0% found this document useful (0 votes)
7 views3 pages

Waves Final Study Pack

Waves a primary discussion done
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
7 views3 pages

Waves Final Study Pack

Waves a primary discussion done
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

PHYSICS 2 – FINAL TERM STUDY PACK

(Based on Lecture 4, 5, and 6 slides)

Lecture 4 & 5 – Mechanical Waves (Waves on a String) [Slide 20]

Key Theory

1) Wave Types: - Mechanical waves: need a medium; examples: sound, water waves,
seismic. - Electromagnetic waves: travel in vacuum at 3.0×10^8 m/s; examples: light, radio.
- Matter waves: wave nature of particles like electrons and protons.

2) Transverse vs Longitudinal: - Transverse: particles vibrate perpendicular to propagation.


- Longitudinal: particles vibrate parallel to propagation.

3) Wave Equation: y(x, t) = A sin(kx ± ωt + φ) A=amplitude, k=2π/λ, ω=2π/T=2π f, φ=phase


constant. Rule: +ωt → wave moves in +x, −ωt → −x.

4) Centripetal acceleration: a = v^2 / R.

5) Wave speed on string: v = sqrt(T/µ). Depends only on tension T and µ, not frequency.

Derivations (Lecture 4 & 5)

• Wave number: Over one wavelength λ, phase increases 2π → k=2π/λ. • Angular


frequency: Over one period T, phase increases 2π → ω=2π/T, f=1/T. • Wave speed
relation: From kx±ωt=constant → v=ω/k=λ f. • Newton’s 2nd law: For string element µ∆x,
radial force≈Tθ, acceleration=v²/R → v=√(T/µ).

Solved Problems (Lecture 4 & 5)

Q6. Wave y(x,t)=(6.0 mm) sin[(kx+600 t)+φ]. At t=0, x=0, y=0.01273 m. Solution: - At t=0,
x=0 → y= A sinφ = 0.01273 m - Given A=0.006 m (6.0 mm). - So amplitude y_m=0.01273
m=1.27 cm. Answer: 1.27 cm ✔
Q14. Wave y=(2.0 m) sin[(20 m^-1)x − (600 s^-1)t], T=15 N. Step 1: k=20 rad/m →
λ=2π/20=0.314 m. Step 2: ω=600 rad/s → f=600/2π≈95.5 Hz. Step 3: v=ω/k=600/20=30
m/s. Step 4: v²=900, µ=T/v²=15/900=0.0167 kg/m=16.7 g/m. Answer: v=30 m/s, µ≈16.7
g/m ✔

MCQs (Lecture 4 & 5)

1) Which type of wave requires a medium? → B (Mechanical) 2) Wave speed on a


stretched string depends on? → C (Tension & µ) 3) Wave number k=? → B (2π/λ) 4) In y=A
sin(kx+ωt+φ), wave moves in +x direction → Answer B

Lecture 6 – Superposition & Standing Waves [Slide 21]

Key Theory

1) Superposition principle: y′(x,t)=y1+y2. Displacements add algebraically. 2) Interference:


Two equal waves same direction → A′=2A cos(∆φ/2). 3) Standing waves: y′=2A sin(kx)
cos(ωt). Nodes: x=n λ/2 Antinodes: x=(2n+1) λ/4 Distance between adjacent nodes=λ/2

Derivation (Lecture 6)

Two waves moving opposite directions: y1=A sin(kx−ωt), y2=A sin(kx+ωt). Add them: y′=2A
sin(kx) cos(ωt). This is the standing wave. Amplitude at position x=2A sin(kx).

Solved Problems (Lecture 6)

Q32. Two identical waves same direction. Resultant amplitude=1.5A. A′=2A cos(∆φ/2). 2
cos(∆φ/2)=1.5 → cos(∆φ/2)=0.75. ∆φ/2=cos^-1(0.75)=41.41° So ∆φ=82.8°=1.45 rad=0.231
λ Answer: (a)82.8°, (b)1.45 rad, (c)0.231 λ ✔

Q53. y′=(0.50 cm) sin[(π/3 cm^-1)x] cos[(40π s^-1)t]. Step 1: 2y_m=0.0050 m →


y_m=0.0025 m Step 2: k=π/3 cm^-1=π/0.03=104.72 rad/m → λ=0.06 m Step 3:
ω=40π=125.66 rad/s (a) Amplitude=0.0025 m (b) v=ω/k=125.66/104.72≈1.20 m/s (c)
Distance between nodes=0.03 m (d) v_particle=−2Aω sin(kx) sin(ωt). At x=0.015 m →
kx=0.0157 rad (sin≈0.0157). At t=9/8 s → ωt≈141.37 rad≈45π → sin=0 → v_p=0 Answer:
(a)0.0025 m, (b)1.20 m/s, (c)0.03 m, (d)0 m/s ✔

Q56. y(x,t)=0.040 (sin 5πx)(cos 40πt). Nodes where sin(5πx)=0. 5πx=nπ → x=n/5 m. (i)0 m,
(ii)0.20 m, (iii)0.40 m. Answer: Nodes at 0 m, 0.20 m, 0.40 m ✔

MCQs (Lecture 6)

1) Superposition principle → Displacements add algebraically. Answer C 2) Resultant


amplitude = 2A cos(∆φ/2). Answer B 3) Node positions = n λ/2. Answer B 4) Antinodes =
(2n+1) λ/4. Answer C

End of Study Pack

You might also like