TOPIC – 16: DEFINITE INTEGRALS
PROVE THAT:
/2 /2
sin 5 / 3 x
( (1 + cos sin x) dx = sin
cos x x
dx = dx =
1.
0
(sin x + cos x ) 4
18.
0
sin x + cos x
5/3 5/3
4 ) 35.
0
/2 /2 /2
(sin x − cos x)
( sin x + (1 + sin x cos x) dx = 0 log (sin 2x)dx = − 2 (log 2)
sin x
2.
0
cos x ) dx =
4
19.
0
36.
0
/2 1
3
2
(
20. x(1 − x )5 dx =
37. x log (sin x )dx = − (log 2)
sin x 1
dx =
3.
0
sin x + cos3 x
3
4 ) 0
42
0
2
/2 4 /2
4
(sin
21. x(4 − x )3 / 2 dx =
(2 log cos x − log sin 2x)dx = − 2 (log 2)
cos x 512
dx =
4.
0
4
x + cos4 x 4 ) 0
35
38.
0
/4
n
(sin
39. log (1 + cos x )dx = − (log 2)
sin x
dx = 22. sin 2 x cos3 xdx = 0
5.
0
n
x + cos x
n
4 ) 0 0
/2 /2
3/ 2
2
(sin log (tan x + cot x)dx = (log 2)
sin x
dx = 23. x cos2 xdx =
6.
0
3/ 2
x + cos x
3/ 2
4 ) 0
4
40.
0
/2
1/ 4
1
(sin (1 + x)(1 + x ) dx = 4 1+ x log x + dx = (log 2)
cos x x 1
dx =
7.
0
1/ 4
x + cos1 / 4 x 4 ) 24.
0
2
41.
0
2
x
/2 a /2
( tan x + x+ x cot xdx = 2 (log 2)
tan x dx
8.
0
cot x ) dx = 4 25.
0 a −x
2 2
=
4
42.
0
/2 a 1
sin −1 x
dx = (log 2)
( tan x + (
cot x x
43.
9.
0
cot x ) dx =
4
26.
0
x + a−x ) dx =
4
0
x 2
/2 1 1
1
(1 + tan x) = 4 (log 2)
dx log x
10. 3
27. log − 1dx = 0 44. dx = −
0 0
x 0 1− x 2 2
/2 /2
log (1 + x )
( )
1
cos2 x
(1 + x ) dx = 8 (log 2)
dx 1
11. = 28. dx = log 2 + 1 45.
0
(1 + tan x ) 4 0
(sin x + cos x ) 2 0
2
/2
2
dx x tan x
12. = 29. dx = 46. x12 sin 9 xdx = 0
0
(1 + cot x ) 4 0
sec x cos ecx 4
−
/2 a
2
x
x tan x
13. sin 2 xdx = 30. dx = 47. 3
a 2 − x 2 dx = 0
4 sec x + cos x 4
0 0 −a
/2 /2
(sin )
cos xdx = sin 1 + sin x dx = 2 − 1
x sin x
14. n n
xdx 31. 48. 75
x + x125 dx = 0
0 0 0 −
/2 1
2
(1 +
49. e x dx = 2(e − 1)
tan x x
15.
0
tan x ) dx =
4
32.
0
1 + sin x
2
dx =
2 2 −1
/2 2 x + 1, when1 x 2
50. let f (x ) =
(1 +
cot x
sin 2m x cos 2m +1 xdx = 0
16.
0
cot x ) dx =
4
33.
0
x + 1, when 2 x 3
2
3
/2 /2
f (x)dx =
34
(1 +
dx
(sin x − cos x)log (sin x + cos x)dx = 0
show that .
17.
0
tan x ) =
4
34.
0
1
3
1|Page
π/2 π/2
π
51. log ( sinx ) dx= log ( cosx ) dx=- 2 ( log2 )
0 0
π/2
( )
2
sin x 1
52. 0 ( sinx+cosx )
dx=
2
log 2+1
3π/10
sinx π
53. ( sinx+cosx ) dx= 20
π
5
5
54. x + 2 dx=29
-5
1
13
55. 5 x − 3 dx=
0
10
π
55. cosx dx=2
0
4
56. ( x − 1 + x − 2 + x − 3 ) dx =
19
2
1
4
57. ( x − 1 + x − 2 + x − 3 ) dx =
19
2
1
f ( x ) dx,where f(x) is defined by
0
π
sinx,if0£x£
2 π 4
58. Evaluate: 5- 2 +e
π
f ( x ) = 1,if £x£5
2
e x-5 ,if5£x£9
π
x π2
59. 2
dx=
0
cos x 2 2
2|Page
1
1
60. 0 x − 1 dx=0
log
******************************************************************************************
3|Page