0% found this document useful (0 votes)
6 views3 pages

Integration 10

Uploaded by

Vedant Kapoor
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
6 views3 pages

Integration 10

Uploaded by

Vedant Kapoor
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

TOPIC – 16: DEFINITE INTEGRALS

PROVE THAT:
 /2  /2 
 sin 5 / 3 x  
 (  (1 + cos sin x) dx = sin 
cos x x
dx = dx =
1.
0
(sin x + cos x ) 4
18.
0
sin x + cos x
5/3 5/3
4 ) 35.
0
 /2  /2  /2
 (sin x − cos x) 
 ( sin x +  (1 + sin x cos x) dx = 0  log (sin 2x)dx = − 2 (log 2)
sin x
2.
0
cos x ) dx =
4
19.
0
36.
0
 /2 1 
3
 2
( 
20. x(1 − x )5 dx =

37. x log (sin x )dx = − (log 2)
sin x 1
dx =
3.
0
sin x + cos3 x
3
4 ) 0
42
0
2
 /2 4  /2
4
 
 (sin 
21. x(4 − x )3 / 2 dx =
 (2 log cos x − log sin 2x)dx = − 2 (log 2)
cos x 512
dx =
4.
0
4
x + cos4 x 4 ) 0
35
38.
0
 /4  
n

 (sin  
39. log (1 + cos x )dx = − (log 2)
sin x
dx = 22. sin 2 x cos3 xdx = 0
5.
0
n
x + cos x
n
4 ) 0 0
 /2   /2
3/ 2
  2

 (sin   log (tan x + cot x)dx =  (log 2)


sin x
dx = 23. x cos2 xdx =
6.
0
3/ 2
x + cos x
3/ 2
4 ) 0
4
40.
0
 /2  
1/ 4
     1
 (sin  (1 + x)(1 + x ) dx = 4 1+ x  log  x + dx =  (log 2)
cos x x 1
dx =
7.
0
1/ 4
x + cos1 / 4 x 4 ) 24.
0
2
41. 
0
2
  x
 /2 a  /2
  
 ( tan x +  x+  x cot xdx = 2 (log 2)
tan x dx
8.
0
cot x ) dx = 4 25.
0 a −x
2 2
=
4
42.
0
 /2 a 1
   sin −1 x 
dx =  (log 2)
 ( tan x + ( 
cot x x
43. 
9.
0
cot x ) dx =
4
26.
0
x + a−x ) dx =
4
0
 x  2
 /2 1 1
 1  
 (1 + tan x) = 4   (log 2)
dx log x
10. 3
27. log  − 1dx = 0 44. dx = −
0 0
x  0 1− x 2 2
 /2  /2
log (1 + x )
( )
1
 cos2 x 
   (1 + x ) dx = 8 (log 2)
dx 1
11. = 28. dx = log 2 + 1 45.
0
(1 + tan x ) 4 0
(sin x + cos x ) 2 0
2

 /2  
  2

  
dx x tan x
12. = 29. dx = 46. x12 sin 9 xdx = 0
0
(1 + cot x ) 4 0
sec x cos ecx 4
−
 /2  a
 2
  x
x tan x
13. sin 2 xdx = 30. dx = 47. 3
a 2 − x 2 dx = 0
4 sec x + cos x 4
0 0 −a
 /2  /2  

 (sin )
 
 cos xdx =  sin  1 + sin x dx =   2 − 1
x sin x
14. n n
xdx 31. 48. 75
x + x125 dx = 0
0 0 0 −
 /2  1
 2
 (1 +  
49. e x dx = 2(e − 1)
tan x x
15.
0
tan x ) dx =
4
32.
0
1 + sin x
2
dx =
2 2 −1
 /2  2 x + 1, when1  x  2 
  
50. let f (x ) = 
 (1 + 
cot x
sin 2m x cos 2m +1 xdx = 0
16.
0
cot x ) dx =
4
33.
0
 x + 1, when 2  x  3

2 

3
 /2  /2
 f (x)dx =
 34
 (1 +
dx
 (sin x − cos x)log (sin x + cos x)dx = 0
show that .
17.
0
tan x ) =
4
34.
0
1
3

1|Page
π/2 π/2
π
51.  log ( sinx ) dx=  log ( cosx ) dx=- 2 ( log2 )
0 0
π/2

( )
2
sin x 1
52. 0 ( sinx+cosx )
dx=
2
log 2+1

3π/10
sinx π
53.  ( sinx+cosx ) dx= 20
π
5
5
54.  x + 2 dx=29
-5

1
13
55.  5 x − 3 dx=
0
10

π
55.  cosx dx=2
0
4
56.  ( x − 1 + x − 2 + x − 3 ) dx =
19
2
1

4
57.  ( x − 1 + x − 2 + x − 3 ) dx =
19
2
1

 f ( x ) dx,where f(x) is defined by


0

 π
 sinx,if0£x£
2  π 4
58. Evaluate:  5- 2 +e 
 π
f ( x ) = 1,if £x£5
 2
e x-5 ,if5£x£9


π
x π2
59.  2
dx=
0
cos x 2 2

2|Page
1 
1
60. 0  x − 1 dx=0
log

******************************************************************************************

3|Page

You might also like