0% found this document useful (0 votes)
6 views3 pages

01-File

Uploaded by

ylizarragal
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
6 views3 pages

01-File

Uploaded by

ylizarragal
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

1 % Demo: Graphics Method GM

2 % Test : 8 - 4.5*(x - sin(x)) = 0


3 clc
4 disp('Demo: Graphics Method')
5 disp('======================')
6 x = -1:0.1:4;
7 fun = 8 - 4.5*(x - sin(x));
8 data = [x' fun']
9 % plotear:
10 plot(x,fun,'LineWidth',2)
11 hold on
12 xlabel('Eje(x)','FontSize', 18)
13 ylabel('Fun(x)', 'FontSize', 18)
14 title('Demo: Graphics Method', 'FontSize', 16)
15 grid on
16 xsol = 2.43
17 plot(xsol, 0,'r*', 'LineWidth', 10)
18
19
1 %Demo : Solucion Ecuacion de Segundo Grado
2 % ax^2 + bx + c =0
3 % Input: a, b,c
4 % Output: x1, x2
5 clc
6 disp('Demo : Equation Solution Second Degree')
7 disp('=======================================')
8 a=input('valor de a = ');
9 b=input('valor de b = ');
10 c=input('valor de c = ');
11 % main:
12 d=b^2-4*a*c; % discriminate
13 if d>0
14 disp('')
15 disp('raices reales y diferentes')
16 x1=(-b+sqrt(d))/(2*a);
17 x2=(-b-sqrt(d))/(2*a);
18
19 elseif d==0
20 disp('')
21 disp('raices reales e iguales')
22 x1=-b/(2*a);
23 x2=-b/(2*a);
24
25 else
26 disp('')
27 disp('raices complejas y conjugadas')
28 x1=(-b+i*sqrt(-d))/(2*a);
29 x2=(-b-i*sqrt(-d))/(2*a);
30
31 end
32 disp('')
33 disp('valores de la ecuación de segundo grado:')
34 x1 , x2
1 %Demo: Bisection Method
2 % File : bisection.m
3 % Author: Numerical Methods
4 % teste : 8-4.5*(x - sin(x))=0
5 % Initial interal : a=2, b=3
6 % Code M-File
7 clc
8 disp('Demo : Bisection Method')
9 disp('=======================')
10 % Input
11 a=2,b=3 %[a,b] intervalo de busqueda inicial
12 imax = 20 % numero maximo de teraciones permitidas
13 tol = 10^(-3) % error maximo permitido
14 fun = @(x) 8-4.5*(x - sin(x))
15 % main
16 fa = fun(a);
17 fb = fun(b);
18 if fa*fb >0
19 disp('No hay solucion en el intervalo [a,b]')
20 else
21 disp('i a b xs f(xs) tol ')
22 disp('=================================================================')
23 for i = 1:imax
24 xs = (a+b)/2;
25 toli= (b-a)/2;
26 fxs = fun(xs);
27 fprintf('%3i %11.6f %11.6f %11.6f %11.6f %11.6f\n',i,a,b,xs,fxs,toli)
28 if fxs == 0
29 fprintf('solucion exacta x = %11.6f encontrada',xs)
30 break
31 endif
32
33 if toli < tol
34 break
35 endif
36
37 if i == imax
38 fprintf('Solucion no fue obtenida en % i iteraciones', imax)
39 break
40 endif
41
42 if fun(a)*fxs < 0
43 b = xs;
44 else
45 a = xs;
46 endif
47 end
48
49 endif
50 fprintf('\n\n')
51 fprintf('solucion xs = %11.6f\n', xs)
52

You might also like