0% found this document useful (0 votes)
21 views3 pages

Itf 07

The document is a mathematics worksheet for Class XII focusing on inverse trigonometric functions. It includes various evaluation problems, proofs, and equations related to trigonometric identities and functions. Additionally, it covers finding domains and minimum values of trigonometric expressions.

Uploaded by

kanhaboy60
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
21 views3 pages

Itf 07

The document is a mathematics worksheet for Class XII focusing on inverse trigonometric functions. It includes various evaluation problems, proofs, and equations related to trigonometric identities and functions. Additionally, it covers finding domains and minimum values of trigonometric expressions.

Uploaded by

kanhaboy60
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

ARCHIES HIGHER SECONDARY SCHOOL

INVERSE TRIGONOMETRIC FUNCTION


SUBJECT: MATHEMATICS CLASS: XII

1. Evaluate the following :

(i) 𝑠𝑖𝑛 (𝑠𝑖𝑛10) Ans: 𝟑𝝅 − 𝟏𝟎

(ii) 𝑡𝑎𝑛 (tan (−4)) Ans: 𝝅 − 𝟒

(iii) 𝑐𝑜𝑠 (𝑐𝑜𝑠12) − 𝑠𝑖𝑛 (𝑠𝑖𝑛12) Ans: 𝟖𝝅 − 𝟐𝟒

(iv) 𝑠𝑖𝑛 (𝑠𝑖𝑛2) Ans: 𝝅 − 𝟐

(v) 𝑠𝑖𝑛 (𝑠𝑖𝑛5) Ans: 𝟓 − 𝟐𝝅

(vi) 𝑡𝑎𝑛 (𝑡𝑎𝑛4) Ans: 𝟒 − 𝝅

(vii) 𝑐𝑜𝑠 (𝑐𝑜𝑠10) Ans: 𝟒𝝅 − 𝟏𝟎.

(viii) 𝑡𝑎𝑛 𝑡𝑎𝑛(−6) Ans: 𝟐𝝅 − 𝟔

2. Prove that: 𝑐𝑜𝑠 = 2𝑡𝑎𝑛 𝑡𝑎𝑛 . 𝑡𝑎𝑛


.

3. Prove that: 𝑡𝑎𝑛 + 𝑐𝑜𝑠 + 𝑡𝑎𝑛 − 𝑐𝑜𝑠 = .

4.If 𝑦 = 𝑐𝑜𝑡 √𝑐𝑜𝑠𝑥 − 𝑡𝑎𝑛 √𝑐𝑜𝑠𝑥 , prove that 𝑠𝑖𝑛𝑦 = 𝑡𝑎𝑛 .

5. Prove that 𝑐𝑜𝑠 𝑡𝑎𝑛 𝑠𝑖𝑛(𝑐𝑜𝑡 𝑥) =

6. If 𝑠𝑖𝑛 𝑥 + 𝑡𝑎𝑛 𝑥= , prove that 2𝑥 + 1 = √5.

7. Prove that : 𝑠𝑒𝑐 (𝑡𝑎𝑛 2) + 𝑐𝑜𝑠𝑒𝑐 (𝑐𝑜𝑡 3) = 15.

8. If 𝑡𝑎𝑛 𝑥 + 𝑡𝑎𝑛 𝑦 + 𝑡𝑎𝑛 𝑧 = 𝜋 , then prove that 𝑥 + 𝑦 + 𝑧 = 𝑥𝑦𝑧.

9. Solve the following equations for 𝑥:

(i) 𝑠𝑖𝑛 (1 − 𝑥 ) − 2𝑠𝑖𝑛 𝑥 = Ans: 𝒙 = 𝟎


𝟏
(ii) 𝑠𝑖𝑛 (6𝑥) + 𝑠𝑖𝑛 6√3𝑥 = − Ans: 𝒙 = − 𝟏𝟐

𝟏
(iii) 𝑡𝑎𝑛 2𝑥 + 𝑡𝑎𝑛 3𝑥 = Ans: 𝒙 =
𝟔

𝟏
(iv) 𝑡𝑎𝑛 (𝑥 + 1) + 𝑡𝑎𝑛 (𝑥 − 1) = 𝑡𝑎𝑛 Ans: 𝒙 =
𝟒

𝟏 𝟏
(v) 𝑡𝑎𝑛 (𝑥 − 1) + 𝑡𝑎𝑛 𝑥 + 𝑡𝑎𝑛 (𝑥 + 1) = 𝑡𝑎𝑛 3𝑥 Ans: 𝒙 = 𝟎, 𝟐 , − 𝟐

10. If (𝑡𝑎𝑛 𝑥) + (𝑐𝑜𝑡 𝑥) = , then find 𝑥. Ans: 𝒙 = −𝟏.

𝝅𝟐
11. Find the minimum value of (𝑡𝑎𝑛 𝑥) + (𝑐𝑜𝑡 𝑥 ) . Ans:
𝟖

12. If 𝑐𝑜𝑠 𝑥 + 𝑐𝑜𝑠 𝑦 + 𝑐𝑜𝑠 𝑧 = 𝜋 , prove that: 𝑥 + 𝑦 + 𝑧 + 2𝑥𝑦𝑧 = 1.

13. If 𝑐𝑜𝑠 + 𝑐𝑜𝑠 = 𝛼 , prove that 9𝑥 − 12𝑥𝑦𝑐𝑜𝑠𝛼 + 4𝑦 = 36𝑠𝑖𝑛 𝛼.

14. If 𝑠𝑖𝑛 𝑥 + 𝑠𝑖𝑛 𝑦 + 𝑠𝑖𝑛 𝑧 = , then find the value of 𝑥 + 𝑦 + 𝑧 + 2𝑥𝑦𝑧 Ans: 1

15. If 𝑐𝑜𝑠 𝑥 + 𝑐𝑜𝑠 𝑦 + 𝑐𝑜𝑠 𝑧 = 3𝜋 , then find the values of


(i) 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 Ans: 3

(ii) (𝑥 + 𝑦)(𝑦 + 𝑧)(𝑧 + 𝑥)Ans: −𝟖

(iii) 𝑥 +𝑦 +𝑧 − Ans: 6.

16. If 𝑠𝑖𝑛 𝑥 + 𝑠𝑖𝑛 𝑦 + 𝑠𝑖𝑛 𝑧 = , then find the values of

(i) 𝑥 + 𝑦 + 𝑧 Ans: 3

(ii) 𝑥 +𝑦 +𝑧 − 3𝑥𝑦𝑧 Ans:0

17. Find the domain of the function

(i) 𝑐𝑜𝑠 √1 − 𝑥 Ans:[0,1]

(ii) 𝑠𝑖𝑛 √𝑥 − 1 Ans:[1,2]

(iii) 𝑐𝑜𝑠 (−𝑥 ) Ans:[−𝟏, 𝟏]

(iv) 𝑠𝑖𝑛 (𝑥 − 4) Ans: −√𝟓, −√𝟑 ∪ √𝟑, √𝟓


𝟏 𝟏
(v) 𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠 (2𝑥) Ans: − ,
𝟐 𝟐

(vi) 𝑠𝑖𝑛 (−𝑥 ) Ans:[−𝟏, 𝟏]

(vii) 𝑠𝑖𝑛 𝑥 + 𝑐𝑜𝑠𝑥 Ans: [−𝟏, 𝟏]

(viii) 𝑠𝑖𝑛 √𝑥 − 1 Ans: −√𝟐, −𝟏 ∪ 𝟏, √𝟐

(ix) 𝑐𝑜𝑠 (|𝑥 − 1|) Ans: [0,2]

𝟏 𝟏
(x) 2𝑐𝑜𝑠 2𝑥 + 𝑠𝑖𝑛 𝑥 Ans: − 𝟐 , 𝟐

𝟐
(xi) 𝑠𝑒𝑐 (3𝑥 − 1) Ans: ]−∞, 𝟎] ∪ ,∞
𝟑

𝝅
18. (i) Draw the graph of 𝑐𝑜𝑠 𝑥, 𝑥 ∈ [−1,0]. Also , write its range. Ans: ,𝝅
𝟐

𝝅 𝝅
(ii) Draw the graph of 𝑠𝑖𝑛 𝑥, 𝑥 ∈ − , . Also , write its range. Ans: − ,
√ √ 𝟒 𝟒

19. Write in simplest form :

𝝅 𝟏
(i) 𝑐𝑜𝑡 √1 + 𝑥 − 𝑥 Ans: 𝟒 + 𝟐 𝒕𝒂𝒏 𝟏𝒙

𝟏 𝟑
(ii) 𝑐𝑜𝑠 𝑐𝑜𝑠𝑥 + 𝑠𝑖𝑛𝑥 Ans: 𝒄𝒐𝒔 − 𝒙.
𝟓

20. If 𝑡𝑎𝑛 + 𝑡𝑎𝑛 +……..+𝑡𝑎𝑛 = 𝑡𝑎𝑛 𝑥 , then find the value of 𝑥.


. . ( )
𝒏
Ans 𝒙 = .
𝒏 𝟐

21. If 𝛼 ≤ 𝑡𝑎𝑛 𝑥 + 𝑐𝑜𝑡 𝑥 + 𝑠𝑖𝑛 𝑥 ≤ 𝛽 then prove that : 𝛼 = 0, 𝛽 = 𝜋.

22. Which is greater , 𝑡𝑎𝑛1 or 𝑡𝑎𝑛 1 ? Ans: 𝒕𝒂𝒏𝟏 > 𝒕𝒂𝒏 𝟏 𝟏

23. Find the minimum value of n for which 𝑡𝑎𝑛 > , 𝑛 ∈ 𝑁. Ans: 𝒏 = 𝟒

24. If 𝑐𝑜𝑠 𝑥 > 𝑠𝑖𝑛 𝑥, then


(a) < 𝑥 ≤ 1 (b) 0 ≤ 𝑥 <
√ √
(c) −1 ≤ 𝑥 < (d) 𝑥 > 0

Ans: C

You might also like