0% found this document useful (0 votes)
5 views4 pages

Integration 9

Uploaded by

Vedant Kapoor
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
5 views4 pages

Integration 9

Uploaded by

Vedant Kapoor
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

TOPIC – 16: DEFINITE INTEGRALS

EVALUATE THE FOLLOWING INTEGRALS:


−1
dx dx dx dx
      
3 2 16 3 4 1 8
1. (i) x 4dx (ii) (iii) x −5dx (iv) x 4dx (v) (vi) (vii)
−4 x
2
1 1 0 1 x 0
3
x 1
x 3

  
dx
    
3 7
6 4 2
2. (i) 5x + 6 dx (ii) 3. (i) sec2 xdx (ii) cos ec2 xdx (iii) cot2 xdx
−1 0 3x + 4 0 −
4

4
   

   
4 3 4 2
(iv) tan2 xdx 4. (i) tan xdx (ii) cos ecxdx 5. (i) sin2 xdx (ii)
0 0  0
6


4
cos2 xdx
0
   

   
2 6 3
6. (i) sin x. sin 2x.dx (ii) cos x. cos 2x.dx (iii) sin 2x. cos 3x.dx (iv) cos3 x.dx
0 0 0 0

dx 
dx  4 dx  2 dx  /4
7. (i)     
1
(ii) 8. (i) (ii) 9. (i) 1 − sin 2x .dx
0 1 − x2 0 (1 + x 2 ) 0 (1 + cos 2x )  4 (1 − cos 2 x ) 0

 /2  /2  /2  /2
(ii) 0
1 − cos 2x .dx 10. (i) 
0
sin3 x.dx (ii)  0
cos4 x.dx 11. 
0
(a cos2 x + b sin2 x ).dx
 /4  /4  /2  /2
dx
12.  (tan x + cot x )2 dx 13.  14.  1 + sin x .dx 15.  1 + cos x .dx
 /3 − / 4 (1 + sin x ) 0 0

dx dx dx dx dx
  (1 + x + 2x )   
4 1 2 12 4
16. 17. 18. 19. 20.
3 (x − 4)
2
0
2
0 (4 + x − x 2 ) 14 x−x 2 0 x + 2x + 3
2

a
dx dx dx dx
    
2 2 1 2
21. 22. 23. 24. x.(1 − x )dx 25.
1 x + 4x + 3
2 1 (x − 1).( 2 − x ) 0 (ax + a 2 − x 2 ) 0 1 x.(1 + x )
(x + 3) dx dx  2

    
2 3 2 1
26. dx 27. 28. 29. x.exdx 30. x 2. cos x.dx
1 x.( x + 2) 1 x .( x + 1)
2
1 x.(1 + 2x )2 0 0
 4  2 log x  2

  33.  log x.dx  (1 + x)  x. sin x. sin 2x.dx


2 3
31. x 2 sin x.dx 32. x 2 cos 2x.dx 34. 2
dx 35.
0 0 1 1 0

e2  1 1  e
 1 + x log x   2  2
36. 0
 − 2
 log x (log x ) 
dx 37. 1
ex 
 x
dx

38. 0
x 2 cos2 x.dx 39. 
0
x 3 sin 3x.dx

 6 5x 2 (x − 3) xe x  sin x
   (x  (1 + x ) dx 44. 
2 1 1
40. (2 + 3x 2 ) cos 3x.dx 41. dx 42. dx 43. dx
0 1 (x + 4 x + 3)
2
0
2
+ 2 x + 4) 0
2
0 (sin x + cos x )

dx π
0 (1+x+x 2 ) 3 3
1
45. =

dx 3 1
 ( ) ( log5)
2
= log2 -
x (1+x 2 ) 2
46.
1 2

π
8
47.  0
2
cosθsin 3θdθ=
21
π
dx π
48.  0
2
=
( 4sin 2 x+5cos2 x ) 4 5
1|Page
xtan -1x 2 ( 4-π )

1
49. 3
dx=
(1+x ) 8
0
2 2

1
sin -1x π 1
50.  2
3
dx= - log2
(1-x ) 4 2
0
2 2


51. 0
2

 x x
cosx
3
dx= 2 ( )
2 −1
 cos + sin 
 2 2

cosx π 1 
52. 02 (1+cosx+sinx ) dx=  4 - 2 log2 

a-x

a
53. dx=aπ
-a a+x

1-x 2 π 1
0 1+x 2  4 - 2 
1
54. x dx=

π
cosx  3π log3 
55.  ( 3cosx+sinx ) dx=  20 -
0
2
10 

π
56.  (
0
2
)
tanx + cotx dx= 2π

x π 

a
57. sin -1 dx=a  -1
0 a+x 2 

π

1
58. sin -1 xdx=
0 4
ππ 
0 ( )
1 2
-1
59. x tan x dx=  -1
4 4 
π
cosecxcotxdx -1 1
60. 6 1+cosec2 x
π
2
=tan
3

2|Page
ANSWERS
242 15 512 3
1. (i) (ii) − log 4 (iii) (iv) (v) 2 (vi)
5 64 7 2
(vii) 3
42
2. (i) (ii) 2
5
1    
3. (i) (ii) – 2 (iii) 1 −  (iv) 1 − 
3  4  4
4. (i) log 2 (ii) log ( )(
2 −1 2 + 3 )
  1
5. (i) (ii)  + 
4  8 4
2 5 4 3 3
6. (i) (ii) (iii) − (iv)
3 12 5 8
 
7. (i) (ii)
2 2
1 1
8. (i) (ii)
2 2
9. (i) 2 −1( ) (ii) 2
2 3
10. (i) (ii)
3 16

11. ( a + b)
4
2
12. −
3
13. 2
14. 2
15. 2
1 5
16. log
4 3
2  −1 5 1 
17.  tan − tan −1 
7 7 7
1 21 + 5 17
18. log
17 4

19.
6
(
20. log 2 + 3 )
21. log 4 + 15 + log 3 − 8
22. 
1 7+3 5
23. log
5a 2
3|Page

24.
8
25. ( log 4 − log 3)
1
26. log 6
2
2 2
27. + log
3 3
 2
28.  log 6 − log 5 − 
 15 
29. 1
2 
30.  − 2
 4 
  2 
31.  2 + − − 2
 2 2 16 2 

32. −
4
33. ( 2 log 2 ) − 1
3
34. log 3 − log 2
4
 1
35.  − 
 4 2
 e2 
36.  − e 
2 
37. ee
2  
38.  − 
 48 8 
 2 2 
39.  − 
 27 12 
  2 + 16 
40.  
 36 
5 5 3
41. 5 −  9 log − log 
2 4 2
1 4  2 
42. ( log 7 − log 4 ) +  − tan −1 
2 36 3
e 
43.  − 1
2 

44.
2
******************************************************************************************

4|Page

You might also like