ARCHIES HIGHER SECONDARY SCHOOL
INVERSE TRIGONOMETRIC FUNCTION
SUBJECT: MATHEMATICS                                                         CLASS: XII
1. Evaluate the following :
(i) 𝑠𝑖𝑛 (𝑠𝑖𝑛10) Ans: 𝟑𝝅 − 𝟏𝟎
(ii) 𝑡𝑎𝑛 (tan (−4)) Ans: 𝝅 − 𝟒
(iii) 𝑐𝑜𝑠    (𝑐𝑜𝑠12) − 𝑠𝑖𝑛 (𝑠𝑖𝑛12) Ans: 𝟖𝝅 − 𝟐𝟒
(iv) 𝑠𝑖𝑛 (𝑠𝑖𝑛2) Ans: 𝝅 − 𝟐
(v) 𝑠𝑖𝑛 (𝑠𝑖𝑛5) Ans: 𝟓 − 𝟐𝝅
(vi) 𝑡𝑎𝑛 (𝑡𝑎𝑛4) Ans: 𝟒 − 𝝅
(vii) 𝑐𝑜𝑠    (𝑐𝑜𝑠10) Ans: 𝟒𝝅 − 𝟏𝟎.
(viii) 𝑡𝑎𝑛     𝑡𝑎𝑛(−6) Ans: 𝟐𝝅 − 𝟔
2. Prove that: 𝑐𝑜𝑠                  = 2𝑡𝑎𝑛       𝑡𝑎𝑛 . 𝑡𝑎𝑛
                              .
3. Prove that: 𝑡𝑎𝑛   + 𝑐𝑜𝑠            + 𝑡𝑎𝑛      − 𝑐𝑜𝑠         =    .
4.If 𝑦 = 𝑐𝑜𝑡     √𝑐𝑜𝑠𝑥 − 𝑡𝑎𝑛        √𝑐𝑜𝑠𝑥 , prove that 𝑠𝑖𝑛𝑦 = 𝑡𝑎𝑛       .
5. Prove that 𝑐𝑜𝑠 𝑡𝑎𝑛     𝑠𝑖𝑛(𝑐𝑜𝑡     𝑥)     =
6. If 𝑠𝑖𝑛 𝑥 + 𝑡𝑎𝑛    𝑥=       , prove that 2𝑥 + 1 = √5.
7. Prove that : 𝑠𝑒𝑐 (𝑡𝑎𝑛 2) + 𝑐𝑜𝑠𝑒𝑐 (𝑐𝑜𝑡         3) = 15.
8. If 𝑡𝑎𝑛 𝑥 + 𝑡𝑎𝑛     𝑦 + 𝑡𝑎𝑛     𝑧 = 𝜋 , then prove that 𝑥 + 𝑦 + 𝑧 = 𝑥𝑦𝑧.
9. Solve the following equations for 𝑥:
  (i) 𝑠𝑖𝑛 (1 − 𝑥 ) − 2𝑠𝑖𝑛 𝑥 =        Ans: 𝒙 = 𝟎
                                                            𝟏
  (ii) 𝑠𝑖𝑛 (6𝑥) + 𝑠𝑖𝑛        6√3𝑥 = − Ans: 𝒙 = − 𝟏𝟐
                                              𝟏
  (iii) 𝑡𝑎𝑛 2𝑥 + 𝑡𝑎𝑛 3𝑥 =          Ans: 𝒙 =
                                              𝟔
                                                                   𝟏
  (iv) 𝑡𝑎𝑛 (𝑥 + 1) + 𝑡𝑎𝑛 (𝑥 − 1) = 𝑡𝑎𝑛                Ans: 𝒙 =
                                                                   𝟒
                                                                              𝟏   𝟏
  (v) 𝑡𝑎𝑛 (𝑥 − 1) + 𝑡𝑎𝑛       𝑥 + 𝑡𝑎𝑛 (𝑥 + 1) = 𝑡𝑎𝑛 3𝑥 Ans: 𝒙 = 𝟎, 𝟐 , − 𝟐
10. If (𝑡𝑎𝑛 𝑥) + (𝑐𝑜𝑡        𝑥) =       , then find 𝑥. Ans: 𝒙 = −𝟏.
                                                                         𝝅𝟐
11. Find the minimum value of (𝑡𝑎𝑛 𝑥) + (𝑐𝑜𝑡                𝑥 ) . Ans:
                                                                         𝟖
12. If 𝑐𝑜𝑠    𝑥 + 𝑐𝑜𝑠    𝑦 + 𝑐𝑜𝑠    𝑧 = 𝜋 , prove that: 𝑥 + 𝑦 + 𝑧 + 2𝑥𝑦𝑧 = 1.
13. If 𝑐𝑜𝑠         + 𝑐𝑜𝑠         = 𝛼 , prove that 9𝑥 − 12𝑥𝑦𝑐𝑜𝑠𝛼 + 4𝑦 = 36𝑠𝑖𝑛 𝛼.
14. If 𝑠𝑖𝑛 𝑥 + 𝑠𝑖𝑛 𝑦 + 𝑠𝑖𝑛 𝑧 =           , then find the value of 𝑥 + 𝑦 + 𝑧 + 2𝑥𝑦𝑧 Ans: 1
15. If 𝑐𝑜𝑠 𝑥 + 𝑐𝑜𝑠 𝑦 + 𝑐𝑜𝑠          𝑧 = 3𝜋 , then find the values of
    (i) 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 Ans: 3
   (ii) (𝑥 + 𝑦)(𝑦 + 𝑧)(𝑧 + 𝑥)Ans: −𝟖
   (iii) 𝑥     +𝑦       +𝑧    −                   Ans: 6.
16. If 𝑠𝑖𝑛 𝑥 + 𝑠𝑖𝑛 𝑦 + 𝑠𝑖𝑛 𝑧 =            , then find the values of
   (i) 𝑥 + 𝑦 + 𝑧 Ans: 3
   (ii) 𝑥     +𝑦     +𝑧      − 3𝑥𝑦𝑧 Ans:0
17. Find the domain of the function
  (i) 𝑐𝑜𝑠     √1 − 𝑥 Ans:[0,1]
  (ii) 𝑠𝑖𝑛 √𝑥 − 1 Ans:[1,2]
  (iii) 𝑐𝑜𝑠    (−𝑥 ) Ans:[−𝟏, 𝟏]
  (iv) 𝑠𝑖𝑛 (𝑥 − 4) Ans: −√𝟓, −√𝟑 ∪ √𝟑, √𝟓
                                              𝟏 𝟏
  (v) 𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠               (2𝑥) Ans: − ,
                                              𝟐 𝟐
  (vi) 𝑠𝑖𝑛 (−𝑥 ) Ans:[−𝟏, 𝟏]
  (vii) 𝑠𝑖𝑛 𝑥 + 𝑐𝑜𝑠𝑥 Ans: [−𝟏, 𝟏]
  (viii) 𝑠𝑖𝑛 √𝑥 − 1 Ans: −√𝟐, −𝟏 ∪ 𝟏, √𝟐
  (ix) 𝑐𝑜𝑠    (|𝑥 − 1|) Ans: [0,2]
                                              𝟏 𝟏
  (x) 2𝑐𝑜𝑠    2𝑥 + 𝑠𝑖𝑛 𝑥 Ans: − 𝟐 , 𝟐
                                                    𝟐
  (xi) 𝑠𝑒𝑐    (3𝑥 − 1) Ans: ]−∞, 𝟎] ∪                   ,∞
                                                    𝟑
                                                                                               𝝅
18. (i) Draw the graph of 𝑐𝑜𝑠           𝑥, 𝑥 ∈ [−1,0]. Also , write its range. Ans:                ,𝝅
                                                                                               𝟐
                                                                                                        𝝅 𝝅
   (ii) Draw the graph of 𝑠𝑖𝑛 𝑥, 𝑥 ∈ −                      ,       . Also , write its range. Ans: − ,
                                                        √       √                                       𝟒 𝟒
19. Write in simplest form :
                                          𝝅     𝟏
   (i) 𝑐𝑜𝑡    √1 + 𝑥 − 𝑥 Ans: 𝟒 + 𝟐 𝒕𝒂𝒏 𝟏𝒙
                                                            𝟏 𝟑
   (ii) 𝑐𝑜𝑠        𝑐𝑜𝑠𝑥 + 𝑠𝑖𝑛𝑥 Ans: 𝒄𝒐𝒔                             − 𝒙.
                                                              𝟓
20. If 𝑡𝑎𝑛                  + 𝑡𝑎𝑛              +……..+𝑡𝑎𝑛                               = 𝑡𝑎𝑛 𝑥 , then find the value of 𝑥.
                        .                 .                                    (   )
               𝒏
   Ans 𝒙 =          .
              𝒏 𝟐
21. If 𝛼 ≤ 𝑡𝑎𝑛 𝑥 + 𝑐𝑜𝑡              𝑥 + 𝑠𝑖𝑛 𝑥 ≤ 𝛽 then prove that : 𝛼 = 0, 𝛽 = 𝜋.
22. Which is greater , 𝑡𝑎𝑛1 or 𝑡𝑎𝑛 1 ? Ans: 𝒕𝒂𝒏𝟏 > 𝒕𝒂𝒏 𝟏 𝟏
23. Find the minimum value of n for which 𝑡𝑎𝑛                          >    , 𝑛 ∈ 𝑁. Ans: 𝒏 = 𝟒
24. If 𝑐𝑜𝑠 𝑥 > 𝑠𝑖𝑛 𝑥, then
      (a) < 𝑥 ≤ 1                                                           (b) 0 ≤ 𝑥 <
         √                                                                                √
     (c) −1 ≤ 𝑥 <                                                           (d) 𝑥 > 0
                            √
Ans: C