0% found this document useful (0 votes)
19 views13 pages

Work 1 Sol

This document provides solutions for finding Maclaurin and Taylor series for various functions, including hyperbolic, logarithmic, and trigonometric functions. It also includes power series representations for specific functions. The solutions involve calculating derivatives and applying series expansion techniques.

Uploaded by

aliaashamek77
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
19 views13 pages

Work 1 Sol

This document provides solutions for finding Maclaurin and Taylor series for various functions, including hyperbolic, logarithmic, and trigonometric functions. It also includes power series representations for specific functions. The solutions involve calculating derivatives and applying series expansion techniques.

Uploaded by

aliaashamek77
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 13

Mathematics Department

Dr. Mohammad Yasin

Worksheet (1) Solution


Maclaurin and Taylor Series

1. Apply the definition in order to find Maclaurin/Taylor series of each of the following functions:

1
a. 𝑓(𝑥) = cosh 𝑥 c. 𝑓(𝑥) = , 𝑎=1 e. 𝑓(𝑥) = 5 cos 𝜋𝑥
𝑥2

𝑥
b. 𝑓(𝑥) = d. 𝑓(𝑥) = ln 𝑥, 𝑎=2 f. 𝑓(𝑥) = ln √𝑥 + 1
𝑥+1

Solution:

𝐚. 𝒇(𝒙) = 𝐜𝐨𝐬𝐡 𝒙

Maclaurin series of the function 𝑓(𝑥) is given by

′ (0) ′′ (0)
𝑥2 ′′′ (0)
𝑥3 (𝑛)
𝑥𝑛
𝑓(𝑥) = 𝑓(0) + 𝑓 𝑥+𝑓 +𝑓 + ⋯ + 𝑓 (0) +⋯
2! 3! 𝑛!

𝑓(𝑥) = cosh 𝑥 𝑓(0) = 1

𝑓 ′ (𝑥) = sinh 𝑥 𝑓 ′ (0) = 0

𝑓 ′′ (𝑥) = cosh 𝑥 𝑓 ′′ (0) = 1

𝑓 ′′′ (𝑥) = sinh 𝑥 𝑓 ′′′ (0) = 0

𝑥2 𝑥4
∴ cosh 𝑥 = 1 + + + ⋯ ⋯
2! 4!

Page 1 of 13
𝒙
𝐛. 𝒇(𝒙) =
𝒙+𝟏
𝑥 1
𝑓(𝑥) = = 𝑥( )
𝑥+1 𝑥+1

Starting with the function 𝒈(𝒙) = 𝟏⁄(𝒙 + 𝟏) to get the derivatives easily

𝑔(𝑥) = 1⁄(𝑥 + 1) 𝑔(0) = 1

𝑔′(𝑥) = −1⁄(𝑥 + 1)2 𝑔′ (0) = −1

𝑔′′(𝑥) = 2⁄(𝑥 + 1)3 𝑔′′ (0) = 2

𝑔′′′(𝑥) = −6⁄(𝑥 + 1)4 𝑔′′′ (0) = −6

1
∴ = 1 − 𝑥 + 𝑥2 − 𝑥3 + ⋯
1+𝑥
Multiply by 𝒙 you’ll get:
𝑥
∴ = 𝑥 − 𝑥2 + 𝑥3 − 𝑥4 + ⋯ ⋯
𝑥+1
Another Approach:
1
Recall that = 1 − 𝑥 + 𝑥2 − 𝑥3 + ⋯ ⋯
1+𝑥

Multiply the series for 𝟏⁄(𝟏 + 𝒙) by 𝒙.

𝑥
∴ = 𝑥 − 𝑥2 + 𝑥3 − 𝑥4 + ⋯ ⋯
𝑥+1

𝟏
𝐜. 𝒇(𝒙) = , 𝒂=𝟏
𝒙𝟐

Taylor series of the function 𝑓(𝑥) at 𝑥 = 𝑎 is given by

′ (𝑎) ′′ (𝑎)
(𝑥 − 𝑎)2 (𝑛)
(𝑥 − 𝑎)𝑛
𝑓(𝑥) = 𝑓(𝑎) + 𝑓 (𝑥 − 𝑎) + 𝑓 + ⋯ + 𝑓 (𝑎) +⋯
2! 𝑛!

Page 2 of 13
𝑓(𝑥) = 1⁄𝑥 2 𝑓(1) = 1

𝑓 ′ (𝑥) = −2⁄𝑥 3 𝑓 ′ (1) = −2

𝑓 ′′ (𝑥) = 6⁄𝑥 4 𝑓 ′′ (1) = 6

𝑓 ′′′ (𝑥) = −24⁄𝑥 5 𝑓 ′′′ (1) = −24

1 6 2
24
∴ 2
= 1 − 2(𝑥 − 1) + (𝑥 − 1) − (𝑥 − 1)3 + ⋯ ⋯
𝑥 2! 3!

𝐝. 𝒇(𝒙) = 𝐥𝐧 𝒙, 𝒂 = 𝟐

𝑓(𝑥) = ln 𝑥 𝑓(2) = ln 2

1 1
𝑓 ′ (𝑥) = 𝑓 ′ (2) =
𝑥 2
−1 −1
𝑓 ′′ (𝑥) = 𝑓 ′′ (2) =
𝑥2 4
2 1
𝑓 ′′′ (𝑥) = 𝑓 ′′′ (2) =
𝑥3 4
−1 1
1 (4) (4)
2 (𝑥 − 2)3 + ⋯ ⋯
∴ ln 𝑥 = ln 2 + ( ) (𝑥 − 2) + (𝑥 − 2) +
2 2! 3!

𝐞. 𝒇(𝒙) = 𝟓 𝐜𝐨𝐬 𝝅𝒙

𝑓(𝑥) = 5 cos(𝜋𝑥) 𝑓(0) = 5

𝑓 ′ (𝑥) = −5𝜋 sin(𝜋𝑥) 𝑓 ′ (0) = 0

𝑓 ′′ (𝑥) = −5𝜋 2 cos(𝜋𝑥) 𝑓 ′′ (0) = −5𝜋 2

𝑓 ′′′ (𝑥) = 5𝜋 3 sin(𝜋𝑥) 𝑓 ′′′ (0) = 0

(−5𝜋 2 ) 2
∴ 5 cos(𝜋𝑥) = 5 + 𝑥 + ⋯⋯
2!

Page 3 of 13
Another Approach:
It's easier to replace every (𝒙) by (𝝅𝒙) in the expansion of 𝐜𝐨𝐬 𝒙.

1 2 1 4
Recall that cos 𝑥 = 1 − 𝑥 + 𝑥 − ⋯⋯
2! 4!

1 1
cos(𝜋𝑥) = 1 − (𝜋𝑥)2 + (𝜋𝑥)4 − ⋯ ⋯
2! 4!

Multiply the series for 𝐜𝐨𝐬(𝝅𝒙) by 𝟓.


1 1
∴ 5 cos(𝜋𝑥) = 5 [1 − (𝜋𝑥)2 + (𝜋𝑥)4 − ⋯ ⋯ ]
2! 4!

𝟏
𝐟. 𝒇(𝒙) = 𝐥𝐧 √𝒙 + 𝟏 = 𝐥𝐧(𝒙 + 𝟏)
𝟐

1
𝑓(𝑥) = ln(𝑥 + 1) 𝑓(0) = 0
2
1 1
𝑓 ′ (𝑥) = 𝑓 ′ (0) =
2(𝑥 + 1) 2
−1 −1
𝑓 ′′ (𝑥) = 𝑓 ′′ (0) =
2(𝑥 + 1)2 2
1
𝑓 ′′′ (𝑥) = 𝑓 ′′′ (0) = 1
(𝑥 + 1)3

1
1 (− 2) 1
∴ ln √𝑥 + 1 = ( ) 𝑥 + 𝑥2 + 𝑥3 + ⋯ ⋯
2 2! 3!

Another Approach:
1
Recall that = 1 − 𝑥 + 𝑥2 − 𝑥3 + ⋯ ⋯
1+𝑥
Integrate the series for 𝟏⁄(𝟏 + 𝒙) with respect to 𝒙.

𝑥2 𝑥3 𝑥4
ln(𝑥 + 1) = 𝑥 − + − + ⋯ ⋯ + 𝑐
2 3 4

Page 4 of 13
Put 𝑥 = 0 in both sides, we get

ln 1 = 𝑐 ⟹ 𝑐=0

Multiply the series for 𝐥𝐧(𝒙 + 𝟏) by 𝟏⁄𝟐.

1 1 𝑥2 𝑥3 𝑥4
∴ ln(𝑥 + 1) = [𝑥 − + − + ⋯ ⋯ ]
2 2 2 3 4

2. Find a power series representation for each of the following functions:

5 𝑥2
a. 𝑓(𝑥) = c. 𝑓(𝑥) =
1 − 4𝑥 2 8 − 𝑥3

1+𝑥 1
b. 𝑓(𝑥) = d. 𝑓(𝑥) =
1−𝑥 (1 + 𝑥)2

Solution:

𝟓
𝐚. 𝒇(𝒙) =
𝟏 − 𝟒𝒙𝟐

1
Recall that = 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ ⋯
1−𝑥

Replace every (𝒙) by (𝟒𝒙𝟐 ) in the expansion of 𝟏⁄(𝟏 − 𝒙)

1
= 1 + (4𝑥 2 ) + (4𝑥 2 )2 + (4𝑥 2 )3 + ⋯ = 1 + 4𝑥 2 + 16𝑥 4 + 64𝑥 6 + ⋯
1 − 4𝑥 2

Multiply the series for 𝟏⁄(𝟏 − 𝟒𝒙𝟐 ) by 𝟓.

5
∴ = 5 + 20𝑥 2 + 80𝑥 4 + 320𝑥 6 + ⋯
1 − 4𝑥 2

Page 5 of 13
𝟏+𝒙
𝐛. 𝒇(𝒙) =
𝟏−𝒙
1+𝑥 1 1
𝑓(𝑥) = = +𝑥( )
1−𝑥 1−𝑥 1−𝑥

1
Recall that = 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ ⋯
1−𝑥

Multiply the series for 𝟏⁄(𝟏 − 𝒙) by 𝒙.


1
𝑥( ) = 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 …
1−𝑥

1+𝑥 1 1
= +𝑥( ) = (1 + 𝑥 + 𝑥 2 + 𝑥 3 … ) + (𝑥 + 𝑥 2 + 𝑥 3 + 𝑥 4 … )
1−𝑥 1−𝑥 1−𝑥

1+𝑥
∴ = 1 + 2𝑥 + 2𝑥 2 + 2𝑥 3 + ⋯
1−𝑥

𝒙𝟐
𝐜. 𝒇(𝒙) =
𝟖 − 𝒙𝟑

𝑥2 𝑥2 𝑥2 1
𝑓(𝑥) = = 3 = ( ) [ 𝑥3
]
8 − 𝑥 3 8 [1 − (𝑥 )] 8 1−( )
8 8

1
Recall that = 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ ⋯
1−𝑥

𝒙𝟑
Replace every (𝒙) by ( ) in the expansion of 𝟏⁄(𝟏 − 𝒙)
𝟖

2 3
1 𝑥3 𝑥3 𝑥3 𝑥3 𝑥6 𝑥9
𝑥3
= 1 + ( ) + [( )] + [( )] + ⋯ = 1 + + + +⋯
1−( ) 8 8 8 8 64 512
8

𝑥2 𝑥2 1 𝑥2 𝑥5 𝑥8 𝑥 11
∴ =( ) [ 𝑥3
]= + + + +⋯
8 − 𝑥3 8 1−( ) 8 64 512 4096
8

Page 6 of 13
𝟏
𝐝. 𝒇(𝒙) =
(𝟏 + 𝒙)𝟐
1
Recall that = 1 − 𝑥 + 𝑥2 − 𝑥3 + ⋯ ⋯
1+𝑥

Differentiate the series for 𝟏⁄(𝟏 + 𝒙) with respect to 𝒙.

−1
= −1 + 2𝑥 − 3𝑥 2 + ⋯
(1 + 𝑥)2

Multiply the series for −𝟏⁄(𝟏 + 𝒙𝟐 )𝟐 by −𝟏.

1 −1
∴ = − [ ] = 1 − 2𝑥 + 3𝑥 2 − ⋯
(1 + 𝑥)2 (1 + 𝑥)2

Another Approach: You can use the binomial theorem for (𝟏 + 𝒙)−𝟐 .

3. Find Maclaurin series of each of the following functions:

𝑥
sin 𝑥 d. 𝑓(𝑥) =
a. 𝑓(𝑥) = 𝑒
(1 + 4𝑥 2 )2

2
b. 𝑓(𝑥) = 𝑒 −𝑥 + cos 𝑥 e. 𝑓(𝑥) = 𝑥 2 tan−1 (𝑥 3 )

c. 𝑓(𝑥) = 𝑥 2 + sinh(𝑥 4 )

Solution:

𝐚. 𝒇(𝒙) = 𝒆𝐬𝐢𝐧 𝒙

𝑓(𝑥) = 𝑒 sin 𝑥 𝑓(0) = 1

𝑓 ′ (𝑥) = 𝑒 sin 𝑥 cos 𝑥 𝑓 ′ (0) = 1

𝑓 ′′ (𝑥) = 𝑒 sin 𝑥 (− sin 𝑥) + 𝑒 sin 𝑥 cos 2 𝑥 𝑓 ′′ (0) = 1

sin 𝑥
𝑥2
∴𝑒 =1+𝑥+ +⋯
2!

Page 7 of 13
𝟐
𝐛. 𝒇(𝒙) = 𝒆−𝒙 + 𝐜𝐨𝐬 𝒙

1 2 1 3
Recall that 𝑒𝑥 = 1 + 𝑥 + 𝑥 + 𝑥 +⋯⋯
2! 3!

Replace every (𝒙) by (−𝒙𝟐 ) in the expansion of 𝒆𝒙

2 1 1 1 1
𝑒 −𝑥 = 1 + (−𝑥 2 ) + (−𝑥 2 )2 + (−𝑥 2 )3 + ⋯ = 1 − 𝑥 2 + 𝑥 4 − 𝑥 6 + ⋯
2! 3! 2! 3!

1 2 1 4 1 6
Recall that cos 𝑥 = 1 − 𝑥 + 𝑥 − 𝑥 +⋯
2! 4! 6!

2 1 1 1 1 1 6
∴ 𝑒 −𝑥 + cos 𝑥 = (1 − 𝑥 2 + 𝑥 4 − 𝑥 6 + ⋯ ) + (1 − 𝑥 2 + 𝑥 4 − 𝑥 + ⋯)
2 6 2 24 720

3 13 121 6
= 2 − 𝑥2 + 𝑥4 − 𝑥 +⋯
2 24 720

𝐜. 𝒇(𝒙) = 𝒙𝟐 + 𝐬𝐢𝐧𝐡(𝒙𝟒 )

1 3 1 5
Recall that sinh 𝑥 = 𝑥 + 𝑥 + 𝑥 +⋯
3! 5!

Replace every (𝒙) by (𝒙𝟒 ) in the expansion of 𝐬𝐢𝐧𝐡 𝒙

1 4 3 1 4 5
sinh(𝑥 4 ) = (𝑥 4 ) + (𝑥 ) + (𝑥 ) + ⋯
3! 5!

2 4) 2
𝑥 12 𝑥 20
4
∴ 𝑥 + sinh(𝑥 =𝑥 +𝑥 + + +⋯
3! 5!

𝒙
𝐝. 𝒇(𝒙) =
(𝟏 + 𝟒𝒙𝟐 )𝟐
1
Recall that = 1 − 𝑥 + 𝑥2 − 𝑥3 + ⋯ ⋯
1+𝑥

Page 8 of 13
Replace every (𝒙) by (𝟒𝒙𝟐 ) in the expansion of 𝟏⁄(𝟏 + 𝒙)
1
= 1 − (4𝑥 2 ) + (4𝑥 2 )2 − (4𝑥 2 )3 + ⋯ = 1 − 4𝑥 2 + 16𝑥 4 − 64𝑥 6 + ⋯
1 + 4𝑥 2

Differentiate the series for 𝟏⁄(𝟏 + 𝟒𝒙𝟐 ) with respect to 𝒙.

−8𝑥
2 2
= −8𝑥 + 64𝑥 3 − 384 𝑥 5 + ⋯
(1 + 4𝑥 )

Divide by −𝟖.
𝑥
∴ = 𝑥 − 8𝑥 3 + 48 𝑥 5 − ⋯
(1 + 4𝑥 2 )2

𝐞. 𝒇(𝒙) = 𝒙𝟐 𝐭𝐚𝐧−𝟏 (𝒙𝟑 )


1
Recall that = 1 − 𝑥 + 𝑥2 − 𝑥3 + ⋯ ⋯
1+𝑥
Replace every (𝒙) by (𝒙𝟐 ) in the expansion of 𝟏⁄(𝟏 + 𝒙)
1
2
= 1 − (𝑥 2 ) + (𝑥 2 )2 − (𝑥 2 )3 + (𝑥 2 )4 + ⋯ = 1 − 𝑥 2 + 𝑥 4 − 𝑥 6 + ⋯
1+𝑥

Integrate the series for 𝟏⁄(𝟏 + 𝒙𝟐 ) with respect to 𝒙.

−1
𝑥3 𝑥5 𝑥7
tan 𝑥 = 𝑥 − + − + ⋯+ 𝑐
3 5 7
Put 𝑥 = 0 in both sides, we get

tan−1 0 = 𝑐 ⟹ 𝑐=0

Replace every (𝒙) by (𝒙𝟑 ) in the expansion of 𝐭𝐚𝐧−𝟏 𝒙

−1 (𝑥 3 ) 3
(𝑥 3 )3 (𝑥 3 )5 (𝑥 3 )7 3
𝑥 9 𝑥 15 𝑥 21
tan =𝑥 − + − +⋯=𝑥 − + − +⋯
3 5 7 3 5 7

Multiply the series for 𝐭𝐚𝐧−𝟏 (𝒙𝟑 ) by 𝒙𝟐 .

2 −1 (𝑥 3 ) 5
𝑥 11 𝑥 17 𝑥 23
∴ 𝑥 tan =𝑥 − + − +⋯
3 5 7

Page 9 of 13
4. Evaluate each of the indefinite integrals as an infinite series:

cos 𝑥 − 1
a. ∫ 𝑥 cos(𝑥 3 ) 𝑑𝑥 c. ∫ 𝑑𝑥
𝑥

𝑒𝑥 − 1
b. ∫ 𝑑𝑥 d. ∫ tan−1 (𝑥 2 ) 𝑑𝑥
𝑥

Solution:

𝐚. ∫ 𝒙 𝐜𝐨𝐬(𝒙𝟑 ) 𝒅𝒙

1 2 1 4 1 6
Recall that cos 𝑥 = 1 − 𝑥 + 𝑥 − 𝑥 +⋯
2! 4! 6!

Replace every (𝒙) by (𝒙𝟑 ) in the expansion of 𝐜𝐨𝐬 𝒙

1 3 2 1 3 4 1 3 6 1 1 1
cos(𝑥 3 ) = 1 − (𝑥 ) + (𝑥 ) − (𝑥 ) + ⋯ = 1 − 𝑥 6 + 𝑥 12 − 𝑥 18 + ⋯
2! 4! 6! 2! 4! 6!

Multiply the series for 𝐜𝐨𝐬(𝒙𝟑 ) by 𝒙 .


1 7 1 13 1 19
𝑥 cos(𝑥 3 ) = 𝑥 − 𝑥 + 𝑥 − 𝑥 +⋯
2! 4! 6!
Integrate the both sides with respect to 𝒙.

3)
𝑥 2 𝑥 8 𝑥 14
∴ ∫ 𝑥 cos(𝑥 𝑑𝑥 = − + −⋯+𝑘
2 16 336

𝒆𝒙 − 𝟏
𝐛. ∫ 𝒅𝒙
𝒙
1 2 1 3
Recall that 𝑒𝑥 = 1 + 𝑥 + 𝑥 + 𝑥 +⋯⋯
2! 3!
Subtract 1 from the both sides.
1 2 1 3
𝑒𝑥 − 1 = 𝑥 + 𝑥 + 𝑥 + ⋯⋯
2! 3!

Page 10 of 13
Divide the series for 𝒆𝒙 − 𝟏 by 𝒙.

𝑒𝑥 − 1 1 1
= 1 + 𝑥 + 𝑥2 + ⋯ ⋯
𝑥 2! 3!
Integrate the both sides with respect to 𝒙.

𝑒𝑥 − 1 1 1
∴ ∫ 𝑑𝑥 = 𝑥 + 𝑥 2 + 𝑥 3 + ⋯ + 𝑐
𝑥 4 18

𝐜𝐨𝐬 𝒙 − 𝟏
𝐜. ∫ 𝒅𝒙
𝒙
1 2 1 4 1 6
Recall that cos 𝑥 = 1 − 𝑥 + 𝑥 − 𝑥 +⋯
2! 4! 6!
Subtract 1 from the both sides.
1 2 1 4 1 6
cos 𝑥 − 1 = − 𝑥 + 𝑥 − 𝑥 +⋯
2! 4! 6!
Divide the series for 𝐜𝐨𝐬 𝒙 − 𝟏 by 𝒙.

cos 𝑥 − 1 1 1 1
= − 𝑥 + 𝑥3 − 𝑥5 + ⋯
𝑥 2! 4! 6!
Integrate the both sides with respect to 𝒙.

cos 𝑥 − 1 −1 2 1 4 1
∴∫ 𝑑𝑥 = 𝑥 + 𝑥 − 𝑥6 + ⋯ + 𝑐
𝑥 4 96 4320

𝐝. ∫ 𝐭𝐚𝐧−𝟏 (𝒙𝟐 ) 𝒅𝒙

From the steps presented in problem 3 part (e), we got

−1
𝑥3 𝑥5 𝑥7
tan 𝑥 =𝑥− + − +⋯
3 5 7

Replace every (𝒙) by (𝒙𝟐 ) in the expansion of 𝐭𝐚𝐧−𝟏 𝒙

−1 (𝑥 2 ) 2
(𝑥 2 )3 (𝑥 2 )5 (𝑥 2 )7 2
𝑥 6 𝑥 10 𝑥 14
tan =𝑥 − + − +⋯=𝑥 − + − +⋯
3 5 7 3 5 7

Page 11 of 13
Integrate the both sides with respect to 𝒙.

1 1 1 1 15
∴ ∫ tan−1 (𝑥 2 ) 𝑑𝑥 = 𝑥 3 − 𝑥 7 + 𝑥 11 − 𝑥 + ⋯+ 𝑘
3 21 55 105

5. Find the second order Taylor series of each of the following functions:

a. 𝑓(𝑥) = √1 + 𝑥, 𝑎=2

b. 𝑓(𝑥) = 𝑥 cos 𝑥 , 𝑎=𝜋

c. 𝑓(𝑥) = tan−1 𝑥 , 𝑎=1

Solution:

𝐚. 𝒇(𝒙) = √𝟏 + 𝒙, 𝒂=𝟐

𝑓(𝑥) = √1 + 𝑥 = (1 + 𝑥)1/2 𝑓(2) = √3

1 1
𝑓 ′ (𝑥) = (1 + 𝑥)−1/2 𝑓 ′ (2) =
2 2 √3

−1 −1
𝑓 ′′ (𝑥) = (1 + 𝑥)−3/2 𝑓 ′′ (2) =
4 12 √3

−1
1 (12 )
√3
∴ √1 + 𝑥 = √3 + (𝑥 − 2) + (𝑥 − 2)2 + ⋯
2 √3 2!

𝐛. 𝒇(𝒙) = 𝒙 𝐜𝐨𝐬 𝒙 , 𝒂=𝝅

𝑓(𝑥) = 𝑥 cos 𝑥 𝑓(𝜋) = −𝜋

𝑓 ′ (𝑥) = cos 𝑥 − 𝑥 sin 𝑥 𝑓 ′ (𝜋) = −1

𝑓 ′′ (𝑥) = −2 sin 𝑥 − 𝑥 cos 𝑥 𝑓 ′′ (𝜋) = 𝜋

𝜋
∴ 𝑥 cos 𝑥 = −𝜋 − (𝑥 − 𝜋) + (𝑥 − 𝜋)2 + ⋯
2!
Page 12 of 13
𝐜. 𝒇(𝒙) = 𝐭𝐚𝐧−𝟏 𝒙 , 𝒂=𝟏

𝑓(𝑥) = tan−1 𝑥 𝑓(1) = 𝜋⁄4

1 1
𝑓 ′ (𝑥) = 𝑓 ′ (1) =
1 + 𝑥2 2

−2𝑥 −1
𝑓 ′′ (𝑥) = 𝑓 ′′ (1) =
(1 + 𝑥 2 )2 2

−1
𝜋 1 ( )
∴ tan−1 𝑥 = + (𝑥 − 1) + 2 (𝑥 − 1)2 + ⋯
4 2 2!

6. We know that a function 𝑦 = 𝑓(𝑥) has its tangent line approximation given by

𝑓(𝑥) ≅ 𝑓(𝑎) + 𝑓 ′ (𝑎) (𝑥 − 𝑎)

which is the first order Taylor series around 𝒂 = 𝟏. So,

𝑓(𝑥) ≅ 𝑓(1) + 𝑓 ′ (1) (𝑥 − 1)

∴ 𝑓(1.2) ≅ 3 − 2(1.2 − 1) = 3 − 2(0.2) = 2.6

Page 13 of 13

You might also like