > arr(j+1) end
temp = arr(j); disp(sum_diag)
arr(j) = arr(j+1);
arr(j+1) = temp;
end
end 30. Print right-angled triangle of stars.
end
disp(arr) n = 5;
for i = 1:n
disp(repmat('*', 1, i))
end
25. Pascal’s triangle up to 5 rows.
31. Transpose a matrix using loop. 36. Matrix multiplication manually.
A = [1 2 3; 4 5 6]; A = [1 2; 3 4]; B = [5 6; 7 8];
[m,n] = size(A); C = zeros(2);
T = zeros(n,m); for i = 1:2
for i = 1:m for j = 1:2
for j = 1:n for k = 1:2
T(j,i) = A(i,j); C(i,j) = C(i,j) + A(i,k) *
end B(k,j);
end end
disp(T) end
end
disp(C)
32. Compound interest for 10 years.
P = 1000; r = 0.05; n = 10; 37. Create pattern:
for t = 1:n
1
A = P * (1 + r)^t;
12
fprintf('Year %d: %.2f\n', t, A);
123
End 1234
for i = 1:4
for j = 1:i
33. Evaluate e^x using series. fprintf('%d ', j);
end
x = 1; n = 10; fprintf('\n');
sum = 1; end
term = 1;
for i = 1:n
term = term * x / i;
sum = sum + term; 38. Insertion sort using for loop.
end
disp(sum) arr = [5 3 4 1 2];
for i = 2:length(arr)
key = arr(i);
j = i - 1;
34. Display Armstrong numbers from 100 to 999. while j >= 1 && arr(j) > key
arr(j+1) = arr(j);
for n = 100:999 j = j - 1;
d = num2str(n) - '0'; end
if sum(d.^3) == n arr(j+1) = key;
disp(n) end
end disp(arr)
end
39. Evaluate sin(x) using Taylor series.
35. Find LCM of two numbers.
x = pi/4; n = 5;
a = 15; b = 20; sum = 0;
gcd_ab = gcd(a,b); for i = 0:n
lcm_ab = (a*b)/gcd_ab; sum = sum + ((-1)^i * x^(2*i+1)) /
disp(lcm_ab) factorial(2*i+1);
end
disp(sum)
44. Remove all spaces from string.
40. Count duplicate values in array. str = 'Hello World MATLAB';
str(str == ' ') = [];
arr = [1 2 2 3 3 3]; disp(str)
u = unique(arr);
duplicates = 0;
for i = 1:length(u)
if sum(arr==u(i)) > 1 45. Draw 8x8 checkerboard pattern.
duplicates = duplicates + 1;
end A = zeros(8);
end for i = 1:8
disp(duplicates) for j = 1:8
A(i,j) = mod(i+j,2);
end
end
41. Monte Carlo simulation: estimate Pi. disp(A)
N = 10000; count = 0;
for i = 1:N
x = rand; y = rand; 46. Count frequency of words in string.
if x^2 + y^2 <= 1
count = count + 1; str = 'matlab is fun and matlab is
end powerful';
end words = split(str);
pi_estimate = 4 * count / N; uniqueWords = unique(words);
disp(pi_estimate) for i = 1:length(uniqueWords)
count = sum(strcmp(words,
uniqueWords{i}));
fprintf('%s: %d\n', uniqueWords{i},
42. Find all Pythagorean triplets < 100. count);
end
for a = 1:100
for b = a:100
c = sqrt(a^2 + b^2);
if mod(c,1)==0 && c<=100 47. 100 coin tosses and percentage of heads.
fprintf('%d %d %d\n', a, b,
c); tosses = randi([0 1], 1, 100);
end heads = sum(tosses);
end tails = 100 - heads;
end fprintf('Heads: %.2f%%\n', heads);
fprintf('Tails: %.2f%%\n', tails);
43. Gauss-Seidel method (1 iteration).
48. Quadratic equation for multiple inputs.
A = [4 -1 0; -1 4 -1; 0 -1 3];
b = [15; 10; 10]; a = [1 2]; b = [-3 -4]; c = [2 4];
x = zeros(3,1); for i = 1:length(a)
for i = 1:3 d = b(i)^2 - 4*a(i)*c(i);
x(i) = (b(i) - A(i,:)*x + A(i,i)*x(i)) root1 = (-b(i) + sqrt(d)) / (2*a(i));
/ A(i,i); root2 = (-b(i) - sqrt(d)) / (2*a(i));
end fprintf('Roots: %.2f, %.2f\n', root1,
disp(x) root2);
end
49. Approximate pi using Leibniz series.
n = 10000;
pi_approx = 0;
for k = 0:n
pi_approx = pi_approx +
((-1)^k)/(2*k+1);
end
pi_approx = 4 * pi_approx;
disp(pi_approx)
50. Euler’s method to solve dy/dx = x + y.
h = 0.1; x = 0:h:1; y = zeros(size(x));
y(1) = 1;
for i = 1:length(x)-1
y(i+1) = y(i) + h*(x(i) + y(i));
end
disp(y)