Loher Motor
Loher Motor
Industrial Motors
IM 01 en
Profit Center Industrial Motors
Summary
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Basic concepts, Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Quality assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
ZVEI Service classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Description of ZVEI service classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
CE Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Standards and specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Type code ......................................................... 12
Symbols for mounting arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Horizontal mounting, with end shields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Vertical mounting, with end shields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Flange designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Mechanical design, general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Mechanical enclosure to EN 60034–5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Drain holes for condensed water for the type series A... and E... . . . . . . . . . . . . . . 15
Space heater for the type series A... /E... /D... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Painting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Shaft ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Coupling drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Belt drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Fitting and removal of pulleys and couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Running smoothness, balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Noise data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Measuring surface sound pressure level and sound power level . . . . . . . . . . . . . . 18
Cooling air volume and permissible counterpressure . . . . . . . . . . . . . . . . . . . . . . . . 18
Cooling air inlet for A... / E... / D... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Resistance to shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Packing dimensions and weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Tolerances for motor mounting dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Electrical design, general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Stator winding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Duty types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Duty types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Voltages and frequencies general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Standard voltages and tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Rated current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Occasional overload capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Efficiency, power factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Conversion of power kW – HP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Conversion of power depending on coolant temperature and temperature class . 25
Technical notes for pole–changing motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Circuit diagrams for three speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Thermal Motor Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Winding protection contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Radio interference suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Inverter operation, mechanical features . . . . . . . . . . . . . . . . . . . . . . . 29
Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Bearing currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Mechanical limit speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Relubrication intervals, grease life, grease quantities . . . . . . . . . . . . . . . . . . . . . . . . 30
Reduction of the grease life or of the relubrication intervals . . . . . . . . . . . . . . . . . . . 30
Typical voltage stress of inverter–operated motors . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Further information about inverter–operated motors . . . . . . . . . . . . . . . . . . . . . . . . . 30
Qualitäty assurance
From quotation to delivery, our complete order handling is done on the basis of an approved quality assurance
system complying with the following quality standards:
Loher is certified in accordance with the Directive 94/9/CE: PTB 99 ATEX Q 003
For this certificate an extension by another 3 years will be applied before expiration of the validity.
For Loher Industrial Motors the services defined for low–voltage motors by the ZVEI (Central Association
for Electrical Engineering and Electronics Industry) are fulfilled.
Service classes
Classification of services for low–voltage motors
0 1 2 3 4 5 6
Catalogues and pricelists, general product information x
Support and catalogue information by telephone x
Information via Internet x
Electronic selection tools x
Projecting tools x
Warranty in compliance with the general terms and conditions of the supplier x
Extended warranty of the supplier x
Terms of contract in compliance with the general terms and conditions of the
x
supplier
Documentation x x x x
Safety and commissioning instructions (in all EU languages) x
Operating instructions (in all official EU languages) x
Operating instructions (in all languages) x x x x
Certificates ISO 9001 x
Declarations of conformity and manufacturer’s declarations, works certificates x
Certifications (e.g. UL, CSA, CCC, EPACT) x
EC type examination certificates x x x x
Preparation of quotations / project planning x x x
Drive design (starting calculation, network calculation, foundation calculation, ...) x
Configuration of system periphery like e.g. protection systems, earthing, EMC x
Feasibility studies x
Energy consulting and optimization of the ancillary processes x x
Service Hotline (within normal business hours) x
Assistance by telephone x
Service Hotline 24h x
Training x x x x
Analysis x x x
Workshop tests x
Factory acceptance / inspections x x
System test in the test field of the manufacturer x
Expediting at the manufacturer x x
On–site service x
Authorized repairers in case of repair x
Project discussion on site x x
Commissioning x x
System–functional acceptance on site x
Assembly and assembly support x x
Assembly / assembly supervision x
Maintenance and inspection x x x
Modernization and retrofitting x
Delivery of spare parts (> 5 years after discontinuation of a type series)) x
Delivery of spare parts (up to 5 years after discontinuation of a type series) x
Technical information on motors, components or manufacturing documents for
x
spare parts (as from 5 years after discontinuation of a type series)
CE Marking
The motors are provided with the CE Marking acc. to the
– CE Marking Directive 93/68 EEC, additionally Low–Voltage Directive 73/23 EEC
or
– Directive 94/4/EC
1 Only dimensions are determined in IEC 60072–1; an output assignment is not yet available.
Type code
The complete code is indicated in the output tables.
It consists of the following components:
Digit: 1 2 3 4 5 6 7 8 9 10 11 12
Example: ANGA–225ME–04A
II 3 G Ex nA II
II 2 G Ex e II
II 2 G Ex de IIB or II 2 G Ex de IIC or
II 2 G Ex d IIB II 2 G Ex d IIC
Digit 12: Loher’s identification letter for mounting arrangement see page 13 and 14.
The most commonly used not standardized according to size 180 (standard design without
mounting arrangements are shown Code I. In these cases the drain holes for condensed water).
in the table. Mounting mounting is stated according to From frame size 200 it has to be
arrangements possible for the Code II. Standard motors, i.e. taken care for mounting that the
various frame sizes are indicated frame sizes 90–315M ordered in drain holes are situated at the
in the dimension drawings. Other the basic mounting arrangements deepest place. Mains connection
mounting arrangements are (universal mounting arrangements) of the motors is assured by the 90o
available on request. The IM B3, IM B5 or IM B14 can also rotability of the terminal boxes for
mounting arrangement according be operated in the following all mounting arrangements.
to the corresponding order is mounting positions: Motors designs ”without explosion
stated on the rating plate in IM B3 in IM B6, IM B7, IM B8, protection for vertical arrangement
compliance with Code I, EN IM V5 or IM V6, with shaft end downwards” are
60034–7. It also appears as IM B5 in IM V1 or IM V3, supplied without protective hood
identification letter in the type IM B14 in IM V18 or IM V19. on the fan cover, unless otherwise
code. An exception is a motor This is applicable without any explicitly specified.
design the mounting of which is restriction for motors up to frame
Horizontal mounting, with end shields
Mounting arrangement Explanation
Symbol to
Drawing EN 60034-7 Bearings Stator General Fixing or Identification letter for motors
Code I Code II (F
(Frame)) d i
design mounting
i
IM B3 IM 1001 2 end with feet – mounting on A
shields substructure
Flange designations
According to EN 50347 resp. IEC 60072–1 the mounting flanges will be identified by the nominal size of the
hole circle diameter. Assignment to the frame sizes is indicated in the dimension drawings.
Flanges with through–holes e.g. IM B5 Flanges to threaded holes e.g. IM B14
EN 50347 EN 50347
FF100 FF350 FT65
FF115 FF400 FT75
FF130 FF500 FT85
FF165 FF600 FT100
FF215 FF740 FT115
FF265 FT130
FF300 FT165
Complete protection against contacting live parts and approaching Water splashing to the motor from all directions must not have
IP 54
such parts
p as well as against
g contacting
g movingg parts
p within the enc- any harmful effect.
los re
losure.
IP 55 Protection against harmful dust deposits. The penetration of dust is A jet of water from a nozzle directed to the motor from all di-
not completely prevented, but the dust cannot enter in such as to rections has no harmful effect.
IP 56 affect a satisfactory operation of the machine. Water by heavy seas or water in a strong jet does not enter
the enclosure in harmful quantities.
IP 65 Complete protection against contacting live parts and approaching A jet of water from a nozzle directed to the motor from all di-
such parts as well as against contacting moving parts within the enc- rections has no harmful effect.
losure.
Protection against penetration of dust (dust–proof).
For all mounting arrangements where the shaft end is pointing downwards, an appropriate cover to prevent small parts from falling into the fan cowl is essen-
tial, except when this protection is already provided by the driven machine. This cover, however, must not impair the cooling–air flow.
Motors installed outdoors must be protected from intense solar radiation.
Drain holes for condensed water Space heater for the type series
for the type series A... and E... A... /E... /D...
No drain holes are provided for the As protection against condensed
motors up to frame size 180. They water inside the motors, these can
are only drilled on request and this be equipped with a space heater, if
is especially to be stated in the or- requested by the customer. The
der. Motors from frame size 200 standard supply voltages are
are always supplied with drain ho- shown in the table. Other supply
les for condensed water. voltages on request. The space
The location of these holes de- heater must never be switched on
pends on the respective mounting during operation of the motor.
arrangement. They are situated at
Frame size Supply vol- Filament
the lowest point of the end shields. tage wattage
If the drain holes are not situated V per motor
W
at the lowest point after installation
and commissioning of the motor, 110 – 120
12
071 – 100 or
new holes will have to be drilled 210 – 250
[12]
and the previous holes must be
plugged. 110 – 120
25
or
At enclosures IP 55 and IP 56 the 112 – 132
210 – 250
[24]
drain holes are closed.
For the type series A..A these are 110 – 120
50
sealed with an enclosure–specific 160 – 250 or
210 – 250
plug ensuring the draining of any [48]
Code N04 N08 N14 N14A Z21 Z05 J08 S10 S11 G04
Use: Standard Outdoor climate, Tropical VIK- Off-shore, Customer’s Inner painting Underwater Underwater Customer’s
painting- Tropical climate, climate, Standard Drilling request = customer’s coating special coa- request
indoor Humid ambient Humid painting platforms, (covering request (immersion ting (e.g. (covering
installation ambient Customer’s enamel by pumps) immersion enamel by
request customer) (normally pumps) = customer)
incl. J08 without J08 included in customer’s
Standard pain- with rotor N14, request with
Standard ting Ex d I/II coating incl. J08 incl. J08 Z21, incl. J08 covering
and Ex e II Indoor installa- Increased chemical Z05, enamel, de-
motors tion and out- stresses, decontaminable, S10) contaminable
door climate Ships, on-shore
200
µm 70
150 80 75
Finishing coat
100 70 80 75 100
50 70
80 50 50 80 60 60
40 40
0
Parts ground coat 30 30 30 30 30 30
(not for aluminium
a. galvanized fan cowls)
Layer thickness > µm
finishing coat 40 80 140 210 50 80 210 230 40
Climate groups
EN 60721-3 moderate worldwide
Cond. climate
KFW DIN 50017 + + ++ ++ + ++ +
Sulphur dioxide
EN ISO 6988 0 + +/++ ++ + 0
Salt water
DIN 53167 0 + +/++ ++ + +/++ +/++ 0
Ammonia ∼10% + ++ ++ ++ + ++ ++ +
Resistance list
Mineral oils
Greases
EN ISO 2812–1
Solvent + ++ ++ ++ ++ ++ ++ +
Benzine/benzol
Alcohol
Sulphuric 10% 0 + ++ ++ + 0
acid 50% – 0 + + 0 –
Soda 10% 0 + ++ ++ + –
lye 40% – 0 ++ ++ + ––
Hydrochloric 0 0 + + – –
acid 37%
Adhesion
EN ISO 2409 Identification Gt1
Colour Standard RAL 7030 (stone-grey) grey1 RAL 7032 grey1 RAL 7030 RAL 7032
(p g y)
(pebble grey) (stone grey) (p g y)
(pebble grey)
Colours2 1004, 1018, 2004, 5009, 5010, 5012, 5015, 5018, 6002, 6003, – – like
available 6011, 7000, 7011, 7031, 7032, 7036, 7038, 9010, paintings
acc. to RAL other colours on request N04-Z21
Bright parts Provided with corrosion-protective special oil repelling
shaft end/flanges water and hand-sweat.
1 Colour not acc. to RAL 2 Bad-covering colours e.g. white or yellow are not made in N04
but only with a higher coating thickness (e.g. N08).
Shaft ends
Shaft ends are cylindrical and always supplied with the motors. Pole–changing motors with a
comply with EN 50347 in their de- On customer request a second 2–pole speed have the same shaft
sign and assignment to the frame free shaft end can be provided ex- ends as single–speed 2–pole mo-
sizes and ratings. The shaft ends cept for motors with attachments at tors.
of all motors are equipped with a the non–driving end, e.g. tachome-
female thread for the fitting of pul- ter, Ex d brake or axially mounted
leys and couplings. Keys are desi- forced ventilation.
gned to DIN 6885 Sheet 1 and are
Coupling drive
When aligning a motor to be cou- rings, the machine to be coupled It is absolutely necessary to en-
pled directly with the machine, must be exactly aligned even in sure that the half–coupling on the
care must be taken that the rollers case of flexible couplings. Maxi- motor side is dynamically balanced
and balls of the bearings do not mum care and accuracy must be according to the motor balance.
jam. Flexible coupling is permissi- applied to the installation of the
ble with all motors. To ensure vi- coupling of 2–pole motors (syn-
bration–free running and to avoid chronous speed 3000 min–1 at
an inadmissible stress on the bea- 50 Hz or 3600 min–1 at 60 Hz).
Noise data
The measuring surface sound 3 dB(A) will be obtained for motors Hz the values increase by approx.
pressure LpfA as well as the sound with a voltage range. 4 dB(A).
power level LWA of single–speed The tolerance is +3 dB(A). Noise
motors is shown in the following levels in case of 60 Hz, for motors The noise measurements are
table. The noise data stated in this with 10 and more poles, for motors made according to EN ISO 1680 in
table are valid for motors with fixed with modified output and for pole– the noise test room.
voltage and a rated power at 50 changing motors as well as for in-
Hz. Noise data increased by about verter operation on request. At 60
071 0,03 1
080 0,04 2 0,02 1
090 0,06 40 0,03 10 0,02 6
100 0,08 50 0,04 12 0,03 8
112 0,10 50 0,05 12 0,03 8 0,02
132 0,15 70 0,1 18 0,07 10 0,05 5
160 0,25 90 0,15 30 0,1 15 0,08 8
180 0,35 100 0,2 40 0,15 20 0,1 10
200 0,4 120 0,3 50 0,2 25 0,15 12
225 0,5 120 0,45 50 0,3 30 0,23 15
250 0,6 140 0,55 60 0,33 35 0,28 20
280 0,8 160 0,7 80 0,45 45 0,33 25
315 1,0 160 0,9 80 0,6 45 0,45 25
355 1,5 160 1,5 80 1,0 45 0,8 25
If motors are equipped with forced dered when calculating the coun- They are maximum values for self–
ventilation, pipes for air supply or terpressure of pipes. ventilation and for the air volumes
air outlet, silencers or similar parts, The values for the static counter- stated, and not to be exceeded in
the values stated above are to be pressure are given in Pa pipes, silencers or similar parts.
observed depending on the frame (1 Pa = 0.102 mm water column).
size. They also have to be consi-
Resistance to shocks
If shock stresses are to be expec-
ted, e.g. from an earthquake,
storm, explosion or on ships, the
maximum permissible values for
the motors in this technical list are
shown in the diagram below.
The values fpermissible are multi-
ples of the acceleration due to gra-
vity (g 9.81 m/s2) related to the
motor frame size h (shaft center
height). The graph is valid with a
safety factor of 1.0 for all mounting
arrangements and shock effects.
Load factor fperm
Cardboard box
L x W x H
E 23 up to 170 – 0.5 mm
Stator winding
High–quality enamelled wires, and oil. They resist stresses where highly conductive dust
suitable surface insulating imposed by normal climates in deposits on the heads of the
materials and the type of accordance with EN 60721–3 and windings are to be avoided.
impregnation (current–UV or are tropic–proof. For a moist, The application of the sealing
vacuum technology) form changeable climate, which is also offers special advantages in
insulation systems for the motor present in several tropical regions, combination with insulation
windings which guarantee a high the special design with increased classes F and H in those cases
level of mechanical and electrical protection against humidity is where motors are to be used with
stability combined with a high necessary. high switching frequency or for
utilization factor and a long service The silicon caoutchouc sealing is especially severe starting and
life. The insulation system is recommended independently of braking conditions. In addition, the
suitable for a rated voltage up to the individual insulation class in sealing process provides the
1000V. These insulation systems those cases where due to the drive windings with increased
provide the windings with ample or service conditions of the motor mechanical short–circuit
protection against the influence of there is a danger of increased resistance.
aggressive gases, vapours, dust condensed water formation or
Duty types
The output ratings stated in the ta- Duty type S 3: Intermittent periodic Duty type S 7: Continuous opera-
bles apply to duty type S 1 (conti- duty where starting does not in- tion duty with starting and braking.
nuous running at constant load) fluence the temperature.
according to EN 60034–1. For the Duty cycle 10 minutes unless Duty type S 8: Continuous opera-
duty types S 4, S 5, S 7 and S 8 it otherwise agreed upon. For the re- tion duty with pole changes.
is also necessary to mark the mo- lative time the motor is switched
ments of inertia for the motor (JM) on (cyclic duration factor CDF), the For these two duty types the load
and the driven machine (Jext) in values 15, 25, 40 and 60% are re- during the operating period has
addition to the data for the cyclic commended. also to be stated.
duration factor and the switching
frequency. Duty type S 6: Continuous opera- Duty type S 9: Continuous opera-
All moments of inertia must refer to tion with intermittent load. Duty cy- tion duty with non–periodical load–
the motor speed. In accordance cle 10 minutes unless otherwise and speed variation (inverter ope-
with EN 60034–1 the following agreed upon. For the cyclic dura- ration).
duty types are distinguished: tion factor the values 15, 25, 40
and 60% are recommended. Duty type S 10: Operation with sin-
gle constant loads.
1. Duty types where starting or
electrical braking do not in- 2. Duty types where starting or
fluence the temperature rise of electrical braking influence the
temperature rise of the stator Most of the real duty type condi-
the stator winding of the motor: tions represent a combination of
winding and of the rotor cage:
duty types as mentioned under 1.
Duty type S 2: Short–time duty and 2. In order to determine a sui-
Operating times of 10, 30, 60 and Duty type S 4: Intermittent periodic
duty where starting influences the table motor exactly, details of all
90 minutes are recommended. Af- the operating conditions are requi-
ter each operating period the mo- temperature.
red. The necessary information is
tor remains dead until the winding compiled in our questionnaires
has cooled down to the coolant Duty type S 5: Intermittent periodic
duty where starting and braking in- (see section ”Order Checklist”).
temperature.
fluence the temperature.
Duty types
The motor rotors have a squirrel– lues of starting torque and starting the driven machinery and the
cage design and are suitable for current are stated for all motors as load–torque starting characteri-
direct–on starting. The rotor cages multiples of the rated torque and stics.
for smaller motors are aluminium the rated current. The diagrams only show the cha-
die cast, for larger motors they are For driving heavy flywheel mas- racteristics of the torque related to
of brazed copper. The starting tor- ses, for frequent starting and stop- the speed. Please contact us for
que behaviour is marked in the ping service, for motors intended drives the load–torque characteri-
output tables by the rotor class in- to drive lifts and cranes, special ro- stics of which come very close to
dicated for every type. These are tors of classes W, SHS 1, SHS 2 the range of the motor torque cha-
the rotor classes HS 2, HS 3, HS 4 as well as SDS 3 and SDS 4 are racteristics.
and HS 5 as well as DS 4 and DS used. The particular choice of the The given range shows an appro-
5. The diagrams show the speed– most suitable rotor type and the ximation of the torque characteri-
torque curves for the above men- corresponding output for a certain stics which are possible within the
tioned rotor classes. The maximum number of poles and frame size corresponding rotor classes.
permissible mean load torque of depend on the actual operating The valid tolerances according to
the driven machinery is indicated conditions. These must be known EN 60034, however, refer to the
in the diagrams by a horizontal when using special rotors, in parti- values stated in the output tables.
dotted line. In the tables, the va- cular the moment of inertia (J) of
cated and with the tolerances in Single Voltage Wide voltage ran-
accordance with EN 60034-1. ge
voltage
Rated
specifications are applicable.
These are indicated in the electri-
cal data assigned to the respec- Range A
tive types.
Range B Range A
Range B
Rated current
In some output tables the rated This results in: Example:
currents are only indicated for a According to the output table the
rated voltage of 400V. For other I′ = U ⋅ I pole-changing motor
U′
voltages the rated currents are ANGA-180 MB-42 has a rated
inversely proportional to the current of 31/37 A at 400V. At
voltages: 230V the rated current will be:
U = I′ I′ = 400 ⋅ 31 or 37 = 54/64 A
U′ I 230
Tolerances
According to EN 60034-1 the 1 – cos ϕ Slip at rated load and operating
Power factor: –
electrical data stated in the output 6 temperature:
tables are subject to the following ≥ 1kW ±20% of the guaranteed slip
tolerances: (min. 0.02, max. 0.07) < 1kW ±30% of the guaranteed slip
Conversion of power kW – HP
For conversion of the power from
kW into HP is applicable 1 kW = 1.341 HP
Approximate determination of the motor output is possible according to the below characteristic:
Standard
PUtilization ’B’ (mostly standard output)
CT
General Connection
The mechanical design of all pole– The pole–changing motors shown supplied with two separate windings.
changing motors corresponds to in the tables are supplied for two However, the output is then considera-
the single–speed motors. Pole– or three specific speeds. bly lower than for a motor with Dahlan-
changing motors from frame size Should it become necessary to der connection. The following alternati-
225 with a 2–pole speed have the supply output ratios not contained ves are designated.
same bearings and the same shaft in the tables, motors with Dahlan-
ends as the corresponding frame der connection can also be
sizes of single–speed 2–pole mo-
tors.
Output
Outputs shown in the tables are
valid for duty type S 1 acc. to EN
60034–1. For coolant temperatu- ∆ low speed ΥΥ high speed ∆ low speed ΥΥ high speed
res exceeding 40oC and altitudes
of installation above 1000 m sea
level the same design data as for
single–speed motors are valid.
Torque
Starting of pole–changing motors Speed ratio 1:1.5 or 1:1.33 Speed ratio 1:1.5 or 1:1.33
2 separate windings 2 separate windings
can be accomplished from stand- Connection Υ/Υ 1 Connection ∆/∆ 1
still at any number of poles. The for constant torque 6/4– and 8/6–pole for constant torque 6/4– and 8/6–pole
output tables show the starting tor- for quadratically decreasing torque for quadratically decreasing torque
6/4– and 8/6–pole
ques for direct–on starting and 6/4– and 8/6–pole
also the rotor classes. If possible,
starts should be made at the lower
speeds in order to avoid possible
pull–up torques occurring at high
speeds. This improves the accele-
ration and reduces starting heat
losses in heavy starting condi-
tions.. Υ low speed ∆ low speed ∆ high speed
Υ high speed
1 or / ∆ or ∆ /
Υ low speed ∆ medium speed ΥΥ high speed Υ low speed Υ medium speed ΥΥ high speed
∆ low speed Υ medium speed ΥΥ high speed Υ low speed Υ medium speed ΥΥ high speed
Temperature sensor KTY 84–... Resistance thermometer PT100 Winding protection contactse
KTY sensors are semiconductors (Thermal contacts)
At 0C the PT100 resistance
where the resistance changes in Another possibility to monitor the
thermometers have a resistance of
function of the temperature. winding is given by the use of
100 Ω and an almost
Compared to the PTC thermistors winding protection contacts.
temperature–linear characteristic
these show approximately linear They are located as closed or
curve of the resistance. Use of
temperature characteristics. Same open contacts into the stator
PT100 in two–wire connection is
as for the PTC thermistor it is winding.
possible for winding monitoring
installed into the winding head. Per In case of overloading the motor is
and / or monitoring of the bearing
temperature sensor 2 additional switched off. There is no protection
temperature. PT100 is connected
terminals in the main or additional given in case of a stalled rotor and
in the main or additional terminal
terminal box are required for the therefore additional motor
box on 2 terminals each PT100.
connection. Analysis has to be protection circuit breakers are to
For temperature indication a
made with a suitable temperature be provided, if necessary.
suitable indicator is necessary.
evaluating unit.
Basic concepts
Without modification of the electri- motors of the Series A... (externally cal List UN 04. The mechanical
cal and mechanical construction cooled) and D... (Protection type features to be observed as a result
the optimized design and manufac- Ex d). The permissible basic data of higher speeds are indicated be-
ture of our three–phase motors al- and parameters for inverter opera- low.
lows an inverter operation for most tion are summarized in the Techni-
Bearing currents
It is known about mains–operated frame size 225 with insulated bea- currents and circulating currents).
motors that due to the magnetic rings on the non–drive end. Bea- The bearing currents depend on
asymmetries a voltage is produced ring insulation is made by insula- the motor size and the inverter de-
along the mechanical shaft. When ting the bearing seat on the motor sign (pulse frequency, pulse modu-
this shaft voltage exceeds a peak shaft or by using current–insulated lation, output filter).
value of about 500 mV, bearing antifriction bearings. Previous experiences showed that
currents can occur, which result in These shaft voltages and bearing for an operation of Loher–Motors
a bearing damage. currents can be increased (typi- with the pulse inverters
This phenomenon occurs only in cally by approx. 30% to 50%) at in- DYNAVERT® T (pulse frequency 3
larger motors. In order to avoid verter operation. kHz up to 7.5 kHz, pulse modula-
bearing currents the adjacent bea- For pulse–inverter operation addi- tion by voltage vector control, stan-
ring will be insulated from frame tional high–frequency bearing vol- dard du/dt–output filter) no dama-
size 315. However, we recommend tages and bearing currents can ges were caused by the occurring
equipment of the motors from also occur (Common Mode bearing bearing currents.
Mechanical limit speeds
For an operation over the rated fre- parts. In accordance with EN Further special measures are
quency it must be observed that 60079–0 for motors used in the ha- partially required for the limit
the maximum speeds are limited zardous area of Zone 1 or 2, the speeds indicated in the tables
by the limit values of the antifriction circumferential speed is also limi- below.
bearings, the critical rotor speed ted and consequently the speed of
and the strength of the rotating plastic fans.
Mechanical limit speeds for standard design: Motors without explosion protection (Types A..A),
Motors protection type Ex e (Types E..) and ”n” (Types A..K) of the frame sizes 90 to 355
Number Frame 90 100 112 132 160 180 200 225 250 280 315 355
of poles size LB–LD
2 n/min–1 6000 6000 6000 6000 6000 6000 4800 5000 4200 4200 3800 3800
f/Hz 100 100 100 100 100 100 80 83 70 70 63 63
4 n/min–1 4500 4500 4500 4500 4500 4500 4500 3200 3200 3600 3400 3200
f/Hz 150 150 150 150 150 150 150 106 106 120 113 106
6 n/min–1 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 3700 3200
f/Hz 200 200 200 200 200 200 200 200 200 200 185 160
8 n/min–1 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
f/Hz 200 200 200 200 200 200 200 200 200 200 200 200
Mechanical limit speeds for standard design: Motors in protection type Ex d of the frame sizes 71 to 315
Number Frame 71 80 90 100 112 132 160 180 200 225 250 280 315
of poles size
2 n/min–1 6000 6000 6000 6000 6000 6000 6000 5600 4800 4500 4200 3800 3800
f/Hz 100 100 100 100 100 100 100 93 80 75 70 63 63
4 n/min–1 4500 4500 4500 4500 4500 4500 4500 4500 4500 3500 3500 3500 3400
f/Hz 150 150 150 150 150 150 150 150 150 116 116 116 113
6 n/min–1 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 3800 3700
f/Hz 200 200 200 200 200 200 200 200 200 200 200 190 185
8 n/min–1 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
f/Hz 200 200 200 200 200 200 200 200 200 200 200 200 200
Plastic fans of special material or metal fans are used for explosion–proof motors.
Frequency 60 70 80 90 100
Hz
tf / tf 50 0.75 0.65 0.55 0.50 0.45
The indicated relubrication intervals are applicable for an ambient temperature of max. 40oC.
For every 15oC temperature rise, the lubrication interval is to be reduced to half of the value shown in the table.
Competition
without filter
Rise time ta
Order–Checklist
(Word file to be completed and printed)
VIK
On customer request three–phase The outputs correspond to the The design of pole–changing mo-
motors are manufactured accor- type–specific standard outputs in tors can optionally be matched to
ding to the guidelines of the VIK this list. The mechanical design is the technical requirements of the
(Verband der Industriellen Ener- indicated in the table. VIK.
gie– und Kraftwirtschaft e.V. –
Committee of the Industrial Power
and Power Utilities) in compliance
with ”VIK Recommendation 1, Sta-
tus 04.2005”.
The Loher ”CHEMSTAR” Motor includes all requirements to the VIK–guidelines with further important features
for the chemical industry in a design package.
See section ”Loher CHEMSTAR Motor” in this technical list.
UL
Three–phase motors of the type series AN.A are listed by the Underwriters Laboratories Inc. in accordance with
the Standards
UL 1004 – Electric Motors
CSA C22.2 No.100 – Motors and Generators
as ”Recognized Component”.
NEMA
Motors of the type series ANGA / AMGK / DN.W can regarding to the electrical design be delivered to the
”NEMA Standards Publication No. MG1”
Flange motors can be made as special design with flange and shaft end to NEMA. Flange and shaft design is to
be indicated in the order.
An adaptation of the foot dimensions for the motors in mounting type IM B3 is not possible.
Apparatus EN
Certificates
Motors of this technical list have certificates of the PTB for explo- Electrical and mechanical design
been certified by the PTB (= Physi- sion–proof electrical apparatus ac- other than certified and laid down
kalisch Technische Bundesanstalt) cording to the EN standards are in this technical list requires either
with the exception of dust explo- valid in all EC member countries. the issue of a supplement or a new
sion–proof motors certified by certificate.
EXAM (BVS). EC type examination
Initial operation
According to the regulations for tion certificate of the PTB or of an- in hazardous areas” must be ob-
electrical equipment in hazardous other test authority stated in ElexV served. Furthermore, the official
areas (Verordnung über elektri- is available. regulations of the relevant supervi-
sche Anlagen in explosionsgefähr- sing authority and the employer’s
deten Räumen/ElexV) electrical For the use of electrical equipment liability insurance association are
equipment is only allowed to be in hazardous facilities and storage applicable in general or for indivi-
put into operation in hazardous rooms EN 60079–14/VDE 0165–1 dual cases.
areas, when an EC type examina- ”Installation of electrical equipment
Hazardous areas
Hazardous areas are those areas The classification into zones Whether an area in the open air or
where an explosive atmosphere at influences the ignition protection to in an enclosed location is to be
a dangerous extent can occur due be selected and consequently the considered as hazardous in
to local and operational conditions. design of the electrical equipment. accordance with the regulations or
The table shows the zone provisions can exclusively be
Dangerous areas are differentiated classification of hazardous areas judged by the competent
under that aspect, how often and due to gas / dust and includes supervising authority.
for what period of time a data on the respective
dangerous concentration of an three–phase motors to be used.
explosive mixture exists, and are
identified as zones.
In accordance with Directive 94/9/EC and Directive 1999/92/EC only specific electrical equipment or devices are
allowed to be used in the zones (see table: Assignment of devices (electrical equipment) to zones). The devices
are classified into device groups and categories.
The device identification indicates the device group and the category.
By means of the CE Marking the manufacturer declares that the product concerned has been manufactured
in compliance with all applicable regulations and requirements of the Directive 94/9/EC and that the product
was subject to the relating conformity assessment procedures.
– 0102 Identification number of the supervising authority, the PTB for Loher
–I or II Device group
–1, 2 or 3 Category
–d Type of protection (here e.g. Flameproof Enclosure ”d”, see ’Explanation of protection types’)
– IIC Explosion group (see next page: Table ’Examples for the assignment of combustible gases and vapours’)
Hazardous areas
Combustible Zone acc.to Explanations Examples Permissible electrical equipment
substances EN general Motors
60 079–14
Gases, Zone 0 Areas where a dangerous Normally this refers only IWithin Zone 0 only The operation of explosion–proof
vapours explosive atmosphere is to the inside of containers or electrical equipment motors, no matter what kind of
and always or available over to the inside of equipment. especially certified enclosure, is not permitted.
fumes long–time periods. may be operated. Exceptions can only be made by
the local authorities.
Zone 1 Areas where a dangerous It can be included: Electrical equipment Within Zone 1 explosion–proof
explosive atmosphere is The immediate vicinity of Zone 0, must be explosion– motors of ”Flameproof Enclosure”
occasionally to be the inside of equipment, the area proof by one of the or ”Increased Safety” or of
expected. close to enclosures acc. to ”Pressurized Enclosure” have to be
– feeding openings EN 50014. installed.
– filling and emptying equipment
– easily breakable equipment or
ducts of glass or ceramic etc.
Zone 2 Areas where a dangerous It can be included: Within Zone 2 explosion–proof mo-
explosive atmosphere Areas around Zones 0 and 1. tors and Ex nA II motors can be
rarely and only for a short Areas at flange connections with operated.
time is to be expected. flat gaskets at pipings in closed
rooms.
Dusts Zone 20 Area where an explosive As a rule are only included the Within Zone 20 only Operation of explosion–proof
atmosphere, as a cloud, is inside of equipment (mills, dryers, electrical equipment motors is not permitted. Exceptions
present continuously for mixers, delivery pipe, silos, etc.) with special can only be made by the local
long periods or frequently, certification may be authorities.
capable of producing operated.
combustible dust in mixture
with air.
Zone 21 Area where during normal This zone can include: Within Zone 21 motors in
operation an explosive Areas in direct vicinity of filling and ”Flameproof Enclosure” or
atmosphere, as a cloud, is emptying equipment and areas, ”Increased Safety” or ”n” may be
occasionally present, where dust accumulations occur, operated, when they meet at least
capable of producing which during normal operation the requirements of enclosure
combustible dust in mixture may give rise to an explosive IP 6X.
with air. mixture of combustible dust with
air.
Zone 22 Area where during normal It can be included: Within Zone 22 motors without EC
operation an explosive Areas near to equipment, when type examination certificate (with
atmosphere, as a cloud, dust from leakages can penetrate EC Declaration of conformity of the
does not occur or for only outside (e.g. mill rooms). manufacturer) may be used, when
a short period, capable of they are at least designed to
producing combustible enclosure IP 5X.
dust in mixture with air.
Note: For mine–safety approved equipment the VDE 0118 regulations for installation are applicable. Underground mining areas are
not divided into zones.
Remark I: Layers, deposits and accumulations of combustible dust are to be considered like any other cause, which may give rise to an
explosive atmosphere.
Remark II: Such status is considered as normal operation, where equipment is used according to its design parameters.
Remark III: For Zone 22 with conductive dust such equipment like for Zone 21 is to be used.
Temperature classes
1 Ignition temperature is between 220 to 300°C depending on the composition, in special cases over 300°C.
2 The classification II A, II B, II C is not applicable for electrical equipment in protection type
“Increased Safety“, but only for “Flameproof Enclosure“.
Inverter operation
The motors in protection type ”n” require together with the appropriate inverter the approval and certificate by an
authority.
Hybrid mixtures
For the combination of dust explo- For this reason the relevant Motors with a second rating
sion protection with gas explosion parameters both for plate, i.e. for
protection the possible occurrence gas (Zone 0, 1 and 2) and for G (Gas) and D (Dust)
of hybrid mixtures must be dust (Zones 20, 21 and 22) have are at simultaneous occurrence
observed: to be considered if hybrid mixtures of gas and dust only allowed to
Hybrid mixtures consist of flamma- should occur. Whether in case of a be used after previous testing of
ble dust with explosive air–gas specific hybrid mixture the decisive the properties of the hybrid
mixtures, which together may parameters for an ignition are mixture by the user!
cause a hazardous atmosphere at affected unfavourably has to be
simultaneous occurrence. judged by a competent authority in
This can result in changes of the each individual case.
safety–engineering parameters,
e.g. changed zone classification,
increased explosion pressure,
reduced minimum ignition power
and a reduction of the maximum
temperatures to be observed.
Marking II 2 D II 3 G Ex nA II + II 2 D II 2 G Ex e II + II 2 D II 2 G Ex de IIC + II 2 D
C t
Category 2D
Type test
Mains Test Type test Type test Type test if no comparable
opera- measurement exists
Zone 21 tion
and EC Type Examination EC Type Examination EC Type Examination EC Type Examination
Zone 22 Certification
Certificate Certificate Certificate Certificate
with
conductive Marking II 2 D II 3 G Ex nA II + II 3 D II 2 G Ex de IIC + II 2 D
dust
Inver- Type test with Type test with Select
ter Test Type test
original inverter original inverter Type
y DN.W
Enclosure opera- II 2 G Ex de IIC + II 2 D
IP65 tion EC Type Examination EC Type Examination EC Type Examination
Certification
Certificate Certificate Certificate
II 3 D II 3 G Ex nA II + II 3 D II 2 G Ex e II + II 3 D
Category 3 D Mains Marking g Type test Type test Type test
Type DN.W
opera- T t
Test
EC–Declaration EC–Declaration II 2 G Ex de IIC + II 2 D
tion Certification
of Conformity of Conformity
of the manufacturer of the manufacturer
Zone 22
II 3 D II 3 G Ex nA II + II 3 D
Applicable to Ex–motors
CT > 40 °C on request
The cable glands will only be delivered if requested by a special order. The operating company is responsible that
cable glands certified according to the Directive 94/9/EC are used.
See
Sectional views
1 For foot–mounting types only. 3 For special operating conditions we can also supply external fans
2 Suitable for both directions of rotation, however made of aluminium from frame size 090–225, for the frame sizes
however frame sizes 355 2– and 4–pole, 250–315 of steel. This applies especially to high coolant temperatures
only for one direction of rotation. and increased switching frequency.
The operational life of the motors permanent lubrication. According tion component or consistency).
essentially depends on the life of to experience the grease filling For frame size 315 the closed
the bearings. This one, however, is made in the factory during the in- grease collecting chamber is desi-
influenced by both the fatigue pe- stallation will be sufficient for a gned to take used grease for min.
riod of the bearings themselves specific service period. See table 40 000 service hours. The relubri-
and the efficiency and life of the for service life data. cation intervals and grease quanti-
lubricant. These two factors should ties depend on the motor speed
be carefully considered. The pre- The bearings of the motors of and the bearing size and are indi-
sent quality of antifriction bearing frame size 315 and 355, on custo- cated in the table. The motor is
greases allows permanent lubrica- mer request also the motors of the provided with an instruction plate
tion for motors up to frame size frame sizes 160 to 280, are fitted stating the grease quality, the lubri-
280. Thus bearing damage due to with a regreasing device and cation interval and the grease
maintenance mistakes such as grease regulation. Normally li- quantity. Under worst–case condi-
exceeding the regreasing period or thium–based grease with a melting tions (e.g. increased ambient tem-
using the wrong type of grease point 180_C is used. Regreasing perature, high dust load, corrosive
can be avoided. or replacement of the grease is atmosphere) the lubrication inter-
In standard design the bearings only allowed with a grease quality vals are shorter.
from frame size 090 to 280 have of the same kind (same saponifica-
Type A... / Grease life with permanent lubrication or Grease quantity for permanent lubrication or
E... relubrication interval with regreasing device in service hours at rated speed grease quantity for relubrication in grammes
per bearing
The indicated grease life or relubrication intervals are applicable for an ambient temperature of max. 40_C.
For every 10_C temperature rise, the lubrication interval is to be reduced by factor 0.7 of the value shown in the table (max. 20_C = factor 0.5).
Twice the grease life can be expected at an ambient temperature of x 25_C however, 40 000 h at a maximum.
Intervals for operation of a 60 Hz power supply on request.
In case of pure coupling operation with flexible coupling the calculated useful bearing life L10h is more than 50 000 hours.
Grease life and relubrication intervals must be observed.
a/l a= 0 a = 0.5 l a= l
Speed min–1 3000 1500 1000 750 3000 1500 1000 750 3000 1500 1000 750
Frame size kN kN kN kN kN kN kN kN kN kN kN kN
90 0.77 0.97 1.12 1.24 0.70 0.88 1.01 1.12 0.62 0.78 0.90 0.99
100 1.10 1.50 1.70 1.84 1.03 1.15 1.25 1.32 0.95 0.79 0.80 0.80
112 1.60 2.10 2.40 2.65 1.50 1.90 2.20 2.30 1.35 1.50 1.55 1.55
132 2.40 3.00 3.50 3.80 2.15 2.75 3.20 3.50 1.90 2.50 2.90 2.90
160 2.90 3.70 4.30 4.75 2.60 3.30 3.90 4.00 2.30 3.00 2.70 2.70
180 3.25 4.30 5.20 5.65 3.00 4.00 4.80 5.30 2.70 3.70 3.80 3.80
200 2.50 3.20 3.75 4.20 2.25 2.90 3.45 3.85 2.10 2.70 3.20 3.60
225 3.10 4.00 4.70 5.20 2.90 3.70 4.50 4.90 2.60 3.40 4.20 4.60
250 3.30 4.25 5.00 5.70 3.00 4.00 4.70 5.35 2.75 3.70 4.40 5.10
280 4.30 5.50 6.30 7.20 4.00 5.10 5.80 7.00 3.70 4.80 5.40 6.75
315 S. / M. 6.20 6.80 7.70 8.70 5.70 6.30 7.20 8.00 5.40 5.80 6.70 7.50
315 L. 5.90 6.20 7.00 8.00 5.60 6.00 6.60 7.50 5.30 5.70 6.30 7.20
355 LB 5.60 10.20 11.80 13.20 5.20 9.45 10.80 12.00 4.80 8.50 9.60 10.60
1 kN (Kilonewton) 100 kp
If the shaft ends are loaded at a = l If the permissible radial force is not
with the permissible radial force FR fully utilized, higher loads are pos-
applicable in each case, the follo- sible in axial direction. (Values on
wing additional forces are allowed request)
to occur in axial direction.
+FA or –FA
112 0.67 0.90 1.10 1.30 0.75 1.05 1.25 1.40 0.60 0.80 1.05 1.20
132 0.97 1.20 1.50 1.70 1.10 1.40 1.70 2.00 0.89 1.10 1.30 1.60
160 1.20 1.50 1.80 2.20 1.50 1.90 2.30 2.60 1.00 1.20 1.50 1.80
180 1.10 1.40 1.70 2.00 1.50 1.90 2.20 2.60 0.85 1.00 1.30 1.60
200 1.70 2.20 2.60 2.90 2.40 3.00 3.50 3.70 1.20 1.70 2.00 2.30
225 2.20 2.70 2.95 3.50 3.05 3.70 4.10 4.55 1.65 2.10 2.20 2.80
250 2.30 2.50 2.70 2.90 3.35 3.90 4.20 4.50 1.55 1.50 1.70 1.90
280 2.90 3.70 4.30 4.30 4.20 5.30 6.30 6.40 2.00 2.40 3.30 3.50
315 S. / M. 2.60 2.90 3.50 3.90 5.00 5.90 6.90 7.30 0.80 0.70 0.90 1.30
315 L. 2.60 2.90 3.40 3.80 5.90 7.00 8.60 9.00 0.10 0.10 0.10 0.20
355 LB 2.50 4.50 5.50 6.00 7.20 11.00 13.00 13.50 on request
Design with cylindrical roller bearing at the driving–end side for higher radial load (e.g. belt drive). Bearings of the
motors of frame size 160 to 200 have permanent lubrication. From frame size 225 the motors are equipped with
regreasing device on the driving–end as well as adjacent side.
Grease life with permanent lubrication or grease quantity in grammes per bearing
Frame size relubrication interval with regreasing device in service hours at rated speed
160 24000 – – – 25
180 17000 – – – 32
200 24000 33000 33000 – 22
225 2800 5600 8000 14 –
250 2800 5600 8000 16 –
280 2000 5600 8000 20 –
315 2000 – – 35 –
315 – 4000 5600 25 –
355 2000 – – 35 –
355 – 2800 5600 50 –
The indicated grease life is applicable for an ambient temperature For the design with vertical shaft (mounting V)
of max. 40_C. For every 10_C temperature rise, the lubrication relubrication time is 1/3 less.
interval is to be reduced by factor 0.7 of the value indicated in the table. For operation at 60 Hz systems the intervals
have to be reduced by a 1/4.
Weight of rotor
a/l a= 0 a = 0.5 l a= l
Speed min–1 3000 1500 1000 750 3000 1500 1000 750 3000 1500 1000 750
Frame size kN kN kN kN kN kN kN kN kN kN kN kN
If the shaft ends are loaded at a = l with the permissible radial force FR applicable in each case, the following ad-
ditional forces are allowed to occur in axial direction. If the permissible radial force is not fully utilized, higher loads
are possible in axial direction. (Values on request).
The permissible axial forces are the same as for the standard design.
Weight of rotor
In motors of the type series A..K and E... the connection bolts are fitted with
round terminals to DIN 46223
AB 000D0005
(Also see table of dimension drawings)
Type HSK–K 2
Type HSK–K 2
Attachment is made on the non–driving end to the fan cowl, with protective cover against damage. For pulse ge-
nerators built in under the fan cowl, e.g. for forced ventilation, the pulse generator connection (connection cou-
pling) is attached to the fan cowl with a connecting cable. Connector pin assignment for plugs according to the
circuit diagram will be supplied
1.00 Stator, complete 4.36 Grease guide disk, NDE The parts shown are available in
1.03 Stator core with winding 4.38 Centrifugal disk, NDE different sets depending on type,
1.06 Stator housing 4.42 Felt packing ring, NDE size, mounting and enclosure.
1.10 Mounting feet, unmachined 4.44 Outside gasket, NDE They are available from our works.
(1 pair) 4.46 Inner gasket, NDE All other parts such as bolts,
spring washers etc. are available
2.00 Rotor, complete (balanced) 5.01 External fan, complete anywhere.
5.10 Fan cover, complete
3.01 End shield, DE 5.21 Protective cover, complete When ordering spare parts,
3.02 Flange shield, DE 5.30 Spring fastener please state:
3.21 End shield, NDE
6.03 Base of terminal box Spare part designation
4.01 Bearing, DE 6.05 Terminal box cover Motor type
4.05 Bearing, NDE 6.07 Bushing plate Serial number
4.10 Outside bearing cap, DE 6.08 Cable gland
4.12 Inner bearing cap, DE 6.10 Cable entry
4.14 Resilient preloading ring, DE 6.15 Terminal board, complete Example:
4.16 Grease guide disk, DE 6.16 Bushing terminal 3.01 End shield, DE
4.18 Centrifugal disk, DE 6.17 Accessory terminal ANGA-200LG-08
4.22 Felt packing ring, DE 6.20 Clamping 3 386 388
4.24 Outside gasket, DE
4.26 Inner gasket, DE 6.63 Base of terminal box
4.30 Outside bearing cap, NDE 6.65 Terminal box cover
4.32 Inner bearing cap, NDE 6.77 Accessory terminal
4.34 Resilient preloading ring, NDE
Frame size 090 100 112 132 160 180 200 225 250 280 315 355
Mounting types IM B6, IM B7, IM B8, IM B9, IM B15,
f f f f f f f f f F F A
IM V5, IM V6, IM V8, IM V9
IM B5 F F F F F F F F F F F A
IM B35, IM V1, IM V3 F F F F F F F F F F F F
IM B34, IM B14, IM V18, IM V19 F F F A A A A A A A A N
Protective cover for IM V1, IM V5, IM V8, IM V10,
F F F F F F F F F F F F
IM V18 (standard for Ex) , V15
Enclosure IP 56 F F F F F F F F F F F F
Regreasing device N N N N F F F F F F f f
Non-standard flange F F F F F F F F F F F F
Noise class 3 4 N N A F F F F F F F F F
Bearing thermometer N N N F F F F F F F F F
Reverse lock F F F F F F F F F F F F
Tachometer F F F F F F F F F F F F
VIK-design F F F F F F F F F F F F
Dairy design F F F F F F F F F F A A
Design for extremely high or low
F F F F F F F F F F F F
ambient temperatures
Electrical design
Type series A
A motor being stamped e.g. with characteristic and no–load data. in the output tables. As due to the
380–420V is to keep the limit tem- All guaranteed data indicated in same electrical design the single
perature according to its insulation this list or in the data sheet must voltage motor and wide voltage
class at every voltage between meet within the tolerances these range motor have identical values
380V and 420V, 10 K more are al- measured values at mid–voltage. at ”mid–voltage” no differentiation
lowed in case of 361V and 441V. Maintaining the torque calculated is made in the output tables.
from the shaft output and the rated All motors of the series ANGA and
Since there is sometimes uncer- speed (”rated torque”), both cur- AMGA being operated in the mean
tainty about the stamp data, utiliza- rents at the limits of the rated vol- range are utilized to insulation
tion and guaranteed data of the tage (e.g. at 380V and at 420V) class ”B”.
wide voltage range motor a detai- are still to be determined now. At the rated voltage limits of the
led description is given below: The wide voltage range motors of wide voltage range motors a
In principle it is to be differentiated the series ANGA and AMGA are slightly higher temperature rise
between explosion–proof and stan- marked e.g. with 380V–420V and than in the mean range can occur.
dard motors. 400V as well as the respective cur- Therefore, these are generally
For the motors ANGA and AMGA rents. marked on the rating plate as fol-
(without Ex–marking) it is to be lows:
proceeded as follows: The operator is responsible to de- 400V: F–B, 380–420V: F
First the electrical data are measu- termine the respective current for The few exceptions are motors for
red exactly in the mean range and the circuit breaker setting in accor- which insulation class F is already
at rated output. Obtained are the dance with the actually existing required at mid–voltage. They are
power factor, efficiency, speed (tor- mains voltage. marked with an * and stamped with
que), temperature rise (utilization!), For clearness reasons only the ”F”.
current at mid–voltage, starting usual ”mid–voltages” are indicated
current ( IA / IN ! ), noise, torque
200–250 1.15
Dual–voltage design
Voltage ratio Starting Reduction of output Number of
Up to frame size 200, the motors terminals
included in this technical list can 1:2 e.g. 230 V / 460 V direct – 9 or 12
/∆ – 12
be supplied in a dual–voltage de- 1:2 e.g. 230 V ∆∆ / 460 V ∆
on request 9
1:1.32 e.g. 380 V ∆ / 500 V ∆ /∆
sign according to the table. Other applicable from size 160 only
voltage ratios as well as those 1:√3 e.g. 230 V ∆∆/400 V ∆ /∆ 10% 12
for motors from frame size 225
must be inquired.
Additionally, in the catalogues the efficiency data for full and 3/4–load is indicated.
The procedure for determination of the efficiency is based on the segregated–loss method to IEC 60034–2.
For the values in the output tables the tolerances determined in EN 60034–1 are applicable.
The following motors come design (TEFC, IP 54 or IP 55), with responding to the IEC–range, in
under the CE directive: defined Duty type ”S1”, in the out- ”Standard design”, what can be
All 2– and 4–pole, 400V – 50Hz, put range between 1.1 and 90 kW, interpreted as the
three–phase motors with squirrel without explosion protection, cor- Type ”N” of EN 60034–12.
cage, in closed, self–ventilated
The Loher GmbH also participates means that not only single motors,
in the ”Motor Challenge Program” but the complete drive train are
(MCP) of the European Union, pro- taken into consideration and thus
moting the application of energy– an optimum energy saving is
optimized drive systems. This achieved in the total process.
Type series A
Motor for efficiency class ”eff1” (High–Efficiency Class 1)
As it can be seen from the output Special measures can be a copper For the outputs <4 kW ”eff1” is
tables, the Loher standard motor, cage in the rotor, an improved achieved by a change in type.
Series A ... is of such a high quality sheet metal quality, a larger lami-
that it meets the requirements for nated core as well as a special The efficiencies of all 3 classes for
all types <55 kW ”eff2” and without winding. Due to the higher material the respective output and number
special measures even the high– input the machines are made with of poles are indicated below.
efficiency class ”eff1” for the types deeper end shields and therefore
y55 kW. involving more expenditure accor- Data of the ”eff1” motors on re-
By special measures the types <55 dingly. quest.
kW can be upgraded from ”eff 2” to
”eff1”.
Efficiency classes for 2–pole motors* Efficiency classes for 4–pole motors*
kW eff3 eff2 eff1 kW eff3 eff2 eff1
η η η η η η
1.1 < 76.2 w 76.2 w 82.8 1.1 < 76.2 w 76.2 w 83.8
1.5 < 78.5 w 78.5 w 84.1 1.5 < 78.5 w 78.5 w 85.0
2.2 < 81.0 w 81.0 w 85.6 2.2 < 81.0 w 81.0 w 86.4
5.5 < 85.7 w 85.7 w 88.6 5.5 < 85.7 w 85.7 w 89.2
7.5 < 87.0 w 87.0 w 89.5 7.5 < 87.0 w 87.0 w 90.1
18.5 < 90.0 w 90.0 w 91.8 18.5 < 90.0 w 90.0 w 92.2
* Figures in %
Tolerances to EN 60 034 – 1
Type series A
Type Rated Rated Rated current at Effi- Effi- Effi- Power Rotor Starting Breakd. Starting Moment of Net
output speed ciency ciency ciency factor class torque torque current inertia weight
4/4 3/4 class 1
η η with direct-on starting J
as a multiple of the
Dimension drawings 4
Characteristic curves
ANGA–090LB–02 2.2 2850 4.6 3.7 2.7 81.7 80 2 0.88 HS 5 2.9 3.0 6.4 0.0020 22
ANGA–100LB–02 3 2880 6 4.8 3.5 84.2 83 2 0.88 HS 5 2.7 3.0 7.0 0.0039 35
ANGA–112MB–02 4 2880 7.5 6.0 4.35 85.5 84 2 0.92 HS 5 2.9 3.5 7.2 0.0060 38
ANGA–132SB–02 5.5 2900 10.8 8.7 6.3 86.5 85.5 2 0.88 HS 5 3.0 3.3 6.6 0.0110 53
ANGA–132SD–02 7.5 2910 14.5 11.6 8.4 88 87 2 0.88 HS 5 3.4 3.8 7.4 0.0140 56
ANGA–160MB–02 11 2920 21 16.8 12.2 88.5 88.2 2 0.87 HS 5 2.7 2.9 5.9 0.0364 104
ANGA–160MD–02 15 2920 28 22.4 16.2 90 89.5 2 0.89 HS 5 2.7 3.0 6.0 0.045 106
ANGA–160LB–02 18.5 2920 33 26.5 19.2 91 90 2 0.90 HS 5 2.9 3.0 6.4 0.057 130
ANGA–180MB–02 22 2950 41.5 33.5 24 91 90 2 0.87 HS 5 2.2 3.0 7.0 0.094 162
ANGA–200LG–02 30 2960 52 42 30.5 92.5 91 2 0.91 HS 4 2.4 2.6 7.4 0.182 252
ANGA–225ME–02 45 2965 79 63 45.5 93.5 92.5 2 0.89 HS 5 2.2 2.7 7.1 0.247 305
ANGA–250ME–02 55 2975 99 79 58 94.1 93.2 1 0.86 HS 5 2.3 3.2 7.4 0.45 410
ANGA–280SG–02 75 2980 128 103 75 94.7 94 1 0.90 HS 4 2.2 2.2 6.8 0.88 555
ANGA–280MG–02 90 2975 155 124 90 95 94.5 1 0.90 HS 4 2.0 2.2 6.5 1.03 590
ANGA–315SL–02 110 2980 195 156 113 94.9 94.4 0.87 DS 4 2.1 2.5 6.6 1.55 960
ANGA–315ML–02 132 2980 230 184 134 95.3 94.8 0.87 DS 4 2.0 2.4 6.3 1.85 1020
ANGA–315MN–02 160 2980 280 223 160 95.8 95.1 0.87 DS 4 2.3 2.6 6.7 2.2 1100
ANGA–315LL–02 200 2980 340 270 196 96.2 95.7 0.88 DS 5 2.6 2.7 7.0 2.8 1310
ANGA–315LN–02 250 2980 425 340 245 96.6 96.1 0.89 DS 5 2.7 2.6 7.0 3.5 1450
ANGA–315LN–023 250 2984 416 335 240 96.8 96.2 0.90 HS 4 1.8 2.9 7.4 3.5 1460
ANGA–355LB–022 315 2985 535 428 310 96.5 96 0.89 DS 4 2.2 2.7 7.2 4.7 1580
Type Rated Rated Rated current at Effi- Effi- Effi- Power Rotor Starting Breakd. Starting Moment of Net
output speed ciency ciency ciency factor class torque torque current inertia weight
4/4 3/4 class 1
η η with direct-on starting J
as a multiple of the
Dimension drawings 4
Characteristic curves
ANGA–090LB–04 1.5 1410 3.4 2.72 2.0 79 79 2 0.83 HS 5 2.5 2.7 5.1 0.0036 22
ANGA–100LB–04 2.2 1400 4.8 3.85 2.8 81 81 2 0.84 HS 5 2.2 2.5 5.3 0.0051 35
ANGA–100LD–04 3 1410 6.6 5.3 3.8 82.6 82.5 2 0.82 HS 5 2.5 2.7 5.8 0.0066 38
ANGA–112MB–04 4 1415 8.3 6.6 4.8 84 84 2 0.84 HS 5 2.2 2.6 5.9 0.012 41
ANGA–132SB–04 5.5 1440 11 8.8 6.4 87 87 2 0.85 HS 5 2.3 2.7 6.4 0.022 59
ANGA–160MB–04 11 1460 21 16.8 12.2 90 90 2 0.84 HS 5 2.5 2.4 6.1 0.068 108
ANGA–160LB–04 15 1455 29 23.2 16.8 90.7 90.8 2 0.85 HS 4 2.9 2.3 6.2 0.092 130
ANGA–180MB–04 18.5 1465 34.5 28.0 20 91.3 91.3 2 0.86 DS 5 2.9 2.6 6.8 0.13 162
ANGA–180LB–04 22 1465 41 32.5 24 91.9 91.9 2 0.86 DS 5 2.9 2.5 6.7 0.16 176
ANGA–200LG–04 30 1465 55 44 31.5 92.5 92.6 2 0.87 HS 4 2.4 2.2 6.4 0.25 254
ANGA–225SE–04 37 1470 68 54.5 39.5 93 93 2 0.87 HS 4 2.2 2.2 6.3 0.34 305
ANGA–225ME–04 45 1475 84 67 49 93.2 93.1 2 0.84 HS 5 2.6 2.5 6.7 0.41 335
ANGA–250ME–04 55 1480 97 77 56 94.5 94.5 1 0.88 HS 5 2.4 2.9 7.6 0.79 430
ANGA–280SG–04 75 1480 132 106 77 94.7 94.7 1 0.88 HS 4 2.2 2.5 6.5 1.44 585
ANGA–280MG–04 90 1480 157 126 91 95 95 1 0.88 HS 4 2.3 2.5 6.5 1.66 660
ANGA–315SL–04 110 1486 205 164 119 95 94.9 0.82 DS 4 2.1 2.5 6.2 2.2 960
ANGA–315ML–04 132 1486 240 192 139 95.5 95.3 0.84 DS 4 2.1 2.4 6.3 2.9 1040
ANGA–315MN–04 160 1486 286 228 165 95.8 95.6 0.84 DS 4 2.1 2.4 6.5 3.4 1120
ANGA–315LL–04 200 1486 360 288 208 96 95.9 0.84 DS 4 2.3 2.5 6.6 3.9 1340
ANGA–315LM–042 250 1487 455 364 263 96 95.9 0.83 DS 4 2.6 2.7 6.9 4.7 1420
ANGA–315LM–043 250 1489 455 364 263 96.5 96.3 0.83 HS 3 1.5 2.6 6.8 4.7 1430
ANGA–355LB–04 270 1489 480 384 278 96.2 95.9 0.85 DS 4 2.1 2.5 7.0 6.8 1730
ANGA–355LB–042 315 1489 555 444 322 96.4 96 0.85 DS 4 2.1 2.5 7.1 6.8 1730
ANGA–355LB–043 315 1491 545 436 316 96.6 96.4 0.86 HS 2 1.3 2.5 7.0 6.8 1730
Type series A
Type Rated Rated Rated current at Effi- Power Rotor Starting Breakd. Starting Moment of Net
output speed ciency factor class torque torque current inertia weight
η with direct-on starting J
as a multiple of the
Dimension drawings 4
Characteristic curves
ANGA–090LB–06 1.1 915 3.3 2.65 1.9 72 0.72 HS 4 2.0 2.3 3.3 0.0036 22
ANGA–100LB–06 1.5 940 4.2 3.4 2.45 76.4 0.72 HS 4 2.2 2.5 4.4 0.0086 35
ANGA–112MB–06 2.2 940 5.3 4.3 3.1 80 0.77 HS 3 1.7 2.0 4.2 0.014 38
ANGA–132SB–06 3 955 6.3 5.1 3.7 85.6 0.81 HS 4 2.2 2.7 6.0 0.030 59
ANGA–132MB–06 4 955 8.8 7.0 5.1 84.7 0.81 HS 4 2.3 2.6 5.5 0.033 67
ANGA–132MD–06 5.5 955 11.8 9.5 6.8 86 0.82 HS 5 2.6 2.6 6.0 0.045 72
ANGA–160MB–06 7.5 970 16 12.8 9.2 87.9 0.81 HS 5 2.4 2.8 7.0 0.100 108
ANGA–160LB–06 11 965 22.5 18 13 88.8 0.82 HS 5 2.4 2.8 6.4 0.134 130
ANGA–180LB–06 15 965 30.5 24.5 18 90 0.8 HS 4 1.6 2.6 5.5 0.13 176
ANGA–200LG–06 18.5 970 36 29 21 90.8 0.83 DS 4 2.2 2.0 5.0 0.33 262
ANGA–250ME–06 37 985 73 58.5 42 92.5 0.8 DS 4 2.3 2.2 6.6 1.00 420
ANGA–280MG–06 55 985 100 80 58 93.4 0.86 DS 4 2.1 2.4 6.2 2.3 670
ANGA–315SL–06 75 990 136 110 79 94.6 0.85 DS 4 2.2 2.3 6.6 3.3 960
ANGA–315ML–06 90 990 160 130 93 94.8 0.86 DS 4 2.1 2.3 6.7 4.0 1030
ANGA–315MM–06 110 990 195 156 113 95.2 0.87 DS 4 2.3 2.3 7.0 4.9 1110
ANGA–315MN–062 132 990 229 183 132 95.3 0.87 DS 4 2.4 2.2 6.9 4.9 1110
ANGA–315LL–06 160 990 278 222 161 95.5 0.87 DS 4 2.4 2.3 7.0 6.0 1300
ANGA–315LM–062 200 990 355 284 206 96 0.84 DS 4 2.4 2.5 6.5 6.8 1410
ANGA–315LM–063 200 993 345 276 200 96.1 0.87 HS 3 1.7 2.5 6.8 6.8 1420
ANGA–355LB–06 250 993 445 356 257 96.2 0.85 HS 2 1.1 2.5 6.3 9.1 1730
Type Rated Rated Rated current at Effi- Power Rotor Starting Breakd. Starting Moment of Net
output speed ciency factor class torque torque current inertia weight
η with direct-on starting J
as a multiple of the
400V 500V 690V rated rated rated approx.
kW min–1 A A A % cosϕ torque torque current kg m2 kg
ANGA–090LB–08 0.55 675 1.90 1.5 1.1 67 0.65 HS 4 1.6 1.9 2.7 0.0036 22
ANGA–100LB–08 0.75 695 2.2 1.8 1.3 69 0.71 HS 4 2.0 2.1 3.9 0.0086 35
ANGA–100LD–08 1.1 695 3.2 2.5 1.8 70 0.73 HS 4 1.7 2.0 3.5 0.0100 38
ANGA–112MB–08 1.5 700 4.2 3.3 2.4 75 0.72 HS 4 1.9 2.1 3.7 0.0140 40
ANGA–132SB–08 2.2 715 5.6 4.5 3.2 82 0.70 HS 4 2.0 2.3 4.4 0.032 59
ANGA–132MB–08 3 715 7.5 6.0 4.4 83 0.70 HS 4 2.1 2.3 4.5 0.045 72
ANGA–160MB–08 4 715 9.2 7.4 5.3 83.5 0.76 HS 3 1.7 2.1 4.3 0.092 104
ANGA–160MD–08 5.5 725 12.9 10.3 7.5 85 0.74 HS 3 1.8 2.4 5.3 0.12 108
ANGA–160LB–08 7.5 720 17.3 13.7 10 86 0.74 HS 4 2.1 2.4 5.4 0.16 130
ANGA–180LB–08 11 720 23.3 18.6 13.4 87.5 0.78 HS 4 1.8 2.6 5.0 0.19 176
ANGA–200LG–08 15 720 32.5 26 18.7 89 0.76 HS 4 1.8 2.1 4.0 0.33 258
ANGA–225SE–08 18.5 725 39 31 22.5 89.5 0.77 HS 4 2.4 2.4 5.0 0.46 305
ANGA–225ME–08 22 730 48 38.5 27.5 90.5 0.73 HS 5 3.0 3.0 5.1 0.55 325
ANGA–250ME–08 30 735 58 46.5 33.5 91.5 0.80 HS 4 1.9 2.2 5.3 1.0 415
ANGA–315SL–08 55 740 110 87 63.5 94.5 0.78 DS 4 1.6 2.0 6.0 3.3 950
ANGA–315ML–08 75 740 146 117 85 94.4 0.79 DS 4 1.6 2.5 5.8 4.0 1030
ANGA–315MM–08 90 740 175 140 102 94.4 0.79 DS 4 1.7 2.0 5.8 4.8 1110
ANGA–315MN–082 110 740 216 173 125 94.4 0.79 DS 4 1.7 2.0 5.8 4.8 1110
ANGA–315LL–08 132 740 255 205 147 94.5 0.79 DS 4 1.6 2.0 5.8 6.0 1300
ANGA–315LM–082 160 740 308 247 179 95 0.78 DS 4 1.6 2.0 5.1 6.8 1410
ANGA–315LM–083 160 742 305 245 177 95.2 0.79 HS 2 1.4 2.8 5.0 6.8 1420
ANGA–355LB–083 200 740 370 295 214 95.5 0.82 HS 2 1.3 2.2 5.5 14.7 1730
Type series A
Type Rated Rated Rated current at Effi- Power Rotor Starting Breakd. Starting Moment of Net
output speed ciency factor class torque torque current inertia weight
η with direct-on starting J
as a multiple of the
400V 500V 690V rated rated rated approx.
kW min–1 A A A % cosϕ torque torque current kg m2 kg
ANGA–100LD–10 0.75 550 2.85 2.3 1.65 67 0.59 HS 4 2.0 2.1 3.0 0.010 38
ANGA–112MB–10 1.1 560 4.2 3.4 2.4 68 0.58 HS 3 1.7 2.1 3.0 0.017 40
ANGA–132SB–10 1.5 570 4.3 3.5 2.5 77 0.65 HS 3 1.6 2.0 3.3 0.033 59
ANGA–132MB–10 2.2 570 7.1 5.7 4.1 78 0.62 HS 3 1.8 2.3 3.5 0.04 72
ANGA–160MB–10 3 570 8.0 6.4 4.6 81 0.67 HS 4 1.9 2.5 4.4 0.09 104
ANGA–160MD–10 4 570 10.3 8.2 6.0 81 0.70 HS 4 2.0 2.5 4.7 0.12 108
ANGA–160LB–10 5.5 575 13.6 10.9 7.9 83.5 0.70 HS 3 1.8 2.2 4.9 0.16 130
ANGA–180LB–10 7.5 575 18 14.5 10.4 84 0.74 HS 3 1.8 2.9 4.9 0.19 176
ANGA–225ME–10 18.5 580 42 33 24 86.5 0.74 HS 3 1.5 2.6 4.8 0.55 325
ANGA–315ML–10 55 590 105 83 60 93.5 0.81 HS 3 1.5 2.4 5.9 5.1 1030
ANGA–315MN–10 75 590 143 113 83 94 0.82 HS 3 1.3 2.2 4.9 4.85 1110
ANGA–315LL–10 90 590 165 132 96 94 0.83 HS 3 1.1 2.2 4.9 6.0 1300
ANGA–315LM–10 110 590 205 165 120 94.1 0.82 HS 2 1.1 2.2 4.9 6.8 1410
ANGA–355MD–10 132 590 249 200 145 94.5 0.81 HS 2 1.2 2.3 5.6 11.4 1670
ANGA–355LB–10 160 590 300 241 175 94.6 0.81 HS 2 1.2 2.3 5.9 13.8 1900
Type Rated Rated Rated current at Effi- Power Rotor Starting Breakd. Starting Moment of Net
output speed ciency factor class torque torque current inertia weight
η with direct-on starting J
as a multiple of the
400V 500V 690V rated rated rated approx.
kW min–1 A A A % cosϕ torque torque current kg m2 kg
ANGA–100LD–12 0.55 450 2.6 2.1 1.5 59 0.55 HS 4 1.8 1.9 2.5 0.010 38
ANGA–112MB–122 0.75 440 3.5 2.7 2.0 60 0.56 HS 4 1.8 2.0 2.6 0.017 40
ANGA–132SB–12 1.1 470 4 3.2 2.3 70.6 0.56 HS 4 1.8 1.9 3.1 0.033 59
ANGA–132MB–12 1.5 470 5.4 4.3 3.1 74 0.57 HS 4 1.8 2.0 3.2 0.045 72
ANGA–160MB–12 2.2 465 6.8 5.5 3.9 78 0.62 HS 3 1.6 2.4 3.5 0.070 104
ANGA–160MD–12 3 465 8.8 7 5.1 78 0.65 HS 3 1.7 2.4 3.9 0.096 108
ANGA–160LB–12 4 465 10.9 8.7 6.3 79 0.67 HS 3 1.7 2.4 3.9 0.12 130
ANGA–180LB–12 5.5 465 15.2 12.2 8.8 79 0.67 HS 4 1.8 2.4 3.9 0.16 176
ANGA–200LG–12 7.5 470 20.4 16.3 11.8 84 0.64 HS 3 1.6 2.2 4.0 0.33 262
ANGA–225SE–12 11 480 28 22.5 16.2 86 0.66 HS 3 1.6 2.4 4.1 0.5 305
ANGA–225ME–12 15 480 39 31 22.5 85.5 0.66 HS 3 1.7 2.5 4.2 0.56 325
ANGA–250ME–12 18.5 485 41.5 33 24 89 0.73 HS 3 1.5 2.4 5.0 1.0 425
ANGA–280SG–12 22 485 49.5 40 28.5 90 0.71 DS 4 1.9 1.9 5.0 2.2 585
ANGA–315SL–12 37 490 82 65 47.5 91.5 0.70 HS 3 1.3 2.1 4.8 4.5 950
ANGA–315MN–12 55 485 118 94 68 92.5 0.70 HS 2 1.2 2.1 5.0 6.0 1110
ANGA–315LL–12 75 490 159 127 92 92.5 0.70 HS 2 1.1 1.9 5.0 7.5 1300
ANGA–315LM–12 90 492 188 150 109 93.4 0.70 HS 2 0.9 2.0 4.3 8.5 1410
ANGA–355MD–12 110 492 230 185 135 93.7 0.74 HS 2 0.9 2.0 4.3 12 1670
ANGA–355LB–12 140 492 290 232 168 94 0.74 HS 2 0.9 2.0 4.3 14.5 1900
Type series A
Type Rated Rated Rated current at Effi- Effi- Effi- Power Rotor Starting Breakd. Starting Moment Net
output speed ciency ciency ciency factor class torque torque current of inertia weight
4/4 3/4 class 1
η η with direct-on starting
as a multiple of the J
Dimension drawings 4
Characteristic curves
ANGA–090LB–02 2.2 2850 4.5 – 4.7 81.7 80 2 0.88 HS 5 2.9 3.0 6.4 0.0020 22
ANGA–112MB–02 4 2880 7.8 – 7.5 85.5 84 2 0.92 HS 5 2.9 3.5 7.2 0.0060 38
ANGA–132SB–02 5.5 2900 10.9 – 11 86.5 85.5 2 0.88 HS 5 3.0 3.3 6.6 0.0110 53
ANGA–160MB–02 11 2920 22 – 20 88.5 88.2 2 0.87 HS 5 2.7 2.9 5.9 0.0364 104
ANGA–160LB–02 18.5 2920 34.5 – 32 91 90 2 0.90 HS 5 2.9 3.0 6.4 0.057 130
ANGA–225ME–02 45 2965 82 – 78 93.5 92.5 2 0.89 HS 5 2.2 2.7 7.1 0.247 305
ANGA–250ME–02 55 2975 101 – 101 94.1 93.2 1 0.86 HS 5 2.3 3.2 7.4 0.45 410
ANGA–280SG–02 75 2980 134 – 125 94.7 94 1 0.90 HS 4 2.2 2.2 6.8 0.88 555
ANGA–280MG–02 90 2975 160 – 150 95 94.5 1 0.90 HS 4 2.0 2.2 6.5 1.03 590
ANGA–315SL–022 110 2980 205 – 186 94.9 94.4 0.87 DS 4 2.1 2.5 6.6 1.55 960
ANGA–315ML–02 132 2980 245 – 220 95.3 94.8 0.87 DS 4 2.0 2.4 6.3 1.85 1020
ANGA–315MN–02 160 2980 295 – 268 95.8 95.1 0.87 DS 4 2.3 2.6 6.7 2.2 1100
ANGA–315LL–02* 200 2980 360 – 330 96.2 95.7 0.88 DS 5 2.6 2.7 7.0 2.8 1310
ANGA–315LN–02 250 2980 445 – 405 96.6 96.1 0.89 DS 5 2.7 2.6 7.0 3.5 1450
ANGA–315LN–023 250 2984 440 – 400 96.8 96.1 0.90 HS 4 1.8 2.9 7.4 3.5 1460
ANGA–355LB–022 315 2985 560 – 510 96.5 96 0.89 DS 4 2.2 2.7 7.2 4.7 1580
Type Rated Rated Rated current at Effi- Effi- Effi- Power Rotor Starting Breakd. Starting Moment Net
output speed ciency ciency ciency factor class torque torque current of inertia weight
4/4 3/4 class 1
η η with direct-on starting
as a multiple of the J
Dimension drawings 4
Characteristic curves
ANGA–090LB–04 1.5 1410 3.4 – 3.5 79 79 2 0.83 HS 5 2.5 2.7 5.1 0.0036 22
ANGA–100LD–04 3 1410 6.5 – 6.7 82.6 82.5 2 0.82 HS 5 2.5 2.7 5.8 0.0066 38
ANGA–160LB–04 15 1455 30 – 28 90.7 90.8 2 0.85 HS 4 2.9 2.3 6.2 0.092 130
ANGA–180MB–04 18.5 1465 35.5 – 34 91.3 91.3 2 0.86 DS 5 2.9 2.6 6.8 0.13 162
ANGA–180LB–04 22 1465 42 – 40 91.9 91.9 2 0.86 DS 5 2.9 2.5 6.7 0.16 176
ANGA–200LG–04 30 1465 57 – 53 92.5 92.6 2 0.87 HS 4 2.4 2.2 6.4 0.25 254
ANGA–225ME–04 45 1475 87 – 83 93.2 93.1 2 0.84 HS 5 2.6 2.5 6.7 0.41 335
ANGA–250ME–04 55 1480 100 – 95 94.5 94.5 1 0.88 HS 5 2.4 2.9 7.6 0.79 425
ANGA–280SG–04 75 1480 137 – 125 94.7 94.7 1 0.88 HS 4 2.2 2.5 6.5 1.44 585
ANGA–280MG–04 90 1480 169 – 152 95 95 1 0.88 HS 4 2.3 2.5 6.5 1.66 660
ANGA–315SL–04 110 1486 210 – 205 95 94.9 0.82 DS 4 2.1 2.5 6.2 2.2 960
ANGA–315ML–04 132 1486 250 – 230 95.5 95.3 0.84 DS 4 2.1 2.4 6.3 2.9 1040
ANGA–315MN–04 160 1486 305 – 275 95.8 95.6 0.84 DS 4 2.1 2.4 6.5 3.4 1120
ANGA–315LL–04 200 1486 375 – 345 96 95.9 0.84 DS 4 2.3 2.5 6.6 3.9 1340
ANGA–315LM–042 250 1487 475 – 430 96 95.9 0.83 DS 4 2.6 2.7 6.9 4.7 1420
ANGA–315LM–043 250 1489 475 – 430 96.5 96.3 0.83 HS 3 1.5 2.6 6.8 4.7 1430
ANGA–355LB–04 270 1489 505 – 460 96.2 95.9 0.85 DS 4 2.1 2.5 7.0 6.8 1730
ANGA–355LB–042 315 1489 590 – 530 96.4 96 0.85 DS 4 2.1 2.5 7.1 6.8 1730
ANGA–355LB–043 315 1491 570 – 530 96.6 96.4 0.86 HS 2 1.3 2.5 7.0 6.8 1730
Type series A
Type Rated Rated Rated current at Efficiency Power Rotor Starting Breakd. Starting Moment Net
output speed η factor class torque torque current of inertia weight
with direct-on starting
as a multiple of the J
Dimension drawings 4
Characteristic curves
ANGA–090LB–06 1.1 915 3.3 – 3.5 72 0.72 HS 4 2.0 2.3 3.3 0.0036 22
ANGA–100LB–06 1.5 940 4 – 4.4 76.4 0.72 HS 4 2.2 2.5 4.4 0.0086 35
ANGA–112MB–06 2.2 940 5.2 – 5.4 80 0.77 HS 3 1.7 2.0 4.2 0.014 38
ANGA–132SB–06 3 955 6.6 – 6.3 85.6 0.81 HS 4 2.2 2.7 6.0 0.03 59
ANGA–132MB–06 4 955 8.8 – 9.1 84.7 0.81 HS 4 2.3 2.6 5.5 0.033 67
ANGA–132MD–06 5.5 955 12.2 – 11.6 86 0.82 HS 5 2.6 2.6 6.0 0.045 72
ANGA–160MB–06 7.5 970 16.3 – 16 87.9 0.81 HS 5 2.4 2.8 7.0 0.100 108
ANGA–200LG–06 18.5 970 37.5 – 35 90.8 0.83 DS 4 2.2 2.0 5.0 0.33 262
ANGA–280MG–06 55 985 104 – 96 93.4 0.86 DS 4 2.1 2.4 6.2 2.3 670
ANGA–315SL–06 75 990 142 – 131 94.6 0.85 DS 4 2.2 2.3 6.6 3.3 960
ANGA–315ML–06 90 990 168 – 154 94.8 0.86 DS 4 2.1 2.3 6.7 4.0 1030
ANGA–315MM–06 110 990 205 – 188 95.2 0.87 DS 4 2.3 2.3 7.0 4.9 1110
ANGA–315MN–06 132 990 240 – 224 95.3 0.87 DS 4 2.4 2.2 6.9 4.9 1110
ANGA–315LL–06 160 990 290 – 268 95.5 0.87 DS 4 2.4 2.3 7.0 6.0 1300
ANGA–315LM–062 200 990 370 – 335 96.0 0.84 DS 4 2.4 2.5 6.5 6.8 1410
ANGA–315LM–063 200 993 365 – 330 96.1 0.87 HS 3 1.7 2.5 6.8 6.8 1420
ANGA–355LB–06 250 993 467 – 436 96.2 0.85 HS 2 1.1 2.5 6.3 9.1 1730
440 – 60 Hz
Three-phase motors with squirrel cage Class F insulation, Utilization to B
Totally enclosed fan-cooled, enclosure IP 55
Types: ANGA Number of poles: 2 – 60 Hz
Type series A
Type Rated Rated Rated Efficiency Power Rotor Starting Breakd. Starting Moment of Net weight
output speed current η factor class torque torque current inertia
at with direct-on starting J
as a multiple of the
Dimension drawings 4
Characteristic curves
ANGA–112MB–02 4.8 3480 8.2 85.5 0.91 HS 5 3.0 3.6 7.3 0.0060 38
ANGA–132SB–02 6.5 3500 11.8 85.5 0.87 HS 5 3.0 3.2 6.7 0.0110 53
ANGA–160MB–02 13.2 3520 22 90.5 0.88 HS 5 2.5 2.9 6.2 0.0364 104
ANGA–160MD–02 18 3520 30.5 90.5 0.87 HS 5 3.0 3.1 6.3 0.045 106
ANGA–160LB–02 22 3520 35.5 91.2 0.89 HS 5 2.9 2.9 6.8 0.057 130
ANGA–180MB–02 26 3550 46.5 91.2 0.86 HS 5 2.1 2.8 6.8 0.094 162
ANGA–280SG–02 86 3575 138 94.7 0.87 HS 4 2.1 2.1 6.8 0.88 555
ANGA–280MG–02 110 3575 176 95 0.87 HS 4 2.0 2.3 6.0 1.03 590
ANGA–315SL–02 120 3577 190 95 0.88 DS 4 1.9 2.5 6.5 1.55 960
ANGA–315ML–02 143 3575 220 95.5 0.89 DS 4 2.0 2.4 6.5 1.85 1020
ANGA–315MN–02 185 3576 285 95.6 0.89 DS 4 2.4 2.5 6.9 2.2 1100
ANGA–315LL–02 220 3580 335 96.2 0.90 DS 4 2.6 2.6 7.2 2.8 1310
ANGA–315LN–022 275 3580 415 96.6 0.90 DS 4 2.6 2.5 7.1 3.5 1450
ANGA–315LN–023 275 3585 408 96.9 0.90 HS 3 1.5 2.7 7.0 3.5 1460
ANGA–355LB–02 345 3580 535 96.7 0.88 DS 4 2.2 2.6 7.4 4.7 1580
Type series A
Type Rated Rated Rated Efficiency Power Rotor Starting Breakd. Starting Moment of Net weight
output speed current η factor class torque torque current inertia
at with direct-on starting J
as a multiple of the
Dimension drawings 4
Characteristic curves
ANGA–100LB–04 2.6 1700 5.3 81.5 0.84 HS 5 2.2 2.4 5.3 0.0051 35
ANGA–160LB–04 17 1750 29.5 91.2 0.84 HS 5 2.9 2.4 6.3 0.092 130
ANGA–250ME–04 63 1780 103 94.5 0.85 HS 5 2.3 2.6 7.2 0.80 425
ANGA–280SG–04 85 1780 138 94.8 0.85 HS 5 2.3 2.6 6.6 1.44 585
ANGA–280MG–04 100 1780 161 95 0.87 HS 5 2.3 2.5 6.6 1.66 660
ANGA–315SL–04 126 1785 208 95.1 0.84 DS 4 2.2 2.3 6.5 2.2 960
ANGA–315ML–04 150 1785 245 95.5 0.85 DS 4 2.1 2.5 6.5 2.9 1040
ANGA–315MN–04 180 1788 290 96 0.85 DS 4 2.2 2.5 7.0 3.4 1120
ANGA–315LL–04 220 1787 360 96 0.84 DS 4 2.3 2.5 6.9 3.9 1340
ANGA–315LM–042 275 1787 450 96 0.84 DS 4 2.4 2.5 6.9 4.7 1420
ANGA–315LM–043 275 1790 445 96.4 0.84 HS 3 1.5 2.6 7.0 4.7 1430
ANGA–355LB–04 300 1790 475 96.2 0.86 DS 4 1.9 2.2 6.8 6.8 1730
ANGA–355LB–042 340 1790 545 96.4 0.85 DS 4 2.0 2.4 7.0 6.8 1730
ANGA–355LB–043 350 1792 560 96.7 0.85 HS 2 1.2 2.6 7.1 6.8 1730
Type Rated Rated Rated Efficiency Power Rotor Starting Breakd. Starting Moment of Net weight
output speed current η factor class torque torque current inertia
at with direct-on starting J
as a multiple of the
Dimension drawings 4
Characteristic curves
ANGA–090LB–06 1.32 1100 3.3 73.5 0.75 HS 4 2.0 2.3 3.8 0.0036 22
ANGA–100LB–06 1.8 1140 4.5 78.0 0.74 HS 4 2.3 2.5 4.9 0.0086 35
ANGA–112MB–06 2.6 1150 5.8 83.0 0.73 HS 3 1.8 2.1 4.9 0.014 38
ANGA–132SB–06 3.6 1150 6.9 86.0 0.81 HS 4 2.1 2.6 6.0 0.033 59
ANGA–132MB–06 4.8 1150 9.3 85.0 0.81 HS 4 2.3 2.6 6.0 0.033 67
ANGA–132MD–06 6.6 1150 12.8 86.5 0.80 HS 5 2.4 2.6 6.0 0.045 72
ANGA–160MB–06 9.0 1160 16.6 88.5 0.81 HS 5 2.2 2.7 6.5 0.100 108
ANGA–160LB–06 13.2 1160 23.5 89.5 0.83 HS 5 2.3 2.6 6.9 0.134 130
ANGA–180LB–06 18.0 1165 34 91.0 0.79 HS 4 1.5 2.5 5.8 0.13 176
ANGA–200LG–06 22 1170 40.5 91.5 0.79 DS 4 2.4 2.2 5.3 0.33 262
ANGA–200LJ–06 26 1170 48.5 91.6 0.79 DS 4 2.5 2.3 5.4 0.33 282
ANGA–280MG–06** 63 1185 103 93.5 0.86 DS 4 2.1 2.3 6.2 2.3 670
ANGA–315SL–06 85 1189 140 95.0 0.85 DS 4 2.2 2.3 6.7 3.3 960
ANGA–315ML–06 105 1189 170 95.0 0.86 DS 4 2.0 2.3 6.9 4.0 1030
ANGA–315MM–06 132 1189 215 95.5 0.87 DS 4 2.1 2.3 7.1 4.9 1110
ANGA–315MN–062 150 1188 240 95.5 0.86 DS 4 2.0 2.2 7.1 4.9 1110
ANGA–315LL–06 175 1189 285 95.8 0.85 DS 5 2.2 2.4 7.2 6.0 1300
ANGA–315LM–062 220 1189 355 96.0 0.85 DS 4 2.0 2.3 7.0 6.8 1410
ANGA–315LM–063 220 1192 345 96.2 0.86 HS 3 1.6 2.5 7.0 6.8 1420
ANGA–355LB–063 280 1192 440 96.6 0.86 HS 2 1.1 2.4 6.5 8.9 1730
Type series A
Type Rated output Rated speed Rated current Rotor class Starting Starting Moment Net
torque current of inertia weight
at 400V with direct-on starting J
as a multiple of the
kW min–1 A rated torque rated current kg m2 approx.
kg
Type Rated output Rated speed Rated current Rotor class Starting Starting Moment Net
torque current of inertia weight
at 400V with direct-on starting J
as a multiple of the
kW min–1 A rated torque rated current kg m2 approx.
kg
Type series A
Type Rated output Rated speed Rated current Rotor class Starting Starting Moment Net
torque current of inertia weight
at 400V with direct-on starting J
as a multiple of the
kW min–1 A rated torque rated current kg m2 approx.
kg
Type Rated output Rated speed Rated current Rotor class Starting Starting Moment Net
torque current of inertia weight
at 400V with direct-on starting J
as a multiple of the
kW min–1 A rated torque rated current kg m2 approx.
kg
Type series A
Type Rated output Rated speed Rated current Rotor class Starting Starting Moment Net
torque current of inertia weight
at 400V with direct-on starting J
as a multiple of the
kW min–1 A rated torque rated current kg m2 approx.
kg
Type Rated output Rated speed Rated current Rotor class Starting Starting Moment Net
torque current of inertia weight
at 400V with direct-on starting J
as a multiple of the
kW min–1 A rated torque rated current kg m2 approx.
kg
Type series A
Type Rated output Rated speed Rated current Rotor class Starting Starting Moment Net
torque current of inertia weight
at 400V with direct-on starting J
as a multiple of the
kW min–1 A rated torque rated current kg m2 approx.
kg
Type Rated output Rated speed Rated current Rotor class Starting Starting Moment Net
torque current of inertia weight
at 400V with direct-on starting J
as a multiple of the
kW min–1 A rated torque rated current kg m2 approx.
kg
Type series A
Type Rated output Rated speed Rated current Rotor class Starting Starting Moment Net
torque current of inertia weight
at 400V with direct-on starting J
as a multiple of the
kW min–1 A rated torque rated current kg m2 approx.
kg
Type Rated output Rated speed Rated current Rotor class Starting Starting Moment Net
torque current of inertia weight
at 400V with direct-on starting J
as a multiple of the
kW min–1 A rated torque rated current kg m2 approx.
kg
Type series A
IM B3 IM B3 IM B5 IM B35 IM B14 1 IM B34 1
IM V5 IM V5 IM V1 IM V15 IM V18 IM V5/IM V18
IM V6 IM V6 IM V3 IM V36 IM V19 IM V6/IM V19
Frame size Design
Terminal box Terminal box Terminal box Terminal box Terminal box Terminal box
on top side–mounted on top on top on top on top
1 In accordance with EN 50347 only the flanges up to the size FT 215 standardized
For the mounting types IM B3, IM B5 and IM B35 with terminal box on top the single dimension drawings are avai-
lable in the output tables of the CD version (not in the printed version of this technical list).
Standard single dimension drawings in DXF format see Appendix (Page 250, 251)
Structural description
Type series A
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment of Cooling- Net
output speed current ciency factor class torque torque current inertia water weight
at η req ire
require-
with direct-on starting J ments 1
400V as a multiple of the
rated rated rated approx. approx.
kW min–1 A % cosϕ torque torque current kg m2 l/min kg
Higher outputs, other voltages, frequencies and other output assignments to the frame sizes on request.
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment of Cooling- Net
output speed current ciency factor class torque torque current inertia water weight
at η with direct-on starting J req ire
require-
400V ments 1
as a multiple of the
rated rated rated approx. approx.
kW min–1 A % cosϕ torque torque current kg m2 l/min kg
Higher outputs, other voltages, frequencies and other output assignments to the frame sizes on request.
200 – 280
MLA00–0037 MLA00–0038
Sh. 2 Sh. 2
355
MLA00–0037 MLA00–0038
Sh. 2 Sh. 2
Mechanical construction
Type series A
Brake torque 32 to 400 Nm Special features of the
Modern manufacturing technology spring–loaded single–disk brake
made the brake motor to be a spe-
cial driving component in enginee- Brakes comply with the DIN
ring technology. Higher working VDE 0580 standard
speeds at switching operation Holding brake due to spring
simultaneously with a reduction of pressure actuation
non–productive waiting times are Microswitch for air gap control
required for rationalization of as option (from brake size 12)
driven machines. The brake motor Brake torque active in current-
allows short stopping times of the less condition (closed circuit
rotating masses even at a high brake)
switching frequency. Another im- Robust and simple design
portant field of application of the High operational safety due to
brake motors is the holding of long service life
loads and restoring torques. Brakes are designed for Class F
Our brake motor consists of a insulation
three–phase asynchronous motor Large working air gap makes an
which is connected with one brake automatic readjustment unne-
as a unit. With its compact design cessary
the brake motor is an ideal compo- In case of an extremely high
nent in drive technology wherever wear the working air gap is ea-
possibly short stalling times are sily readjustable
required. At the same time the Brake torque adjustment bet-
known advantages of the three– ween 100% and approx. 60%
phase asynchronous motor with possible
squirrel cage are still given. Manual release with automatic
This brake motor is suitable for restoring mechanism
various customer–specific applica- Corrosion–proof brakes
tions. It can also be used for swit- Asbestosfree friction linings
ching operation at a high switching Brakes are designed for a 100%
frequency, high deceleration accu- duty cycle
racy and long service life as well
as a power brake motor with a high Detailed description also see
working capacity. Suitable brake ”Electrical connection”.
size is to be selected according to
the application. The brake motor is The standard voltages for the
also perfectly suitable to drive brake coils are: 24V, 103V, 180V,
hoisting units and travelling equip- 205V, +5%–10%.
ment. Ratio brake control voltage/type of
rectifier/brake coil voltage see
”Connection diagrams”
Antifriction bearings
Sectional view
Brake motor Type ABGA–200 with spring–loaded single–disk brake
Antifriction bearings
Grease life with permanent lubrication Grease quantity in gram-
Frame size Number DE–bearing NDE–bearing in operating hours at rated speed: mes per bearing,
of poles Grease filling for permanent
3000 min–1 1500 to 750 min–1 lubrication
lubrication.
Type series A
Brake control voltage 230V X
Type Rated Rated Charac- Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Fre- Weight
output torque teristic speed current ciency factor class torque torque current of inertia quency
MN torque at η with direct-on starting as a Motor + of no-
400V multiple of the Brake load
JM starts
rated rated rated hsm
torque torque current
TI Tb approx.
kW Nm Nm min–1 A % cos ϕ MA/MN Mk/MN IA/I N kgm2 h–1 kg
ABGA-090LB-02 2.2 7.5 32 2850 4.6 81.7 0.88 HS 5 2.9 3.0 6.4 0.00226 2700 27
ABGA-100LB-02 3 9.9 32 2880 6 84.2 0.88 HS 5 2.7 3.0 7.0 0.0040 1200 39
ABGA-112MB-02 4 13.3 32 2880 7.5 85.5 0.92 HS 5 2.9 3.5 7.2 0.0067 1100 44
ABGA-132SB-02 5.5 18.1 80 2900 10.8 86.5 0.88 HS 5 3.0 3.3 6.6 0.0135 900 60
ABGA-132SD-02 7.5 24.6 80 2910 14.5 88 0.88 HS 5 3.4 3.8 7.4 0.0155 900 63
ABGA-160MB-02 11 36 150 2920 21, 88.5 0.87 HS 5 2.7 2.9 5.9 0.0371 700 123
ABGA-090LB-04 1.5 10.1 32 1410 3.4 79 0.83 HS 5 2.5 2.7 5.1 0.00336 4500 27
ABGA-100LB-04 2.2 15.0 32 1400 4.8 81 0.84 HS 5 2.2 2.5 5.3 0.00486 4500 39
ABGA-100LD-04 3 20.4 32 1410 6.5 82.6 0.82 HS 5 2.5 2.7 5.8 0.00586 4000 42
ABGA-112MB-04 4 26.9 60 1415 8.3 84 0.84 HS 5 2.2 2.6 5.9 0.0140 3600 46
ABGA-132SB-04 5.5 36.5 80 1440 11, 87 0.85 HS 5 2.3 2.7 6.4 0.0221 2100 69
ABGA-132MB-04 7.5 49.5 150 1445 15, 88 0.85 HS 5 2.6 3.0 7.2 0.0309 2000 90
ABGA-160MB-04 11 72 150 1460 21 90 0.84 HS 5 2.5 2.4 6.1 0.068 1500 130
ABGA-160LB-04 15 99 260 1455 29 90.7 0.85 HS 4 2.5 2.3 6.2 0.095 1300 155
ABGA-180MB-04 18.5 120 260 1465 34.5 91.3 0.86 DS 5 2.9 2.6 6.8 0.135 1200 182
ABGA-180LB-04 22 143 260 1465 41, 91.9 0.86 DS 5 2.9 2.5 6.7 0.1673 1050 200
ABGA-200LG-04 30 195 400 1465 55, 92.5 0.87 HS 4 2.4 2.2 6.4 0.26 950 295
ABGA-225SE-04 37 241 400 1470 68 93 0.87 HS 4 2.2 2.2 6.3 0.37 700 335
ABGA-225ME-04 45 292 400 1475 84 93.2 0.84 HS 5 2.6 2.5 6.7 0.42 550 365
ABGA-250ME-04 55 355 400 1480 97 94.5 0.88 HS 5 2.4 2.9 7.6 0.81 350 465
Higher outputs, other voltages, frequencies and number of poles upon request.
Type Rated Rated Charac- Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Fre- Weight
output torque teristic speed current ciency factor class torque torque current of inertia quency
MN torque at η with direct-on starting as a Motor + of no-
400V multiple of the Brake load
JM starts
rated rated rated hsm
torque torque current
TI Tb approx.
kW Nm Nm min–1 A % cos ϕ MA/MN Mk/MN IA/I N kgm2 h–1 kg
ABGA-090LB-06 1.1 11.5 32 915 3.3 72 0.72 HS 4 2.0 2.3 3.3 0.0036 4000 27
ABGA-100LB-06 1.5 15.0 32 940 4.2 76.4 0.7 HS 4 2.2 2.5 4.4 0.0072 4000 40
ABGA-112MB-06 2.2 22.2 60 940 5.3 80 0.77 HS 3 1.7 2.0 4.2 0.015 4000 46
ABGA-132SB-06 3 29.8 80 955 6.3 85.6 0.81 HS 4 2.2 2.7 6.0 0.030 4000 66
ABGA-132MB-06 4 40 80 955 8.8 84.7 0.81 HS 4 2.3 2.6 5.5 0.033 3000 83
ABGA-132MD-06 5.5 55 150 955 11.8 86 0.82 HS 5 2.6 2.6 6.0 0.04 3000 92
ABGA-160MB-06 7.5 74 150 970 16 87.9 0.81 HS 5 2.4 2.8 7.0 0.11 1800 126
ABGA-160LB-06 11 109 260 965 22.5 88.8 0.82 HS 5 2.4 2.8 6.4 0.135 1700 155
ABGA-180LB-06 15 148 260 965 30.5 90 0.80 HS 4 1.6 2.6 5.5 0.14 1500 186
ABGA-200LG-06 18.5 182 400 970 36, 90.8, 0.83 DS 4 2.2 2.0 5.0 0.31 1350 290
ABGA-200LJ-06 22 218 400 965 44 90.9, 0.81 DS 4 2.3 2.0 5.0 0.31 1200 295
ABGA-225ME-06 30 294 400 975 58 91.8 0.83 DS 5 2.6 2.3 5.8 0.57 1000 345
ABGA-250ME-06 37 359 400 985 73 92.5 0.80 DS 4 2.3 2.2 6.6 1.02 450 460
ABGA-100LB-08 0.75 10.3 32 695 2.4 69 0.70 HS 4 2.0 2.0 3.8 0.0090 5000 42
ABGA-100LD-08 1.1 15.0 32 700 3.3 69 0.70 HS 4 2.0 2.0 3.7 0.0012 4800 43
ABGA-112MB-08 1.5 20.4 60 700 4.2 75 0.72 HS 4 1.8 2.1 3.7 0.015 4500 48
ABGA-132SB-08 2.2 29.4 80 715 5.6 81.5 0.70 HS 4 2.0 2.3 4.4 0.033 4000 66
ABGA-160MB-08 4 53.4 150 715 9.25 85 0.75 HS 3 1.6 2.5 4.3 0.1 2600 122
ABGA-160MD-08 5.5 72.4 150 725 13.3 85 0.74 HS 3 1.9 2.5 4.8 0.13 2300 124
ABGA-160LB-08 7.5 99.5 260 720 17.2 86 0.74 HS 4 2.1 2.6 5.4 0.17 2100 158
ABGA-180LB-08 11 146 260 720 23, 87.5 0.79 HS 4 2.0 2.6 5.2 0.20 1850 185
ABGA-200LG-08 15 198 400 720 32.5 88.5 0.77 HS 4 1.8 2.1 4.5 0.35 1600 290
ABGA-225SE-08 18.5 244 400 725 39 89.5 0.77 HS 4 2.4 2.35 4.7 0.48 1300 335
ABGA-225ME-08 22 288 400 730 47.5 90.5 0.74 HS 5 2.8 2.8 5.1 0.57 1100 355
ABGA-250ME-08 30 390 400 735 58 91.5 0.80 HS 4 1.9 2.2 5.3 1.02 500 455
Higher outputs, other voltages, frequencies and number of poles upon request.
Type series A
Electrical connection Torque-time characteristic depending on the excitation voltage:
In addition to the motor terminals
the terminal box also includes a
bridge–connected rectifier for the
usual 230 V∼ brake control vol-
Characteristic torque
tage. For higher brake control vol-
tages a single–way rectifier with
zero diodes can be fitted, or the
Time
connection has to be made via an
intermediate transformer which, t11 = Ansprechverzug
Delayed response
beim Verknüpfen
for switching
however, is not part of our delivery.
t12 = Anstiegszeit
Rise time of the
In cases where the operational vol-
des
brakeBremsmoments
torque
tage of the motor is different from
Excitation
t1 = Switching-on time
Verknüpfzeit
the brake control voltage, a sepa-
rate brake control voltage has to Time t2 = Switching-off time
Trennzeit
be supplied by an additional termi- t3 = Rutschzeit
Slipping time
nal.
14 60 30000 28 17 25 42 210
a) AC–side switching: Extended
16 80 36000 27 27 30 57 220
switching–on time (delayed
brake response). The swit- 18 150 36000 20 33 45 78 270
ching–off time is the same as 20 260 80000 19 65 100 165 340
for DC–side switching. 25 400 120000 15 110 120 230 390
b) DC–side switching: Short opera-
ting time, short switching–on 1 Minimum brake torque at run–in friction elements.
MK [Nm]
Frame size 090 16
Frame size 090 32
Frame size 100 32
Frame size 112 32
Frame size 112 60
Frame size 132 80
Frame size 132; 160 150
Frame size 160; 180; 200 260
Frame size 180; 200; 225; 250 400
Brake torque in %
at 1500 [min–1] 83 81 80 79 77 75 73
at 3000 [min–1] 76 74 73 72 70 68 68
Power input
P20C [Watt] 30 40 50 55 85 100 110
Moment of inertia
J [kg m2]2 0.0002 0.00045 0.00063 0.0015 0.0029 0.0073 0.02
min. brake rotor thickness [mm] 7.5 8.0 7.5 8.0 10.0 12.0 15.5
Switchability up to 0.1 mm
friction WR 0.1 [Nm] on request
Operating air gap [mm] min. 0.3 0.3 0.3 0.3 0.4 0.4 0.5
max. 0.75 0.75 0.75 0.75 1.0 1.0 1.25
The brake coil has normally a sup- Torque adjustment modifying the spring load. The
ply voltage of 205V–. The rotor with brake linings is con- brake is provided with an adjust-
Further standard voltages for the nected by the toothed hub to the ment ring. By turning of the adjust-
coil are 24V–, 103V– and 180V–. motor shaft. In currentless condi- ment ring the spring load and con-
Other supply voltages against sur- tion the compression springs are sequently the brake torque can be
charge. Voltage tolerance pressing the armature disk against changed. Compression springs are
"10% acc. to DIN VDE 0580/ the rotor. This pressure generates guided by pressure bolts.
DIN IEC 60038. the brake torque. The transmissi-
ble brake torque is changed by
Type series A
Brake with manual release
Optionally the brake is available
with manual release. Pulling the
hand release lever in de–energi-
zed state causes the armature disk
to be drawn over the tension bolts
against the compression springs in Manual release
the magnet unit, resulting in an air
gap between rotor and armature
disk. Thus the brake is mechani-
cally released and the shaft is ea-
sily rotatable.
During operation the hand release
lever is kept in its normal position
by the compression spring on the
tension bolt.
1 Armature disk
2 Compression spring
3 Rotor
4 Toothed hub
5 Shaft
6 Intermediate flange
7 Magnet unit
8 Manual release
9 Adjustment ring
11 Cover ring
12 Sleeve bolt
Air gap “s“ is the distance between the armature disk (1) and the washer (15).
Dimension “s“ must be observed for mounting of the manual releases:
12 Service brake
14 0.3 1.5 (slümax appr. 2.5 x slü)
16
18 Holding
g brake with
04
0.4 2
20
emergency stop
operation
25 0.5 2.5 (slümax appr. 1.5 x slü)
Attention:
Also with a reduced characteristic torque the adjustment of the air gap is to be readjusted for safety
reasons when dimension slümax is reached.
Ǔȧ
" M ȧ@ K x M
L K
ȢȢ Ȥ Ȥ
t
12
tia), the relative speeds as well as 3 2
the switching frequencies must be
included into the calculations. Mar- + ML = to be applied e.g. when a
ginal conditions, like e.g. ambient load is decreased
temperature, air humidity, dust
load etc. and installation position – ML = for a normal braking
should be known. For extreme/ operation
critical application conditions it is
necessary to consult the manufac-
turer.
Design is to be made under con-
sideration of the VDI directives Rough determination of the
2241. required brake torque
The friction surfaces must and the frame size respectively:
always be free from oil and If only the input power to be trans-
grease. mitted is known, the required
torque or brake torque can be
determined as follows:
Safety factor
In order to obtain the required
transmission safety even at ex-
treme operational conditions, the M req + 9550 P @ K x M K
Dn 0
calculated brake torque should in-
clude the safety factor K the size
of which is to be chosen depend-
ing on the operational conditions.
Thermal load
Ky2 If high switching frequencies and
frictional work/switching cycle are
to be expected it is recommended
Load types
to check the thermal calculation of
In practical application the follow-
the brake.
ing load types occur in most
The frictional work per switching
cases:
cycle is calculated from:
M req + M a @ K x M K
J L @ Dn 20 MK
Q+ @
JL @ Dn 0 182.5 M K " ML
Ma +
ǒ
9.55 @ t 3 *
t 12
2
Ǔ – ML = to be applied e.g. when a
load is decreased
JL @ Dn 0 + ML = for a normal braking
M req + @K operation
ǒ
9.55 @ t 3 *
t 12
2
Ǔ
The permissible frictional work per
switching cycle at given switching
frequency is indicated in the dia-
Dynamic and static load gram on page 103. If the frictional
In most of the application cases a work per switching cycle is known
mixed load is concerned, since a the permissible switching fre-
dynamic load has to be added to quency can be taken from the
the static load torque. aforementioned diagram.
Type series A
Applied symbols and definitions:
Example
M req + 9550 P @ K
Dn 0
ȡ J @ Dn ȣ
M req + ȧ9.55 @ ǒt * Ǔ * M ȧ@ K
L 0
L
Ȣ Ȥ
t
12
3 2
t 12 + 0, 025ĂsĂĂ(seeĂpageĂ99)
J L @ Dn 20 MK
Q+ @
182.5 MK " ML
Q + 0.52 @ 1450 @ 60
2
+ 4792ĂJ
182.5 (60 ) 15)
Type series A
Frame size 090 100 112 112 132 160 180 200 225 250
IM B5
IM B35, IM V1, IM V3
Enclosure IP 56
Forced ventilation
Non–standard flange
Tachometer
Brake motors with additional Brake motors with holding Brake motors for ship and ma-
flywheel mass: brake: rine applications:
The additional flywheel mass is for In this case the brake is dimensio- Ship and marine motors are availa-
jerk–free starting and braking and ned according to the braking tor- ble with seawater–protected brake
is mounted under the fan cover. que instead of the switching power in enclosure IP67. See page 221.
or frequency. Please contact us in
such cases.
Type series A
1.00 Stator, complete The parts shown are available in
1.03 Stator core with winding different sets depending on type,
1.06 Stator housing size, mounting and enclosure.
1.10 Mounting feet, unmachined They are available from our works.
(1 pair) All other parts such as bolts,
spring washers etc. are available
anywhere.
2.00 Rotor, complete (balanced)
When ordering spare parts,
3.01 End shield, DE please state:
3.02 Flange shield, DE
3.21 End shield, NDE Spare part designation
Motor type
4.01 Bearing, DE Serial number
4.05 Bearing, NDE
4.10 Outside bearing cap, DE
4.12 Inner bearing cap, DE
4.14 Resilient preloading ring, DE Example:
4.16 Grease guide disk, DE
4.18 Centrifugal disk, DE
4.22 Felt packing ring, DE 3.01 End shield, DE
4.24 Outside gasket, DE ABGA-200LG-08
4.26 Inner gasket, DE 3 386 388
4.30 Outside bearing cap, NDE
4.32 Inner bearing cap, NDE
4.34 Resilient preloading ring, NDE
4.36 Grease guide disk, NDE
4.38 Centrifugal disk, NDE
4.42 Felt packing ring, NDE
4.44 Outside gasket, NDE
4.46 Inner gasket, NDE
7.01 Brake
7.02 Intermediate flange
090
100
112
MLA00–0002
132
200
225 ––
250
Type series A
Spare parts
The product range of the aluminium motors serves to supplement the Loher manufacturing program.
Design
Number of poles: Frequency:
2- and 4-pole 50 Hz
8/4- and 6/4-pole on request 60 Hz as option
Enclosure: CE-Marking:
IP 55 CE-Marking acc. to
Low Voltage Directive
Inverter operation
At a square load torque under full
utilization of the class F insulation
the aluminium motors are suitable
for inverter operation (acc. to the
output assignment at 400V).
Special designs
– Shaft and flange design with increased precision to EN 50347
– Protective cover for the fan cowl with design IM V1, IM V5
– Built-in PTC-thermistors
– Cable entry
– Other colour
– Second standard shaft end
– Winding for other output, frequency
– Non-standard cylindrical shaft end
Spare parts
– Terminal box complete
– End shield DE
– End shield NDE
– Motor feet
– Fan cowl
– Fan
Sectional view
Surface cooling, cooling system IC 411,
Type BNCA
Type series A
Bearings
The motors have deep-groove ball
bearings at the DE-side and NDE-
side. For the assignment and the
designation of the bearings see the
table below.
Bearings DE Bearings NDE
Frame size Number of poles
Mounting IM B 3, IM B 5
071 2–4 6202-2Z 6202-2Z
080 2–4 6204-2Z 6204-2Z
090 2–4 6205-2Z 6205-2Z
100LB 2–4 6206-2Z 6205-2Z
100LC 4 6206-2Z 6206-2Z
112 4 6206-2Z 6206-2Z
112 2 6208-2Z 6208-2Z
132 2–4 6208-2Z 6208-2Z
160 2–4 6309-2Z 6309-2Z
180 2–4 6310-2Z 6309-2Z
200 2–4 6312-2Z 6312-2Z
Greasing
Bearings from frame sizes 090 to
200 have permanent lubrication.
According to experience the
grease filled-in at the factory will be
sufficient for several years.
Grease:
Lithium-saponified antifriction
bearing grease
K3K to DIN 51502
Grease life
Frame size Grease life with permanent lubrication
in service hours at rated speed
The indicated grease life or relubrication intervals are applicable for an ambient temperature of max. 40°C.
For every 10°C temperature rise, the lubrication interval is to be reduced by factor 0.7 of the value shown in the table (max. 20°C = factor 0.5).
Type series A
Weight of rotor
(incl. shaft and fan) approx. kg
Frame size 3000 min–1 1500 min–1 Frame size 3000 min–1 1500 min–1
071BB 1.2 1.8 132SB 11.6 14.2
071BC 1.4 ..2.0 132SC 13.5 –
080BB 2.0 2.7 132M – 16.7
080BC ..2.3 3.4 160MB 20.8 23.4
090LB 3.1 4.3 160MD 22.6 –
090LD 4.1 5.0 160LB 27.1 28.8
100LB 5.1 7.4 180MB 32.9 34.0
100LC – 7.8 180LB – 39.6
112MB 10.1 9.2 200LG 45.6 55.6
200LJ 55.9
Noise data
The noise data are valid for the rated output at 50 Hz.
The noise measurements are made according to EN ISO 1680.
Measuring surface sound pressure LPA
Sound power level LWA
2-pole 4-pole
3000 min–1 1500 min–1
Frame size
LPA LWA LPA LWA
dB(A) dB(A) dB(A) dB(A)
071 63 72 52 61
080 63 72 52 61
090 63 72 52 61
100 65 74 56 65
112 66 75.5 56 65.5
132 69 78.5 62 70.5
160 71 81 65 75
180 72 82 67 77
200 74 84 69 79
The tolerance is +3 dB
For connection of monitoring devices (e.g. PTC thermistors) the terminal box is equipped with additional terminals
and cable entries.
Type series A
Type Rated Rated Rated current at Efficiency Effi- Power Rotor Starting Break- Pull-up Starting Moment Net
output speed ciency factor class torque down torque current of inertia weight
class torque
MA/MN MK/MN MS/MN IA/IN J
BNCA–071BC–02 0.55 2820 1.33 1.31 1.30 74 74 0.82 HS4 2.8 2.8 2.0 5.0 0.00044 7.8
BNCA–080BB–02 0.75 2810 1.75 1.72 1.72 76 77 0.83 HS4 2.7 2.8 2.1 5.2 0.00056 8.7
BNCA–080BC–02 1.1 2800 2.50 2.40 2.40 77 77 2 0.86 HS4 2.8 2.8 2.6 5.2 0.00071 10.7
BNCA–090SB–02 1.5 2820 3.30 3.15 3.10 79 79 2 0.87 HS5 2.7 3.0 2.4 6.5 0.00129 13
BNCA–090LB–02 2.2 2820 4.70 4.50 4.40 82 82 2 0.87 HS5 3.0 3.0 2.6 6.5 0.0018 17
BNCA–100LB–02 3 2840 6.1 6.0 5.9 83 83 2 0.87 HS5 4.0 4.2 3.5 7.0 0.0022 21
BNCA–112MB–02 4 2865 7.8 7.6 7.5 86 86 2 0.88 HS4 2.2 3.0 2.0 6.5 0.0080 27
BNCA–132SB–02 5.5 2895 10.4 10 9.7 89 89 1 0.89 HS4 2.4 3.0 2.0 6.5 0.0144 43
BNCA–132SC–02 7.5 2895 14.1 13.6 13.3 89.5 89.5 1 0.89 HS5 2.5 3.5 2.4 7.5 0.0171 49
BNCA–160MB–02 11 2940 21 20 19.5 90.5 90.5 1 0.88 HS3 2.0 3.3 1.6 7.5 0.041 85
BNCA–160MD–02 15 2940 29 28 28 89.5 89.5 2 0.86 HS3 2.0 3.2 1.5 7.5 0.044 92
BNCA–160LB–02 18.5 2940 35 33.5 32 91.8 92 1 0.87 HS3 2.0 3.2 1.5 7.5 0.050 105
BNCA–180MB–02 22 2940 40.5 39 37 91 91 2 0.89 HS4 2.1 3.5 1.7 7.5 0.072 128
BNCA–200LG–02 30 2945 53 51 49 92.9 92.9 1 0.91 HS4 2.3 3.2 1.8 7.5 0.106 180
BNCA–200LJ–02 37 2935 65 63 60 92.5 93 2 0.92 HS4 2.2 3.0 1.7 7.5 0.140 203
Characteristic curves
Data sheets
BNCA–071BC–04 0.37 1415 0.93 0.92 0.92 73 72.5 0.80 HS3 2.0 2.4 1.7 4.5 0.0011 7.6
BNCA–080BB–04 0.55 1410 1.36 1.34 1.33 74 73.5 0.80 HS3 1.8 2.3 1.4 4.5 0.0015 9.3
BNCA–080BC–04 0.75 1410 1.83 1.83 1.85 76 76 0.78 HS4 2.2 2.6 1.8 5.0 0.0020 11.3
BNCA–090SB–04 1.1 1420 2.7 2.60 2.60 77 77 2 0.80 HS4 2.3 2.6 1.9 5.0 0.0034 14
BNCA–090LB–04 1.5 1420 3.5 3.45 3.45 78.5 78.5 2 0.80 HS4 2.3 2.8 1.9 5.5 0.0042 16
BNCA–100LB–04 2.2 1390 4.9 4.7 4.6 81 82 2 0.83 HS4 2.5 2.8 2.2 5.0 0.0057 21.5
BNCA–100LC–04 3 1430 6.6 6.4 6.4 83 84 2 0.82 HS4 2.2 2.8 2.0 5.7 0.0088 26
BNCA–112MB–04 4 1420 8.5 8.2 8.0 84.2 85 2 0.84 HS4 2.2 2.8 1.8 6.0 0.0160 30
BNCA–132SB–04 5.5 1450 11.2 10.8 10.7 87 87 2 0.85 HS4 2.4 3.0 1.8 7.0 0.0217 45
BNCA–132MB–04 7.5 1455 15.2 14.8 14.7 88 88 2 0.83 HS4 2.8 3.2 2.2 7.0 0.0264 52
BNCA–160MB–04 11 1460 21.5 21 21.4 88.5 88.5 2 0.84 HS3 1.8 2.8 1.4 6.5 0.058 82
BNCA–180MB–04 18.5 1460 36 34 32 91 91 2 0.86 HS3 1.9 2.9 1.6 7.0 0.093 112
BNCA–180LB–04 22 1460 42 40 38 91 91 2 0.88 HS3 2.1 2.8 1.7 7.0 0.111 128
BNCA–200LG–04 30 1465 54 52 51 92.5 93 2 0.90 HS3 2.0 2.8 1.5 7.2 0.169 180
Type Rated Rated Rated current at Efficiency Power Rotor Starting Break- Pull-up Starting Moment Net
output speed factor class torque down torque current of inertia weight
torque
MA/MN MK/MN MS/MN IA/IN J
BNCA–071BC–02 0.66 3410 1.35 1.31 1.29 76 74 0.83 HS4 2.8 2.8 2.0 5.0 0.00044 7.8
BNCA–080BB–02 0.9 3400 1.79 1.75 1.73 77 77 0.84 HS4 2.7 2.8 2.1 5.2 0.00056 8.7
BNCA–080BC–02 1.32 3390 2.52 2.45 2.42 78 77 0.87 HS4 2.8 2.8 2.6 5.2 0.00071 10.7
BNCA–090SB–02 1.8 3400 3.30 3.2 3.10 80 79 0.88 HS5 2.7 3.0 2.4 6.5 0.00129 13
BNCA–090LB–02 2.64 3400 4.8 4.6 4.50 82 82 0.88 HS5 3.0 3.0 2.6 6.5 0.0018 17
BNCA–100LB–02 3.6 3420 6.3 6.1 5.9 84 83 0.88 HS5 4.0 4.2 3.5 7.0 0.0022 21
BNCA–112MB–02 4.8 3445 8.3 7.9 7.8 86.5 86 0.88 HS4 2.2 3.0 2.0 6.5 0.0080 27
BNCA–132SB–02 6.6 3480 10.7 10.3 10 89.5 89 0.90 HS4 2.4 3.0 2.0 6.5 0.0144 43
BNCA–132SC–02 9 3470 14.6 14.1 13.8 90 89.5 0.89 HS5 2.5 3.5 2.4 7.5 0.0171 49
BNCA–160MB–02 13.2 3540 22 21 20 90.5 90.5 0.89 HS3 2.0 3.3 1.6 7.5 0.041 85
BNCA–160MD–02 18 3540 29.5 28.5 28 90 89.5 0.88 HS3 2.0 3.2 1.5 7.5 0.044 92
BNCA–160LB–02 22.2 3540 36 34.5 33 92 92 0.88 HS3 2.0 3.2 1.5 7.5 0.050 105
BNCA–180MB–02 26.4 3540 42 40 38 91 91 0.90 HS4 2.1 3.5 1.7 7.5 0.072 128
BNCA–200LG–02 36 3545 55 53 51 93 92.5 0.92 HS4 2.3 3.2 1.8 7.5 0.106 180
BNCA–200LJ–02 44 3530 67 65 62 92.7 93 0.92 HS4 2.2 3.0 1.7 7.5 0.140 203
BNCA–071BC–04 0.44 1715 0.95 0.93 0.93 74 72.5 0.80 HS3 2.0 2.4 1.7 4.5 0.0011 7.6
BNCA–080BB–04 0.66 1710 1.38 1.36 1.36 75 73.5 0.81 HS3 1.8 2.3 1.4 4.5 0.0015 9.3
BNCA–080BC–04 0.90 1710 1.87 1.86 1.87 77 76 0.79 HS4 2.2 2.6 1.8 5.0 0.0020 11.3
BNCA–090SB–04 1.32 1715 2.67 2.62 2.60 78 77 0.81 HS4 2.3 2.6 1.9 5.0 0.0034 14
BNCA–090LB–04 1.8 1715 3.6 3.55 3.5 79 78.5 0.80 HS4 2.3 2.8 1.9 5.5 0.0042 16
BNCA–100LB–04 2.64 1685 5.0 4.8 4.7 82 82 0.84 HS4 2.5 2.8 2.2 5.0 0.0057 21.5
BNCA–100LC–04 3.6 1720 6.7 6.5 6.4 84 84 0.83 HS4 2.2 2.8 2.0 5.7 0.0088 26
BNCA–112MB–04 4.8 1710 8.6 8.3 8.1 85 85 0.85 HS4 2.2 2.8 1.8 6.0 0.0160 30
BNCA–132SB–04 6.6 1740 11.4 11 10.7 87.5 87 0.86 HS4 2.4 3.0 1.8 7.0 0.0217 45
BNCA–132MB–04 9 1750 15.4 15 14.8 89.5 88 0.84 HS4 2.8 3.2 2.2 7.0 0.0264 52
BNCA–160MB–04 13.2 1755 22 21.5 21.5 89 88.5 0.86 HS3 1.8 2.8 1.4 6.5 0.058 82
BNCA–160LB–04 18 1755 30 29 28 90.5 90 0.87 HS3 1.9 2.9 1.6 7.0 0.075 98
BNCA–180MB–04 22.2 1755 36 35 33 91.5 91 0.87 HS3 1.9 2.9 1.6 7.0 0.093 112
BNCA–180LB–04 26.4 1755 43 41 39 91.5 91 0.89 HS3 2.1 2.8 1.7 7.0 0.111 128
BNCA–200LG–04 36 1765 57 54 53 93 93 0.90 HS3 2.0 2.8 1.5 7.2 0.169 180
380–400–420V – 50 Hz
Class F insulation
Utilization to B
Type series A
Type Rated Rated Rated current at Efficiency Effi- Power Rotor Starting Break- Pull-up Starting Moment Net
output speed ciency factor class torque down torque current of inertia weight
class torque
MA/MN MK/MN MS/MN IA/IN J
BVCA–080BC–64 0.18 950 0.7 0.72 0.73 50 0.72 HS2 1.3 2.1 1.2 2.9 0.0020 11.3
0.55 1440 1.58 1.61 1.67 64 0.77 1.2 2.1 1.2 3.8
BVCA–090SB–64 0.28 950 1.08 1.1 1.13 51 0.72 HS2 1.3 1.9 1.0 2.6 0.0034 14.0
0.9 1415 2.26 2.0 1.19 71 0.83 1.5 2.0 1.0 3.6
BVCA–090LB–64 0.37 930 1.33 1.34 1.34 53 0.75 HS2 1.1 1.5 0.9 2.5 0.0042 16.0
1.2 1420 3.02 3.0 2.97 73 0.79 1.7 2.2 1.5 4.2
BVCA–100LB–64 0.55 930 1.87 1.86 1.87 56 0.76 HS2 1.1 2.2 1.0 2.7 0.0057 21.5
1.7 1415 4.42 4.14 4.14 74 0.80 1.7 2.7 1.5 4.5
BVCA–100LC–64 0.75 960 2.43 2.42 2.44 63 0.71 HS2 1.1 2.2 0.9 3.3 0.0088 26.0
2.2 1450 5.1 4.9 4.9 81 0.80 2.0 2.9 1.7 5.9
BVCA–112MB–64 0.9 960 2.85 2.85 2.87 68 0.67 HS3 1.5 2.4 1.2 3.7 0.0160 30.0
3.0 1440 6.7 6.7 6.6 81 0.80 2.0 2.3 1.7 5.9
BVCA–132SB–64 1.3 975 3.9 3.9 3.93 71 0.68 HS2 1.4 2.4 1.1 4.2 0.0217 45.0
3.8 1460 8.5 8.3 8.2 84 0.79 2.3 3.1 1.6 7.3
BVCA–132MB–64 2.0 975 5.8 5.8 5.9 75 0.66 HS2 1.6 2.7 1.2 4.8 0.0264 52.0
6.0 1460 12.6 12.3 12.2 87 0.81 2.8 3.7 2.1 8.2
BVCA–160MB–64 2.7 985 6.7 6.6 6.6 74 0.80 HS2 1.0 2.2 0.7 4.5 0.0916 82.0
7.5 1465 16.8 15.0 15.2 87 0.83 1.9 3.0 1.4 7.0
BVCA–160MD–64 3.0 980 7.1 6.9 6.8 78 0.80 HS2 1.2 2.3 0.8 5.0 0.1232 99.0
9.0 1470 17.9 17.4 17.1 87 0.86 1.9 3.1 1.4 8.0
BVCA–160LB–64 4.0 980 8.9 8.6 8.4 79 0.85 HS2 1.0 2.0 0.6 5.0 0.1232 99.0
12.0 1470 24.7 24.3 24.6 87 0.82 2.1 3.2 1.4 7.5
BVCA–080BC–84 0.15 700 0.78 0.82 0.87 42 0.63 HS2 1.6 2.0 1.4 2.4 0.0020 11.3
0.7 1420 1.89 1.93 1.99 68 0.77 1.4 2.0 1.1 3.7
BVCA–090SB–84 0.25 690 1.1 1.13 1.17 49 0.65 HS3 1.5 1.8 1.4 2.4 0.0034 14
1.0 1420 2.55 2.54 2.59 72 0.79 1.7 2.2 1.4 4.2
BVCA–090LB–84 0.35 690 1.44 1.47 1.51 53 0.65 HS3 1.5 1.8 1.4 2.6 0.0042 16
1.4 1415 3.55 3.5 3.5 72 0.81 1.5 2.1 1.2 4.3
BVCA–100LB–84 0.55 705 2.2 2.2 2.3 60 0.60 HS3 1.6 2.4 1.5 3.0 0.0057 21.5
2.2 1450 5.1 5.0 4.98 81 0.78 1.9 2.8 1.7 5.7
BVCA–100LC–84 0.65 705 2.44 2.44 2.46 64 0.60 HS3 1.7 2.4 1.6 3.0 0.0088 26
2.6 1440 5.9 5.8 5.75 81 0.80 2.0 2.7 1.6 5.8
BVCA–112MB–84 0.9 710 3.1 3.18 3.2 67 0.61 HS3 1.6 2.2 1.4 3.4 0.0160 30
3.6 1440 7.8 7.7 7.6 82 0.82 1.9 2.6 1.5 5.9
BVCA–132SB–84 1.3 720 4.1 4.1 4.2 73 0.62 HS3 1.6 2.4 1.4 3.9 0.0217 45
5.0 1455 10.8 10.6 10.6 84 0.81 1.9 2.9 1.4 6.9
BVCA–132MB–84 1.7 720 5.6 5.7 5.8 75 0.57 HS3 1.9 3.0 1.9 4.6 0.0264 52
7.0 1460 14.8 14.5 14.5 86 0.81 2.3 3.3 1.7 7.9
BVCA–160MB–84 3.0 720 7.7 7.2 7.1 82 0.73 HS2 1.0 1.8 0.9 3.4 0.075 98
11.0 1465 21.0 20.0 19.5 88 0.90 1.5 2.6 1.2 6.4
IM B3 IM B5
IM V5 IM V1
Frame size
IM V6 IM V3
Mechanical construction
See chapter
Electrical design
The motors of the series ANGK or However the standards require the The motors of the series A.GK
AMGK (totally enclosed fan–coo- motor manufacturer to make an in- have the winding executed in class
led, see type code) are available itial type test together with the ori- F insulation, thermal utilization
both in standard design (ANGK) ginal inverter. The permissible ba- only to class ”B”. Exceptions are
and in mechanical VIK design sic data and parameters for marked in the output tables by an
(AMGK), protection type inverter operation are summarized *. In accordance with the latest
”Ex nA II T3”. in our Technical List UN 04: The standard EN 60034–1 the thermal
On customer request these motors output tables of the AMGK motors utilization, if it is inferior to the in-
can be delivered for a fixed vol- are applicable. sulation class, will be stamped on
tage (e.g. 400V) or for a voltage the rating plate additionally to the
range (e.g. 380–420V). Inverter motors of the series A.GK insulation class. Therefore the mo-
are equipped with PTC thermi- tors of these series will be stam-
The rated voltages stors. At inverter operation the sole ped with ”F–B” or those identified
400V or 380–420V motor protection by means of by an * with ”F”.
500V or 475–525V these temperature detectors toge-
690V or 655–725V ther with a certified tripping device Both for fixed voltage (e.g. 400V,
are standard voltages for 50 Hz (e.g. LOHER Calomat) is possible. 500V or 690V) and voltage range
systems. Other voltages and fre- No motor protection circuit brea- (e.g. 380–420V, 475–525V or
quencies are possible on request. kers are necessary. In most cases 655–725V) a tolerance of ± 5% for
The outputs and electrical data in- PTC thermistors with nominal the ”Range A” is admissible to
dicated in the tables can be chan- shutdown temperature 145 °C EN 60034–1 (”VDE 0530”).
ged by special designs, achieving (”KL145”) are used. It is also pos- This results in the following:
e.g. an even higher efficiency by sible to provide further PTC thermi- For the fixed voltage motor,
means of a rotor with copper cage stors in the motor, e.g. early war- e.g. 400V, this ”Range A” goes
instead of aluminium die cast. ning detectors. Also see the from 380–420V. Within this range
section ”Electrical design, general the motor must be reliably functio-
The insulation system of this motor / Thermal motor protection”. ning in continuous duty, the tempe-
series is suitable for mains volta- rature rise of the winding at the to-
ges up to 1000V. The connecting The motors are fitted with 6 termi- lerance limits is allowed to be 10 K
(terminal box, terminals) up to inc- nals, allowing ”star” (Y) or ”delta” higher than the limit value of the
luding frame size 355 is designed (∆) connection. Standard connec- insulation class. The electrical
for rated voltages up to 1100V. tion of all 400V motors is delta and data (”Rated data”) always refer to
therefore suitable for the mean range, e.g. to 400V. Here
The general use of overcoat 400V ∆/690V Y as well as the temperature rise of the winding
double–enamelled wires and opti- for Y–∆ starting at 400V. is measured and the thermal utili-
mized impregnating methods also The 500V motors are available zation is determined.
allows an inverter operation for both for 500V Y and 500V ∆, if not
most motors of this series without for winding reasons one of the
modifying the electrical design. both versions is to be preferred.
The upper and lower limit of Since there is sometimes uncer- nent (also inside the housing, e.g.
”Range A” is joined by ”Range B”: tainty about the stamp data, utiliza- cage winding in the rotor!) is allo-
Its tolerance limits are at ± 10% tion and guaranteed data of the wed to exceed 200°C. The winding
of the rated voltage. For the 400V wide voltage range motor a detai- temperature is of course limited by
motor these are e.g. 360–440V. An led description is given below: the insulation class
operation at these tolerance limits (e.g. ”F”: 145°C).
of ”B” for a longer time is not re- For the voltage range motors (e.g.
Type series E and A..K
commended however, the motor 380–420V) of the series A.GK the Generally and independently of the
must still be reliably functioning electrical data are measured in the fact, whether single voltage or
and is not allowed to differ essen- mean range (e.g. at 400V) at rated wide voltage range motor, the ob-
tially from the characteristic data. output and rated torque first. Ob- servance of the temperature limits
(For Ex e motors it is not admissi- tained are the power factor, effi- for the Ex nA II T. motor is also the
ble at all). ciency, speed (torque), starting compelling reason for the above
current (IA absolute), noise, torque mentioned initial test at the original
Accordingly, the tolerance limits of characteristic, temperature rise of inverter.
”Range A” are between 361V and the winding and no–load data.
441V for the voltage range motor Important still seems to be the in-
(e.g. 380–420V). ”Range B” starts All guaranteed data indicated in formation on the special case ”lok-
at 342V and ends at 462V. this list or in the data sheet must ked shaft” and ”starting”. These
(see chart in section ”Electrical de- meet within the tolerances these two special cases are in principle
sign, general / Standard voltages measured values at mid–voltage. excluded from protection type Ex
and tolerances” in this technical nA II T. Limit temperatures are ad-
list). Maintaining the torque calculated missible disregarding the tempera-
A motor being stamped e.g. with from the rated output and the rated ture class.
380–420V is to keep the limit tem- speed (”rated torque”), the cur- Specific data is given in our Tech-
perature according to its insulation rents at the limits of the rated vol- nical Information TI No. 05/02.
class at every voltage between tage (e.g. at 380V and at 420V) Although locked shaft and starting
380V and 420V, 10 K more are al- are still to be determined now. are excluded, an Ex nA II T. motor
lowed between 361V and 441V. is not allowed to be used under
The maximum current from the ra- heavy starting conditions.
All motors of the series A.GK being ted voltage range (e.g. 380–420V)
operated in the mean range will be is determined as rated current and Ex nA II T. motors are allowed to
utilized to insulation class ”B”. stamped onto the rating plate. be operated at soft–starters, when
At the rated voltage limits of the – the soft–starter is functionally
wide voltage range motors a (For the fixed voltage motor only tested by the PTB
slightly higher temperature rise the ”mid–current”, which means – a motor protection circuit
than in the mean range can occur. e.g. at 400V, is decisive). breaker is fitted as minimum
Therefore, these are generally protection
marked on the rating plate as fol- For rating and Ex–approval of the – regarding the duty type no
lows: voltage range motor this means worth–mentioning influence of
400V: F–B, 380–420V: F that the worst value within the vol- the starting procedure on the
The few exceptions are motors for tage range (at maximum current of temperature rise is to be
which insulation class F is already this range) is decisive for the tem- expected (e.g. pump drives
required at mid–voltage. They are perature rise of all motor parts. with a low moment of inertia).
marked with an * and stamped with The motors of the series A.GK are
”F”. certified for temperature class
”T3”. This means that no compo-
Type Rated Rated Rated current at Effi- Effi- Power Rotor Starting Breakd. Starting Moment Net
output speed ciency ciency factor class torque torque current of inertia weight
4/4 3/4
η η with direct-on starting J
as a multiple of the
Dimension drawings 4
Characteristic curves
AMGK–090LB–02 2.2 2850 4.6 3.7 2.7 81.7 80 0.88 HS 5 2.9 3.0 6.4 0.002 22
AMGK–100LB–02 3 2880 6 4.8 3.5 84.2 83 0.88 HS 5 2.7 3.0 7.0 0.0039 35
AMGK–112MB–02 4 2880 7.5 6.0 4.35 85.5 84 0.92 HS 5 2.9 3.5 7.2 0.006 38
AMGK–132SB–02 5.5 2900 10.8 8.7 6.3 86.5 85.5 0.88 HS 5 3.0 3.3 6.6 0.011 53
AMGK–132SD–02 7.5 2910 14.5 11.6 8.4 88 87 0.88 HS 5 3.4 3.8 7.4 0.014 56
AMGK–160MB–02 11 2920 21 16.8 12.2 88.5 88.2 0.87 HS 5 2.7 2.9 5.9 0.0364 104
AMGK–160MD–02 15 2920 28 22.4 16.2 90 89.5 0.89 HS 5 2.7 3.0 6.0 0.045 106
AMGK–160LB–02 18.5 2920 33 26.5 19.2 91 90 0.90 HS 5 2.9 3.0 6.4 0.057 130
AMGK–180MB–02 22 2950 41.5 33.5 24 91 90 0.87 HS 5 2.2 3.0 7.0 0.094 162
AMGK–200LG–02 30 2960 52 42 30.5 92.5 91 0.91 HS 4 2.4 2.6 7.4 0.182 252
AMGK–225ME–02 45 2965 79 63 45.5 93.5 92.5 0.89 HS 5 2.2 2.7 7.1 0.247 305
AMGK–250ME–02 55 2975 99 79 58 94.1 93.2 0.86 HS 5 2.3 3.2 7.4 0.45 410
AMGK–280SG–02 75 2980 128 103 75 94.7 94 0.90 HS 4 2.2 2.2 6.8 0.88 555
AMGK–280MG–02 90 2975 155 124 90 95 94.5 0.90 HS 4 2.0 2.2 6.5 1.03 590
AMGK–315SL–02 110 2980 195 156 113 94.9 94.4 0.87 DS 4 2.1 2.5 6.6 1.55 960
AMGK–315ML–02 132 2980 230 184 134 95.3 94.8 0.87 DS 4 2.0 2.4 6.3 1.85 1020
AMGK–315MN–02 160 2980 280 223 160 95.8 95.1 0.87 DS 4 2.3 2.6 6.7 2.2 1100
AMGK–315LL–02 200 2980 340 270 196 96.2 95.7 0.88 DS 5 2.6 2.7 7.0 2.8 1310
AMGK–315LN–02 250 2980 425 340 245 96.6 96.1 0.89 DS 5 2.7 2.6 7.0 3.5 1450
AMGK–315LN–023 250 2984 416 335 240 96.8 96.2 0.90 HS 4 1.8 2.9 7.4 3.5 1460
AMGK–355LB–022 315 2985 535 428 310 96.5 96 0.89 DS 4 2.2 2.7 7.2 4.7 1580
Type Rated Rated Rated current at Effi- Effi- Power Rotor Starting Breakd. Starting Moment Net
output speed ciency ciency factor class torque torque current of inertia weight
4/4 3/4
η η with direct-on starting J
as a multiple of the
Dimension drawings 4
Characteristic curves
AMGK–090LB–04 1.5 1410 3.4 2.72 2.0 79 79 0.83 HS 5 2.5 2.7 5.1 0.0036 22
AMGK–100LB–04 2.2 1400 4.8 3.85 2.8 81 81 0.84 HS 5 2.2 2.5 5.3 0.0051 35
AMGK–100LD–04 3 1410 6.6 5.3 3.8 82.6 82.5 0.82 HS 5 2.5 2.7 5.8 0.0066 38
AMGK–112MB–04 4 1415 8.3 6.6 4.8 84 84 0.84 HS 5 2.2 2.6 5.9 0.012 41
AMGK–132SB–04 5.5 1440 11 8.8 6.4 87 87 0.85 HS 5 2.3 2.7 6.4 0.022 59
AMGK–160MB–04 11 1460 21 16.8 12.2 90 90 0.84 HS 5 2.5 2.4 6.1 0.068 108
AMGK–160LB–04 15 1455 29 23.2 16.8 90.7 90.8 0.85 HS 4 2.9 2.3 6.2 0.092 130
AMGK–180MB–04 18.5 1465 34.5 28.0 20 91.3 91.3 0.86 DS 5 2.9 2.6 6.8 0.13 162
AMGK–180LB–04 22 1465 41 32.5 24 91.9 91.9 0.86 DS 5 2.9 2.5 6.7 0.16 176
AMGK–200LG–04 30 1465 55 44 31.5 92.5 92.6 0.87 HS 4 2.4 2.2 6.4 0.25 254
AMGK–225SE–04 37 1470 68 54.5 39.5 93 93 0.87 HS 4 2.2 2.2 6.3 0.34 305
AMGK–225ME–04 45 1475 84 67 49 93.2 93.1 0.84 HS 5 2.6 2.5 6.7 0.41 335
AMGK–250ME–04 55 1480 97 77 56 94.5 94.5 0.88 HS 5 2.4 2.9 7.6 0.79 425
AMGK–280SG–04 75 1480 132 106 77 94.7 94.7 0.88 HS 4 2.2 2.5 6.5 1.44 585
AMGK–280MG–04 90 1480 157 126 91 95 95 0.88 HS 4 2.3 2.5 6.5 1.66 660
AMGK–315SL–04 110 1486 205 164 119 95 94.9 0.82 DS 4 2.1 2.5 6.2 2.2 960
AMGK–315ML–04 132 1486 240 192 139 95.5 95.3 0.84 DS 4 2.1 2.4 6.3 2.9 1040
AMGK–315MN–04 160 1486 286 228 165 95.8 95.6 0.84 DS 4 2.1 2.4 6.5 3.4 1120
AMGK–315LL–04 200 1486 360 288 208 96 95.9 0.84 DS 4 2.3 2.5 6.6 3.9 1340
AMGK–315LM–042 250 1487 455 364 263 96 95.9 0.83 DS 4 2.6 2.7 6.9 4.7 1420
AMGK–315LM–043 250 1489 455 364 263 96.5 96.3 0.83 HS 3 1.5 2.6 6.8 4.7 1430
AMGK–355LB–04 270 1489 480 384 278 96.2 95.9 0.85 DS 4 2.1 2.5 7.0 6.8 1730
AMGK–355LB–042 315 1489 555 444 322 96.4 96 0.85 DS 4 2.1 2.5 7.1 6.8 1730
AMGK–355LB–043 315 1491 545 436 316 96.6 96.4 0.86 HS 2 1.3 2.5 7.0 6.8 1730
Type Rated Rated Rated current at Effi- Powe Rotor Starting Breakd. Starting Moment Net
output speed ciency r fac- class torque torque current of inertia weight
tor
with direct-on starting J
as a multiple of the
η
Dimension drawings 4
Characteristic curves
AMGK–090LB–06 1.1 915 3.3 2.65 1.9 72 0.72 HS 4 2.0 2.3 3.3 0.0036 22
AMGK–100LB–06 1.5 940 4.2 3.4 2.45 76.4 0.72 HS 4 2.2 2.5 4.4 0.0086 35
AMGK–112MB–06 2.2 940 5.3 4.3 3.1 80 0.77 HS 3 1.7 2.0 4.2 0.014 38
AMGK–132SB–06 3 955 6.3 5.1 3.7 85.6 0.81 HS 4 2.2 2.7 6.0 0.030 59
AMGK–132MB–06 4 955 8.8 7.0 5.1 84.7 0.81 HS 4 2.3 2.6 5.5 0.033 67
AMGK–132MD–06 5.5 955 11.8 9.5 6.8 86 0.82 HS 5 2.6 2.6 6.0 0.045 72
AMGK–160MB–06 7.5 970 16 12.8 9.2 87.9 0.81 HS 5 2.4 2.8 7.0 0.100 108
AMGK–160LB–06 11 965 22.5 18 13 88.8 0.82 HS 5 2.4 2.8 6.4 0.134 130
AMGK–180LB–06 15 965 30.5 24.5 18 90 0.8 HS 4 1.6 2.6 5.5 0.13 176
AMGK–200LG–06 18.5 970 36 29 21 90.8 0.83 DS 4 2.2 2.0 5.0 0.33 262
AMGK–250ME–06 37 985 73 58.5 42 92.5 0.8 DS 4 2.3 2.2 6.6 1.00 420
AMGK–280MG–06 55 985 100 80 58 93.4 0.86 DS 4 2.1 2.4 6.2 2.3 670
AMGK–315SL–06 75 990 136 110 79 94.6 0.85 DS 4 2.2 2.3 6.6 3.3 960
AMGK–315ML–06 90 990 160 130 93 94.8 0.86 DS 4 2.1 2.3 6.7 4.0 1030
AMGK–315MM–06 110 990 195 156 113 95.2 0.87 DS 4 2.3 2.3 7.0 4.9 1110
AMGK–315MN–062 132 990 229 183 132 95.3 0.87 DS 4 2.4 2.2 6.9 4.9 1110
AMGK–315LL–06 160 990 278 222 161 95.5 0.87 DS 4 2.4 2.3 7.0 6.0 1300
AMGK–315LM–062 200 990 355 284 206 96 0.84 DS 4 2.4 2.5 6.5 6.8 1410
AMGK–315LM–063 200 993 345 276 200 96.1 0.87 HS 3 1.7 2.5 6.8 6.8 1420
AMGK–355LB–06 250 993 445 356 257 96.2 0.85 HS 2 1.1 2.5 6.3 9.1 1730
Type Rated Rated Rated current at Effi- Powe Rotor Starting Breakd. Starting Moment Net
output speed ciency r fac- class torque torque current of inertia weight
tor
with direct-on starting J
η as a multiple of the
AMGK–090LB–08 0.55 675 1.90 1.5 1.1 67 0.65 HS 4 1.6 1.9 2.7 0.0036 22
AMGK–100LB–08 0.75 695 2.2 1.8 1.3 69 0.71 HS 4 2.0 2.1 3.9 0.0086 35
AMGK–100LD–08 1.1 695 3.2 2.5 1.8 70 0.73 HS 4 1.7 2.0 3.5 0.0100 38
AMGK–112MB–08 1.5 700 4.20 3.35 2.4 75 0.72 HS 4 1.9 2.1 3.7 0.0140 40
AMGK–132SB–08 2.2 715 5.6 4.5 3.2 82 0.70 HS 4 2.0 2.3 4.4 0.032 59
AMGK–160MB–08 4 715 9.2 7.4 5.3 83.5 0.76 HS 3 1.7 2.1 4.3 0.092 104
AMGK–160MD–08 5.5 725 12.9 10.3 7.5 85 0.74 HS 3 1.8 2.4 5.3 0.12 108
AMGK–160LB–08 7.5 720 17.3 13.7 10 86 0.74 HS 4 2.1 2.4 5.4 0.16 130
AMGK–180LB–08 11 720 23.3 18.6 13.4 87.5 0.78 HS 4 1.8 2.6 5.0 0.19 176
AMGK–200LG–08 15 720 32.5 26.0 18.7 89 0.76 HS 4 1.8 2.1 4.0 0.33 258
AMGK–225SE–08 18.5 725 39 31.0 22.5 89.5 0.77 HS 4 2.4 2.4 5.0 0.46 305
AMGK–225ME–08 22 730 48 38.5 27.5 90.5 0.73 HS 5 3.0 3.0 5.1 0.55 325
AMGK–250ME–08 30 735 58 46.5 33.5 91.5 0.80 HS 4 1.9 2.2 5.3 1.0 415
AMGK–315SL–08 55 740 110 87 63.5 94.5 0.78 DS 4 1.6 2.0 6.0 3.3 950
AMGK–315ML–08 75 740 146 117 85 94.4 0.79 DS 4 1.6 2.5 5.8 4.0 1030
AMGK–315MM–08 90 740 175 140 102 94.4 0.79 DS 4 1.7 2.0 5.8 4.8 1110
AMGK–315MN–082 110 740 216 173 125 94.4 0.79 DS 4 1.7 2.0 5.8 4.8 1110
AMGK–315LL–08 132 740 255 205 147 94.5 0.79 DS 4 1.6 2.0 5.8 6.0 1300
AMGK–315LM–082 160 740 308 247 179 95 0.78 DS 4 1.6 2.0 5.1 6.8 1410
AMGK–315LM–083 160 742 305 245 177 95.2 0.79 HS 2 1.4 2.8 6.0 6.8 1420
AMGK–355LB–083 200 740 370 295 214 95.5 0.82 HS 2 1.3 2.2 5.5 14.7 1730
Type Rated Rated Rated current at Effi- Power Rotor Starting Breakd. Starting Moment Net
output speed ciency factor class torque torque current of inertia weight
η with direct-on starting J
as a multiple of the
400V 500V 690V rated rated rated approx.
kW min–1 A A A % cosϕ torque torque current kg m2 kg
Type Rated Rated Rated Effi- Effi- Power Rotor Starting Breakd. Starting Moment of Net
output speed current at ciencyy ciencyy factor class torque torque current inertia weight
4/4 3/4
η η with direct-on starting J
as a multiple of the
380V
– rated rated rated
Dimension drawings 4
Characteristic curves
Data sheets
AMGK–090LB–02 2.2 2850 4.7 81.7 80 0.88 HS 5 2.9 3.0 6.3 0.002 22
AMGK–132SB–02 5.5 2900 10.9 86.5 85.5 0.88 HS 5 3.0 3.3 6.5 0.011 53
AMGK–160MB–02 11 2920 22 88.5 88.2 0.87 HS 5 2.7 2.9 5.7 0.0364 104
AMGK–160LB–02 18.5 2920 34.5 91 90 0.90 HS 5 2.9 3.0 6.1 0.057 130
AMGK–225ME–02 45 2965 82 93.5 92.5 0.89 HS 5 2.2 2.7 6.8 0.247 305
AMGK–250ME–02 55 2975 101 94.1 93.2 0.86 HS 5 2.3 3.2 7.3 0.45 410
AMGK–280SG–02 75 2980 132 94.7 94 0.90 HS 4 2.2 2.2 6.6 0.88 555
AMGK–280MG–02 90 2975 160 95 94.5 0.90 HS 4 2.0 2.2 6.3 1.03 590
AMGK–315SL–02 110 2980 203 94.9 94.4 0.87 DS 4 2.1 2.5 6.6 1.55 960
AMGK–315ML–02 132 2980 235 95.3 94.8 0.87 DS 4 2.0 2.4 6.3 1.85 1020
AMGK–315MN–02 160 2980 290 95.8 95.1 0.87 DS 4 2.3 2.6 6.7 2.2 1100
AMGK–315LL–02 200 2980 355 96.2 95.7 0.88 DS 5 2.6 2.7 7.0 2.8 1310
AMGK–315LN–02 250 2980 440 96.6 96.1 0.89 DS 5 2.7 2.6 7.0 3.5 1450
AMGK–315LN–023 250 2984 430 96.8 96.2 0.90 HS 4 1.8 2.9 7.4 3.5 1460
AMGK–355LB–022 315 2985 560 96.5 96 0.89 DS 4 2.2 2.7 6.8 4.7 1580
Type Rated Rated Rated Effi- Effi- Power Rotor Starting Breakd. Starting Moment of Net
output speed current at ciencyy ciencyy factor class torque torque current inertia weight
4/4 3/4
η η with direct-on starting J
as a multiple of the
380V
– rated rated rated
Dimension drawings 4
Characteristic curves
AMGK–100LD–04 3 1410 6.7 82.6 82.5 0.82 HS 5 2.5 2.7 5.7 0.0066 38
AMGK–160LB–04 15 1455 31.5 90.7 90.8 0.85 HS 4 2.9 2.3 5.7 0.092 130
AMGK–180MB–04 18.5 1465 36 91.3 91.3 0.86 DS 5 2.9 2.6 6.5 0.13 162
AMGK–180LB–04 22 1465 42 91.9 91.9 0.86 DS 5 2.9 2.5 6.5 0.16 176
AMGK–200LG–04 30 1465 57 92.5 92.6 0.87 HS 4 2.4 2.2 6.2 0.25 254
AMGK–225ME–04 45 1475 86 93.2 93.1 0.84 HS 5 2.6 2.5 6.5 0.41 335
AMGK–250ME–04 55 1480 100 94.5 94.5 0.88 HS 5 2.4 2.9 7.4 0.79 425
AMGK–280SG–04 75 1480 137 94.7 94.7 0.88 HS 4 2.2 2.5 6.3 1.44 585
AMGK–315SL–04 110 1486 210 95 94.9 0.82 DS 4 2.1 2.5 6.2 2.2 960
AMGK–315ML–04 132 1486 250 95.5 95.3 0.84 DS 4 2.1 2.4 6.3 2.9 1040
AMGK–315MN–04 160 1486 305 95.8 95.6 0.84 DS 4 2.1 2.4 6.5 3.4 1120
AMGK–315LL–04 200 1486 375 96 95.9 0.84 DS 4 2.3 2.5 6.6 3.9 1340
AMGK–315LM–042 250 1487 475 96 95.9 0.83 DS 4 2.6 2.7 6.9 4.7 1420
AMGK–315LM–043 250 1489 475 96.5 96.3 0.83 HS 3 1.5 2.6 6.8 4.7 1430
AMGK–355LB–04 270 1489 505 96.2 95.9 0.85 DS 4 2.1 2.5 7.0 6.8 1730
AMGK–355LB–042 315 1489 590 96.4 96 0.85 DS 4 2.1 2.5 7.1 6.8 1730
AMGK–355LB–043 315 1491 570 96.6 96.4 0.86 HS 2 1.3 2.5 7.0 6.8 1730
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Net
output speed current at ciency factor class torque torque current of inertia weight
η with direct-on starting J
as a multiple of the
380V
– rated rated rated
Dimension drawings 4
Characteristic curves
AMGK–100LB–06 1.5 940 4.4 76.4 0.72 HS 4 2.2 2.5 4.2 0.0086 35
AMGK–160MB–06 7.5 970 16.3 87.9 0.81 HS 5 2.4 2.8 6.9 0.100 108
AMGK–200LG–06 18.5 970 37.5 90.8 0.83 DS 4 2.2 2.0 4.8 0.33 262
AMGK–280MG–06 55 985 105 93.4 0.86 DS 4 2.1 2.4 5.9 2.3 670
AMGK–315SL–06 75 990 142 94.6 0.85 DS 4 2.2 2.3 6.3 3.3 960
AMGK–315ML–06 90 990 170 94.8 0.86 DS 4 2.1 2.3 6.3 4.0 1030
AMGK–315MM–06 110 990 210 95.2 0.87 DS 4 2.3 2.3 6.8 4.9 1110
AMGK–315MN–06 132 990 240 95.3 0.87 DS 4 2.4 2.2 6.6 4.9 1110
AMGK–315LL–06 160 990 290 95.5 0.87 DS 4 2.4 2.3 7.0 6.0 1300
AMGK–315LM–062 200 990 370 96.0 0.84 DS 4 2.4 2.5 6.5 6.8 1410
AMGK–315LM–063 200 993 365 96.1 0.87 HS 3 1.7 2.5 6.8 6.8 1420
AMGK–355LB–06 250 993 467 96.2 0.85 HS 2 1.1 2.5 6.0 8.9 1730
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Net weight
output speed current at ciency factor class torque torque current of inertia
η with direct-on starting J
as a multiple of the
Characteristic curves
AMGK–112MB–02 4.8 3480 8.2 85.5 0.91 HS 5 3.0 3.6 7.3 0.0060 38
AMGK–132SB–02 6.5 3500 11.8 85.5 0.87 HS 5 3.0 3.2 6.7 0.0110 53
AMGK–160MB–02 13.2 3520 22 90.5 0.88 HS 5 2.5 2.9 6.2 0.0364 104
AMGK–160MD–02 18 3520 30.5 90.5 0.87 HS 5 3.0 3.1 6.3 0.045 106
AMGK–160LB–02 22 3520 35.5 91.2 0.89 HS 5 2.9 2.9 6.8 0.057 130
AMGK–180MB–02 26 3550 46.5 91.2 0.86 HS 5 2.1 2.8 6.8 0.094 162
AMGK–280SG–02 86 3575 138 94.7 0.87 HS 4 2.1 2.1 6.5 0.88 555
AMGK–280MG–02 110 3575 176 95 0.87 HS 4 2.0 2.3 6.0 1.03 590
AMGK–315SL–02 120 3577 190 95 0.88 DS 4 1.9 2.5 6.5 1.55 960
AMGK–315ML–02 143 3575 220 95.5 0.89 DS 4 2.0 2.4 6.5 1.85 1020
AMGK–315MN–02 185 3576 285 95.6 0.89 DS 4 2.4 2.5 6.9 2.2 1100
AMGK–315LL–02 220 3580 335 96.2 0.90 DS 4 2.6 2.6 7.2 2.8 1310
AMGK–315LN–022 275 3580 415 96.6 0.90 DS 4 2.6 2.5 7.1 3.5 1450
AMGK–315LN–023 275 3585 408 96.9 0.90 HS 3 1.5 2.7 7.0 3.5 1460
AMGK–355LB–02 345 3580 535 96.7 0.88 DS 4 2.2 2.6 7.1 4.7 1580
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Net weight
output speed current at ciency factor class torque torque current of inertia
η with direct-on starting J
as a multiple of the
Characteristic curves
Data sheets
AMGK–100LB–04 2.6 1700 5.3 81.5 0.84 HS 5 2.2 2.4 5.3 0.0051 35
AMGK–100LD–04 3.4 1700 6.6 82.6 0.84 HS 5 2.6 2.7 5.8 0.0066 38
AMGK–160LB–04 17 1750 29.5 91.2 0.84 HS 5 2.9 2.4 6.3 0.092 130
AMGK–250ME–04 63 1780 103 94.5 0.85 HS 5 2.3 2.6 7.2 0.80 425
AMGK–280SG–04 85 1780 138 94.8 0.85 HS 5 2.3 2.6 6.6 1.44 585
AMGK–280MG–04 100 1780 161 95 0.87 HS 5 2.3 2.5 6.6 1.66 660
AMGK–315SL–04 126 1785 208 95.1 0.84 DS 4 2.2 2.3 6.5 2.2 960
AMGK–315ML–04 150 1785 245 95.5 0.85 DS 4 2.1 2.5 6.5 2.9 1040
AMGK–315MN–04 180 1788 290 96 0.85 DS 4 2.2 2.5 7.0 3.4 1120
AMGK–315LL–04 220 1787 360 96 0.84 DS 4 2.3 2.5 6.9 3.9 1340
AMGK–315LM–042 275 1787 450 96 0.84 DS 4 2.4 2.5 6.9 4.7 1420
AMGK–315LM–043 275 1790 445 96.4 0.84 HS 3 1.5 2.6 7.0 4.7 1430
AMGK–355LB–04 300 1790 475 96.2 0.86 DS 4 1.9 2.2 6.8 6.8 1730
AMGK–355LB–042 340 1790 545 96.4 0.85 DS 4 2.0 2.4 7.0 6.8 1730
AMGK–355LB–043 350 1792 560 96.7 0.85 HS 2 1.2 2.6 7.1 6.8 1730
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Net weight
output speed current at ciency factor class torque torque current of inertia
η with direct-on starting J
as a multiple of the
Characteristic curves
AMGK–090LB–06 1.32 1100 3.3 73.5 0.75 HS 4 2.0 2.3 3.8 0.0036 22
AMGK–100LB–06 1.8 1140 4.5 78.0 0.74 HS 4 2.3 2.5 4.9 0.0086 35
AMGK–112MB–06 2.6 1150 5.8 83.0 0.73 HS 3 1.8 2.1 4.9 0.014 38
AMGK–132SB–06 3.6 1150 6.9 86.0 0.81 HS 4 2.1 2.6 6.0 0.033 59
AMGKA–132MB–06 4.8 1150 9.3 85.0 0.81 HS 4 2.3 2.6 6.0 0.033 67
AMGK–132MD–06 6.6 1150 12.8 86.5 0.80 HS 5 2.4 2.6 6.0 0.045 72
AMGK–160MB–06 9.0 1160 16.6 88.5 0.81 HS 5 2.2 2.7 6.5 0.100 108
AMGK–160LB–06 13.2 1160 23.5 89.5 0.83 HS 5 2.3 2.6 6.9 0.134 130
AMGK–180LB–06 18.0 1165 34 91.0 0.79 HS 4 1.5 2.5 5.8 0.13 176
AMGK–200LG–06 22 1170 40.5 91.5 0.79 DS 4 2.4 2.2 5.3 0.33 262
AMGK–200LJ–06 26 1170 48.5 91.6 0.79 DS 4 2.5 2.3 5.4 0.33 282
AMGK–280MG–06** 63 1185 103 93.5 0.86 DS 4 2.1 2.3 6.2 2.3 670
AMGK–315SL–06 85 1189 140 95.0 0.85 DS 4 2.2 2.3 6.7 3.3 960
AMGK–315ML–06 105 1189 170 95.0 0.86 DS 4 2.0 2.3 6.9 4.0 1030
AMGK–315MM–06 132 1189 215 95.5 0.87 DS 4 2.1 2.3 7.1 4.9 1110
AMGK–315MN–062 150 1188 240 95.5 0.86 DS 4 2.0 2.2 7.1 4.9 1110
AMGK–315LL–06 175 1189 285 95.8 0.85 DS 5 2.2 2.4 7.2 6.0 1300
AMGK–315LM–062 220 1189 355 96.0 0.85 DS 4 2.0 2.3 7.0 6.8 1410
AMGK–315LM–063 220 1192 345 96.2 0.86 HS 3 1.6 2.5 7.0 6.8 1420
AMGK–355LB–063 280 1192 440 96.6 0.86 HS 2 1.1 2.4 6.5 8.9 1730
Type Rated output Rated speed Rated current Rotor class Starting Starting Moment Net
torque current of inertia weight
at 400V with direct-on starting J
as a multiple of the
rated rated approx.
kW min–1 A torque current kg m2 kg
Type Rated output Rated speed Rated current Rotor class Starting Starting Moment Net
torque current of inertia weight
at 400V with direct-on starting J
as a multiple of the
rated rated approx.
kW min–1 A torque current kg m2 kg
Type Rated output Rated speed Rated current Rotor class Starting Starting Moment Net
torque current of inertia weight
at 400V with direct-on starting J
as a multiple of the
rated rated approx.
kW min–1 A torque current kg m2 kg
Type Rated output Rated speed Rated current Rotor class Starting Starting Moment Net
torque current of inertia weight
at 400V with direct-on starting J
as a multiple of the
rated rated approx.
kW min–1 A torque current kg m2 kg
Type Rated output Rated speed Rated current Rotor class Starting Starting Moment Net
torque current of inertia weight
at 400V with direct-on starting J
as a multiple of the
rated rated approx.
kW min–1 A torque current kg m2 kg
Page 91
Standard single dimension drawings in DXF format see Appendix (Page 250, 251)
Electrical design
The motors of the series ENGV The motors of the series E.GV 380–420V) of the series E.G. it is
and EMGV (totally enclosed fan– have the winding executed in class to be proceeded as follows.
cooled, see type code on page 12) F insulation, thermal utilization The electrical data are measured
are available both in standard de- only to class ”B”. in the mean range (e.g. at 400V)
sign (ENGV) and in mechanical and at rated output. Obtained are
Type series E and A..K
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Time of Moment Weight
output speed current at ciencyy factor class torque torque current tempera
tempera- of inertia
with direct-on starting ture rise JM
as a multiple of the tE T3
Characteristic curves
approx. approx.
kW min–1 A % cosϕ MA/MN MK/MN IA/I N sec. kgm2 kg
E.GV–100LB–02 2.5 2875 4.8 83.5 0.90 HS 4 2.2 2.5 7.2 11 0.0039 35
E.GV–132SD–02 4.6 2910 8.4 87.9 0.90 HS 5 2.7 3.2 7.4 10 0.0140 56
E.GV–132SX–02 5.5 2910 10.2 88.6 0.88 HS 5 2.9 3.2 7.6 9 0.0150 60
E.GV–160MB–02 7.5 2940 13.6 90.1 0.88 HS 5 3.0 3.2 7.3 13 0.0364 104
E.GV–160MD–02 10 2945 17.9 91.1 0.89 HS 4 2.0 2.8 6.7 17 0.045 106
E.GV–160LB–02 12.5 2945 22.5 91.9 0.88 HS 4 2.2 3.0 6.9 10 0.057 130
E.GV–225MB–02 28 2970 48.5 93.1 0.90 HS 4 2.1 2.5 7.2 10 0.247 305
E.GV–315SK–02 3 68 2985 115 94.8 0.90 HS 2 1.1 2.6 7.3 25 1.55 960
E.GV–315SL–02 3 80 2987 136 94.8 0.90 HS 2 1.1 2.5 7.5 25 1.55 960
E.GV–315ML–02 3 100 2988 168 95.6 0.90 HS 2 1.1 2.5 7.5 15 1.85 1020
E.GV–315MN–02 3 130 2985 215 95.9 0.91 HS 2 0.85 2.0 6.5 15 2.20 1100
E.GV–315LL–02 3 150 2984 245 96 0.92 HS 2 1.0 2.5 7.0 15 2.80 1310
E.GV–315LN–02 3 185 2985 305 96.2 0.92 HS 2 1.0 2.4 7.1 10 3.46 1450
E.GV–355LB–02 3 220 2982 360 96.3 0.92 HS 2 1.2 2.6 6.0 14 3.16 1820
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Time of Moment Weight
output speed current at ciencyy factor class torque torque current tempera
tempera- of inertia
with direct-on starting ture rise JM
as a multiple of the tE T3
Characteristic curves
approx. approx.
kW min–1 A % cosϕ MA/MN MK/MN IA/I N sec. kgm2 kg
Type series E and A..K
Data sheets
E.GV–112MB–04 3.6 1425 7.5 84.3 0.82 HS 4 2.4 2.7 6.7 12 0.012 41
E.GV–132SB–04 5.0 1445 9.7 87.2 0.85 HS 5 2.4 2.5 7.3 13 0.022 59
E.GV–160MB–04 10 1465 19.4 90.4 0.82 HS 4 2.1 3.1 7.6 11 0.068 108
E.GV–160LB–04 13.5 1460 26 91.2 0.84 HS 4 2.2 3.2 7.6 11 0.092 130
E.GV–180LB–04 17.5 1465 31 91.8 0.89 HS 4 2.1 3.2 7.1 12 0.16 176
E.GV–250MB–04 3 44 1489 79 94.8 0.85 SHS 1.4 2.6 7.6 20 0.80 425
E.GV–280SG–04 58 1491 107 94.8 0.82 HS 3 1.8 2.4 7.6 11 1.43 575
E.GV–280MG–04 3 70 1488 114 94.9 0.94 SHS 1.4 2.9 7.5 14 1.65 650
E.GV–315SL–04 3 90 1490 160 95.0 0.85 HS 2 1.0 2.4 6.5 10 2.2 960
E.GV–315ML–04 3 100 1489 177 95.8 0.85 HS 2 1.0 2.2 6.4 12 2.8 1040
E.GV–315MN–04 3 125 1490 225 95.8 0.84 HS 2 1.0 2.2 6.2 13 3.3 1120
E.GV–315LL–04 3 140 1490 245 96.1 0.86 HS 2 1.2 2.2 7.1 11 3.9 1340
E.GV–315LM–04 3 185 1491 330 96.1 0.85 HS 2 1.0 2.2 6.9 9 4.67 1430
E.GV–355LB–04 3 220 1492 390 96.3 0.84 HS 2 0.9 2.3 6.9 9 6.8 1885
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Time of Moment Weight
output speed current at ciencyy factor class torque torque current tempera
tempera- of inertia
with direct-on starting ture rise JM
as a multiple of the tE T3
Characteristic curves
approx. approx.
kW min–1 A % cosϕ MA/MN MK/MN IA/I N sec. kgm2 kg
E.GV–112MB–06 1.9 945 4.5 80.3 0.75 HS 4 1.8 2.0 4.6 30 0.014 38
E.GV–132SB–06 2.6 965 5.5 84.5 0.81 HS 5 2.5 2.5 6.4 30 0.030 59
E.GV–132MB–06 3.5 955 7.4 84.7 0.81 HS 4 2.5 2.6 5.9 24 0.033 67
E.GV–160MB–06 6.6 965 13.5 87.2 0.81 HS 5 2.5 2.8 6.9 13 0.100 108
E.GV–160LB–06 9.7 970 19.3 88.6 0.82 HS 5 2.4 3.0 7.6 9 0.134 130
E.GV–180LB–06 13.2 970 27.5 89.8 0.77 HS 4 2.1 2.9 6.0 17 0.13 176
E.GV–200LG–06 16.5 978 31.5 91.1 0.82 HS 4 2.2 2.8 6.7 19 0.33 262
E.GV–200LJ–06 20 980 39.5 91.5 0.80 HS 5 2.4 2.8 7.2 12 0.33 282
E.GV–250MB–06 3 33 985 62 92.7 0.83 SHS 1.7 2.6 6.4 22 1.1 420
E.GV–315SL–06 3 64 990 115 95.3 0.86 HS 2 1.2 2.3 6.2 19 2.7 960
E.GV–315ML–06 3 76 991 134 95.3 0.86 HS 2 1.2 2.3 6.2 19 3.2 1030
E.GV–315MM–06 3 85 992 149 95.6 0.86 HS 2 1.3 2.3 6.1 17 3.8 1110
E.GV–315MN–06 3 105 991 185 95.5 0.86 HS 2 1.3 2.3 6.3 10 3.8 1110
E.GV–315LL–06 3 130 990 225 95.8 0.87 HS 2 1.3 2.3 6.5 10 4.7 1300
E.GV–315LM–06 3 170 990 295 96.0 0.86 HS 2 1.0 2.2 6.0 10 5.3 1410
E.GV–355LB–06 3 200 993 340 96.2 0.87 HS 2 1.0 2.2 6.3 9 9.1 1940
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Time of Moment Weight
output speed current at ciencyy factor class torque torque current tempera
tempera- of inertia
with direct-on starting ture rise JM
as a multiple of the tE T3
E.GV–100LB–08 0.65 695 1.98 67.5 0.7 HS 4 2.0 2.1 3.8 40 0.0086 35
E.GV–160MB–08 3.5 720 7.7 84.6 0.78 HS 3 1.6 2.5 4.8 45 0.092 104
E.GV–160MD–08 4.8 720 11.1 85.6 0.73 HS 4 2.1 3.0 5.7 30 0.12 108
E.GV–160LB–08 6.6 725 15.1 87.6 0.72 HS 4 2.3 3.0 6.0 28 0.16 130
E.GV–180LB–08 9.7 710 20.5 87.6 0.81 HS 4 1.7 2.7 5.8 30 0.19 176
E.GV–200LG–08 13.2 725 28 89.3 0.76 HS 4 2.1 2.4 4.9 21 0.33 258
E.GV–315SL–08 50 745 102 93.8 0.76 HS 2 1.1 2.2 6.0 20 3.3 950
E.GV–315MM–08 75 742 140 94.5 0.82 HS 2 1.0 2.1 6.3 23 4.8 1110
E.GV–315MN–08 85 740 160 94.5 0.82 HS 2 1.3 2.2 5.9 15 4.8 1110
E.GV–315LL–08 100 740 186 94.6 0.82 HS 2 1.1 2.2 6.2 12 6.0 1300
E.GV–315LM–08 132 740 255 94.8 0.82 HS 2 0.95 2.2 5.6 10 6.8 1410
E.GV–355LB–08 160 744 305 95.5 0.82 HS 2 0.95 2.2 5.9 19 14.7 1990
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Time of Moment Weight
output speed current at ciencyy factor class torque torque current tempera
tempera- of inertia
with direct-on starting ture rise JM
as a multiple of the tE T3
Characteristic curves
E.GV–100LB–02 2.5 2875 5.1 83.5 0.90 HS 4 2.2 2.5 6.8 10 0.0039 35
E.GV–132SD–02 4.6 2910 8.8 87.9 0.90 HS 5 2.7 3.2 7.0 9 0.014 56
E.GV–132SX–02 5.5 2910 10.6 88.6 0.88 HS 5 2.9 3.2 7.3 7 0.015 60
E.GV–160MB–02 7.5 2940 14.6 90.1 0.88 HS 5 3.0 3.2 6.8 13 0.0364 104
E.GV–160MD–02 10 2945 18.5 91.1 0.89 HS 4 2.0 2.8 6.5 16 0.045 106
E.GV–160LB–02 12.5 2945 23.5 91.9 0.88 HS 4 2.2 3.0 7.1 9 0.057 130
E.GV–280MG–02 58 2980 102 94.6 0.92 HS 2 1.3 2.4 6.7 11 1.03 590
E.GV–315SK–02 3 68 2985 121 94.8 0.90 HS 2 1.1 2.6 7.1 25 1.55 960
E.GV–315SL–02 3 80 2987 142 94.8 0.90 HS 2 1.1 2.5 7.3 24 1.55 960
E.GV–315ML–02 3 100 2988 176 95.6 0.90 HS 2 1.1 2.5 7.3 14 1.85 1020
E.GV–315MN–02 3 130 2985 220 95.9 0.91 HS 2 0.85 2.0 6.4 14 2.20 1100
E.GV–315LL–02 3 150 2984 255 96 0.92 HS 2 1.0 2.5 6.8 13 2.80 1310
E.GV–315LN–02 3 185 2985 320 96.2 0.92 HS 2 1.0 2.4 6.8 9 3.46 1450
E.GV–355LB–02 3 220 2982 380 96.3 0.92 HS 2 1.2 2.6 6.0 13 3.16 1820
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Time of Moment Weight
output speed current at ciencyy factor class torque torque current tempera
tempera- of inertia
with direct-on starting ture rise JM
as a multiple of the tE T3
Characteristic curves
Data sheets
E.GV–112MB–04 3.6 1425 7.7 84.3 0.82 HS 4 2.4 2.7 6.5 10 0.012 41
E.GV–132SB–04 5.0 1445 10.1 87.2 0.85 HS 5 2.4 2.5 7.0 12 0.022 59
E.GV–160LB–04 13.5 1460 27 91.2 0.84 HS 4 2.2 3.2 7.3 10 0.092 130
E.GV–180LB–04 17.5 1465 32.5 91.8 0.89 HS 4 2.1 3.2 6.8 9 0.16 176
E.GV–200LG–04 24 1475 46.5 92.7 0.83 HS 4 2.0 3.5 7.6 13 0.25 254
E.GV–250MB–04 3 44 1490 81 94.8 0.85 SHS 1.4 2.6 7.3 19 0.80 425
E.GV–280SG–04 58 1490 111 94.8 0.82 HS 3 1.8 2.4 7.3 9 1.43 575
E.GV–280MG–04 3 70 1488 120 94.9 0.94 SHS 1.4 2.9 7.1 12 1.65 650
E.GV–315SL–04 3 90 1490 165 95.0 0.85 HS 2 1.0 2.4 6.4 10 2.2 960
E.GV–315ML–04 3 100 1489 186 95.8 0.85 HS 2 1.0 2.2 6.1 10 2.8 1040
E.GV–315MN–04 3 125 1490 235 95.8 0.84 HS 2 1.0 2.2 6.0 12 3.3 1120
E.GV–315LL–04 3 140 1490 255 96.1 0.86 HS 2 1.2 2.2 6.9 10 3.9 1340
E.GV–315LM–04 3 185 1491 345 96.1 0.85 HS 2 1.0 2.2 6.8 9 4.67 1430
E.GV–355LB–04 3 220 1492 405 96.3 0.84 HS 2 0.9 2.3 6.6 9 6.8 1885
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Time of Moment Weight
output speed current at ciencyy factor class torque torque current tempera
tempera- of inertia
with direct-on starting ture rise JM
as a multiple of the tE T3
Characteristic curves
E.GV–112MB–06 1.9 945 4.6 80.3 0.75 HS 4 1.8 2.0 4.4 30 0.014 38
E.GV–132SB–06 2.6 965 5.7 84.5 0.81 HS 5 2.5 2.5 6.2 30 0.030 59
E.GV–132MB–06 3.5 955 7.6 84.7 0.81 HS 4 2.5 2.6 5.8 23 0.033 67
E.GV–160MB–06 6.6 965 13.9 87.2 0.81 HS 5 2.5 2.8 6.7 12 0.100 108
E.GV–160LB–06 9.7 970 19.8 88.6 0.82 HS 5 2.4 3.0 7.5 9 0.134 130
E.GV–180LB–06 13.2 970 28 89.8 0.77 HS 4 2.1 2.9 5.8 16 0.13 176
E.GV–200LG–06 16.5 978 33 91.1 0.82 HS 4 2.2 2.8 6.4 18 0.33 262
E.GV–200LJ–06 20 980 40.5 91.5 0.80 HS 5 2.4 2.8 7.0 11 0.33 282
E.GV–250MB–06 3 33 985 64 92.7 0.83 SHS 1.7 2.6 6.7 21 1.1 420
E.GV–315SL–06 3 64 990 125 95.3 0.86 HS 2 1.2 2.3 6.0 17 2.7 960
E.GV–315ML–06 3 76 991 140 95.3 0.86 HS 2 1.2 2.3 6.0 17 3.2 1030
E.GV–315MM–06 3 85 992 156 95.6 0.86 HS 2 1.3 2.3 5.8 13 3.8 1110
E.GV–315MN–06 3 105 991 195 95.5 0.86 HS 2 1.3 2.3 6.0 10 3.8 1110
E.GV–315LL–06 3 130 990 235 95.8 0.87 HS 2 1.3 2.3 6.2 9 4.7 1300
E.GV–315LM–06 3 170 993 310 96.1 0.86 HS 2 1.0 2.2 6.0 10 5.3 1410
E.GV–355LB–06 3 200 993 360 96.2 0.87 HS 2 1.0 2.2 6.0 10 9.1 1940
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Time of Moment Weight
output speed current at ciencyy factor class torque torque current tempera
tempera- of inertia
with direct-on starting ture rise JM
as a multiple of the tE T3
Characteristic curves
approx. approx.
kW min–1 A % cosϕ MA/MN MK/MN IA/I N sec. kgm2 kg
Type series E and A..K
Data sheets
E.GV–090LB–02 1.85 3450 3.3 84.0 0.90 HS 5 3.0 3.0 7.8 10 0.0020 22
E.GV–100LB–02 2.5 3475 4.4 84.5 0.90 HS 4 2.1 2.4 7.8 11 0.0039 35
E.GV–112MD–02 3.3 3460 5.4 86.0 0.94 HS 5 2.2 3.1 7.3 15 0.0075 38
E.GV–132SD–02 4.6 3510 7.7 87.0 0.92 HS 5 2.5 3.0 7.5 12 0.0140 56
E.GV–132SX–02 5.5 3505 9.3 88.0 0.90 HS 5 2.7 3.0 7.5 9 0.0150 60
E.GV–160MB–02 7.5 3530 12.4 89.0 0.91 HS 4 2.3 2.6 7.0 19 0.0364 104
E.GV–160MD–02 10 3545 16.0 91.1 0.90 HS 4 1.8 2.5 6.8 19 0.045 106
E.GV–160LB–02 12.5 3545 20.0 92.0 0.89 HS 4 1.8 2.5 6.9 17 0.057 130
E.GV–180MB–02 16 3545 26.5 89.5 0.89 HS 3 1.7 2.1 6.0 16 0.094 162
E.GV–200LG–02 20 3555 33.0 91.5 0.89 HS 3 1.6 2.2 7.1 16 0.182 252
E.GV–200LJ–02 24 3550 39.0 92.0 0.89 HS 3 1.4 2.2 6.9 10 0.200 262
E.GV–315SK–02 3 68 3584 105 94.8 0.90 HS 2 1.0 2.6 7.3 25 1.55 960
E.GV–315SL–02 3 80 3584 125 94.8 0.90 HS 2 1.0 2.6 7.5 20 1.55 960
E.GV–315ML–02 3 100 3584 150 95.6 0.90 HS 2 1.0 2.6 7.5 15 1.85 1020
E.GV–315MN–02 3 130 3584 195 95.9 0.91 HS 2 1.0 2.6 7.5 15 2.20 1100
E.GV–315LL–02 3 150 3584 225 96.0 0.91 HS 2 1.0 2.6 7.5 15 2.80 1310
E.GV–315LN–02 3 185 3583 271 96.2 0.92 HS 2 1.0 2.4 7.2 10 3.46 1450
E.GV–355LB–02 3 220 3585 325 96.4 0.92 HS 2 1.1 2.4 7.5 14 3.16 1820
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Time of Moment Weight
output speed current at ciencyy factor class torque torque current tempera
tempera- of inertia
with direct-on starting ture rise JM
as a multiple of the tE T3
Characteristic curves
approx. approx.
kW min–1 A % cosϕ MA/MN MK/MN IA/I N sec. kgm2 kg
E.GV–090LB–04 1.35 1730 2.7 82.0 0.83 HS 5 2.7 2.9 7.3 15 0.0036 22
E.GV–100LB–04 2.0 1705 3.8 82.0 0.85 HS 5 2.3 2.6 6.1 16 0.0051 35
E.GV–100LD–04 2.5 1710 4.8 82.0 0.85 HS 5 2.5 2.8 6.6 11 0.0066 38
E.GV–112MB–04 3.6 1720 6.3 86.0 0.87 HS 4 2.2 2.5 6.6 18 0.012 41
E.GV–132SB–04 5.0 1745 8.8 87.0 0.87 HS 5 2.0 2.5 7.4 15 0.022 59
E.GV–132MB–04 6.8 1740 11.5 88.0 0.88 HS 5 2.2 2.5 7.4 12 0.030 69
E.GV–160MB–04 10 1755 18.0 90.0 0.82 HS 4 2.1 2.6 6.9 13 0.068 108
E.GV–160LB–04 13.5 1755 23.5 91.0 0.84 HS 4 2.0 2.8 7.2 11 0.092 130
E.GV–180MB–04 15 1750 24.5 91.4 0.87 HS 4 1.6 2.3 6.2 10 0.13 162
E.GV–180LB–04 17.5 1750 28.5 91.8 0.88 HS 4 1.7 2.3 6.2 10 0.16 176
E.GV–250MB–04 3 47 1790 75 95.0 0.86 SHS 1.2 2.5 7.0 20 0.80 425
E.GV–280MG–04 70 1789 114 94.9 0.85 HS 3 1.7 2.2 6.5 11 1.65 650
E.GV–315SL–04 3 90 1790 145 95.2 0.85 HS 2 0.86 2.2 6.8 18 2.34 960
E.GV–315ML–04 3 100 1790 160 95.8 0.86 HS 2 0.86 2.2 6.6 18 2.8 1040
E.GV–315MN–04 3 125 1790 200 96.1 0.85 HS 2 1.0 2.3 6.7 12 3.3 1120
E.GV–315LL–04 3 140 1791 225 96.1 0.86 HS 2 1.0 2.3 7.1 10 3.9 1340
E.GV–315LM–04 3 185 1791 295 96.2 0.86 HS 2 1.0 2.3 6.9 10 4.67 1430
E.GV–355LB–04 3 220 1792 355 96.5 0.85 HS 2 0.9 2.3 6.9 9 6.8 1885
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Time of Moment Weight
output speed current at ciencyy factor class torque torque current tempera
tempera- of inertia
with direct-on starting ture rise JM
as a multiple of the tE T3
Characteristic curves
approx. approx.
kW min–1 A % cosϕ MA/MN MK/MN IA/I N sec. kgm2 kg
Type series E and A..K
Data sheets
E.GV–090LB–06 0.95 1100 2.40 68.0 0.75 HS 4 1.8 2.0 4.1 21 0.0036 22
E.GV–100LB–06 1.3 1155 3.20 79.0 0.70 HS 4 2.4 2.5 5.8 23 0.0086 35
E.GV–112MB–06 1.9 1150 4.1 81.0 0.75 HS 4 1.8 2.0 4.7 30 0.014 38
E.GV–132SB–06 2.6 1160 5.0 84.5 0.81 HS 4 2.2 2.6 6.4 35 0.033 59
E.GV–132MB–06 3.5 1160 6.8 85.0 0.81 HS 4 2.2 2.5 6.4 24 0.033 67
E.GV–132MD–06 4.8 1160 9.3 86.0 0.80 HS 5 2.3 2.6 6.5 17 0.045 72
E.GV–160MB–06 6.6 1165 11.7 89.0 0.83 HS 5 2.5 2.8 7.3 17 0.100 108
E.GV–160LB–06 9.7 1165 17.8 89.0 0.82 HS 5 2.4 2.8 7.6 9 0.134 130
E.GV–180LB–06 13.2 1170 25.0 90.0 0.79 HS 4 1.8 2.7 6.0 17 0.13 176
E.GV–200LG–06 16.5 1175 29 91.7 0.83 HS 4 2.2 2.5 6.7 18 0.33 262
E.GV–225MB–06 3 27 1188 47 92.5 0.82 SHS 1.5 2.6 7.3 16 0.55 315
E.GV–250MB–06 3 33 1188 58 92.7 0.80 SHS 1.8 2.8 7.1 10 1.1 420
E.GV–315SL–06 3 64 1192 102 95.0 0.87 HS 2 1.2 2.2 6.3 17 2.7 960
E.GV–315ML–06 3 76 1192 120 95.3 0.87 HS 2 1.2 2.2 6.5 17 3.2 1030
E.GV–315MM–06 3 85 1192 136 95.6 0.86 HS 2 1.3 2.2 6.6 19 3.8 1110
E.GV–315MN–06 3 105 1192 168 95.7 0.86 HS 2 1.3 2.2 6.8 15 3.8 1110
E.GV–315LL–06 3 130 1192 204 96.0 0.87 HS 2 1.2 2.2 6.5 12 4.7 1300
E.GV–315LM–06 3 170 1192 270 96.1 0.87 HS 2 1.1 2.2 6.5 10 5.3 1410
E.GV–355LB–06 3 200 1192 310 96.4 0.87 HS 2 1.0 2.2 6.3 9 9.1 1940
Type Rated Rated Rated Effi- Power Rotor Starting Starting Time of Moment Weight
output speed current at ciency factor class torque current tempera- of inertia
ture rise tE JM
with direct-on starting
as a multiple of the T1, T2–T3
rated rated
400V torque current ap- ap-
prox. prox.
kW min–1 A % cosϕ MA/MN IA/I N sec. kgm2 kg
E.GV–132SB–42 4.0/5.2 1450/2895 7.8/9.7 86/83 0.86/0.95 HS 4 2.2/2.0 6.4/6.9 17/12–15/9 0.022 59
E.GV–132MB–42 5.0/6.3 1445/2905 9.5/11.5 87/85 0.86/0.93 HS 4 2.0/2.0 6.5/7.9 14/9–14/9 0.030 69
E.GV–160MB–42 7.5/9.0 1460/2930 15/17 89/88 0.82/0.91 HS 5 2.3/2.6 6.1/7.5 16/11–14/9 0.068 108
E.GV–160LB–42 10/12 1450/2930 19.5/21 89/90 0.83/0.92 HS 4 2.1/2.3 5.3/7.4 20/11–9/5 0.092 130
E.GV–180MB–42 12/14.5 1470/2945 22.5/26.6 89.5/87 0.87/0.92 HS 4 2.2/2.1 6.3/7.2 24/15–12/7 0.13 162
E.GV–180LB–42 14/16 1450/2930 25/29 90/87 0.90/0.92 HS 3 1.5/1.8 5.5/7.0 28/16–22/9 0.16 176
E.GV–200LG–42 17/20 1470/2995 31/36 90/87 0.87/0.94 DS 4 2.3/2.4 5.8/7.5 35/19–25/12 0.25 254
E.GV–225SB–42 21/24 1470/2960 38/40 92/90 0.87/0.93 DS 4 2.3/2.4 5.7/7.5 30/20–10/7 0.34 305
E.GV–225MB–42 25/30 1475/2965 47/55 92/89 0.85/0.92 DS 4 2.3/2.4 6.2/7.9 30/20–13/7 0.41 335
E.GV–250MB–42 3 32/40 1475/2960 59/68 93/92 0.84/0.92 HS 2 1.2/1.3 4.4/5.8 60/35–28/16 0.88 425
E.GV–280SG–42 3 44/55 1485/2970 82/94 94/93 0.83/0.93 HS 2 1.3/1.3 5.0/6.4 55/30–21/11 1.43 575
E.GV–280MG–42 3 52/65 1485/2975 96/109 94.2/93 0.83/0.93 HS 2 1.3/1.3 5.2/6.9 50/20–22/8 1.66 650
E.GV–315SL–42 3 60/70 1485/2980 109/114 95/94 0.84/0.94 HS 2 1.2/1.1 5.2/6.7 35/29–17/13 2.4 960
E.GV–315ML–42 3 80/95 1490/2985 145/154 95/94 0.85/0.94 HS 2 1.1/1.0 5.8/7.1 30/22–12/8 2.8 1040
E.GV–315MN–42 3 90/105 1490/2985 163/170 95/94 0.85/0.94 HS 2 1.1/1.0 6.0/7.2 24/21–9/7 3.3 1120
E.GV–315LL–42 3 100/120 1490/2985 180/195 95.5/94.5 0.85/0.94 HS 2 1.0/1.0 6.0/7.4 24/21–9/8 4.0 1340
If only one time of temperature rise tE is indicated, it applies to both pole numbers.
Higher outputs, other voltages and frequencies on request.
For motors still uncertified by the PTB modifications are possible.
Type Rated Rated Rated Effi- Power Rotor Starting Starting Time of Moment Wei
output speed current at ciency factor class torque current temperature rise tE of inertia ght
with direct-on starting as JM
a multiple of the
rated rated T1 T2 T3 ap-
400V torque current ap- prox
prox. .
kW min–1 A % cosϕ MA/MN IA/I N sec. kgm2 kg
Type series E and A..K
E.GV–132SB–84 2/3.2 715/1450 5.4/6.8 78/79 0.70/0.88 HS 3 1.6/1.5 4.1/5.5 35/16 35/16 35/15 0.033 59
E.GV–132MB–84 2.8/4.5 725/1455 7.7/9.6 81/79 0.70/0.88 HS 5/4 2.5/2.3 5.4/6.7 30/17 30/17 30/17 0.045 72
E.GV–160MB–84 3.6/5.3 725/1450 8.5/11.0 83/81 0.74/0.88 HS 4 2.0/2.0 5.4/6.5 28/17 28/17 28/17 0.092 104
E.GV–160MD–84 5/7.5 720/1445 12.0/16.0 84/80.5 0.74/0.89 HS 4 2.2/2.2 5.4/6.6 19/10 19/10 19/8 0.116 108
E.GV–160LB–84 7/10.5 725/1445 16.0/22.0 85.5/83 0.76/0.88 HS 4 2.1/2.2 5.4/6.6 26/13 26/13 22/6 0.158 130
E.GV–180LB–84 2 10/14.5 725/1455 22.5/26.5 86/86 0.74/0.91 HS 4 2.4/2.2 6.3/8.0 20/10 20/10 20/10 0.19 176
E.GV–200LG–84 13/20 730/1465 31/37.5 88/88 0.76/0.91 DS 4 2.7/2.5 5.9/7.4 40/24 40/24 19/8 0.33 258
E.GV–225SB–84 16/24 735/1470 35/42 88.5/88.5 0.77/0.93 HS 3 1.5/1.6 4.7/6.0 45/30 45/30 35/17 0.46 305
E.GV–225MB–84 19/29 735/1470 41.5/50 89/90 0.75/0.93 HS 3 1.6/1.6 4.5/6.0 50/26 50/26 20/8 0.55 325
E.GV–250MB–84 23/35 735/1470 47/60 91.5/91 0.78/0.92 HS 3 1.5/1.8 4.7/5.7 70/30 70/30 30/12 1.0 415
E.GV–280SG–84 30/47 740/1480 63/82 92/92.3 0.75/0.91 DS 4 1.5/1.5 4.5/5.9 40/23 40/23 17/8 1.7 585
E.GV–280MG–84 35/55 740/1480 73/94 92.5/93 0.76/0.91 DS 4 1.6/1.6 5.2/6.3 24 24 24/7 2.1 640
E.GV–315SL–84 45/68 740/1490 105/118 92.5/92.5 0.68/0.91 HS 2 1.1/1.2 4.5/6.5 50/30 50/30 30/13 2.7 980
E.GV–315ML–84 55/75 745/1490 122/130 93/93 0.70/0.92 HS 2 1.1/1.2 4.5/7.1 50/30 50/30 25/14 3.2 1040
E.GV–315MN–84 62/83 740/1490 135/142 94/94.5 0.72/0.91 HS 2 1.0/1.2 4.6/7.2 50/30 50/30 27/11 3.7 1120
E.GV–315LL–84 72/100 743/1490 155/170 94.5/94.8 0.72/0.91 HS 2 1.0/1.2 4.6/7.4 60/30 60/30 35/12 4.7 1340
If only one time of temperature rise tE is indicated, it applies to both pole numbers.
Higher outputs, other voltages and frequencies on request.
For motors still uncertified by the PTB modifications are possible.
Type Rated Rated Rated Effi- Power fac- Rotor Starting Starting Time of Moment Wei
output speed current at ciency tor class torque current temperature rise tE of inertia ght
with direct-on starting as JM
a multiple of the
rated rated T1 T2 T3 ap-
400V torque current ap- prox
prox. .
kW min–1 A % cosϕ MA/MN IA/I N sec. kgm2 kg
E.GV–132SB–64 1.8/2.5 960/1450 4.5/5.2 79/82 0.75/0.86 HS 3 2.0/1.8 5.6/6.7 15/15 15/15 15/15 0.0236 59
E.GV–132MB–64 2.8/4.2 960/1450 7.4/8.7 79/85 0.73/0.84 HS 4 2.1/2.0 5.0/6.1 7/6 7/6 7/6 0.030 69
E.GV–160MB–64 4/5.5 965/1465 8.2/10.7 83/84.5 0.84/0.88 HS 4 2.2/2.0 6.9/7.7 15/15 15/15 6/6 0.068 108
E.GV–160LB–64 5/7.5 970/1465 10.5/14 85.5/87 0.81/0.90 HS 4 2.3/1.7 7.5/7.8 12/10 12/10 12/10 0.092 130
E.GV–180LB–64 7.5/11 970/1470 15/20.5 86/88 0.84/0.90 HS 3 1.8/1.6 6.7/7.7 12/12 12/12 12/12 0.13 176
E.GV–200LG–64 10/15 975/1465 20.5/27 87/89 0.82/0.91 DS 5 3.0/2.3 7.5/7.5 10/12 10/12 10/12 0.247 254
E.GV–200LJ–64 12/17 975/1470 26/32 87/89 0.80/0.89 DS 5 2.7/2.3 7.2/7.8 7/8 7/8 7/6 0.247 254
E.GV–225MB–64 15/22 985/1485 33/41.5 89.5/89.5 0.75/0.86 DS 4 2.4/2.1 5.7/6.5 23/22 23/22 23/19 0.4 335
E.GV–250MB–64 23/32 990/1490 45/58 92/92.5 0.81/0.87 HS 3 1.5/1.3 6.1/7.6 22/21 22/21 22/18 0.79 425
E.GV–280SG–64 27/40 990/1485 49/68 92/92.5 0.88/0.91 HS 4/3 2.0/1.4 6.2/6.0 29 29 28/20 1.73 575
E.GV–280MG–64 32/48 990/1485 57/81 92.3/93 0.88/0.93 HS 4/3 2.0/1.6 6.0/6.9 24/28 24/28 21/14 2.1 650
E.GV–315SL–64 46/62 990/1490 85/104 93.5/94 0.84/0.92 HS 2 1.3/1.1 7.3/7.2 29/24 29/24 29/24 2.7 960
E.GV–315ML–64 55/75 990/1490 102/130 93.5/94 0.84/0.92 HS 2 1.3/1.1 7.1/6.6 28/27 28/27 18/21 3.2 1040
E.GV–315MN–64 63/85 990/1490 116/143 93.5/94 0.84/0.92 HS 2 1.2/1.0 7.0/7.0 >10 >10 >10 3.7 1110
E.GV–315LL–64 75/100 990/1490 140/170 93.7/94 0.84/0.92 HS 2 1.0/1.0 7.0/7.0 >10 >10 >10 4.4 1340
E.GV–132SB–86 1.2/1.6 720/975 3.6/4.4 73/75.5 0.67/0.70 HS 3 1.6/1.5 4.8/5.7 20/11 20/11 20/11 0.033 59
E.GV–132MB–86 1.5/2.4 720/975 4.6/7.0 73/77 0.64/0.64 HS 5 2.5/2.7 4.2/6.0 24/10 24/10 22/10 0.045 72
E.GV–160MB–86 3/4 720/970 6.4/8.2 82.5/85.3 0.80/0.82 HS 4 2.0/1.8 5.4/6.7 30/19 30/19 30/19 0.094 108
E.GV–160LB–86 4.5/6 720/970 10.0/12.6 84/86 0.78/0.80 HS 4 2.2/1.9 6.0/7.0 26/13 26/13 26/13 0.127 130
E.GV–180LB–86 5.5/7.5 730/985 13.2/17.2 83.5/86.9 0.72/0.72 HS 3 1.4/1.3 4.8/5.9 25/18 25/18 25/18 0.13 176
E.GV–200LG–86 7.5/10 725/980 16.0/19.5 85.5/86.5 0.80/0.82 DS 4 2.2/2.3 5.3/7.0 30/26 30/26 30/26 0.33 262
E.GV–225SB–86 10/14 730/985 22/29 86/87 0.77/0.80 DS 5 2.7/2.6 5.4/6.8 13/10 13/10 13/10 0.46 305
E.GV–225MB–86 15/20 725/980 31/39 87/90 0.80/0.83 DS 4 2.5/2.3 5.4/6.4 18/12 18/12 18/12 0.51 315
E.GV–250MB–86 17/25 730/980 32/45 89/91 0.84/0.87 HS 3 1.6/1.5 4.0/4.0 22/17 22/17 22/17 1.0 420
E.GV–280SG–86 23/30 735/985 48/56 90.5/91.5 0.78/0.85 DS 4 2.1/1.8 5.8/5.6 45/35 45/35 30/30 1.73 605
E.GV–280MG–86 28/37 740/990 57/68 92.0/92.8 0.78/0.85 DS 4 2.1/1.8 5.7/6.0 40/30 40/30 27/20 2.1 670
E.GV–315SL–86 34/45 740/990 65/82 92/93 0.82/0.86 HS 2 1.4/1.0 6.0/5.8 40/50 40/50 30/30 3.4 960
E.GV–315ML–86 41/55 740/990 79/100 93/93.5 0.82/0.85 HS 2 1.3/1.0 5.3/5.7 50/40 50/40 29/27 4.0 1040
E.GV–315MN–86 49/65 740/990 96/120 93/93.5 0.82/0.85 HS 2 1.2/1.0 6.0/6.5 25/20 25/20 14/10 4.7 1110
E.GV–315LL–86 56/75 740/990 110/137 93.5/94 0.82/0.85 HS 2 1.2/1.0 6.0/6.5 23/18 23/18 12/10 5.8 1340
If only one time of temperature rise tE is indicated, it applies to both pole numbers.
Higher outputs, other voltages and frequencies on request.
For motors still uncertified by the PTB modifications are possible.
Type Rated Rated Rated Effi- Power fac- Rotor Starting Starting Time of Moment Wei
output speed current at ciency tor class torque current temperature rise tE of inertia ght
with direct-on starting as JM
a multiple of the
rated rated T1 T2 T3 ap-
400V torque current ap- prox
prox. .
kW min–1 A % cosϕ MA/MN IA/I N sec. kgm2 kg
Type series E and A..K
EVGV–132SB–84 1/4 720/1455 3.2/8.2 75/85 0.62/0.85 HS 4 1.9/2.0 3.8/7.5 70/12 70/12 70/12 0.022 59
EVGV–132MB–84 1.25/5 725/1465 3.8/10.0 78/85 0.63/0.85 HS 4 1.9/2.3 4.4/8.6 60/10 60/10 60/10 0.030 69
EVGV–160MD–84 1.65/7.5 725/1445 3.8/16.0 83/81 0.77/0.89 HS 4 1.7/2.2 5.1/6.8 80/10 80/10 80/8 0.12 108
EVGV–160LB–84 2 2.4/10.5 725/1445 5.3/21.5 86/83 0.79/0.88 HS 4 1.6/2.2 4.6/6.8 100/13 100/13 90/6 0.158 130
EVGV–180LB–84 3.3/14.5 730/1455 7.0/27 86/86 0.78/0.91 HS 4 2.0/2.5 6.3/8.6 20/10 20/10 20/10 0.19 176
EVGV–200LG–84 4.3/20 730/1465 9.3/38 87/87 0.78/0.89 DS 4 2.4/2.5 5.9/7.4 40/23 40/23 19/7 0.33 254
EVGV–225SB–84 6.0/24 735/1470 13/42 88/88 0.79/0.93 HS 3 1.2/1.8 3.9/5.6 60/29 60/29 60/15 0.46 305
EVGV–225MB–84 6.3/29 735/1470 13/50 89/90 0.80/0.93 HS 3 1.6/1.6 4.5/6.0 50/26 50/26 20/8 0.55 335
EVGV–250MB–84 7.6/35 735/1470 15/61 91/91 0.82/0.91 HS 3 1.2/1.7 5.5/6.7 50/27 50/27 22/12 1.0 425
EVGV–280SG–84 10/47 740/1480 22/82 91/92 0.72/0.91 DS 4 1.3/1.6 3.6/5.9 60/30 60/30 26/10 1.7 575
EVGV–280MG–84 12/55 740/1480 25/94 92/92.8 0.73/0.91 DS 4 1.3/1.7 4.0/6.9 100/26 100/26 80/9 2.1 650
EVGV–315SL–84 15/68 740/1490 33.5/120 92/92.5 0.70/0.91 HS 2 1.1/1.2 4.3/6.5 50/30 50/30 45/13 2.7 960
EVGV–315ML–84 18/75 745/1490 39/130 93/93 0.70/0.92 HS 2 1.0/1.2 4.5/7.1 50/30 50/30 25/14 3.2 1040
EVGV–315MN–84 20/85 745/1490 43/145 93.5/94.5 0.72/0.91 HS 2 1.0/1.2 4.5/7.2 50/30 50/30 25/11 3.7 1120
EVGV–315LL–84 24/100 745/1490 51/170 94/94.8 0.73/0.91 HS 2 1.0/1.2 4.1/7.1 80/30 80/30 80/17 4.7 1340
EVGV–132SB–64 0.8/2.5 975/1470 2.2/5.5 82/82 0.73/0.82 HS 4 2.0/1.8 4.3/6.4 30/14 30/14 30/14 0.0236 59
EVGV–132MB–64 1.4/4.2 960/1450 3.5/8.6 80/86 0.75/0.82 HS 4 1.7/1.9 4.8/7.3 29/9 29/9 29/9 0.030 69
EVGV–160MB–64 1.8/5.5 970/1465 3.7/10.6 84/85 0.86/0.88 HS 3 1.5/1.7 6.3/7.5 45/15 45/15 45/15 0.068 108
EVGV–160LB–64 2.5/7.5 970/1465 5.2/14.0 85/86 0.81/0.90 HS 4 2.0/1.7 7.5/7.8 25/10 25/10 25/10 0.092 130
EVGV–180LB–64 3.7/11 970/1470 7.4/20.5 87/87 0.84/0.90 HS 3 1.8/1.5 6.7/7.7 24/13 24/13 24/13 0.13 176
EVGV–200LG–64 5/15 975/1465 10.3/27.0 85/88 0.83/0.91 DS 5 3.0/2.4 6.7/7.4 28/15 28/15 28/14 0.247 254
EVGV–200LJ–64 6/17 975/1470 13/32 86/88 0.81/0.89 DS 5 2.7/2.3 6.6/7.4 11/7 11/7 11/7 0.247 254
EVGV–225MB–64 8/24 985/1485 17/45 89/91 0.79/0.85 DS 4 2.4/2.1 5.4/6.7 40/18 40/18 40/18 0.40 335
EVGV–250MB–64 12/35 990/1485 23/62 90/92 0.84/0.88 HS 3 1.4/1.3 5.9/6.4 23/27 23/27 23/20 0.79 425
EVGV–280SG–64 15/46 990/1485 28.5/80 89.5/93 0.88/0.92 HS 4 2.0/1.8 6.2/6.5 16/30 16/30 16/30 1.73 575
EVGV–280MG–64 18/55 990/1485 32.5/93 90/93.5 0.88/0.92 HS 4 2.0/1.8 6.0/6.3 30/40 30/40 30/16 2.1 650
EVGV–315SL–64 23/70 990/1490 43/120 92/93.5 0.86/0.91 HS 3 1.2/1.2 6.6/6.6 20 20 18 2.7 960
EVGV–315ML–64 27/85 990/1485 51/147 93.5/94.5 0.85/0.91 HS 2 1.2/1.1 6.2/6.4 40/23 40/23 40/19 3.2 1040
EVGV–315MN–64 31/95 990/1490 58/168 92.5/93.6 0.88/0.92 HS 2 1.1/1.0 5.8/6.8 35/22 35/22 24/10 3.7 1120
EVGV–315LL–64 35/110 990/1490 62/185 94/95 0.88/0.92 HS 2 1.1/1.1 5.7/7.2 50/18 50/18 45/14 4.4 1340
If only one time of temperature rise tE is indicated, it applies to both pole numbers.
Higher outputs, other voltages and frequencies on request.
For motors still uncertified by the PTB modifications are possible.
Page 91
Standard single dimension drawings in DXF format see Appendix (Page 250, 251)
Sectional view
Three–phase motor Type DNGW–160 ML–04
Type series D
1 For foot–mounting types only. The cooling–air flow from NDE to DE must not be hindered.
2 For special operating conditions we can also supply for the the The intake area of the fan cowl must be kept clear.
frame sizes 071–225 external fans made of aluminium,
for the frame sizes 250–315 of sheet steel.
This applies especially to high coolant temperatures.
3 .For frame size 132 in special design.
Type series D
Antifriction bearings
Driving-end bearing Non-driving end bearing
Frame size No
No. of poles Mounting IM B 3, IM B 51 Vertical mounting types Mounting IM B 3, IM B 51 Vertical mounting
types
71 2–8 6203-2Z 6203-2Z 6203-2Z 6203-2Z
80 2–8 6204-2Z 6204-2Z 6204-2Z 6204-2Z
90 2–8 6205-2Z C 3 6205-2Z C 3 6205-2Z C 3 6205-2Z C 3
100 2–8 6206-2Z C 3 6206-2Z C 3 6206-2Z C 3 6206-2Z C 3
112 2–8 6306-2Z C 3 6306-2Z C 3 6306-2Z C 3 6306-2Z C 3
132 2–8 6308-2Z C 3 6308-2Z C 3 6308-2Z C 3 6308-2Z C 3
160 2–8 6310-2Z C 3 6310-2Z C 3 6310-2Z C 3 6310-2Z C 3
180 2–8 6311 C 3 6311 C 3 6311 C 3 6311 C 3
200 2 6312 C 3 6312 C 3 6312 C 3 6312 C 3
200 4–8 6312 C 3 6312 C 3 6312 C 3 6312 C 3
225 2 6314 C 3 6314 C 3 6314 C 3 6314 C 3
225 4–8 6314 C 3 6314 C 3 6314 C 3 6314 C 3
250 2 6314 C 3 6314 C 3 6314 C 3 6314 C 3
250 4–8 6316 C 3 6316 C 3 6316 C 3 6316 C 3
280 2 6316 C 3 6316 C 3 6316 C 3 6316 C 3
280 4–8 6317 C 3 6317 C 3 6317 C 3 6317 C 3
315 2 6316 C 3 6316 C 3 * 6316 C 3 6316 C 3
315 4–8 6219 C 3 6219 C 3 6219 C 3 6219 C 3
* C4–bearing for 60 Hz service
The operational life of the motors to experience the grease filling For frame size 315 the closed
essentially depends on the life of made in the factory during the grease collecting chamber is desi-
the bearings. This one, however, is installation will be sufficient for a gned to take used grease for min.
influenced by both the fatigue pe- specific service period. See table 40 000 service hours. The relubri-
riod of the bearings themselves for service life data. cation intervals and grease quanti-
and the efficiency and life of the ties depend on the motor speed
lubricant. These two factors should The bearings of the motors of and the bearing size and are indi-
be carefully considered. The pre- frame size 315, on customer re- cated in the table. The motor is
sent quality of antifriction bearing quest also the motors of the frame provided with an instruction plate
greases allows permanent lubrica- sizes 160 to 280, are fitted with a stating the grease quality, the lubri-
tion for motors up to frame size regreasing device (flat grease nip- cation interval and the grease
280. Thus bearing damage due to ples DIN 3404) and grease regula- quantity. Under worst–case condi-
maintenance mistakes such as tion. Normally lithium–based tions (e.g. increased ambient tem-
exceeding the regreasing period or grease with a melting point perature, high dust load, corrosive
using the wrong type of grease 180_C is used. Regreasing or atmosphere) the lubrication inter-
can be avoided. replacement of the grease is only vals are shorter.
In standard design the bearings allowed with a grease quality of
from frame size 71 to 280 have the same kind (same saponifica-
permanent lubrication. According tion component or consistency).
Type series D
Grease life, grease quantity and relubrication intervals
Type DNGW Grease life with permanent lubrication or Grease quantity for permanent lubrication or
relubrication interval with regreasing device in service hours at rated speed grease quantity for relubrication in grammes
per bearing
The indicated grease life or relubrication intervals are applicable for an ambient temperature of max. 40_C.
For every 10_C temperature rise, the lubrication interval is to be reduced by factor 0.7 of the value shown in the table (max. 20_C = factor 0.5).
Twice the grease life can be expected at an ambient temperature of x 25_C however, 40 000 h at a maximum.
Intervals for operation of a 60 Hz power supply on request.
In case of pure coupling operation with flexible coupling the calculated useful bearing life L10h is more than 50 000 hours.
Grease life and relubrication intervals must be observed.
a/l a= 0 a = 0.5 l a= l
Speed min–1 3000 1500 1000 750 3000 1500 1000 750 3000 1500 1000 750
Frame size kN kN kN kN kN kN kN kN kN kN kN kN
071 0.48 0.54 0.54 0.54 0.39 0.38 0.38 0.38 0.31 0.32 0.32 0.32
080 0.64 0.75 0.75 0.75 0.53 0.53 0.53 0.53 0.41 0.41 0.41 0.41
090 0.74 0.96 1.12 1.21 0.67 0.89 0.93 0.97 0.61 0.74 0.74 0.74
100 1.01 1.33 1.52 1.67 0.91 1.23 1.40 1.40 0.84 1.05 1.03 1.05
112 1.39 1, 56 1.53 1.45 1.10 1.05 1.10 1.05 0.86 0.85 0.83 0.80
Type series D
132 2.10 2.80 3.10 3.50 1.90 2.60 3.00 2.80 1.70 2.10 2.00 2.20
160 3.50 4.60 5.40 5.80 3.20 4.20 3.80 3.80 2.90 3.00 2.20 2.50
180 4.20 5.30 6.30 6.80 3.70 5.00 4.80 6.30 3.30 4.10 3.30 4.00
200 4.60 5.90 6.90 7.80 4.30 5.60 6.70 5.80 3.90 5.30 4.50 3.60
225 5.80 7.60 8.00 8.70 5.40 7.20 4.00 4.00 5.00 4.70 2.90 3.00
250 5.70 8.70 10.30 11.60 5.20 8.10 7.50 6.50 4.80 8.00 5.50 4.30
280 6.60 9.30 10.60 11.60 6.10 9.00 10.10 8.00 5.70 8.60 9.60 6.00
315 S./M. 6.20 6.80 7.70 8.70 5.70 6.30 7.20 8.00 5.40 5.80 6.70 7.50
315 L. 5.9 6.20 7.00 8.00 5.60 6.00 6.30 6.30 5.30 4.90 4.20 4.20
For the maximum admissible shaft deflection within the ignition gap,
the indicated radial forces are not allowed to be exceeded!
Type series D
Shaft end downwards Shaft end upwards
–FA Mounting arrangements IM V1, IM V5, Mounting arrangements IM V3, IM V6,
IM V10, IM V18, IM V15 IM V14, IM V19, IM V36
071 0.33 0.45 0.55 0.64 0.34 0.48 0.58 0.66 0.32 0.44 0.54 0.63
080 0.43 0.60 0.73 0.84 0.45 0.64 0.77 0.88 0.41 0.57 0.70 0.81
090 0.49 0.63 0.77 0.91 0.54 0.69 0.82 0.97 0.46 0.59 0.73 0.87
100 0.68 0.86 1.07 1.24 0.76 0.96 1.18 1.35 0.62 0.79 1.00 1.16
+FA or –FA
112 1.05 1.43 1.76 2.00 1.15 1.58 1.88 2.13 0.99 1.34 1.68 1.92
132 1.50 1.90 2.40 2.70 1.60 2.20 2.60 3.00 1.30 1.80 2.30 2.50
160 2.30 3.00 3.70 4.20 2.60 3.50 4.20 4.80 2.00 2.70 3.40 3.90
180 2.60 3.40 4.20 4.70 3.00 4.00 4.80 5.40 2.30 3.00 3.90 4.30
200 3.00 3.80 4.70 5.50 3.70 4.70 5.60 6.40 2.50 3.20 4.10 4.90
225 3.80 4.90 6.20 7.10 4.70 6.00 7.40 8.30 3.20 4.20 5.50 6.40
250 3.70 5.50 7.00 8.20 4.80 6.90 8.50 9.80 2.90 4.50 5.90 7.20
280 4.30 5.40 6.80 8.20 5.90 7.40 8.80 10.20 3.20 4.00 5.50 6.90
315 S./M. 2.60 2.90 3.50 3.90 5.00 5.90 6.90 7.30 0.80 0.70 0.90 1.30
315 L. 2.60 2.90 3.40 3.80 5.90 7.00 8.60 9.00 0.10 0.10 0.10 0.20
The motor design with cylindrical roller bearing at the driving–end side and regreasing device at both ends is an
alternative of the standard design.
Frame size Grease life with permanent lubrication or relubrication interval with regreasing device Grease quantity in grammes
in service hours at rated speed per bearing
Relubrication Permanent
lubrication
Grease filling
Horizontal mounting (B) Vertical mounting (V)
3000 min–1 1500 min–1 1000 min–1 3000 min–1 1500 min–1 1000 min–1
160 17000 – – 12000 – – – 32
180 2800 2000 17 –
200 5600 8000 4000 5600 20 –
225 2000 1400 2800 4000 25 –
250 4000 5600 35 –
280 35 –
315 – – – 35 –
315 – 4000 – 2800 4000 25 –
The indicated grease life or relubrication intervals are applicable for an ambient temperature of max. 40oC.
For every 10oC temperature rise, the lubrication interval is to be reduced by factor 0.7 of the value shown in the table (max. 20oC = factor 0.5).
Intervals for operation of a 60 Hz power supply on request.
Weight of rotor
a/l a= 0 a = 0.5 l a= l
Speed min–1 3000 1500 1000 750 3000 1500 1000 750 3000 1500 1000 750
Frame size kN kN kN kN kN kN kN kN kN kN kN kN
For the maximum admissible shaft deflection within the ignition gap,
the indicated radial forces are not allowed to be exceeded!
Type series D
are possible in axial direction. (Values on request)
Frame size 3000 min–1 1500 min–1 1000 min–1 750 min–1 Frame size 3000 min–1 1500 min–1 1000 min–1 750 min–1
71 BG 1.3 1.4 2.3 2.3 180 MB 43 50 – –
BH 1.5 1.7 3.2 3.2 LB – 56 51 60
80 BG 2.1 2.4 3.8 3.8 200 LB 66 74 85 84
BH 2.4 2.8 4.0 4.0 LD 69 – 85 –
90 LB 3.3 4.0 4.0 4.0 225 SB – 85 – 94
LD 3.8 4.8 7.2 7.2 MB 78 95 105 107
100 LB 5.6 5.7 – 8.1 250 MB 98 135 145 145
LD – 5.9 11 11 280 SG 125 162 180 180
112 MB 8.5 11 19 19.5 MG 145 187 210 215
132 SL 12.5 15.5 – – 315 SL 200 200 220 220
SN 13.5 – 20 24.5 ML 230 250 250 260
ML – 20.5 24 – MM / MN 260 325 350 360
MN – – 37 34 LL 310 385 410 420
160 ML 26 33 – 39 LN / LM 370 440 460 470
MN 29 – 45 49
LL 34 40
Type series D
Frame size 250–280
6 cable glands with round terminals
Terminal box
Enclosure: IP 55
Protection type: Ex e II to EN 50014 / EN 50019 resp. EN 60079–0 / EN 60079–7
optional: Ex d IIC to EN 50014 / EN 50018 resp. EN 60079–0 / EN 60079–1
Housing material: Cast iron
Frame Standard version with 6 terminals Max. possible number of terminals Additional
size terminal box
Ampe- Termi- Cross sec- Additional termi- Cross sec- Num- Termi- Ampe- Cross Additional termi- Number of ter-
rage per nal tion max. nals in main ter- tion on earth ber of nal rage per section nals in main ter- minals x cross
terminal stud minal box conductor termi- stud terminal minal box section
max. number x max. nals max. number x
cross section cross section
[A] [mm2] [mm2] 1 [mm2] [A] [mm2] [mm2] 1 [mm2] 1
071 37 M4 2.5 6 2 4 x 2.5 4 62 ––– ––– ––– ––– ––– –––
080 37 M4 2.5 6 2 6 x 2.5 4 62 ––– ––– ––– ––– ––– –––
090 37 M4 2.5 6 2 6 x 2.5 4 62 ––– ––– ––– ––– ––– –––
100 37 M4 2.5 6 2 6 x 2.5 4 62 ––– ––– ––– ––– ––– –––
112 37 M4 2.5 6 2 6 x 2.5 4 62 ––– ––– ––– ––– ––– –––
132 64 M5 10 25 2 4 x 2.5 25 ––– ––– ––– ––– ––– 4 x 2.5 3
160 64 M5 10 25 2 4 x 2.5 25 ––– ––– ––– ––– ––– 4 x 2.5 3
180 118 M6 16 50 2 10 x 2.5 35 12 M5 64 10 6 x 2.5 4 x 2.5 3
200 118 M6 16 50 2 6 x 2.5 70 9 M8 100 2.5 – 35 4 x 2.5 10 x 2.5
225 118 M6 16 50 2 6 x 2.5 70 9 M8 100 2.5 – 35 4 x 2.5 10 x 2.5
250 200 M 10 6 – 70 6 x 2.5 70 9 M8 100 2.5 – 35 4 x 2.5 10 x 2.5
280 315 M 12 10 – 95 6 x 2.5 150 12 M8 100 2.5 – 35 4 x 2.5 10 x 2.5
315 315 M 12 16 – 150 16 x 4 150 12 M8 100 2.5 – 35 16 x 4 52 x 4
Type series D
Cable glands
For delivery the entry threads are sealed with certified plugs.
Only on special order the terminal boxes are delivered with cable gland according to the table.
Special glands on request.
Standard cable glands 5 Entry thread max. 3 Entry thread max. 3
Entry thread 1 Cable diameter Cable diameter Number metric NPT 4 Number metric NPT 4
[mm] [mm]
071 1 x M 25 x 1.5 10 – 16 11 – 20 2 M 32 x 1.5 1“ 2 M 40 x 1.5 1 1/4 “
080 1 x M 25 x 1.5 10 – 16 11 – 20 2 M 32 x 1.5 1“ 2 M 40 x 1.5 1 1/4 “
090 1 x M 25 x 1.5 10 – 16 11 – 20 2 M 32 x 1.5 1“ 2 M 40 x 1.5 1 1/4 “
100 1 x M 32 x 1.5 13 – 20 16 – 27.5 2 M 32 x 1.5 1“ 2 M 40 x 1.5 1 1/4 “
112 2 x M 32 x 1.5 13 – 20 16 – 27.5 2 M 32 x 1.5 1“ 2 M 40 x 1.5 1 1/4 “
132 2 x M 32 x 1.5 13 – 20 16 – 27.5 2 M 50 x 1.5 1 1/2 “ 2 M 50 x 1.5 1 3/4 “
160 2 x M 40 x 1.5 22 – 32 22 – 33 2 M 50 x 1.5 1 1/2 “ 2 M 50 x 1.5 1 3/4 “
180 2 x M 40 x 1.5 22 – 32 22 – 33 2 M 63 x 1.5 2“ 2 M 50 x 1.5 1 3/4 “
200 2 x M 50 x 1.5 32 – 38 30 – 44 2 M 63 x 1.5 2“ 2 M 63 x 1.5 2“
225 2 x M 50 x 1.5 32 – 38 30 – 44 2 M 63 x 1.5 2“ 2 M 63 x 1.5 2“
250 2 x M 63 x 1.5 37 – 44 40 – 57 2 M 63 x 1.5 2“ 2 M 63 x 1.5 2“
280 2 x M 63 x 1.5 37 – 44 40 – 57 2 M 75 x 1.5 3“ 2 M 75 x 1.5 3 1/2 “
315 2 x M 63 x 1.5 37 – 44 40 – 57 2 M 100 x 1.5 3“ 2 M 100 x 1.5 3 1/2 “
Type D...
Terminal box location
Frame size
T R L
Standard optional optional
071 – 280 x ––– 1 ––– 1
315 x x x
Type DN...
Mounting type
IM B3
Frame size IM B5
IM B14 IM V1 IM V3
IM B35 IM V18 IM V19
IM V5
IM V6
071 – 315 A D B
Electrical design
The motors of the series DNGW More complicated is when PTC Both for fixed voltage (e.g. 400V,
are available in explosion protec- thermistor–type protection (sole 500V or 690V) and voltage range
tion ”Flameproof enclosure”. protection) at mains operation is (e.g. 380–420V, 475–525V or
selected, since the load case ”lok- 655–725V) a tolerance of ± 5% for
On customer request the motors ked shaft, motor draws full starting the ”Range A” is admissible to EN
can be delivered for a fixed vol- current” has also to be monitored. 60034–1 (”VDE 0530”).
tage (e.g. 400V) or for a voltage Considering the rotor only PTC This results in the following:
range (e.g. 380–420V). thermistors with low tripping tem- For the fixed voltage motor, e.g.
perature can partly be used here. 400V, this ”Range A” goes from
The rated voltages The advantage is that all ”mains 380–420V.
400V or 380–420V duty types” (S1–S7) and the ”in- Within this range the motor must
500V or 475–525V verter operation” (S9) are covered. be reliably functioning in continu-
690V or 655–725V These motors are stamped with S1 ous duty, the temperature rise of
are standard voltages for 50 Hz – S7, S9. the winding at the tolerance limits
systems. Other voltages and fre- is allowed to be approx. 10 K hig-
quencies are possible on request. The larger the motor and the lower her than the limit value of the insu-
the number of poles, the more diffi- lation class.
The outputs and electrical data in- cult is it to realize the sole protec-
dicated in the tables can be chan- tion at the mains by means of PTC The electrical data (”Rated data”)
ged by special designs, achieving thermistors: Due the principles of always refer to the mean range,
e.g. an even higher efficiency or growth larger machines always be- e.g. to 400V. Here the temperature
higher output at unchanged ther- come ”more critical for the rotor”. rise of the winding is measured
Type series D
mal utilization by means of a rotor Typically, this limit for sole protec- and the thermal utilization is deter-
with copper cage instead of alumi- tion of 4–pole motors is at shaft mined.
nium die cast. height 280.
The upper and lower limit of
The insulation system of this motor The flameproof motors are fitted ”Range A” is joined by ”Range B”:
series is suitable for mains volta- with 6 terminals, allowing ”star” (Y) Its tolerance limits are at ±10% of
ges up to 1000V. The connecting or ”delta” (∆) connection. Standard the rated voltage. For the 400V
(terminal box, terminals) is desi- connection of all 400V motors is motor these are e.g. 360–440V. An
gned for rated voltages up to delta and therefore suitable for operation at these tolerance limits
1100V. 400V ∆/690V Y. of ”B” for a longer time is not re-
The 500V motors are available commended however, the motor
The general use of overcoat both for 500V Y and 500V ∆, if not must still be reliably functioning
double–enamelled wires and opti- for winding reasons one of the and is not allowed to differ essen-
mized impregnating methods also both versions is to be preferred. tially from the characteristic data.
allows an inverter operation for
most motors of this series without The motors of the series DNG. Accordingly, the tolerance limits of
modifying the electrical design. have the winding executed in class ”Range A” are between 361V and
The permissible basic data and F insulation, thermal utilization 441V for the voltage range motor
parameters for inverter operation only to class ”B”. (e.g. 380–420V). ”Range B” starts
are summarized in our Technical In accordance with the latest stan- at 342V and ends at 462V.
List UN 04. It is provided, however, dard EN 60034–1 the thermal utili- (see chart in section ”Electrical de-
that the motor is equipped with zation, if it is inferior to the insula- sign, general / Standard voltages
PTC thermistors. These are instal- tion class, will be stamped on the and tolerances”).
led into the stator winding and act rating plate additionally to the insu- A motor being stamped e.g. with
in case of inverter operation as lation class. Therefore the fixed 380–420V is to keep the limit tem-
sole motor protection together with voltage motors of this series will be perature according to its insulation
a tripping device (e.g. LOHER Ca- stamped with ”F–B”. Only few ex- class at every voltage between
lomat) which is certified by the ceptions require ”F”. They are mar- 380V and 420V, 10 K more are al-
PTB. No motor protection circuit ked with an * in the output tables lowed between 361 and 380V as
breakers are necessary. In most and stamped with ”F”. well as between 420 and 441V.
cases PTC thermistors with nomi-
nal shutdown temperature of 145 °
C (”KL145”) are used. Normally,
such inverter motors are stamped
with duty type S1 or S9.
All motors of the series DNGW Maintaining the torque calculated Special case ”Voltage variation”
being operated in the mean range from the rated output and the rated especially in English–speaking
will be utilized to insulation class speed (”rated torque”), the cur- countries the voltage range motor
”B”. rents at the limits of the rated vol- (e.g. 380–420V) according to the
At the rated voltage limits of the tage (e.g. at 380V and at 420V) European Standard and the Euro-
wide voltage range motors a are still to be determined now. pean understanding is less known.
slightly higher temperature rise Instead of it a voltage tolerance,
than in the mean range can occur. The maximum current from the ra- e.g. ±10%, which is mostly also in-
Therefore, these are generally ted voltage range (e.g. 380–420V) volved with a relating frequency
marked on the rating plate as fol- is determined as rated current and tolerance of e.g. ± 5% is more
lows: stamped onto the rating plate. common.
400V: F–B, 380–420V: F
The few exceptions are motors for (For the fixed voltage motor only This kind of test and stamp can
which insulation class F is already the ”mid–current”, which means also be applied by us. In this case
required at mid–voltage. They are e.g. at 400V, is decisive). the motor will be tested at –10% of
marked with an * and stamped with the rated voltage and 100% rated
”F”. For rating and Ex–approval of the torque as well as at +10% of the
voltage range motor this means rated voltage and +100% rated tor-
Since there is sometimes uncer- that the worst value within the vol- que (which has been determined
tainty about the stamp data, utiliza- tage range (at maximum current of at rated output and mid–voltage). It
tion and guaranteed data of the this range) is decisive for the tem- is assumed that there may be a
wide voltage range motor a detai- perature rise of the flameproof voltage variation in the indicated
led description is given below: enclosure. This means that even tolerance range, however, during
at the most unfavourable constel- most of the operating time the
Type series D
For the voltage range motors (e.g. lation these limit temperatures at mid–voltage (e.g. 400V) is applied
380–420V) of the series D.G. the the outer surface of the flameproof to the motor.
electrical data are measured in the enclosures are kept, which are ad- Therefore that current is stamped
mean range (e.g. at 400V) at rated missible according to the respec- as rated current which flows at ra-
output first. Obtained are the tive temperature class. (The mo- ted output and mid–voltage.
power factor, efficiency, speed (tor- tors of this list are certified for T4, A test evidence that all limit tempe-
que), starting current (IA absolute), which means the admissible sur- ratures are kept in the voltage
noise, torque characteristic, tem- face temperature is max.120 ° C) range at rated torque is sufficient.
perature rise of the winding and
no–load data. The stamped–on currents of the
voltage range motor are on ave-
All guaranteed data indicated in rage by approx. 5% higher than
this list or in the data sheet must those of the fixed voltage motor of
meet within the tolerances these the same output. Therefore the va-
measured values at mid–voltage. lue of the relative starting current
”IA/ IN” is lower by approx. 5%.
Frame size 071 080 090 100 112 132 160 180 200 225 250 280 315
IM B5, IM V3
IM V1, IM V5
IM B35, IM V15
Regreasing device N N N N N N
Forced ventilation N N N A A
Noise class 3 2 N N N N A
Insulation class H
SPM–nipples N N N N N
Bearing thermometer N N N N N N
Reverse lock N N
Tachometer N
VIK–design
Type series D
Connection cable (standard design) Type: NssHöu–J
Rated voltage: 1000V
Max. operating temperature at the conductor: – 20°C up to + 80°C
The pulse generator is flanged on the non–driving end to a reinforced fan cowl.
Terminal assignment for cables according to the circuit diagram supplied.
Available special designs:
TTL design with voltage supply 5V 5 %.
Pulse number 2048, 2500. Other pulse numbers on request.
Application ranges
Type series D
Explosion protection: acc. to European Standards
EN 50014, EN 50018, EN 50019 resp.
EN 60079–0, EN 60079–1, EN 60079–7
Type series D
4.24 Outside gasket, DE
4.26 Inner gasket, DE
4.30 Outside bearing cap, NDE
4.32 Inner bearing cap, NDE
4.34 Resilient preloading ring, NDE
4.36 Grease guide disk, NDE
4.38 Centrifugal disk, NDE
4.44 Outside gasket, NDE
4.46 Inner gasket, NDE
Type Rated Rated Rated Efficiency Power Rotor Starting Breakd. Starting Moment Net weight
output speed current at η factor class torque torque current of inertia
with direct-on starting J
as a multiple of the
rated rated rated
Dimension drawings 4
Characteristic curves
DNGW-090LX-02 1.5 2850 3.2 80.2 0.89 HS 5 2.9 3.0 6.8 0.0020 32
DNGW-090LD-02 2.2 2850 4.6 81.3 0.88 HS 5 2.9 3.0 6.4 0.0020 32
DNGW-112MB-02 4.0 2880 7.5 85.5 0.92 HS 5 2.9 3.5 7.2 0.0060 55
DNGW-132SL-02 5.5 2900 10.6 86.5 0.88 HS 5 3.0 3.3 6.6 0.0110 85
DNGW-280SG-02 75 2980 130 94.7 0.89 HS 4 2.2 2.2 6.8 0.88 725
DNGW-315SL-02 110 2980 195 94.9 0.87 DS 4 2.1 2.5 6.6 1.55 1010
DNGW-315ML-02 132 2980 230 95.3 0.87 DS 4 2.0 2.4 6.3 1.85 1090
DNGW-315MN-02 160 2980 280 95.8 0.87 DS 4 2.3 2.6 6.7 2.2 1160
DNGW-315LL-02 200 2980 340 96.2 0.88 DS 5 2.6 2.7 7.0 2.8 1400
DNGW-315LN-02 250 2980 425 96.6 0.89 DS 5 2.7 2.6 7.0 3.5 1550
DNGW-315LN-02 3 250 2984 416 96.8 0.90 HS 4 1.8 2.9 7.4 3.5 1560
Type Rated Rated Rated Efficiency Power Rotor Starting Breakd. Starting Moment Net weight
output speed current at η factor class torque torque current of inertia
with direct-on starting J
as a multiple of the
rated rated rated
Dimension drawings 4
Characteristic curves
DNGW-100LD-04 3.0 1410 6.6 82.6 0.82 HS 5 2.5 2.7 5.8 0.0066 40
Type series D
DNGW-132ML-04 7.5 1445 15 88 0.85 HS 5 2.6 3.0 7.2 0.030 100
DNGW-180MB-04 18.5 1465 34.5 91.3 0.86 DS 5 2.9 2.6 6.8 0.13 190
DNGW-280SG-04 75 1480 132 94.7 0.88 HS 4 2.2 2.5 6.5 1.44 750
DNGW-315SL-04 110 1486 205 95 0.82 DS 4 2.1 2.5 6.2 2.2 1020
DNGW-315ML-04 132 1486 240 95.5 0.84 DS 4 2.1 2.4 6.3 2.9 1120
DNGW-315MN-04 160 1486 286 95.8 0.84 DS 4 2.1 2.4 6.5 3.4 1190
DNGW-315LL-04 200 1486 360 96 0.84 DS 4 2.3 2.5 6.6 3.9 1430
DNGW-315LM-04 2 250 1487 455 96 0.83 DS 4 2.6 2.7 6.9 4.7 1520
DNGW-315LM-04 3 250 1489 455 96.5 0.83 HS 3 1.5 2.6 6.8 4.7 1530
Type Rated Rated Rated Efficiency Power Rotor Starting Breakd. Starting Moment Net weight
output speed current at η factor class torque torque current of inertia
with direct-on starting J
as a multiple of the
rated rated rated
Dimension drawings 4
Characteristic curves
DNGW-100LB-06 1.5 940 4.2 76.4 0.72 HS 4 2.2 2.5 4.4 0.0086 40
DNGW-132SL-06 3.0 955 6.3 85.6 0.81 HS 4 2.2 2.7 6.0 0.030 85
DNGW-132ML-06 4.0 955 8.8 84.7 0.81 HS 4 2.3 2.6 5.5 0.033 90
DNGW-160ML-06 7.5 970 16.0 87.9 0.81 HS 5 2.4 2.8 7.0 0.100 150
DNGW-160LL-06 11 965 22.5 88.8 0.82 HS 5 2.4 2.8 6.4 0.134 180
DNGW-200LB-06 18.5 970 36 90.8 0.83 DS 4 2.2 2.0 5.0 0.33 320
DNGW-280MG-06 55 985 100 93.4 0.86 DS 4 2.1 2.4 6.2 2.3 800
DNGW-315SL-06 75 990 136 94.6 0.85 DS 4 2.2 2.3 6.6 3.3 1010
DNGW-315ML-06 90 990 160 94.8 0.86 DS 4 2.1 2.3 6.7 4.0 1090
DNGW-315MM-06 110 990 195 95.2 0.87 DS 4 2.3 2.3 7.0 4.9 1180
DNGW-315MN-06 2 132 990 229 95.3 0.87 DS 4 2.4 2.2 6.9 4.9 1180
DNGW-315LL-06 160 990 278 95.5 0.87 DS 4 2.4 2.3 7.0 6.0 1390
DNGW-315LM-06 2 200 990 355 96 0.84 DS 4 2.4 2.5 6.5 6.8 1550
DNGW-315LM-06 3 200 993 345 96.1 0.87 HS 3 1.7 2.5 6.8 6.8 1560
Type Rated Rated Rated Efficiency Power Rotor Starting Breakd. Starting Moment Net weight
output speed current at η factor class torque torque current of inertia
with direct-on starting J
as a multiple of the
rated rated rated
400V torque torque current
approx.
kW min–1 A % cos ϕ MA/MN MK/MN IA/IN kg m2 kg
Type series D
DNGW-180LB-08 11.0 720 23.3 87.5 0.78 HS 4 1.8 2.6 5.0 0.19 210
DNGW-200LB-08 15.0 720 32.5 89 0.76 HS 4 1.8 2.1 4.0 0.33 320
DNGW-225SB-08 18.5 725 39 89.5 0.77 HS 4 2.4 2.4 5.0 0.46 350
DNGW-225MB-08 22 730 48 90.5 0.73 HS 5 3.0 3.0 5.1 0.55 385
DNGW-250MB-08 30 735 58 91.5 0.80 HS 4 1.9 2.2 5.3 1.0 510
DNGW-280SG-08 37 735 72 92 0.80 DS 4 1.8 2.2 5.0 1.9 750
DNGW-280MG-08 45 740 90 92.5 0.80 DS 4 2.2 2.1 5.0 2.2 800
DNGW-315SL-08 55 740 110 94.4 0.78 DS 4 1.6 2.1 6.0 3.3 1000
DNGW-315ML-08 75 740 146 94.4 0.79 DS 4 1.6 2.0 5.8 4.0 1170
DNGW-315MM-08 90 740 175 94.4 0.79 DS 4 1.7 2.5 5.8 4.8 1240
DNGW-315MN-08 2 110 740 216 94.4 0.79 DS 4 1.7 2.0 5.8 4.8 1240
DNGW-315LL-08 132 740 255 94.5 0.79 DS 4 1.6 2.0 5.8 6.0 1390
DNGW-315LM-08 2 160 740 308 95 0.78 DS 4 1.6 2.0 5.1 6.8 1530
DNGW-315LM-08 3 160 742 305 95.2 0.79 HS 2 1.4 2.8 6.0 6.8 1540
Type Rated Rated Rated Efficiency Power Rotor Starting Breakd. Starting Moment Net weight
output speed current at η factor class torque torque current of inertia
with direct-on starting J
380 as a multiple of the
to rated rated rated
Dimension drawings 4
Characteristic curves
DNGW-090LX-02 1.5 2850 3.4 80.2 0.89 HS 5 2.9 3.0 6.6 0.0020 32
DNGW-090LD-02 2.2 2850 4.7 81.3 0.88 HS 5 2.9 3.0 6.3 0.0020 32
DNGW-100LB-02 3.0 2880 6.3 84.2 0.88 HS 5 2.7 3.0 6.7 0.0039 37
DNGW-112MB-02 4.0 2880 7.8 85.5 0.92 HS 5 2.9 3.5 6.9 0.0060 55
DNGW-132SL-02 5.5 2900 10.9 86.5 0.88 HS 5 3.0 3.3 6.5 0.0110 85
DNGW-160LL-02 18.5 2920 34.5 91 0.90 HS 5 2.9 3.0 6.1 0.057 170
DNGW-250MB-02 55 2975 101 94.1 0.86 HS 5 2.3 3.2 7.3 0.45 500
DNGW-280SG-02 75 2980 134 94.7 0.89 HS 4 2.2 2.2 6.6 0.88 725
DNGW-315SL-02 110 2980 203 94.9 0.87 DS 4 2.1 2.5 6.6 1.55 1010
DNGW-315ML-02 132 2980 235 95.3 0.87 DS 4 2.0 2.4 6.3 1.85 1090
DNGW-315MN-02 160 2980 290 95.8 0.87 DS 4 2.3 2.6 6.7 2.2 1160
DNGW-315LL-02 200 2980 355 96.2 0.88 DS 5 2.6 2.7 7.0 2.8 1400
DNGW-315LN-02 250 2980 440 96.6 0.89 DS 5 2.7 2.6 7.0 3.5 1550
DNGW-315LN-02 3 250 2984 430 96.8 0.90 HS 4 1.8 2.9 7.4 3.5 1560
Type Rated Rated Rated Efficiency Power Rotor Starting Breakd. Starting Moment Net weight
output speed current at η factor class torque torque current of inertia
with direct-on starting J
380 as a multiple of the
to rated rated rated
Dimension drawings 4
Characteristic curves
DNGW-100LD-04 3.0 1410 6.7 82.6 0.82 HS 5 2.5 2.7 5.7 0.0066 40
Type series D
DNGW-132ML-04 7.5 1445 15.3 88 0.85 HS 5 2.6 3.0 7.1 0.030 100
DNGW-160LL-04 15 1455 31.5 90.7 0.85 HS 4 2.9 2.3 5.7 0.092 180
DNGW-180MB-04 18.5 1465 36 91.3 0.86 DS 5 2.9 2.6 6.5 0.13 190
DNGW-250MB-04 55 1480 100 94.5 0.88 HS 5 2.4 2.9 7.4 0.80 510
DNGW-280SG-04 75 1480 139 94.7 0.88 HS 4 2.2 2.5 6.2 1.44 750
DNGW-315SL-04 110 1486 210 95 0.82 DS 4 2.1 2.5 6.2 2.2 1020
DNGW-315ML-04 132 1486 250 95.5 0.84 DS 4 2.1 2.4 6.3 2.9 1120
DNGW-315MN-04 160 1486 305 95.8 0.84 DS 4 2.1 2.4 6.5 3.4 1190
DNGW-315LL-04 200 1486 375 96 0.84 DS 4 2.3 2.5 6.6 3.9 1430
DNGW-315LM-04 2 250 1487 475 96 0.83 DS 4 2.6 2.7 6.9 4.7 1520
DNGW-315LM-04 3 250 1489 475 96.5 0.83 HS 3 1.5 2.6 6.8 4.7 1530
Type Rated Rated Rated Efficiency Power Rotor Starting Breakd. Starting Moment Net weight
output speed current at η factor class torque torque current of inertia
with direct-on starting J
380 as a multiple of the
to rated rated rated
Dimension drawings 4
Characteristic curves
DNGW-100LB-06 1.5 940 4.4 76.4 0.70 HS 4 2.2 2.5 4.2 0.0086 40
DNGW-132SL-06 3.0 955 6.6 85.6 0.81 HS 4 2.2 2.7 5.7 0.030 85
DNGW-132ML-06 4.0 955 9.1 84.7 0.81 HS 4 2.3 2.6 5.3 0.033 90
DNGW-160ML-06 7.5 970 16.3 87.9 0.81 HS 5 2.4 2.8 6.9 0.100 150
DNGW-200LB-06 18.5 970 38 90.8 0.83 DS 4 2.2 2.0 4.8 0.33 320
DNGW-280MG-06 55 985 105 93.4 0.86 DS 4 2.1 2.4 5.9 2.3 800
DNGW-315SL-06 75 990 142 94.6 0.85 DS 4 2.2 2.3 6.6 3.3 1010
DNGW-315ML-06 90 990 170 94.8 0.86 DS 4 2.1 2.3 6.7 4.0 1090
DNGW-315MM-06 110 990 210 95.2 0.87 DS 4 2.3 2.3 7.0 4.9 1180
DNGW-315MN-06 2 132 990 240 95.3 0.87 DS 4 2.4 2.2 6.9 4.9 1180
DNGW-315LL-06 160 990 290 95.5 0.87 DS 4 2.4 2.3 7.0 6.0 1390
DNGW-315LM-06 2 200 990 370 96 0.84 DS 4 2.4 2.5 6.5 6.8 1550
DNGW-315LM-06 3 200 993 365 96.1 0.87 HS 3 1.7 2.5 6.8 6.8 1560
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Net weight
output speed current ciencyy factor class torque torque current of inertia
at η with direct-on starting J
as a multiple of the
Dimension drawings 4
Characteristic curves
DNGW–080BH–02 1.35 3380 2.65 79.0 0.85 HS 5 3.1 3.1 5.7 0.0008 22
DNGW–090LX–02 1.8 3415 3.3 81.0 0.90 HS 5 2.9 3.0 7.0 0.0020 32
DNGW–090LD–02 2.6 3440 4.85 82.0 0.87 HS 5 3.1 3.2 6.9 0.0020 32
DNGW–100LB–02 3.6 3465 6.5 85.0 0.88 HS 5 2.8 3.1 7.1 0.0039 37
DNGW–112MB–02 4.8 3480 8.2 85.5 0.91 HS 5 3.0 3.6 7.3 0.0060 55
DNGW–132SL–02 6.5 3500 11.8 85.5 0.87 HS 5 3.0 3.2 6.7 0.0110 85
DNGW–132SN–02 8.6 3490 14.4 88.0 0.89 HS 5 2.9 3.4 7.0 0.0140 90
DNGW–160ML–02 13.2 3520 22 90.5 0.88 HS 5 2.5 2.9 6.2 0.0364 150
DNGW–160MN–02 18 3520 30.5 90.5 0.87 HS 5 3.0 3.1 6.3 0.045 155
Type series D
DNGW–160LL–02 22 3520 35.5 91.2 0.89 HS 5 2.9 2.9 6.8 0.057 170
DNGW–180MB–02 26 3550 46.5 91.2 0.86 HS 5 2.1 2.8 6.8 0.094 190
DNGW–250MB–02 65 3570 105 94.0 0.86 HS 5 2.3 3.1 7.1 0.45 500
DNGW–280SG–02 86 3575 138 94.7 0.87 HS 4 2.1 2.1 6.5 0.88 725
DNGW–280MG–02 110 3575 176 95.0 0.87 HS 4 2.0 2.3 6.0 1.03 775
DNGW–315SL–02 120 3577 190 95.0 0.88 DS 4 1.9 2.5 6.5 1.55 1010
DNGW–315ML–02 143 3575 220 95.5 0.89 DS 4 2.0 2.4 6.5 1.85 1090
DNGW–315MN–02 185 3576 285 95.6 0.89 DS 4 2.4 2.5 6.9 2.2 1160
DNGW–315LL–02 220 3580 335 96.2 0.90 DS 4 2.6 2.6 7.2 2.8 1400
DNGW–315LN–02 2 275 3580 415 96.6 0.90 DS 4 2.6 2.5 7.1 3.5 1550
DNGW–315LN–02 3 275 3585 408 96.9 0.90 HS 3 1.5 2.7 7.0 3.5 1560
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Net weight
output speed current ciencyy factor class torque torque current of inertia
at η with direct-on starting J
as a multiple of the
Dimension drawings 4
Characteristic curves
DNGW–080BH–04 0.90 1670 2.10 73.5 0.80 HS 4 2.0 2.1 3.9 0.0020 22
DNGW–090LX–04 1.5 1685 3.00 79.0 0.84 HS 4 2.2 2.4 5.0 0.0036 32
DNGW–090LD–04 1.8 1710 3.65 80.0 0.82 HS 4 2.2 2.3 5.1 0.0036 32
DNGW–100LB–04 2.6 1700 5.3 81.5 0.84 HS 5 2.2 2.4 5.3 0.0051 37
DNGW–100LD–04 3.4 1700 6.6 82.6 0.84 HS 5 2.6 2.7 5.8 0.0066 40
DNGW–112MB–04 4.8 1720 8.8 85.0 0.84 HS 5 2.3 2.6 5.9 0.012 57
DNGW–132SL–04 6.6 1740 11.4 88.0 0.86 HS 5 2.2 2.6 6.8 0.022 85
DNGW–132ML–04 8.6 1735 15.0 88.5 0.85 HS 5 2.2 2.5 6.9 0.030 100
DNGW–160ML–04 13.2 1760 23.0 91.0 0.84 HS 5 2.6 2.5 6.2 0.068 150
Type series D
DNGW–160LL–04 17 1750 29.5 91.2 0.84 HS 5 2.9 2.4 6.3 0.092 180
DNGW–180MB–04 22 1765 36.6 92.0 0.87 DS 5 2.9 2.4 6.3 0.13 190
DNGW–180LB–04 25 1765 41.5 92.0 0.86 DS 5 2.9 2.5 6.3 0.16 210
DNGW–250MB–04 63 1780 103 94.5 0.85 HS 5 2.3 2.6 7.2 0.80 510
DNGW–280SG–04 85 1780 138 94.8 0.85 HS 5 2.3 2.6 6.6 1.44 750
DNGW–280MG–04 100 1780 161 95.0 0.87 HS 5 2.3 2.5 6.6 1.65 800
DNGW–315SL–04 126 1785 208 95.1 0.84 DS 4 2.2 2.3 6.5 2.2 1020
DNGW–315ML–04 150 1785 245 95.5 0.85 DS 4 2.1 2.5 6.5 2.9 1120
DNGW–315MN–04 180 1788 290 96.0 0.85 DS 4 2.2 2.5 7.0 3.4 1190
DNGW–315LL–04 220 1787 360 96.0 0.84 DS 4 2.3 2.5 6.9 3.9 1430
DNGW–315LM–04 2 275 1787 450 96.0 0.84 DS 4 2.4 2.5 6.9 4.7 1520
DNGW–315LM–04 3 275 1790 445 96.4 0.84 HS 3 1.5 2.6 7.0 4.7 1530
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Net weight
output speed current ciencyy factor class torque torque current of inertia
at η with direct-on starting J
as a multiple of the
Dimension drawings 4
Characteristic curves
DNGW–080BH–06 0.66 1090 1.90 67.0 0.69 HS 4 2.2 2.3 3.4 0.0020 22
DNGW–090LX–06 0.90 1100 2.2 73.0 0.75 HS 4 2.0 2.2 4.0 0.0036 28
DNGW–090LD–06 1.32 1100 3.3 73.5 0.75 HS 4 2.0 2.3 3.8 0.0036 30
DNGW–100LB–06 1.8 1140 4.5 78.0 0.74 HS 4 2.3 2.5 4.9 0.0086 40
DNGW–112MB–06 2.6 1150 5.8 83.0 0.73 HS 3 1.8 2.1 4.9 0.014 60
DNGW–132SL–06 3.6 1150 6.9 86.0 0.81 HS 4 2.1 2.6 6.0 0.033 85
DNGW–132ML–06 4.8 1150 9.3 85.0 0.81 HS 4 2.3 2.6 6.0 0.033 90
DNGW–132MN–06 6.6 1150 12.8 86.5 0.80 HS 5 2.4 2.6 6.0 0.045 95
DNGW–160ML–06 9.0 1160 16.6 88.5 0.81 HS 5 2.2 2.7 6.5 0.100 150
Type series D
DNGW–160LL–06 13.2 1160 23.5 89.5 0.83 HS 5 2.3 2.6 6.9 0.134 180
DNGW–180LB–06 18.0 1165 34.0 91.0 0.79 HS 4 1.5 2.5 5.8 0.13 210
DNGW–200LB–06 22 1170 40.5 91.5 0.79 DS 4 2.4 2.2 5.3 0.33 320
DNGW–200LD–06 26 1170 48.5 91.6 0.79 DS 4 2.5 2.3 5.4 0.33 330
DNGW–280MG–06** 63 1185 103 93.5 0.86 DS 4 2.1 2.3 6.2 2.3 800
DNGW–315SL–06 85 1189 140 95.0 0.85 DS 4 2.2 2.3 6.7 3.3 1010
DNGW–315ML–06 105 1189 170 95.0 0.86 DS 4 2.0 2.3 6.9 4.0 1090
DNGW–315MM–06 132 1189 215 95.5 0.87 DS 4 2.1 2.3 7.1 4.9 1180
DNGW–315MN–06 2 150 1188 240 95.5 0.86 DS 4 2.0 2.2 7.1 4.9 1180
DNGW–315LL–06 175 1189 285 95.8 0.85 DS 5 2.2 2.4 7.2 6.0 1390
DNGW–315LM–06 2 220 1189 355 96.0 0.85 DS 4 2.0 2.3 7.0 6.8 1550
DNGW–315LM–06 3 220 1192 345 96.2 0.86 HS 3 1.6 2.5 7.0 6.8 1560
Type series D
DNGW-250MB-64 28/40 980/1480 55/73 HS 5/4 2.7/2.0 6.1/6.8 0.79 510
DNGW-280SG-64 43/65 985/1485 79/114 HS 4 2.0/1.9 6.6/7.1 1.7 750
DNGW-280MG-64 52/78 985/1485 95/135 HS 4 2.2/2.0 6.6/7.2 2.0 800
DNGW-315SL-64 2 60/90 985/1485 120/160 DS 5/4 2.8/2.0 6.0/6.0 2.33 1020
DNGW-315ML-64 2 70/100 985/1485 130/170 HS 5 2.6/2.2 6.0/7.0 2.8 1020
DNGW-315MN-64 80/115 985/1485 152/205 DS 5/4 2.6/2.2 6.0/6.5 3.3 1190
DNGW-315LL-64 2 100/140 985/1485 190/245 DS 5/4 2.5/2.2 6.0/6.5 3.9 1430
DNGW-315LM-64 2.3 125/180 985/1485 235/315 HS 2 1.5/1.1 6.0/6.1 4.7 1550
Type series D
DVGW-225SB-42 10.5/38 1475/2960 20/71 HS 5 2.4/2.8 6.5/7.5 0.34 360
DVGW-225MB-42 13/46 1475/2965 24/85 HS 5 2.4/2.8 6.5/7.5 0.41 375
DVGW-250MB-42 15/55 1470/2950 29/97 HS 4/5 2.0/2.2 5.0/6.3 0.79 500
DVGW-280SG-42 20/75 1475/2965 36/125 HS 3/4 1.8/2.0 5.5/7.0 1.43 725
DVGW-280MG-42 24/90 1480/2970 44/149 HS 4 1.9/2.2 5.6/7.4 1.66 775
DVGW-315SL-42 3 27/110 1485/2980 50/179 HS 3 1.3/1.4 5.0/6.8 1.8 1020
DVGW-315ML-42 3 33/132 1485/2980 62/215 HS 3 1.3/1.4 5.0/6.8 2.1 1120
DVGW-315MN-42 3 37/145 1485/2980 70/237 HS 3 1.3/1.4 5.2/6.8 2.5 1190
DVGW-315LL-42 3 44/172 1485/2980 78/276 HS 3 1.3/1.4 5.6/6.8 3.0 1430
DVGW-315LM-42 3 50/200 1485/2980 95/335 HS 2 1.2/1.3 5.0/6.8 3.6 1520
Type series D
DVGW-225SB-84 8/33 730/1465 17.5/59 DS 5 2.6/2.5 4.4/6.5 0.46 360
DVGW-225MB-84 2 9.5/39 730/1470 21/70 HS 4/5 2.7/3.0 4.8/7.0 0.55 400
DVGW-250MB-84 11/49 740/1480 23/86 HS 5 2.1/2.2 6.0/7.0 1.0 510
DVGW-280SG-84 17/68 740/1485 42/127 HS 4 1.8/2.1 4.3/7.5 1.3 750
DVGW-280MG-84 20/80 740/1485 48/140 HS 3/4 1.8/2.2 4.3/7.5 1.6 800
DVGW-315SL-84 22/95 744/1488 60/175 DS 4 2.2/2.3 4.5/7.2 2.34 1030
DVGW-315ML-84 26/110 744/1488 70/205 DS 4 2.2/2.3 4.5/7.2 2.8 1120
DVGW-315MN-84 30/130 744/1489 82/240 DS 4 2.2/2.3 4.5/7.2 3.35 1190
DVGW-315LL-84 38/160 744/1489 105/295 DS 4 2.2/2.3 4.5/7.2 4.13 1450
DVGW-315LM-84 45/180 744/1489 125/332 DS 4 2.2/2.3 4.5/7.2 4.67 1520
Terminal box Terminal box Terminal box Terminal box Terminal box Terminal box
on top side–mounted on top on top on top on top
Standard
071 – 280 MLD00–0023 MLD00–0024 MLD00–0025
Noise grade 1
Sh. 3 Sh. 3 Sh. 3
MLD00–0033
Type series D
071 – 160
with cable entry
(without
( ith t
071 – 280 terminal box) MLD00–0031 MLD00–0032
Sh. 2 Sh. 2
1 In accordance with EN 50347 only the flanges up to the size FT 215 standardized
For the mounting types IM B3, IM B5 and IM B35 with terminal box on top the single dimension drawings are avai-
lable in the output tables of the CD version (not in the printed version of this technical list).
Standard single dimension drawings in DXF format see Appendix (Page 250, 252)
Motor protection
As additional protection a thermal
motor protection by means of
PTC–thermistors or flow control-
lers to monitor the cooling water
have to be provided.
Output
The rated outputs and operating
data given in the tables are valid
for duty type S1 according to
EN 60034–1 at a rated frequency
of 50 Hz and the rated voltage.
Temperature class T4
Three-phase brake motors with squirrel cage 400V, 500V, 690V – 50 Hz
Water-cooled, enclosure IP 55 Class F insulation
Types: DNWW Number of poles: 2, 4, 6, 8
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Cooling- Net
output speed current ciency factor class torque torque current of inertia water weight
at η with direct-on starting J require-
400V ments1
as a multiple of the
rated rated rated approx. approx.
kW min–1 A % cos ϕ torque torque current kg m2 l/min kg
Type series D
DNWW-315ML-04 160 1480 290 95.5 0.84 DS 4 2.0 2.3 6.3 2.9 8.0 1150
DNWW-315MN-04 200 1485 365 96 0.84 DS 4 2.2 2.3 6.3 3.4 10 1200
DNWW-315LL-04 250 1485 455 96 0.84 DS 4 2.0 2.3 6.5 3.9 12 1350
DNWW-315LM-04 2.3 315 1485 550 96.2 0.84 HS 3 1.8 2.4 6.8 4.7 15 1520
Higher outputs, other voltages, frequencies and other output assignments to the frame sizes on request.
Temperature classes T5 and T6 on request.
200 – 280
MLD00–0037 MLD00–0038
Sh. 2 Sh. 2
Type series D
reinforced fan cowl and at the ex- available for connection to alterna-
tended motor shaft. All other struc- Brake ting and direct current.
tural characteristics are the same The brake can be engaged at d.c.
Type 76...–..B connection as well as on d.c. and
as for the TEFC motor types in this
technical list. Enclosure to EN 60034–5: IP 66 a.c. side. Circuit see appendix.
Permissible ambient temperature: It is also fitted with a microswitch
Voltage and frequency –20 up to +40C and 2 thermal switches. These
Protection type to EN 50014, switching elements are designed
The motors with mounted brake for 250V, 2.5 amps inductive. A mi-
are delivered with a voltage and EN 50018, EN 50019 resp.
EN 60079–0,EN 60079–1 and croswitch in the control wiring of
frequency as stated in the output the motor contactor prevents star-
tables. EN 60079–7:
II 2 G Ex de IIC T5 ting of the motor with the brake en-
(Terminal box: II 2 G Ex e II ) gaged. The microswitch is not allo-
Output wed to be used for lifting devices
The outputs stated in our tables re- In special design with dust protec- and elevators. The thermal swit-
fer to duty type S4 according to tion II 2 D T100C, ches (NC contact) in line with the
EN 60034–1. Approval DMT02 ATEX E 122 microswitch (NO contact) discon-
A.C. connection: nect the current circuit as soon as
Thermal motor protection Preferred voltage 230 V 1 the brake has reached a non–per-
Three PTC thermistors are instal- Frequency 40 ... 60 Hz missible temperature rise. The mo-
led in a motor and are provided for or tor may only be controlled via the
sole motor protection in combina- D.C. connection: microswitch of the spring–loaded
tion with a monitoring device, e.g. a Preferred voltages 24 V–, 205 V–. brake, so that it can never start at
Loher CALOMAT 1. The spring–loaded single–disk closed brake. On request the brake
brake is an electro–magnetic de- can be equipped with a manual
Possible brake size vice for dry run utilizing the mecha- release, allowing the brake to be
nical effect of an electro–magnetic released manually.
See output table or dimension dra-
wing. field for the release of the brake ef-
ficiency caused by the resilience.
1 If the motor is ordered and operated only in the duty type S1 and the mounted brake only as a holding brake, the motor
can be protected by a motor protection switch according to VDE 0165.
76 26E..B00 205V DC
Standard
Rated voltages 76 26G..B00 230V AC
Enclosure IP 67
Technical data
Brake size 10 11 13 16 19 24
max. speed nmax [min–1] 6000 6000 3000 3000 3000 3000
Type series D
Max. switching power Pmax [kJ/h] 270 270 400 400 570 570
PS [VA] 62 62 88 88 95 95
Dimension drawings
General
An economical and ecological alternative
The Loher GmbH with its product ability, efficiency and ecology are Utilities). Furthermore, most of the
diversity is among the leading relevant examples. chemical factories and major de-
manufacturers in the field of explo- signing offices established particu-
sion-proof electric drive systems. Loher understood how to meet lar specifications, partially even
these requirements by combining more demanding than the VIK-re-
Already in 1962 W. Egli (BASF) the necessary properties as a quirements.
gave a basic description of the package in the
“Requirements of Heavy Chemical Loher “CHEMSTAR“ Motor. After many years of experience in
Engineering to Electric Motors“ [1]; dealing separately with these varying
his paper makes clear that besides The major operating companies specifications, Loher analyzed,
the provisions for protection established their own rules for the screened and compiled this great
against explosion laid down by design of three-phase motors early number of single items in a manufac-
laws and standards there are quite on. An example are the recommen- turer standard, where the single re-
a number of additional require- dations originating from 1975 and quirements are not only accumulated,
ments, due to operating conditions revised in 1992/1999 [2] “Three- but summarized in a reasonable,
for electrical installations in the Phase Asynchronous Motors“; pub- cost-optimized overall package. The
chemical industry: IP enclosure, lished by the VIK (Verband der in- product of this development over
protection against corrosion, noise dustriellen Energie- und years results for the user in an opti-
reduction, service life, mainte- Kraftwirtschaft e.V. – Committee of mum of quality, costs, administration
nance, repair, compatibility, avail- the Industrial Power and Power and documentation.
Technical Details
The Loher “CHEMSTAR“ Motor is available for the following technical data ranges:
Technical design
The Loher “CHEMSTAR“ Motor not possible in this brochure. The following by some important
joins many design features of scheme gives a survey, being details.
which a detailed description is completed and explained in the
Loher CHEMSTAR
Cast Iron Motor Frames
For Frame sizes 90 ... 315 the The technical advantages (corro- However, grey cast iron also offers
Loher ”CHEMSTAR” Motor has sion, strength, vibration damping) ecological advantages, the socio–
stator frames, end shields and ter- of grey cast iron compared with the political importance of which is in-
minal boxes of cast iron GG–20. usual aluminium die cast alloys for creasing:
standard motors up to approx. Relative/absolute comparison of
shaft height 160 (200) are known. energy expenditure and waste pro-
ducts when manufacturing alumi-
nium and cast iron respectively
(Basis: 1 t)
Max. 40% portion of secondary aluminium! Cast iron in Germany of 100% scrap material!
Frame Entry threads1 Cable glands2 Max. cross section Special design for
size larger cross section
max
max.
Motor type Motor type
AM.A AM.K / EM.. /
[mm2] [mm2]
DN..
Type Type Motor type Motor type Motor type Motor
HSK-K 4 HSK-M-Ex 5 AM.. / DN.. AM.. / EM.. type
Clamping Clamping EM.. DN..
range range
[mm] [mm]
71 1 x M 25 x 1.5 –– 10 – 16 –– 2.5 / 6 3 –– ––
80 1 x M 25 x 1.5 –– 10 – 16 –– 2.5 / 63 –– ––
90 1 x M 25 x 1.5 9 – 16 10 – 16 2.5 / 6 3 2.5 / 63 –– ––
100 1 x M 32 x 1.5 13 – 20 13 – 20 2.5 / 6 3 2.5 / 63 10 / 25 3 ––
112 2 x M 32 x 1.5 13 – 20 13 – 20 2.5 / 6 3 2.5 / 63 10 / 25 3 ––
132 2 x M 32 x 1.5 13 – 20 13 – 20 10 / 25 3 10 / 25 3 16 / 50 3 ––
160 2 x M 40 x 1.5 22 – 32 22 – 32 10 / 25 3 10 / 25 3 16 / 50 3 ––
180 2 x M 40 x 1.5 22 – 32 22 – 32 16 / 50 3 2.5 – 35 70 70
200 2 x M 50 x 1.5 32 – 38 32 – 38 16 / 50 3 6 – 70 70 120
225 2 x M 50 x 1.5 32 – 38 32 – 38 16 / 50 3 6 – 70 70 120
250 2 x M 63 x 1.5 37 – 44 37 – 44 6 – 70 6 – 70 –– 120
280 2 x M 63 x 1.5 37 – 44 37 – 44 6 – 70 10 – 95 95 240
315 S/M 2 x M 63 x 1.5 37 – 44 37 – 44 16 – 150 16 – 150 300 300
315 L 2 x M 63 x 1.5 37 – 44 37 – 44 120 – 300 120 – 300 –– ––
Loher CHEMSTAR
Entry threads for PTC thermistors, heating: M20x1.5 for cable D = 6–12 mm
1 Entry threads are sealed with dummy plugs
2 Cable glands are only supplied on special order
3 max. cross section for cable connection with cable lug
4 Material for glands: Polyamide
5 Material for glands: Ms nickel–plated
Loher CHEMSTAR
possible from frame size 132 EP EP EP –
Enlarged connecting: without Ex, Ex nA II, Ex e II: from FS 090
EP EP EP EP
Ex de IIC: from FS 200
Additional terminal box: possible from frame size 132 EP EP EP EP
Space heater: possible from frame size 132 EP EP EP EP
Inverter operation:1.2.3 EP2.4 EP2.4 EP EP2.4
Electrical design
Thermal utilization: Insulation class F /
Utilization B
Supply voltage: Range 380 – 420 V ∆ / 655 – 725 V Y
Range 218 – 242 V ∆ / 380 – 420 V Y EP EP EP EP
fixed 500 V
PTC thermistor as sole protection2 (up to and incl. FS 250) EP EP – EP
(for TMS):
as additional protection EP EP EP EP
Documentation: Dimension drawing, data sheet, certificate,
on electronic data medium, if required
Basic equipment of Loher “CHEMSTAR“ Industrial Tree–Phase Motors See explanations on the next page
– not available
EP Option against extra price
FS Frame size (shaft height)
TMS Thermal motor protection
1 to 7 See explanations on the next page
Explanations:
1 Motors for inverter operation are 3 Motors for inverter operation 7 VIK – Verband der industriellen
provided with an additional rating mostly certified for 100 Hz. Energie- und Kraftwirtschaft e.V.
plate with data acc. to the Tech- 4 Further technical data (Committee of the Industrial
nical List UN 04 for Md ∼ n2; see Technical List UN 04. Power and Power Utilities).
Md = constant at 1 : 3 and 1 : 5; 5 with protective cover for IM V1 Recommendation “Three-Phase
for frame size 71/80 in Ex-n de- and IM V5 Asynchronous Motors; Technical
sign no inverter operation 6 Measures for further noise re- Requirements“
possible! duction acc. to technical list or
2 Motors for inverter operation with on request
PTC thermistor and if required
TMS-test, PTB or LoC. Further
technical data
see Technical List UN 04.
Electrical design
Please consider the following i.e. to 400V. Therefore they are fore have a higher rated current
items: identical with those of the 400V and a lower ratio IA/IN than the
motor. 400V motor (at the same absolute
Electrical data in the data sheets of The partial load currents refer to value of the starting current).
the 2-, 4- and 6-pole design are 400V.
calculated values. As to the multi-range motors the For other (single) voltages than
Within the VDE tolerances these rated currents for the “non-Ex mo- 400V the values for power factor
are in accordance with the mea- tors“ are indicated as usually for “cos. ϕ“ and efficiency “η“ remain
sured and stamp data to be ex- 380V–400V–420V. the same like for the 400V motor
pected. (also for partial load operation) due
The rated currents of the multi- to an accordingly changed winding.
The values for range motors in Ex-design are indi- Therefore the currents can be con-
– thermal utilization cated as usually for 380–420V, verted linearly to the voltages:
– speed which means the “maximum cur-
– starting currents rent“ of the “range“. For current
– power factors monitoring the “maximum current“ I* = I400 . 400V / U*
– efficiencies has therefore to be set at the de-
Loher CHEMSTAR
Inverter Operation
For optimization of process se- special certification by an approved the thermally admissible frequency
quences and energy saving speed- authority, when they are equipped ranges and torques a detailed doc-
variable drive systems are increas- with thermistors as sole protection. umentation is available with the
ingly demanded in the chemical On request the Loher “CHEMSTAR“ Technical List UN 04. For other
and petrochemical industry. Motors motor can be equipped with PTC protection types and for the stan-
of protection type “d“ and thermistors and therefore later also dard version IP55 the thermistor as
temperature class T4 can – with be operated at the inverter. As to sole protection is also an option.
few restrictions – be used without
Mechanical construction
See information to the type series
in this technical list.
Availability
Today the availability within a short do not have their own service and The most common types are kept
time is an essential advantage, es- assembly departments, the stock in stock of Loher’s own logistics
pecially for customers in the chemi- of spare motors is ever decreasing. centre and available at the cus-
cal and petrochemical industry. Here an alternative is offered by tomer within a few days.
Since most of the plant operators the Loher “CHEMSTAR“ Motor.
Single dimension drawings, data sheets and characteristic curves of the Loher “CHEMSTAR“ motors for the
pole numbers 02, 04 and 06 are assigned to the below output tables in the CD Version.
Loher CHEMSTAR
compiled dimension drawings see
Series ANGA, AMGA, AVGA, AMGK, ENGV, EMGV
Series DNGW:
Standard single dimension drawings in DXF format see Appendix (Page 250, 251,252)
380–420V – 50 Hz
Three-phase motors with squirrel cage Class F insulation, Utilization to B
Totally enclosed fan-cooled, enclosure IP 55 Outputs up to AMGA-315 ML
Types: AMGA Number of poles: 2 in accordance with EN 50347
Type Rated Rated Rated current Effi- Effi- Effi- Power Rotor Starting Breakd. Starting Moment of Net
p
output p
speed at ciencyy ciencyy ciencyy factor class torque torque current inertia weight
4/4 3/4 class1
η η with direct-on starting
as a multiple of the J
Dimension drawings 4
Characteristic curves
380V – 420V
rated rated rated approx.
kW min–1 A A % % cosϕ torque torque current kg m2 kg
Data sheets
AMGA–080BH–02** 1.1 2800 2.65 – 2.4 77 77 2 0.84 HS 5 3.1 3.0 5.5 0.0008 22
AMGA–090LX–02 1.5 2850 3.4 – 3.1 80.2 80 2 0.88 HS 5 2.9 3.0 6.8 0.0020 22
AMGA–090LB–02 2.2 2850 4.5 – 4.7 81.7 80 2 0.88 HS 5 2.9 3.0 6.4 0.0020 22
AMGA–112MB–02 4 2880 7.8 – 7.5 85.5 84 2 0.92 HS 5 2.9 3.5 7.2 0.0060 38
AMGA–132SB–02 5.5 2900 10.9 – 11 86.5 85.5 2 0.88 HS 5 3.0 3.3 6.6 0.0110 53
AMGA–160MB–02 11 2920 22 – 20 88.5 88.2 2 0.87 HS 5 2.7 2.9 5.9 0.0364 104
AMGA–160LB–02 18.5 2920 34.5 – 32 91 90 2 0.90 HS 5 2.9 3.0 6.4 0.057 130
AMGA–225ME–02 45 2965 82 – 78 93.5 92.5 2 0.89 HS 5 2.2 2.7 7.1 0.247 305
AMGA–250ME–02 55 2975 101 – 101 94.1 93.2 1 0.86 HS 5 2.3 3.2 7.4 0.45 410
AMGA–280SG–02 75 2980 134 – 125 94.7 94 1 0.90 HS 4 2.2 2.2 6.8 0.88 555
AMGA–280MG–02 90 2975 160 – 150 95 94.5 1 0.90 HS 4 2.0 2.2 6.5 1.03 590
Loher CHEMSTAR
AMGA–315SL–02 110 2980 205 – 186 94.9 94.4 0.87 DS 4 2.1 2.5 6.6 1.55 960
AMGA–315ML–02 132 2980 245 – 220 95.3 94.8 0.87 DS 4 2.0 2.4 6.3 1.85 1020
AMGA–315MN–02 160 2980 295 – 268 95.8 95.1 0.87 DS 4 2.3 2.6 6.7 2.2 1100
AMGA–315LL–02* 200 2980 360 – 330 96.2 95.7 0.88 DS 5 2.6 2.7 7.0 2.8 1310
AMGA–315LN–02 250 2980 445 – 405 96.6 96.1 0.89 DS 5 2.7 2.6 7.0 3.5 1450
AMGA–315LN–023 250 2984 440 – 400 96.8 96.1 0.90 HS 4 1.8 2.9 7.4 3.5 1460
AMGA–355LB–022 315 2985 560 – 510 96.5 96 0.89 DS 4 2.2 2.7 7.2 4.7 1580
Type Rated Rated Rated current Effi- Effi- Effi- Power Rotor Starting Breakd. Starting Moment of Net
output speed at ciencyy ciencyy ciencyy factor class torque torque current inertia weight
4/4 3/4 class
l 1
η η with direct-on starting
as a multiple of the J
Dimension drawings 4
Characteristic curves
380V – 420V
rated rated rated approx.
kW min–1 A A % % cosϕ torque torque current kg m2 kg
Data sheets
Characteristic curves
AMGA–071BH–04** 0.37 1360 1.16 – 1.05 65 60 – 0.77 HS 5 2.5 2.5 3.6 0.0009 13
Data sheets
AMGA–080BH–04** 0.75 1380 2.0 – 1.8 73 72 – 0.79 HS 4 2.0 2.1 3.8 0.0020 22
AMGA–090LX–04 1.1 1410 2.5 – 2.4 77 77 2 0.85 HS 4 2.1 2.3 5.0 0.0036 20
AMGA–090LB–04 1.5 1410 3.4 – 3.5 79 79 2 0.83 HS 5 2.5 2.7 5.1 0.0036 22
AMGA–100LD–04 3 1410 6.5 – 6.7 82.6 82.5 2 0.82 HS 5 2.5 2.7 5.8 0.0066 38
AMGA–160LB–04 15 1455 30 – 28 90.7 90.8 2 0.85 HS 4 2.9 2.3 6.2 0.092 130
AMGA–180MB–04 18.5 1465 35.5 – 34 91.3 91.3 2 0.86 DS 5 2.9 2.6 6.8 0.13 162
AMGA–180LB–04 22 1465 42 – 40 91.9 91.9 2 0.86 DS 5 2.9 2.5 6.7 0.16 176
AMGA–200LG–04 30 1465 57 – 53 92.5 92.6 2 0.87 HS 4 2.4 2.2 6.4 0.25 254
AMGA–225ME–04 45 1475 87 – 83 93.2 93.1 2 0.84 HS 5 2.6 2.5 6.7 0.41 335
AMGA–250ME–04 55 1480 100 – 95 94.5 94.5 1 0.88 HS 5 2.4 2.9 7.6 0.79 425
AMGA–280SG–04 75 1480 137 – 125 94.7 94.7 1 0.88 HS 4 2.2 2.5 6.5 1.44 585
Loher CHEMSTAR
AMGA–280MG–04 90 1480 169 – 152 95 95 1 0.88 HS 4 2.3 2.5 6.5 1.66 660
AMGA–315SL–04 110 1486 210 – 205 95 94.9 0.82 DS 4 2.1 2.5 6.2 2.2 960
AMGA–315ML–04 132 1486 250 – 230 95.5 95.3 0.84 DS 4 2.1 2.4 6.3 2.9 1040
AMGA–315MN–04 160 1486 305 – 275 95.8 95.6 0.84 DS 4 2.1 2.4 6.5 3.4 1120
AMGA–315LL–04 200 1486 375 – 345 96 95.9 0.84 DS 4 2.3 2.5 6.6 3.9 1340
AMGA–315LM–042 250 1487 475 – 430 96 95.9 0.83 DS 4 2.6 2.7 6.9 4.7 1420
AMGA–315LM–043 250 1489 475 – 430 96.5 96.3 0.83 HS 3 1.5 2.6 6.8 4.7 1430
AMGA–355LB–04 270 1489 505 – 460 96.2 95.9 0.85 DS 4 2.1 2.5 7.0 6.8 1730
AMGA–355LB–042 315 1489 590 – 530 96.4 96 0.85 DS 4 2.1 2.5 7.1 6.8 1730
AMGA–355LB–043 315 1491 570 – 530 96.6 96.4 0.86 HS 2 1.3 2.5 7.0 6.8 1730
Type Rated Rated Rated current Effi- Power Rotor Starting Breakd. Starting Moment of Net
output speed at ciency factor class torque torque current inertia weight
η with direct-on starting
as a multiple of the J
Dimension drawings 4
Characteristic curves
380V – 420V
rated rated rated approx.
kW min–1 A A % cosϕ torque torque current kg m2 kg
Data sheets
AMGA–080BH–06 ** 0.55 885 1.8 – 1.6 65 0.72 HS 4 2.0 2.1 3.2 0.002 22
AMGA–090LX–06 0.75 920 2.1 – 2.1 71 0.75 HS 4 2.0 2.2 3.5 0.0036 22
AMGA–090LB–06 1.1 915 3.3 – 3.5 72 0.72 HS 4 2.0 2.3 3.3 0.0036 22
AMGA–100LB–06 1.5 940 4 – 4.4 76.4 0.72 HS 4 2.2 2.5 4.4 0.0086 35
AMGA–112MB–06 2.2 940 5.2 – 5.4 80 0.77 HS 3 1.7 2.0 4.2 0.014 38
AMGA–132SB–06 3 955 6.6 – 6.3 85.6 0.81 HS 4 2.2 2.7 6.0 0.03 59
AMGA–132MB–06 4 955 8.8 – 9.1 84.7 0.81 HS 4 2.3 2.6 5.5 0.033 67
AMGA–132MD–06 5.5 955 12.2 – 11.6 86 0.82 HS 5 2.6 2.6 6.0 0.045 72
AMGA–160MB–06 7.5 970 16.3 – 16 87.9 0.81 HS 5 2.4 2.8 7.0 0.100 108
AMGA–200LG–06 18.5 970 37.5 – 35 90.8 0.83 DS 4 2.2 2.0 5.0 0.33 262
AMGA–280MG–06 55 985 104 – 96 93.4 0.86 DS 4 2.1 2.4 6.2 2.3 670
Loher CHEMSTAR
AMGA–315SL–06 75 990 142 – 131 94.6 0.85 DS 4 2.2 2.3 6.6 3.3 960
AMGA–315ML–06 90 990 168 – 154 94.8 0.86 DS 4 2.1 2.3 6.7 4.0 1030
AMGA–315MM–06 110 990 205 – 188 95.2 0.87 DS 4 2.3 2.3 7.0 4.9 1110
AMGA–315MN–06* 132 990 240 – 224 95.3 0.87 DS 4 2.4 2.2 6.9 4.9 1110
AMGA–315LL–06* 160 990 290 – 268 95.5 0.87 DS 4 2.4 2.3 7.0 6.0 1300
AMGA–315LM–062 200 990 370 – 335 96.0 0.84 DS 4 2.4 2.5 6.5 6.8 1410
AMGA–315LM–063 200 993 365 – 330 96.1 0.87 HS 3 1.7 2.5 6.8 6.8 1420
AMGA–355LB–06 250 993 467 – 436 96.2 0.85 HS 2 1.1 2.5 6.3 9.1 1730
Type Rated Rated Rated Effi- Effi- Power Rotor Starting Breakd. Starting Moment Net
output speed current at ciencyy ciencyy factor class torque torque current of inertia weight
4/4 3/4
η η with direct-on starting J
as a multiple of the
380V rated rated rated
– torque torque current
Dimension drawings 4
Characteristic curves
AMGK–090LX–02 1.5 2850 3.4 80.2 80 0.89 HS 5 2.9 3.0 6.6 0.002 22
AMGK–090LB–02 2.2 2850 4.7 81.7 80 0.88 HS 5 2.9 3.0 6.3 0.002 22
AMGK–132SB–02 5.5 2900 10.9 86.5 85.5 0.88 HS 5 3.0 3.3 6.5 0.011 53
AMGK–160MB–02 11 2920 22 88.5 88.2 0.87 HS 5 2.7 2.9 5.7 0.0364 104
AMGK–160LB–02 18.5 2920 34.5 91 90 0.90 HS 5 2.9 3.0 6.1 0.057 130
AMGK–225ME–02 45 2965 82 93.5 92.5 0.89 HS 5 2.2 2.7 6.8 0.247 305
AMGK–250ME–02 55 2975 101 94.1 93.2 0.86 HS 5 2.3 3.2 7.3 0.45 410
AMGK–280SG–02 75 2980 132 94.7 94 0.90 HS 4 2.2 2.2 6.6 0.88 555
AMGK–280MG–02 90 2975 160 95 94.5 0.90 HS 4 2.0 2.2 6.3 1.03 590
Loher CHEMSTAR
AMGK–315SL–02 110 2980 203 94.9 94.4 0.87 DS 4 2.1 2.5 6.6 1.55 960
AMGK–315ML–02 132 2980 235 95.3 94.8 0.87 DS 4 2.0 2.4 6.3 1.85 1020
AMGK–315MN–02 160 2980 290 95.8 95.1 0.87 DS 4 2.3 2.6 6.7 2.2 1100
AMGK–315LL–02 200 2980 355 96.2 95.7 0.88 DS 5 2.6 2.7 7.0 2.8 1310
AMGK–315LN–02 250 2980 440 96.6 96.1 0.89 DS 5 2.7 2.6 7.0 3.5 1450
AMGK–315LN–023 250 2984 430 96.8 96.2 0.90 HS 4 1.8 2.9 7.4 3.5 1460
AMGK–355LB–022 315 2985 560 96.5 96 0.89 DS 4 2.2 2.7 6.8 4.7 1580
Type Rated Rated Rated Effi- Effi- Power Rotor Starting Breakd. Starting Moment Net
output speed current at ciencyy ciencyy factor class torque torque current of inertia weight
4/4 3/4
η η with direct-on starting J
as a multiple of the
380V rated rated rated
– torque torque current
Dimension drawings 4
Characteristic curves
AMGK–100LD–04 3 1410 6.7 82.6 82.5 0.82 HS 5 2.5 2.7 5.7 0.0066 38
AMGK–160LB–04 15 1455 31.5 90.7 90.8 0.85 HS 4 2.9 2.3 5.7 0.092 130
AMGK–180MB–04 18.5 1465 36 91.3 91.3 0.86 DS 5 2.9 2.6 6.5 0.13 162
AMGK–180LB–04 22 1465 42 91.9 91.9 0.86 DS 5 2.9 2.5 6.5 0.16 176
AMGK–200LG–04 30 1465 57 92.5 92.6 0.87 HS 4 2.4 2.2 6.2 0.25 254
AMGK–225ME–04 45 1475 86 93.2 93.1 0.84 HS 5 2.6 2.5 6.5 0.41 335
AMGK–250ME–04 55 1480 100 94.5 94.5 0.88 HS 5 2.4 2.9 7.4 0.79 425
Loher CHEMSTAR
AMGK–280SG–04 75 1480 137 94.7 94.7 0.88 HS 4 2.2 2.5 6.3 1.44 585
AMGK–315SL–04 110 1486 210 95 94.9 0.82 DS 4 2.1 2.5 6.2 2.2 960
AMGK–315ML–04 132 1486 250 95.5 95.3 0.84 DS 4 2.1 2.4 6.3 2.9 1040
AMGK–315MN–04 160 1486 305 95.8 95.6 0.84 DS 4 2.1 2.4 6.5 3.4 1120
AMGK–315LL–04 200 1486 375 96 95.9 0.84 DS 4 2.3 2.5 6.6 3.9 1340
AMGK–315LM–042 250 1487 475 96 95.9 0.83 DS 4 2.6 2.7 6.9 4.7 1420
AMGK–315LM–043 250 1489 475 96.5 96.3 0.83 HS 3 1.5 2.6 6.8 4.7 1430
AMGK–355LB–04 270 1489 505 96.2 95.9 0.85 DS 4 2.1 2.5 7.0 6.8 1730
AMGK–355LB–042 315 1489 590 96.4 96 0.85 DS 4 2.1 2.5 7.1 6.8 1730
AMGK–355LB–043 315 1491 570 96.6 96.4 0.86 HS 2 1.3 2.5 7.0 6.8 1730
Type Rated Rated Rated Effi- Effi- Power Rotor Starting Breakd. Starting Moment Net
output speed current at ciencyy ciencyy factor class torque torque current of inertia weight
4/4 3/4
η η with direct-on starting J
as a multiple of the
380V rated rated rated
– torque torque current
Dimension drawings 4
Characteristic curves
AMGK–100LB–06 1.5 940 4.4 76.4 0.72 HS 4 2.2 2.5 4.2 0.0086 35
AMGK–160MB–06 7.5 970 16.3 87.9 0.81 HS 5 2.4 2.8 6.9 0.100 108
AMGK–200LG–06 18.5 970 37.5 90.8 0.83 DS 4 2.2 2.0 4.8 0.33 262
Loher CHEMSTAR
AMGK–280MG–06 55 985 105 93.4 0.86 DS 4 2.1 2.4 5.9 2.3 670
AMGK–315SL–06 75 990 142 94.6 0.85 DS 4 2.2 2.3 6.3 3.3 960
AMGK–315ML–06 90 990 170 94.8 0.86 DS 4 2.1 2.3 6.3 4.0 1030
AMGK–315MM–06 110 990 210 95.2 0.87 DS 4 2.3 2.3 6.8 4.9 1110
AMGK–315MN–06 132 990 240 95.3 0.87 DS 4 2.4 2.2 6.6 4.9 1110
AMGK–315LL–06 160 990 290 95.5 0.87 DS 4 2.4 2.3 7.0 6.0 1300
AMGK–315LM–062 200 990 370 96.0 0.84 DS 4 2.4 2.5 6.5 6.8 1410
AMGK–315LM–063 200 993 365 96.1 0.87 HS 3 1.7 2.5 6.8 6.8 1420
AMGK–355LB–06 250 993 467 96.2 0.85 HS 2 1.1 2.5 6.0 8.9 1730
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Time of Moment of Weight
output speed current at ciencyy factor class torque torque current tempera
tempera- inertia
with direct-on starting ture rise tE JM
as a multiple of the T3
Characteristic curves
420V
approx. approx.
kW min–1 A % cosϕ MA/MN MK/MN IA/IN sec. kgm2 kg
Data sheets
EMGV–100LB–02 2.5 2875 5.1 83.5 0.90 HS 4 2.2 2.5 6.8 10 0.0039 35
EMGV–132SD–02 4.6 2910 8.8 87.9 0.90 HS 5 2.7 3.2 7.0 9 0.014 56
EMGV–132SX–02 5.5 2910 10.6 88.6 0.88 HS 5 2.9 3.2 7.3 7 0.015 60
EMGV–160MB–02 7.5 2940 14.6 90.1 0.88 HS 5 3.0 3.2 6.8 13 0.0364 104
EMGV–160MD–02 10 2945 18.5 91.1 0.89 HS 4 2.0 2.8 6.5 16 0.045 106
EMGV–160LB–02 12.5 2945 23.5 91.9 0.88 HS 4 2.2 3.0 7.1 9 0.057 130
EMGV–280MG–02 58 2980 102 94.6 0.92 HS 2 1.3 2.4 6.7 11 1.03 590
Loher CHEMSTAR
EMGV–315SK–02 3 68 2985 121 94.8 0.90 HS 2 1.1 2.6 7.1 25 1.55 960
EMGV–315SL–02 3 80 2987 142 94.8 0.90 HS 2 1.1 2.5 7.3 24 1.55 960
EMGV–315ML–02 3 100 2988 176 95.6 0.90 HS 2 1.1 2.5 7.3 14 1.85 1020
EMGV–315MN–02 3 130 2985 220 95.9 0.91 HS 2 0.85 2.0 6.4 14 2.20 1100
EMGV–315LL–02 3 150 2984 255 96 0.92 HS 2 1.0 2.5 6.8 13 2.80 1310
EMGV–315LN–02 3 185 2985 320 96.2 0.92 HS 2 1.0 2.4 6.8 9 3.46 1450
EMGV–355LB–02 3 220 2982 380 96.3 0.92 HS 2 1.2 2.6 6.0 13 3.16 1820
* tE < VIK
** Motor with flameproof components
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Time of Moment of Weight
output speed current at ciencyy factor class torque torque current tempera
tempera- inertia
with direct-on starting ture rise tE JM
as a multiple of the T3
Characteristic curves
420V
approx. approx.
kW min–1 A % cosϕ MA/MN MK/MN IA/IN sec. kgm2 kg
Data sheets
EMGV–090LX–04 1.0 1410 2.4 77.5 0.83 HS 5 2.5 2.7 6.4 22 0.0036 22
EMGV–112MB–04 3.6 1425 7.7 84.3 0.82 HS 4 2.4 2.7 6.5 10 0.012 41
EMGV–132SB–04 5.0 1445 10.1 87.2 0.85 HS 5 2.4 2.5 7.0 12 0.022 59
EMGV–160LB–04 13.5 1460 27 91.2 0.84 HS 4 2.2 3.2 7.3 10 0.092 130
EMGV–180LB–04 17.5 1465 32.5 91.8 0.89 HS 4 2.1 3.2 6.8 9 0.16 176
EMGV–200LG–04 24 1475 46.5 92.7 0.83 HS 4 2.0 3.5 7.6 13 0.25 254
EMGV–250MB–04 3 44 1490 81 94.8 0.85 SHS 1.4 2.6 7.3 19 0.80 425
EMGV–280SG–04 58 1490 111 94.8 0.82 HS 3 1.8 2.4 7.3 9 1.43 575
Loher CHEMSTAR
EMGV–280MG–04 3 70 1488 120 94.9 0.94 SHS 1.4 2.9 7.1 12 1.65 650
EMGV–315SL–04 3 90 1490 165 95.0 0.85 HS 2 1.0 2.4 6.4 10 2.2 960
EMGV–315ML–04 3 100 1489 186 95.8 0.85 HS 2 1.0 2.2 6.1 10 2.8 1040
EMGV–315MN–04 3 125 1490 235 95.8 0.84 HS 2 1.0 2.2 6.0 12 3.3 1120
EMGV–315LL–04 3 140 1490 255 96.1 0.86 HS 2 1.2 2.2 6.9 10 3.9 1340
EMGV–315LM–04 3 185 1491 345 96.1 0.85 HS 2 1.0 2.2 6.8 9 4.67 1430
EMGV–355LB–04 3 220 1492 405 96.3 0.84 HS 2 0.9 2.3 6.6 9 6.8 1885
* tE < VIK
** Motor with flameproof components
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Time of Moment of Weight
output speed current at ciencyy factor class torque torque current tempera
tempera- inertia
with direct-on starting ture rise tE JM
as a multiple of the T3
Characteristic curves
420V
approx. approx.
kW min–1 A % cosϕ MA/MN MK/MN IA/IN sec. kgm2 kg
Data sheets
EMGV–090LX–06 0.65 900 1.84 67.5 0.75 HS 3 1.8 2.0 3.7 35 0.0036 22
EMGV–112MB–06 1.9 945 4.6 80.3 0.75 HS 4 1.8 2.0 4.4 30 0.014 38
EMGV–132SB–06 2.6 965 5.7 84.5 0.81 HS 5 2.5 2.5 6.2 30 0.030 59
EMGV–132MB–06 3.5 955 7.6 84.7 0.81 HS 4 2.5 2.6 5.8 23 0.033 67
EMGV–160MB–06 6.6 965 13.9 87.2 0.81 HS 5 2.5 2.8 6.7 12 0.100 108
EMGV–160LB–06 9.7 970 19.8 88.6 0.82 HS 5 2.4 3.0 7.5 9 0.134 130
EMGV–180LB–06 13.2 970 28 89.8 0.77 HS 4 2.1 2.9 5.8 16 0.13 176
EMGV–200LG–06 16.5 978 33 91.1 0.82 HS 4 2.2 2.8 6.4 18 0.33 262
EMGV–200LJ–06 20 980 40.5 91.5 0.80 HS 5 2.4 2.8 7.0 11 0.33 282
EMGV–250MB–06 3 33 985 64 92.7 0.83 SHS 1.7 2.6 6.7 21 1.1 420
EMGV–315SL–06 3 64 990 125 95.3 0.86 HS 2 1.2 2.3 6.0 17 2.7 960
EMGV–315ML–06 3 76 991 140 95.3 0.86 HS 2 1.2 2.3 6.0 17 3.2 1030
EMGV–315MM–06 3 85 992 156 95.6 0.86 HS 2 1.3 2.3 5.8 13 3.8 1110
EMGV–315MN–06 3 105 991 195 95.5 0.86 HS 2 1.3 2.3 6.0 10 3.8 1110
EMGV–315LL–06 3 130 990 235 95.8 0.87 HS 2 1.3 2.3 6.2 9 4.7 1300
EMGV–315LM–06 3 170 993 310 96.1 0.86 HS 2 1.0 2.2 6.0 10 5.3 1410
EMGV–355LB–06 3 200 993 360 96.2 0.87 HS 2 1.0 2.2 6.0 10 9.1 1940
* tE < VIK
** Motor with flameproof components
Type Rated Rated Rated Efficiency Power Rotor Starting Breakd. Starting Moment Net weight
output speed current at η factor class torque torque current of inertia
with direct-on starting J
380 as a multiple of the
to
420V
Dimension drawings 4
Characteristic curves
DNGW-090LX-02 1.5 2850 3.4 80.2 0.89 HS 5 2.9 3.0 6.6 0.0020 32
DNGW-090LD-02 2.2 2850 4.7 81.3 0.88 HS 5 2.9 3.0 6.3 0.0020 32
DNGW-100LB-02 3.0 2880 6.3 84.2 0.88 HS 5 2.7 3.0 6.7 0.0039 37
DNGW-112MB-02 4.0 2880 7.8 85.5 0.92 HS 5 2.9 3.5 6.9 0.0060 55
DNGW-132SL-02 5.5 2900 10.9 86.5 0.88 HS 5 3.0 3.3 6.5 0.0110 85
DNGW-160LL-02 18.5 2920 34.5 91 0.90 HS 5 2.9 3.0 6.1 0.057 170
DNGW-250MB-02 55 2975 101 94.1 0.86 HS 5 2.3 3.2 7.3 0.45 500
DNGW-280SG-02 75 2980 134 94.7 0.89 HS 4 2.2 2.2 6.6 0.88 725
Loher CHEMSTAR
DNGW-280MG-02 90 2975 160 95 0.90 HS 4 2.0 2.2 6.3 1.03 775
DNGW-315SL-02 110 2980 203 94.9 0.87 DS 4 2.1 2.5 6.6 1.55 1010
DNGW-315ML-02 132 2980 235 95.3 0.87 DS 4 2.0 2.4 6.3 1.85 1090
DNGW-315MN-02 160 2980 290 95.8 0.87 DS 4 2.3 2.6 6.7 2.2 1160
DNGW-315LL-02 200 2980 355 96.2 0.88 DS 5 2.6 2.7 7.0 2.8 1400
DNGW-315LN-02 250 2980 440 96.6 0.89 DS 5 2.7 2.6 7.0 3.5 1550
DNGW-315LN-02 3 250 2984 430 96.8 0.90 HS 4 1.8 2.9 7.4 3.5 1560
Type Rated Rated Rated Efficiency Power Rotor Starting Breakd. Starting Moment Net weight
output speed current at η factor class torque torque current of inertia
with direct-on starting J
380 as a multiple of the
to
420V
Dimension drawings 4
Characteristic curves
DNGW-100LD-04 3.0 1410 6.7 82.6 0.82 HS 5 2.5 2.7 5.7 0.0066 40
DNGW-132ML-04 7.5 1445 15.3 88 0.85 HS 5 2.6 3.0 7.1 0.030 100
DNGW-160LL-04 15 1455 31.5 90.7 0.85 HS 4 2.9 2.3 5.7 0.092 180
DNGW-180MB-04 18.5 1465 36 91.3 0.86 DS 5 2.9 2.6 6.5 0.13 190
DNGW-250MB-04 55 1480 100 94.5 0.88 HS 5 2.4 2.9 7.4 0.80 510
Loher CHEMSTAR
DNGW-280SG-04 75 1480 139 94.7 0.88 HS 4 2.2 2.5 6.2 1.44 750
DNGW-315SL-04 110 1486 210 95 0.82 DS 4 2.1 2.5 6.2 2.2 1020
DNGW-315ML-04 132 1486 250 95.5 0.84 DS 4 2.1 2.4 6.3 2.9 1120
DNGW-315MN-04 160 1486 305 95.8 0.84 DS 4 2.1 2.4 6.5 3.4 1190
DNGW-315LL-04 200 1486 375 96 0.84 DS 4 2.3 2.5 6.6 3.9 1430
DNGW-315LM-04 2 250 1487 475 96 0.83 DS 4 2.6 2.7 6.9 4.7 1520
DNGW-315LM-04 3 250 1489 475 96.5 0.83 HS 3 1.5 2.6 6.8 4.7 1530
Type Rated Rated Rated Efficiency Power Rotor Starting Breakd. Starting Moment Net weight
output speed current at η factor class torque torque current of inertia
with direct-on starting J
380 as a multiple of the
to
420V
Dimension drawings 4
Characteristic curves
DNGW-100LB-06 1.5 940 4.4 76.4 0.70 HS 4 2.2 2.5 4.2 0.0086 40
DNGW-132SL-06 3.0 955 6.6 85.6 0.81 HS 4 2.2 2.7 5.7 0.030 85
DNGW-132ML-06 4.0 955 9.1 84.7 0.81 HS 4 2.3 2.6 5.3 0.033 90
DNGW-160ML-06 7.5 970 16.3 87.9 0.81 HS 5 2.4 2.8 6.9 0.100 150
DNGW-200LB-06 18.5 970 38 90.8 0.83 DS 4 2.2 2.0 4.8 0.33 320
DNGW-280MG-06 55 985 105 93.4 0.86 DS 4 2.1 2.4 5.9 2.3 800
Loher CHEMSTAR
DNGW-315SL-06 75 990 142 94.6 0.85 DS 4 2.2 2.3 6.6 3.3 1010
DNGW-315ML-06 90 990 170 94.8 0.86 DS 4 2.1 2.3 6.7 4.0 1090
DNGW-315MM-06 110 990 210 95.2 0.87 DS 4 2.3 2.3 7.0 4.9 1180
DNGW-315MN-06 2 132 990 240 95.3 0.87 DS 4 2.4 2.2 6.9 4.9 1180
DNGW-315LL-06 160 990 290 95.5 0.87 DS 4 2.4 2.3 7.0 6.0 1390
DNGW-315LM-06 2 200 990 370 96 0.84 DS 4 2.4 2.5 6.5 6.8 1550
DNGW-315LM-06 3 200 993 365 96.1 0.87 HS 3 1.7 2.5 6.8 6.8 1560
The motors are suitable to be Cost advantage, since no addi- Worldwide application.
used as direct drive of smoke tional enclosure is necessary
and heat exhaust ventilators. when the motor is operated Loher products are in operation
within the certified temperature worldwide to protect people and
Our complete high-temperature classes. technical installations.
motor series, frame sizes 090 to Optimization of your product
315, has been certified according quality, because our motors rep- Fire disasters show how important it
to EN 12101-3. resent the highest technological is to use reliable and proven techni-
Expertise No. 97/1187 of the Re- standards! (special ball bearings, cal equipment. The safety, above all
search and Experimental Labora- greases, etc.) in public buildings, underlines the
tory of the Technical University of necessity of standardized directives
Munich’s Chair of Building Climate in compliance with EN 12101-3.
Control and Domestic Engineering. Performance data are important.
Also abroad they trust in Loher’s ex-
This means for the purchaser: However of vital importance are the perience of many years and the
processing, the quality and the dura- technical know-how. Examples are
Cost advantage, since no addi- bility of all materials used in addition the Loher motors used for tunnel
tional certification of the com- to the technical advantages of our ventilation in the Cairo underground
plete installation is required products as to the output and effi- network and in the Euro-Tunnel be-
when already certified ventilators ciency of the fire gas motors. tween France and England.
are used.
Flexibility, because our motors That is why not only the customer,
can be used without limitation in but also the legislator demands a
an already certified complete continuous technological develop-
installation. ment, so that dangerous situations
Planning reliability, since our can be put under control in case of
product also corresponds with emergency. For decades Loher has
future requirements. been a worldwide leader in the field
Improved marketability, since you of high-temperature motors and has
acquire a reliable product which once again set new standards with
is in compliance with the legal an innovative product development.
provisions.
Availability, since the entire se-
ries is already certified.
Class Fire gas temperature Minimum operating hours Minimum operating hours
to EN 12101-3 °C to EN 12101-3 of Loher motors
F 200 200 2h 3h
F 300 300 1h 1h
F 400 400 2h 3.5h
Standard design
Voltage 400/690V
Frequency 50 Hz
Enclosure IP 55/56
All standard mounting types.
For the application as fire gas motors the insulation system, the connections and bearings in the motors of the type
series ANGA were modified to be used in accordance with the requirement classes.
Special designs
(on request)
General
For the application on ships the ments. These are specified in the of the different classification soci-
motors must meet special require- “Rules for drive systems on ships“ eties.
ABS American Bureau of Shipping
BV Bureau Veritas
CCS Cina Classification Society
DNV Det Norske Veritas
GL Germanischer Lloyd
LRoS Lloyd’s Register of Shipping
RINA Registro Italiano Navale
RS Russian Register of Shipping
Designs to other regulations are Additionally the motors are in ac- The motors are provided with the
available on request. cordance with the relevant EN and CE-marking in accordance with the
IEC standards and regulations for Low Voltage Directive 89/9/EC.
rotating electrical machines.
In-process supervision: In the single phases the motor manufacturing is subject to the supervision
by an authorized representative of the classification society.
For motors which are subject to ac- cess supervision, this information in the order.
ceptance or acceptance and in-pro- and the application are to be stated
Mechanical construction
The motors will be dimensioned “Rules for drive systems on ships“ eties indicated in the order.
and made in accordance with the of the classification society/soci-
ANGA 090–355 without IP55 option. IP56 Cast iron according to the order
DNGW 071–315 II 2 G Ex de IIC IP55 option. IP56 Cast iron according to the order
The motors for upper deck mounting require special measures depending on the individual classification societies.
Terminal boxes
Special type series
The terminal boxes correspond type series DNGW from frame Different entry threads or cable
with the enclosure of the motor, size 132 the additional terminals glands to be supplied must be indi-
however IP55 at least. can also be located in a separate cated in the order. For cable glands
Single-speed motors are provided terminal box. it must also be indicated whether
with 6 terminals for connection to those are required with or without
the power supply. Additional termi- The terminal boxes have metric braided shielding. Cable glands to
nals for a cross section of max. entry threads in accordance with DIN 89280 are exclusively avail-
2.5 mm2 are provided for the con- DIN 42925 (See motor dimension able for motors without Ex-protec-
nection of space heater or winding drawing for number and size). tion. For Ex-protected motors certi-
temperature monitoring (e.g. PTC). Cable glands do not belong to the fied cable glands to directive
For the type series ANGA and delivery scope of the motor. 94/9/EC are required.
AMGK from frame size 132, for the
Space heater
As protection against the formation can occur due to strong tempera- space heater is not allowed to be
of condensed water the motors can ture variations at standstill. The switched on! See filament wattage
be equipped with a space heater used strip-type heaters are avail- on page 15.
on request. This is especially im- able for a voltage from 110–120V
portant if moisture condensation or 210–250V. During operation the
Painting
For the standard version the painting Colour: RAL 7030 (stone grey) Special painting with higher corrosion
will be made with a polyurethane fin- protection is available on
ishing coat in accordance with the Type ANGA: Painting N04 request.
Loher painting system. Layer thickness 40 mm Detailed information is indicated in
Type DN.W: Painting N08 the section “Painting“.
Layer thickness 80 mm
Electrical design
Coolant temperature
Classification society: Utilization ABS BV CCS DNV GL LRoS RINA RS
Motor protection
See section “Electrical design, general“ in this technical list“
Special type series
Switchable torque MSN [Nm] 100 160 250 400 630 1000 1600
Transmittable torque MÜ [Nm] 110 176 275 440 690 1100 1750
Air gap normal [mm] 0.4 0.4 0.4 0.4 0.4 0.5 0.5
Air gap maximum [mm] 1.2 1.2 1.2 1.5 1.8 2.1 2.4
max. Speed n [min–1] 6000 6000 5500 4700 4000 3600 3200
Mass moment of inertia J [kg m2] 0.0019 0.0026 0.0050 0.0133 0.0271 0.0366
Rated voltage U [V DC] 110 110 110 110 110 110 110
70K 75K Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Net
speed current ciency factor class torque torque current of inertia weight
VDE 40C ABS 50C CCS 45C at 4/4
BV 50C DNV 45C
LRoS 45C GL 45C with direct-on starting J
RINA 50C RS 45C as a multiple of the
400V η
rated rated rated approx.
kW kW kW min–1 A % cosϕ torque torque current kg m2 kg
ANGA–090LB–02 2.2 2.0 2.1 2850 4.6 81.7 0.88 HS 5 2.9 3.0 6.4 0.0020 22
ANGA–132SB–02 5.5 5.5 5.5 2900 10.8 86.5 0.88 HS 5 3.0 3.3 6.6 0.0110 53
ANGA–132SD–02 7.5 7.0 7.5 2910 14.5 88 0.88 HS 5 3.4 3.8 7.4 0.0140 56
ANGA–160MD–02 15 12.5 13.5 2920 28 90 0.89 HS 5 2.7 3.0 6.0 0.0445 106
ANGA–160LB–02 18.5 18.0 18.5 2920 33 91 0.90 HS 5 2.9 3.0 6.4 0.057 130
ANGA–280SG–02 75 73 75 2980 128 94.7 0.90 HS 4 2.2 2.2 6.8 0.88 555
ANGA–315SL–02 110 115 120 2980 195 94.9 0.87 DS 4 2.1 2.5 6.6 1.55 960
ANGA–315ML–02 132 130 133 2980 230 95.3 0.87 DS 4 2.0 2.4 6.3 1.85 1020
ANGA–315MN–02 160 155 160 2980 280 95.8 0.87 DS 4 2.2 2.6 6.7 2.2 1100
ANGA–315LL–02 200 200 208 2980 340 96.2 0.88 DS 5 2.6 2.7 7.0 2.8 1310
ANGA–315LN–02 250 225 235 2980 425 96.6 0.89 DS 5 2.7 2.6 7.0 3.5 1750
ANGA–315LN–02 3 250 260 280 2984 416 96.8 0.90 HS 4 1.8 2.9 7.4 3.5 1460
ANGA–355LB–02 2 315 260 280 2985 535 96.4 0.89 DS 4 2.2 2.7 7.2 4.7 1580
Special type series
Higher outputs, other duty types, pole numbers and pole–changing motors on request.
70K 75K Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Net
speed current ciency factor class torque torque current of inertia weight
VDE 40C ABS 50C CCS 45C at 4/4
BV 50C DNV 45C
LRoS 45C GL 45C with direct-on starting J
RINA 50C RS 45C as a multiple of the
400V η
rated rated rated approx.
kW kW kW min–1 A % cosϕ torque torque current kg m2 kg
ANGA–090LB–04 1.5 1.5 1.5 1410 3.4 79 0.83 HS 5 2.5 2.7 5.4 0.0036 22
ANGA–100LB–04 2.2 2.0 2.2 1400 4.8 81 0.84 HS 5 2.2 2.5 5.3 0.0051 35
ANGA–100LD–04 3 2.6 2.7 1410 6.6 82.6 0.82 HS 5 2.5 2.7 5.8 0.0066 38
ANGA–112MB–04 4 3.5 3.7 1415 8.3 84 0.84 HS 5 2.2 2.6 5.9 0.012 41
ANGA–132SB–04 5.5 5.2 5.5 1440 11 87 0.85 HS 5 2.3 2.7 6.4 0.022 59
ANGA–132MB–04 7.5 7.5 7.5 1445 15 88 0.85 HS 5 2.6 3.0 7.2 0.030 69
ANGA–160LB–04 15 13 13.5 1455 29 90.7 0.85 HS 4 2.9 2.3 6.2 0.092 130
ANGA–180MB–04 18.5 17.5 18.3 1465 34.5 91.3 0.86 DS 5 2.9 2.6 6.8 0.13 162
ANGA–200LG–04 30 28 29.5 1465 55 92.5 0.87 HS 4 2.4 2.2 6.4 0.25 254
ANGA–280SG–04 75 75 75 1480 132 94.7 0.88 HS 4 2.2 2.5 6.5 1.44 585
ANGA–315SL–04 110 105 110 1486 205 95 0.82 DS 4 2.1 2.5 6.2 2.2 960
ANGA–315ML–04 132 120 125 1486 240 95.5 0.84 DS 4 2.1 2.4 6.3 2.9 1040
ANGA–315MN–04 160 150 160 1486 286 95.8 0.84 DS 4 2.1 2.4 6.5 3.4 1120
ANGA–315LL–04 200 165 175 1486 360 96 0.84 DS 4 2.3 2.5 6.6 3.9 1340
ANGA–315LM–04 2 250 205 215 1487 455 96 0.83 DS 4 2.6 2.7 6.9 4.7 1420
ANGA–315LM–04 3 250 240 250 1489 455 96.5 0.83 HS 3 1.5 2.6 6.8 4.7 1430
ANGA–355LB–04 270 245 255 1489 480 96.2 0.85 DS 4 2.1 2.5 7.0 6.8 1730
Special type series
ANGA–355LB–04 3 315 270 290 1491 545 96.6 0.86 HS 2 1.3 2.5 7.0 6.8 1730
Higher outputs, other duty types, pole numbers and pole–changing motors on request.
70K 75K Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Net
speed current ciency factor class torque torque current of inertia weight
VDE 40C ABS 50C CCS 45C at 4/4
BV 50C DNV 45C
LRoS 45C GL 45C with direct-on starting J
RINA 50C RS 45C as a multiple of the
400V η
rated rated rated approx.
kW kW kW min–1 A % cosϕ torque torque current kg m2 kg
DNGW–071BH–02 0.55 0.58 0.62 2765 1.35 69 0.86 HS 5 2.5 2.7 4.8 0.0004 13
DNGW–080BG–02 0.75 0.8 0.85 2820 1.74 76 0.83 HS 5 2.9 2.9 6 0.0006 20
DNGW–080BH–02 1.1 1.2 1.25 2800 2.5 77 0.84 HS 5 3.1 3.0 5.5 0.0008 22
DNGW–090LX–02 1.5 1.7 1.8 2850 3.2 80.2 0.89 HS 5 2.9 3.0 6.8 0.0020 32
DNGW–090LD–02 2.2 2.0 2.1 2850 4.6 81.3 0.88 HS 5 2.9 3.0 6.4 0.0020 32
DNGW–100LB–02 3.0 2.8 3.0 2880 6.0 84.2 0.88 HS 5 2.7 3.0 7.0 0.0039 37
DNGW–112MB–02 4.0 4.0 4.0 2880 7.5 85.5 0.92 HS 5 2.9 3.5 7.2 0.0060 55
DNGW–132SL–02 5.5 5.5 5.5 2900 10.6 86.5 0.88 HS 5 3.0 3.3 6.6 0.0110 85
DNGW–132SN–02 7.5 7.0 7.5 2910 14.5 88 0.88 HS 5 3.4 3.8 7.4 0.0140 90
DNGW–160MN–02 15 12.5 13.5 2920 28 90 0.89 HS 5 2.7 3.0 6.0 0.0445 155
DNGW–160LL–02 18.5 18 18.5 2920 33 91 0.90 HS 5 2.9 3.0 6.4 0.057 170
DNGW–280SG–02 75 70 75 2980 130 94.7 0.89 HS 4 2.2 2.2 6.8 0.88 725
DNGW–315SL–02 110 115 120 2980 195 94.9 0.87 DS 4 2.1 2.5 6.6 1.55 1010
DNGW–315ML–02 132 130 133 2980 230 95.3 0.87 DS 4 2.0 2.4 6.3 1.85 1090
DNGW–315MN–02 160 155 160 2980 280 95.8 0.87 DS 4 2.2 2.6 6.7 2.2 1160
DNGW–315LL–02 200 200 208 2980 340 96.2 0.88 DS 5 2.6 2.7 7.0 2.8 1400
Special type series
DNGW–315LN–02 250 225 235 2980 425 96.6 0.89 DS 5 2.7 2.6 7.0 3.5 1550
DNGW–315LN–02 3 250 260 280 2984 416 96.8 0.90 HS 4 1.8 2.9 7.4 3.4 1560
Higher outputs, other duty types, pole numbers and pole–changing motors on request.
70K 75K Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Net
speed current ciency factor class torque torque current of inertia weight
VDE 40C ABS 50C CCS 45C at 4/4
BV 50C DNV 45C
LRoS 45C GL 45C with direct-on starting J
RINA 50C RS 45C as a multiple of the
400V η
rated rated rated approx.
kW kW kW min–1 A % cosϕ torque torque current kg m2 kg
DNGW–080BH–04 0.75 0.70 0.72 1380 1.9 73 0.79 HS 4 2.0 2.1 3.8 0.0020 22
DNGW–090LD–04 1.5 1.5 1.5 1410 3.4 79 0.83 HS 5 2.5 2.7 5.1 0.0036 32
DNGW–100LB–04 2.2 2.1 2.2 1400 4.8 81 0.84 HS 5 2.2 2.5 5.3 0.0051 37
DNGW–100LD–04 3.0 2.6 2.7 1410 6.6 82.6 0.82 HS 5 2.5 2.7 5.8 0.0066 40
DNGW–112MB–04 4.0 3.5 3.7 1415 8.3 84 0.84 HS 5 2.2 2.6 5.9 0.012 57
DNGW–132SL–04 5.5 5.2 5.5 1440 11 87 0.85 HS 5 2.3 2.7 6.4 0.022 85
DNGW–132ML–04 7.5 7.1 7.5 1445 15 88 0.85 HS 5 2.6 3.0 7.2 0.030 100
DNGW–160LL–04 15 13 13.6 1455 29 90.7 0.85 HS 4 2.9 2.3 6.2 0.092 180
DNGW–180MB–04 18.5 17.5 18.5 1465 34.5 91.3 0.86 DS 5 2.9 2.6 6.8 0.13 190
DNGW–280SG–04 75 75 75 1480 132 94.7 0.88 HS 4 2.2 2.5 6.5 1.44 750
DNGW–315SL–04 110 105 110 1486 205 95 0.82 DS 4 2.1 2.5 6.2 2.2 1020
DNGW–315ML–04 132 120 125 1486 240 95.5 0.84 DS 4 2.1 2.4 6.3 2.9 1120
DNGW–315MN–04 160 150 160 1486 286 95.8 0.84 DS 4 2.1 2.4 6.5 3.4 1190
DNGW–315LL–04 200 165 175 1486 360 96 0.84 DS 4 2.3 2.5 6.6 3.9 1430
DNGW–315LM–04 2 250 205 215 1487 455 96 0.83 DS 4 2.6 2.7 6.9 4.7 1520
DNGW–315LM–04 3 250 240 250 1489 455 96.5 0.83 HS 3 1.5 2.6 6.8 4.7 1530
Special type series
Higher outputs, other duty types, pole numbers and pole–changing motors on request.
70K 75K Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Net
speed current ciency factor class torque torque current of inertia weight
VDE 40C ABS 50C CCS 45C at 4/4
BV 50C DNV 45C
LRoS 45C GL 45C with direct-on starting J
RINA 50C RS 45C as a multiple of the
400V η
rated rated rated approx.
kW kW kW min–1 A % cosϕ torque torque current kg m2 kg
ANGA–090LB–02 2.6 2.6 2.7 3440 4.85 82 0.87 HS 5 3.1 3.2 6.9 0.0020 22
ANGA–100LB–02 3.6 3.5 3.6 3465 6.5 85 0.88 HS 5 2.8 3.1 7.1 0.0039 35
ANGA–112MB–02 4.8 4.8 5 3480 8.2 85.2 0.91 HS 5 3.0 3.6 7.3 0.0060 38
ANGA–132SB–02 6.5 7 7.2 3500 11.8 85.5 0.87 HS 5 3.0 3.2 6.7 0.0110 53
ANGA–132SD–02 8.6 8.3 8.6 3490 14.4 88 0.89 HS 5 2.9 3.4 7.0 0.0140 56
ANGA–160MB–02 13.2 13 13.2 3520 22 90.5 0.88 HS 5 2.5 2.9 6.2 0.0364 104
ANGA–160MD–02 18 17 18 3520 30.5 90.5 0.87 HS 5 3.0 3.1 6.3 0.045 106
ANGA–160LB–02 22 20 21.5 3520 35.5 91.2 0.89 HS 5 2.9 2.9 6.8 0.057 130
ANGA–180MB–02 27 25 26 3550 46.5 91.2 0.86 HS 5 2.1 2.8 6.8 0.094 162
ANGA–280SG–02 86 85 86 3575 138 94.7 0.87 HS 4 2.1 2.1 6.8 0.88 555
ANGA–280MG–02 110 106 110 3575 176 95 0.88 HS 4 2.0 2.3 7.0 1.03 590
ANGA–315SL–02 120 115 120 3577 190 95 0.88 DS 4 1.9 2.5 6.5 1.55 960
ANGA–315ML–02 143 140 142 3575 220 95.5 0.89 DS 4 2.0 2.4 6.5 1.85 1020
ANGA–315MN–02 185 170 175 3576 285 95.6 0.89 DS 4 2.4 2.5 6.9 2.2 1100
ANGA–315LL–02 220 210 205 3580 335 96.2 0.90 DS 4 2.6 2.6 7.2 2.8 1310
ANGA–315LN–02 275 275 280 3580 415 96.6 0.90 DS 4 2.6 2.5 7.1 3.5 1450
ANGA–315LN–02 3 275 295 300 3585 408 96.9 0.90 HS 3 1.5 2.7 7.0 3.5 1460
ANGA–355LB–02 345 300 320 3580 535 96.7 0.88 DS 4 2.2 2.6 7.4 4.7 1580
Special type series
Higher outputs, other duty types, pole numbers and pole–changing motors on request.
70K 75K Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Net
speed current ciency factor class torque torque current of inertia weight
VDE 40C ABS 50C CCS 45C at 4/4
BV 50C DNV 45C
LRoS 45C GL 45C with direct-on starting J
RINA 50C RS 45C as a multiple of the
400V η
rated rated rated approx.
kW kW kW min–1 A % cosϕ torque torque current kg m2 kg
ANGA–090LB–04 1.8 1.9 1.95 1710 3.65 80 0.82 HS 4 2.2 2.3 5.1 0.0036 22
ANGA–100LB–04 2.6 2.5 2.6 1700 5.3 81.5 0.84 HS 5 2.2 2.4 5.3 0.0051 35
ANGA–100LD–04 3.4 3.2 3.4 1700 6.6 83 0.83 HS 5 2.6 2.7 5.8 0.0066 38
ANGA–112MB–04 4.8 4.5 4.8 1720 8.8 85 0.84 HS 5 2.3 2.6 5.9 0.012 41
ANGA–132SB–04 6.6 6.5 6.8 1740 11.4 88 0.86 HS 5 2.2 2.6 6.8 0.022 59
ANGA–132MB–04 8.6 8.2 8.5 1735 15 88.5 0.85 HS 5 2.2 2.5 6.9 0.030 69
ANGA–160MB–04 13.2 12.9 13.2 1760 23 91 0.84 HS 5 2.6 2.5 6.2 0.068 108
ANGA–160LB–04 17 16 17 1750 29.5 91.2 0.84 HS 5 2.9 2.4 6.3 0.092 130
ANGA–180LB–04 26 23 25 1765 41.5 92.6 0.86 DS 5 2.9 2.5 6.3 0.16 176
ANGA–250ME–04 63 64 66 1780 103 94.5 0.85 HS 5 2.3 2.6 7.2 0.80 425
ANGA–280SG–04 85 78 84 1780 138 94.8 0.85 HS 4 2.3 2.6 6.6 1.44 585
ANGA–280MG–04 100 90 95 1780 161 95 0.87 HS 5 2.3 2.5 6.6 1.66 660
ANGA–315SL–04 126 115 120 1785 208 95.1 0.84 DS 4 2.2 2.3 6.5 2.2 960
ANGA–315ML–04 150 130 135 1785 245 95.5 0.85 DS 4 2.1 2.5 6.5 2.9 1040
ANGA–315MN–04 180 160 165 1788 290 96 0.85 DS 4 2.2 2.5 7.0 3.4 1120
ANGA–315LL–04 220 200 210 1787 360 96 0.84 DS 4 2.3 2.5 6.9 3.9 1340
ANGA–315LM–04 2 275 250 260 1787 450 96.2 0.84 DS 4 2.4 2.5 6.9 4.7 1420
ANGA–315LM–04 3 275 260 270 1790 445 96.4 0.84 HS 3 1.5 2.6 7.0 4.7 1430
ANGA–355LB–04 300 270 280 1790 475 96.2 0.86 DS 4 1.9 2.2 6.8 6.8 1730
Special type series
ANGA–355LB–04 2 340 270 280 1790 545 96.4 0.85 DS 4 2.0 2.4 7.0 6.8 1730
ANGA–355LB–04 3 350 280 300 1792 560 96.7 0.85 HS 2 1.2 2.6 7.1 6.8 1730
Higher outputs, other duty types, pole numbers and pole–changing motors on request.
70K 75K Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Net
speed current ciency factor class torque torque current of inertia weight
VDE 40C ABS 50C CCS 45C at 4/4
BV 50C DNV 45C
LRoS 45C GL 45C with direct-on starting J
RINA 50C RS 45C as a multiple of the
400V η
rated rated rated approx.
kW kW kW min–1 A % cosϕ torque torque current kg m2 kg
DNGW–080BH–02 1.35 1.3 1.3 3380 2.65 79 0.86 HS 5 3.1 3.1 5.7 0.0008 22
DNGW–090LX–02 1.8 2 2.2 3415 3.3 81 0.90 HS 5 2.9 3.0 7.0 0.0020 32
DNGW–090LD–02 2.6 2.5 2.6 3440 4.85 82 0.87 HS 5 3.1 3.2 6.9 0.0020 32
DNGW–100LB–02 3.6 3.5 3.7 3465 6.5 85 0.88 HS 5 2.8 3.1 7.1 0.0039 37
DNGW–112MB–02 4.8 4.8 5 3480 8.2 85.5 0.91 HS 5 3.0 3.6 7.3 0.0060 55
DNGW–132SL–02 6.5 7.0 7.2 3500 11.8 85.5 0.87 HS 5 3.0 3.2 6.7 0.0110 85
DNGW–132SN–02 8.6 8.3 8.6 3490 14.4 88 0.89 HS 5 2.9 3.4 7.0 0.0140 90
DNGW–160ML–02 13.2 12.9 13.2 3520 22 90.5 0.88 HS 5 2.5 2.9 6.2 0.0364 150
DNGW–160MN–02 18 17 17.5 3520 30.5 90.5 0.87 HS 5 3.0 3.1 6.3 0.045 155
DNGW–160LL–02 22 20 21.5 3520 35.5 91.2 0.89 HS 5 2.9 2.9 6.8 0.057 170
DNGW–180MB–02 26 25 26 3550 46.5 91.2 0.86 HS 5 2.1 2.8 6.8 0.094 190
DNGW–280SG–02 86 84 85 3575 138 94.7 0.87 HS 4 2.1 2.1 6.5 0.88 725
DNGW–280MG–02 110 105 110 3575 176 95 0.88 HS 4 2.0 2.3 7.0 1.03 775
DNGW–315SL–02 120 120 125 3577 190 95 0.88 DS 4 1.9 2.5 6.5 1.55 1010
DNGW–315ML–02 143 130 135 3575 220 95.5 0.89 DS 4 2.0 2.4 6.5 1.85 1090
DNGW–315MN–02 185 165 170 3576 285 95.6 0.89 DS 4 2.4 2.5 6.9 2.2 1160
DNGW–315LL–02 220 205 215 3580 335 96.2 0.90 DS 4 2.6 2.6 7.2 2.8 1400
DNGW–315LN–02 275 270 285 3580 415 96.6 0.90 DS 4 2.6 2.5 7.1 3.5 1550
DNGW–315LN–02 3 275 295 305 3585 408 96.9 0.90 HS 3 1.5 2.7 7.0 3.5 1560
Special type series
Higher outputs, other duty types, pole numbers and pole–changing motors on request.
70K 75K Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Net
speed current ciency factor class torque torque current of inertia weight
VDE 40C ABS 50C CCS 45C at 4/4
BV 50C DNV 45C
LRoS 45C GL 45C with direct-on starting J
RINA 50C RS 45C as a multiple of the
400V η
rated rated rated approx.
kW kW kW min–1 A % cosϕ torque torque current kg m2 kg
DNGW–080BH–04 0.9 0.9 0.92 1670 2.1 73.5 0.80 HS 4 2.0 2.1 3.9 0.0020 22
DNGW–090LX–04 1.5 1.7 1.8 1695 3 79 0.84 HS 4 2.2 2.4 5.0 0.0036 32
DNGW–090LD–04 1.8 1.9 2 1710 3.65 80 0.82 HS 4 2.2 2.3 5.1 0.0036 32
DNGW–100LB–04 2.6 2.6 2.7 1700 5.3 81.5 0.84 HS 5 2.2 2.4 5.3 0.0051 37
DNGW–100LD–04 3.4 3.2 3.3 1700 6.6 82.6 0.84 HS 5 2.6 2.7 5.8 0.0066 40
DNGW–112MB–04 4.8 4.4 4.6 1720 8.8 85 0.84 HS 5 2.3 2.6 5.9 0.012 57
DNGW–132SL–04 6.6 6.4 6.6 1740 11.4 88 0.86 HS 4 2.2 2.6 6.8 0.022 85
DNGW–132ML–04 8.6 8.1 8.2 1735 15 88.5 0.85 HS 5 2.2 2.5 6.9 0.030 100
DNGW–160ML–04 13.2 13.5 14 1760 23 91 0.84 HS 5 2.6 2.5 6.2 0.068 150
DNGW–160LL–04 17 16 17 1750 29.5 91.2 0.84 HS 5 2.9 2.4 6.3 0.092 180
DNGW–180LB–04 25 23 23.5 1765 41.5 92 0.86 DS 5 2.9 2.5 6.3 0.16 210
DNGW–250MB–04 63 60 63 1780 103 94.5 0.85 HS 5 2.3 2.6 7.2 0.80 510
DNGW–280SG–04 85 78 80 1780 138 94.8 0.85 HS 5 2.3 2.6 6.6 1.44 750
DNGW–280MG–04 100 90 95 1780 161 95 0.87 HS 5 2.3 2.5 6.6 1.65 800
DNGW–315SL–04 126 120 125 1785 208 95.1 0.84 DS 4 2.2 2.3 6.5 2.2 1020
DNGW–315ML–04 150 151 160 1785 245 95.5 0.85 DS 4 2.1 2.5 6.5 2.9 1120
DNGW–315MN–04 180 176 183 1788 290 96 0.85 DS 4 2.2 2.5 7.0 3.4 1190
DNGW–315LL–04 220 205 215 1787 360 96 0.84 DS 4 2.3 2.5 6.9 3.9 1430
DNGW–315LM–04 2 275 250 260 1787 450 96 0.84 DS 4 2.4 2.5 6.9 4.7 1520
Special type series
DNGW–315LM–04 3 275 265 275 1790 445 96.4 0.84 HS 3 1.5 2.6 7.0 4.7 1530
Higher outputs, other duty types, pole numbers and pole–changing motors on request.
Series DNGW:
General
A specific winding technology and Main focus of application of such The thermal utilization corresponds
the respective special insulation medium–voltage motors is for the with insulation class ”B”. Only for
system allow making of the voltage frame sizes 280 and 315. For few exceptions ”partially F” is used.
levels ”up to 3.3 kV” and ”up to smaller frame sizes it is problema- These motors are identified in the
4.16 kV” with round–wire fed–in tic to keep the air gaps and the output tables with an *.
windings. Due to this the die set of creepage distances, for larger
the standard motor can be used to frame sizes the conventional for- Standard motors are made with
build machines, which up to this med coil winding exists anyway die–cast rotor. The rotor class cor-
date were only executable by and is well applicable. responds approximately to ”HS4”.
means of formed coil winding and
the related machine size.
The following type series of these medium–voltage motors in enclosure IP 55 (higher enclosure on request)
are available:
Mains connection
The motors are connected via 3
terminals. These are located in a
terminal box designed for a rated
voltage of 6.6 kV.
Optional:
”on top” or
”left from the driving end”
Example:
Special type series
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Net weight
output speed current ciency factor class torque torque current of inertia
at UN η with direct-on starting J
as a multiple of the
AJSA–315LB–02 90 2980 19.0 94.5 0.90 HS 4 2.0 2.5 7.0 2.2 1280
AJSA–315LC–02 110 2980 23.0 94.5 0.89 HS 4 2.0 2.6 7.2 2.2 1300
AJSA–315LD–02 132 2980 27.0 95.3 0.90 HS 4 2.1 2.8 7.3 2.8 1430
AJSA–315LE–02 2 150 2980 31.0 95.5 0.90 HS 4 2.2 2.8 7.3 2.8 1440
AJSA–315LF–02 150 2980 30.5 95.5 0.90 HS 4 2.3 2.4 6.8 3.0 1610
AJSA–315LB–02 75 2980 12.5 93.5 0.89 HS 4 1.9 2.5 7.3 2.2 1280
AJSA–315LC–02 90 2980 15.0 94.1 0.89 HS 4 2.0 2.6 7.5 2.2 1300
AJSA–315LD–02 110 2980 18.5 94.8 0.90 HS 4 2.0 2.8 7.4 2.8 1430
AJSA–315LE–02 2 132 2980 21.5 95.0 0.90 HS 4 2.1 2.8 7.5 2.8 1440
AJSA–315LF–02 132 2980 21.5 95.0 0.90 HS 4 2.3 2.4 7.0 3.0 1610
AJSA–315LB–04 90 1490 20.0 94.7 0.83 HS 4 2.6 2.7 7.5 3.27 1360
AJSA–315LC–04 110 1490 24.5 94.9 0.83 HS 4 2.6 2.7 7.4 3.27 1380
AJSA–315LD–04 132 1490 29.5 95.2 0.84 HS 4 2.6 2.7 7.5 3.90 1510
AJSA–315LE–04 150 1490 33.0 95.3 0.84 HS 4 2.4 2.6 7.3 4.67 1660
AJSA–315LF–04 160 1488 35.0 95.3 0.84 HS 4 2.4 2.6 7.3 4.67 1680
AJSA–280LB–04 55 1485 9.5 93.5 0.86 HS4 2.1 2.5 7.4 1.66
AJSA–315LB–04 75 1490 13.5 93.6 0.83 HS 4 2.6 2.7 7.5 3.27 1360
AJSA–315LC–04 90 1490 16.0 94.1 0.83 HS 4 2.6 2.7 7.5 3.27 1380
AJSA–315LD–04 110 1490 19.5 94.8 0.84 HS 4 2.6 2.7 7.4 3.9 1510
AJSA–315LE–04 132 1490 23.0 95.0 0.84 HS 4 2.6 2.7 7.4 4.67 1660
AJSA–315LF–04 150 1490 26.0 95.0 0.84 HS 4 2.5 2.6 7.4 4.67 1680
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Net weight
output speed current ciency factor class torque torque current of inertia
at UN η with direct-on starting J
as a multiple of the
AJSK–315LB–02 90 2980 19.0 94.5 0.90 HS 4 2.0 2.5 7.0 2.2 1280
AJSK–315LC–02 110 2980 23.0 94.5 0.89 HS 4 2.0 2.6 7.2 2.2 1300
AJSK–315LD–02 132 2980 27.0 95.3 0.90 HS 4 2.1 2.8 7.3 2.8 1430
AJSK–315LE–02 2 150 2980 31.0 95.5 0.90 HS 4 2.2 2.8 7.3 2.8 1440
AJSK–315LF–02 150 2980 30.5 95.5 0.90 HS 4 2.3 2.4 6.8 3.0 1610
AJSK–315LB–02 75 2980 12.5 93.5 0.89 HS 4 1.9 2.5 7.3 2.2 1280
AJSK–315LC–02 90 2980 15.0 94.1 0.89 HS 4 2.0 2.6 7.5 2.2 1300
AJSK–315LD–02 110 2980 18.5 94.8 0.90 HS 4 2.0 2.8 7.4 2.8 1430
AJSK–315LE–02 2 132 2980 21.5 95.0 0.90 HS 4 2.1 2.8 7.5 2.8 1440
AJSK–315LF–02 132 2980 21.5 95.0 0.90 HS 4 2.3 2.4 7.0 3.0 1610
AJSK–315LB–04 90 1490 20.0 94.7 0.83 HS 4 2.6 2.7 7.5 3.27 1360
AJSK–315LC–04 110 1490 24.5 94.9 0.83 HS 4 2.6 2.7 7.4 3.27 1380
AJSK–315LD–04 132 1490 29.5 95.2 0.84 HS 4 2.6 2.7 7.5 3.90 1510
AJSK–315LE–04 150 1490 33.0 95.3 0.84 HS 4 2.4 2.6 7.3 4.67 1660
AJSK–315LF–04 160 1488 35.0 95.3 0.84 HS 4 2.4 2.6 7.3 4.67 1680
AJSK–280LB–04 55 1485 9.5 93.5 0.86 HS4 2.1 2.5 7.4 1.66
AJSK–315LB–04 75 1490 13.5 93.6 0.83 HS 4 2.6 2.7 7.5 3.27 1360
AJSK–315LC–04 90 1490 16.0 94.1 0.83 HS 4 2.6 2.7 7.5 3.27 1380
AJSK–315LD–04 110 1490 19.5 94.8 0.84 HS 4 2.6 2.7 7.4 3.9 1510
AJSK–315LE–04 132 1490 23.0 95.0 0.84 HS 4 2.6 2.7 7.4 4.67 1660
AJSK–315LF–04 150 1490 26.0 95.0 0.84 HS 4 2.5 2.6 7.4 4.67 1680
Type Rated Rated Rated Effi- Power Rotor Starting Breakd. Starting Moment Net weight
output speed current ciency factor class torque torque current of inertia
at UN η with direct-on starting J
as a multiple of the
DJSW–315LB–02 90 2980 19.0 94.5 0.90 HS 4 2.0 2.5 7.0 2.2 1320
DJSW–315LC–02 110 2980 23.0 94.5 0.89 HS 4 2.0 2.6 7.2 2.2 1340
DJSW–315LD–02 132 2980 27.0 95.3 0.90 HS 4 2.1 2.8 7.3 2.8 1470
DJSW–315LE–02 2 150 2980 31.0 95.5 0.90 HS 4 2.2 2.8 7.3 2.8 1480
DJSW–315LF–02 150 2980 30.5 95.5 0.90 HS 4 2.3 2.4 6.8 3.0 1650
DJSW–315LB–02 75 2980 12.5 93.5 0.89 HS 4 1.9 2.5 7.3 2.2 1320
DJSW–315LC–02 90 2980 15.0 94.1 0.89 HS 4 2.0 2.6 7.5 2.2 1340
DJSW–315LD–02 110 2980 18.5 94.8 0.90 HS 4 2.0 2.8 7.4 2.8 1470
DJSW–315LE–02 2 132 2980 21.5 95.0 0.90 HS 4 2.1 2.8 7.5 2.8 1480
DJSW–315LF–02 132 2980 21.5 95.0 0.90 HS 4 2.3 2.4 7.0 3.0 1650
DJSW–315LB–04 90 1490 20.0 94.7 0.83 HS 4 2.6 2.7 7.5 3.27 1400
DJSW–315LC–04 110 1490 24.5 94.9 0.83 HS 4 2.6 2.7 7.4 3.27 1420
DJSW–315LD–04 132 1490 29.5 95.2 0.84 HS 4 2.6 2.7 7.5 3.90 1550
DJSW–315LE–04 150 1490 33.0 95.3 0.84 HS 4 2.4 2.6 7.3 4.67 1700
DJSW–315LF–04 160 1488 35.0 95.3 0.84 HS 4 2.4 2.6 7.3 4.67 1720
DJSW–280LB–04 55 1485 9.5 93.5 0.86 HS4 2.1 2.5 7.4 1.66
DJSW–315LB–04 75 1490 13.5 93.6 0.83 HS 4 2.6 2.7 7.5 3.27 1400
DJSW–315LC–04 90 1490 16.0 94.1 0.83 HS 4 2.6 2.7 7.5 3.27 1420
DJSW–315LD–04 110 1490 19.5 94.8 0.84 HS 4 2.6 2.7 7.4 3.9 1550
DJSW–315LE–04 132 1490 23.0 95.0 0.84 HS 4 2.6 2.7 7.4 4.67 1700
DJSW–315LF–04 150 1490 26.0 95.0 0.84 HS 4 2.5 2.6 7.4 4.67 1720
Dimension drawings with terminal box on the right from driving end
Standard single dimension drawings in DXF format see Appendix (Page 250, 253)
Special type series
Description
For the use in installations which Available types: Options:
can be intermittently submersed, ANGA / ANLA – Standard and special voltages
like e.g. pump stations, motors in a without Ex–protection – PTC thermistors for winding mo-
special design for intermittent
nitoring
submersion, submersion height ANGK / ANLK
max. 8 m up to 72 hours are – Mounting type IM B3, IM B5, IM
Protection type Ex nA II
available. V1, other mounting types on
request
DNGW
During its submersion duration the Protection type Ex de IC – Painting N14
motor must not be in operation. In from frame size 160 – Stainless steel screws
order to avoid that the self–ventila-
tor of the motor or the forced venti- – Space heater
lation are destroyed switching–off Technical data of the motors are – With mounted level monitor
is necessary before the water level indicated in the – Futher options on request
reaches the fan. Technical List IM 01.
By special measures, like special
sealing of the shaft glands and the
static joint gap according to IP 67,
it is ensured that no water may pe-
netrate the motor during that time
when it is submersed.
Description
For special drives it is necessary application the inert gas in the fur- are exposed to high temperatures
that with the motor a hermetic sea- nace may penetrate the motor, ho- of several 100 oC on the shaft and
ling between the surrounding at- wever, not escape to the outside. in the flange area of the motor. Sui-
mosphere and the motor interior is On the other hand atmospheric table choice of materials, bearing
ensured. A typical example are oxygen must not penetrate the mo- design and lubrication as well as
drive motors for gas circulation tor. Special design measures are cooling ensures a safe operation
fans in annealing furnaces where taken to achieve it, so that tight- also under rough ambient conditi-
the annealing is made in inert gas ness for high pressure and vacuum ons.
atmosphere for avoiding an oxida- can be ensured. The fan motors
tion of the annealed parts. For this flanged to the annealing furnaces
Motor designs:
· Motor type: ZG..
· Standard and special voltages.
· Cooling: Totally enclosed fan cooling with axially mounted forced ventilation, cooling type IC416.
Alternatively water cooling, cooling type IC71W.
· Mounting type: IM B5, IM V1, further mounting types on request.
· Winding monitoring: PTC thermistors.
· Flange and shaft end according to customer specifications.
· Further options on request.
General
An outstanding feature of the asyn- exciter or voltage controller, when are parallel connected to the motor
chronous machine is that without it is operated at the existing rigid or generator. It must be observed
any special measures it can supply three–phase mains. In generator that the self–excitation limit might
electrical energy into the mains operation the speed is over–syn- be exceeded: This means that the
when it is driven mechanically be- chronous, after the equalizing the generator produces a voltage even
yond its no–load speed. slip is of a similar size like at motor at disconnected mains, it is to a
It is steadily changed between mo- operation with the same power, certain extent running at ”Isolated
tor and generator operation, e.g. at only with a negative sign. operation”.
every pole–changing of an asyn- In order to avoid possible damages
chronous motor from high to low compensated facilities are provi-
The required reactive power for ded with additional protective devi-
speed. In this case the kinetic
the asynchronous machine ces, like e.g. frequency or voltage
energy of the drive train provides
the energy input at the shaft. Im- The asynchronous machine needs monitoring.
mediately upon changing to low ”reactive power” to build up the Mostly such safety precautions are
speed the machine develops a re- magnetic field. It is known that the already considered by the manu-
generative (brake) torque which is reactive power is an apparent facturers of turbine control sy-
only fading when the low synchro- power not contributing to the direct stems.
nous speed is reached. The cor- energy conversion. The current as- IN ANY CASE it is necessary to
responding braking power is fed sociated with it, which means the contact the competent power sup-
into the supplying mains as electri- reactive current, causes losses in plying company.
cal energy as long as it is not hig- supply and in the machine. The Usually the compensation facilities
her than the sum of the internal higher the reactive current content do not only consist of capacitors,
machine losses. These operating in the overall current is, the lower but are also provided with chokes.
conditions also occur in machines is the power factor ”cos ϕ”. The so–called ”degree of choking”
which are not especially optimized The power factor can be optimized depends on the mains conditions.
for the generator operation. These by an adequate machine design. For instance in accordance with
are called the ”not real” asynchro- Since the asynchronous machine the ripple control frequency.
nous generators. is not ”excited” like the synchro-
nous machine it takes the reactive
power from the mains. This applies Power failure, remanence, and ru-
to both motor and generator opera- naway speed
The ”real” asynchronous genera-
tors tion. In accordance with the preceding
THEREFORE GENERATOR OPE- paragraphs the asynchronous ge-
These are the asynchronous ma- RATION IS NORMALLY NOT POS- nerator normally requires the rigid
chines which during their operating SIBLE WITHOUT THE EXISTING mains. The mains frequency and
time are steadily or mostly running (rigid) THREE–PHASE MAINS. the number of poles determine the
in generator operation. (In that case regulable reactive synchronous speed of the genera-
This is already worth–considering power sources would be required, tor.
for the electrical design and thus to for example a capacitor bank.) In case of a power failure or power
adjust the machine to optimum va- Therefore an asynchronous ma- supply interruption the terminal vol-
lues in generator operation. chine can NOT SO EASILY be tage drops (except for the special
For instance the power factor of used for isolated operation, e.g. as case of wrongly compensated or
the asynchronous generator (com- emergency generating unit. wrongly installed equipment).
pared to the synchronous ma-
Only a remanent voltage of some
chine) is load–dependant and that
% of the mains voltage is measura-
even stronger the lower the break- The reactive power compensation ble.
down torque is.
One of the few disadvantages of No power is supplied by the asyn-
Special type series
nected to the mains either in Y / ∆ which supplies into the mains via the designed water volume the ge-
or with direct starting or via starting the frequency inverter, is a better nerators are mostly operated be-
devices (soft starters, starting resi- technical solution than a high– low their rated output and therefore
stors, starting transformers, ...). speed generator. the partial load efficiency should
The asynchronous machine acce- always be considered as well.
lerates the entire machine unit in Loher generators are designed
motor operation approximately up – A useful combination from the such that the efficiency at 3/4–load
to the synchronous speed. Now above mentioned possibilities is of a comparable height like the
the turbine regulator opens, which for the respective facility efficiency at full load or even hig-
causes a speed increase over the her.
synchronous speed and the asyn-
Thermal utilization
Like all machines in this technical
list the asynchronous generator
winding is in insulation class F.
With a coolant temperature of
40 C at 4/4 load only class B is
utilized.
Machines with thermal utilization
according to insulation class F are
marked with 2 in the following ta-
bles.
Special type series
Type Rated Rated Rated Efficiency η Power factor cosϕ Break- Starting Moment Weight
output speed current down current of inertia Gen.
torque
PN nN IN JGen
at P/PN at P/PN
at 4/4 3/4 2/4 1/4 4/4 3/4 2/4 1/4 as a multiple of
400 V the
rated rated ap-
torque current prox.
AGGA–132MB–04 7.5 1540 13.4 89.0 89.0 88.0 82.0 0.81 0.79 0.72 0.50 2.5 6.8 0.030 69
AGGA–160MB–04 11 1545 20 90.0 90.0 89.5 82.0 0.80 0.79 0.70 0.46 2.6 5.2 0.068 108
AGGA–160LB–04 15 1550 26 91.0 91.3 90.8 84.5 0.82 0.80 0.71 0.47 2.6 5.3 0.092 130
AGGA–180MB–04 18.5 1535 33 91.5 91.7 91.0 86.0 0.83 0.80 0.72 0.52 3.0 6.3 0.131 162
AGGA–180LB–04 22 1535 38 91.5 92.0 91.0 88.0 0.82 0.80 0.74 0.56 3.0 6.1 0.156 176
AGGA–200LG–04 30 1530 51 92.5 92.9 92.5 85.2 0.84 0.82 0.79 0.50 2.8 6.0 0.247 254
AGGA–225SE–04 37 1530 63 93.0 93.5 93.2 88.0 0.84 0.82 0.78 0.59 2.5 5.6 0.343 305
AGGA–225ME–04 45 1530 79 93.3 93.7 93.4 89.0 0.82 0.79 0.75 0.56 2.7 5.8 0.409 335
AGGA–250ME–04 55 1520 92 94.2 94.3 93.5 89.5 0.86 0.84 0.78 0.56 3.0 7.8 0.790 425
AGGA–280SG–04 75 1520 125 94.0 94.0 92.0 87.0 0.84 0.83 0.76 0.50 2.7 6.8 1.44 580
AGGA–280MG–04 90 1520 149 94.0 94.0 92.0 87.0 0.84 0.83 0.76 0.51 2.9 6.7 1.65 670
AGGA–315SL–04 110 1515 190 95.0 94.9 94.1 90.2 0.83 0.82 0.75 0.51 2.2 5.7 2.2 960
AGGA–315ML–04 132 1515 228 95.2 95.2 94.2 90.3 0.83 0.80 0.71 0.49 2.5 6.3 2.9 1040
AGGA–315MN–04 160 1515 276 95.3 95.2 94.3 90.4 0.83 0.80 0.72 0.50 2.5 6.2 3.4 1120
AGGA–315LB–042 200 1515 357 95.5 95.3 94.3 90.4 0.82 0.77 0.68 0.45 2.8 6.7 4.0 1340
AGGA–315LM–042 250 1512 438 95.5 95.4 94.5 90.8 0.82 0.77 0.66 0.44 2.8 6.7 4.7 1420
AGGA–132MB–06 4 1040 7.8 87.5 87.6 86.8 81.5 0.75 0.73 0.63 0.38 3.2 6.0 0.033 67
AGGA–132MD–06 5.5 1035 10.5 87.5 87.8 86.8 81.5 0.76 0.70 0.60 0.37 3.4 6.2 0.045 72
AGGA–160MB–06 7.5 1040 14 88.0 88.0 87.0 82.0 0.78 0.74 0.62 0.40 3.5 5.8 0.100 108
AGGA–160LB–06 11 1040 20 88.5 89.0 88.0 83.0 0.79 0.74 0.64 0.40 3.4 5.8 0.134 130
AGGA–180LB–06 15 1040 27 89.0 90.0 89.0 83.0 0.79 0.76 0.65 0.40 2.9 4.7 0.130 176
AGGA–200LG–06 18.5 1035 34 90.0 90.0 88.5 82.5 0.80 0.76 0.66 0.42 2.2 4.8 0.329 262
AGGA–200LJ–06 22 1032 40 90.8 91.5 90.0 82.6 0.79 0.76 0.67 0.42 2.2 4.8 0.329 282
AGGA–225ME–06 30 1030 53 91.0 91.0 89.5 82.8 0.79 0.76 0.67 0.43 2.3 5.1 0.553 315
Special type series
AGGA–250ME–06 37 1025 66 91.8 91.8 89.0 82.8 0.79 0.76 0.68 0.44 1.9 5.5 1.00 420
AGGA–280SG–06 45 1020 75 93.5 93.6 92.7 88.0 0.84 0.81 0.73 0.50 2.2 5.4 2.26 605
AGGA–280MG–06 55 1015 95 93.8 93.9 92.9 88.0 0.84 0.81 0.73 0.50 2.2 5.5 2.26 670
AGGA–315SL–06 75 1010 128 94.7 94.7 93.4 89.2 0.84 0.81 0.72 0.49 2.6 6.6 3.38 960
AGGA–315ML–06 90 1010 154 95.0 95.0 93.5 89.4 0.83 0.80 0.71 0.48 2.7 6.9 4.06 1030
AGGA–315MM–06 110 1010 186 95.2 95.1 94.0 90.0 0.84 0.81 0.73 0.50 2.7 6.9 4.84 1110
AGGA–315MN–06 132 1010 224 95.4 95.3 94.4 91.0 0.84 0.82 0.73 0.51 2.4 6.4 4.84 1110
AGGA–315LL–06 160 1010 272 95.6 95.5 94.6 91.4 0.84 0.82 0.73 0.52 2.5 6.6 6.00 1300
AGGA–315LM–062 200 1010 340 95.8 95.7 94.8 91.7 0.84 0.81 0.72 0.52 2.5 6.6 6.80 1410
Type Rated Rated Rated Efficiency η Power factor cosϕ Break- Starting Moment Weight
output speed current down current of inertia Gen.
torque
PN nN IN JGen
at P/PN at P/PN
at 4/4 3/4 2/4 1/4 4/4 3/4 2/4 1/4 as a multiple of
400 V the
rated rated ap-
torque current prox.
AGGA–132MB–08 3 785 6.8 84.0 84.0 82.1 72.0 0.63 0.56 0.43 0.22 2.85 3.9 0.045 72
AGGA–160MB–08 4 785 8.5 86.0 86.5 86.0 79.0 0.68 0.63 0.51 0.32 3.0 4.0 0.092 104
AGGA–160MD–08 5.5 785 12 86.0 86.5 86.0 79.0 0.69 0.62 0.52 0.32 3.0 4.0 0.12 108
AGGA–160LB–08 7.5 785 16 86.0 86.0 86.0 79.0 0.70 0.64 0.51 0.29 2.9 4.1 0.16 130
AGGA–180LB–08 11 780 21 88.0 89.0 88.0 82.0 0.74 0.68 0.55 0.32 3.0 5.2 0.189 176
AGGA–200LG–08 15 775 29 90.0 90.5 89.5 84.0 0.74 0.70 0.60 0.35 2.6 4.4 0.329 258
AGGA–225SE–08 18.5 775 36 90.0 90.5 89.5 83.0 0.74 0.70 0.60 0.35 2.2 4.4 0.464 305
AGGA–225ME–08 22 772 45 90.0 90.5 89.5 84.0 0.71 0.68 0.57 0.36 2.4 4.6 0.553 325
AGGA–250ME–08 30 770 55 91.0 90.5 89.5 84.0 0.75 0.72 0.61 0.36 2.4 5.0 1.00 415
AGGA–280SG–08 37 765 68 91.5 91.4 90.0 82.5 0.78 0.73 0.63 0.40 2.0 4.2 1.87 585
AGGA–280MG–08 45 765 83 92.0 91.6 90.2 83.0 0.76 0.74 0.64 0.41 1.9 4.0 2.26 640
AGGA–315SL–08 55 760 101 93.8 93.3 92.5 87.0 0.77 0.74 0.63 0.40 2.4 5.5 3.38 950
AGGA–315ML–08 75 760 136 94.0 93.6 93.2 89.0 0.78 0.75 0.65 0.42 2.3 5.3 4.06 1030
AGGA–315MM–08 90 760 161 94.0 93.6 93.3 89.5 0.79 0.76 0.66 0.43 2.2 5.3 4.84 1110
AGGA–315MN–08 110 760 202 94.0 93.7 93.5 90.0 0.78 0.74 0.63 0.40 2.2 5.3 4.84 1110
AGGA–315LL–08 132 760 237 94.0 94.0 93.6 91.0 0.79 0.78 0.68 0.45 2.0 4.8 5.97 1300
AGGA–315LM–082 160 760 300 94.5 94.5 93.8 91.0 0.78 0.76 0.66 0.43 2.0 5.0 6.80 1410
Type Rated Rated Rated Efficiency η Power factor cosϕ Break- Starting Moment Weight
output speed current down current of inertia Gen.
torque
PN nN IN JGen
at P/PN at P/PN
at 4/4 3/4 2/4 1/4 4/4 3/4 2/4 1/4 as a multiple of
400 V the
rated rated ap-
torque current prox.
AGGA–180LB–04 22 1525 36 92.0 92.5 91.2 87.0 0.86 0.85 0.79 0.56 3.5 6.9 0.156 176
AGGA–200LG–04 30 1525 51 93.1 93.0 92.0 87.0 0.84 0.83 0.75 0.53 3.3 6.5 0.247 254
AGGA–225SE–04 2 37 1525 58 93.8 94.3 93.5 88.8 0.89 0.88 0.82 0.61 2.6 6.0 0.343 305
AGGA–225ME–04 2 45 1525 74 93.8 94.2 93.6 89.5 0.88 0.87 0.85 0.66 2.6 6.0 0.409 335
AGGA–250ME–04 55 1520 92 94.7 94.7 93.5 90.1 0.86 0.83 0.76 0.52 3.0 7.0 0.790 425
AGGA–280SG–04 75 1515 121 95.1 95.1 94.0 89.0 0.90 0.89 0.84 0.63 3.0 6.9 1.44 580
AGGA–280MG–04 90 1513 146 95.3 95.2 94.0 89.0 0.89 0.87 0.80 0.57 3.0 7.3 1.66 670
AGGA–315SL–04 110 1512 190 95.4 95.3 94.5 90.0 0.84 0.81 0.74 0.52 2.8 7.0 2.2 960
AGGA–315ML–04 132 1510 225 95.7 95.8 95.2 92.0 0.85 0.83 0.76 0.55 2.8 7.3 2.9 1040
AGGA–315MN–04 160 1510 270 96.0 96.0 95.2 92.0 0.85 0.83 0.76 0.54 2.7 7.2 3.4 1120
AGGA–315LL–042 200 1510 340 96.2 96.2 95.8 93.0 0.85 0.83 0.77 0.56 2.7 7.0 4.0 1340
AGGA–315LM–042 250 1510 425 96.2 96.2 95.8 93.0 0.85 0.83 0.77 0.55 2.7 7.0 4.7 1420
AGGA–160LB–06 11 1030 21 90.0 90.5 90.0 86.5 0.76 0.70 0.60 0.39 3.4 5.6 0.134 130
AGGA–180LB–06 15 1030 27.5 90.0 90.5 90.0 86.0 0.80 0.76 0.65 0.41 2.9 5.5 0.182 176
AGGA–200LG–06 18.5 1025 33.5 92.5 92.5 91.5 87.0 0.79 0.74 0.64 0.43 3.5 6.5 0.329 262
AGGA–200LJ–06 22 1020 40 92.5 92.5 91.5 87.0 0.78 0.72 0.62 0.38 3.2 6.0 0.329 282
AGGA–225ME–06 30 1015 55 93.7 93.7 92.5 87.0 0.82 0.78 0.68 0.40 3.0 6.5 0.553 315
AGGA–250ME–06 37 1015 64 93.7 93.3 92.0 87.0 0.81 0.79 0.69 0.43 3.4 6.8 1.00 420
AGGA–280SG–06 45 1010 73 94.9 94.9 94.0 89.0 0.89 0.88 0.80 0.51 3.2 7.4 2.26 605
AGGA–280MG–06 55 1010 92 95.0 95.0 94.0 89.1 0.86 0.84 0.78 0.55 3.0 7.5 2.88 670
AGGA–315SL–06 75 1010 129 95.5 95.6 94.9 91.0 0.85 0.83 0.75 0.53 2.7 6.4 3.38 960
AGGA–315ML–06 90 1008 153 95.5 95.3 94.5 90.3 0.85 0.83 0.75 0.52 2.7 6.3 4.06 1030
AGGA–315MM–06 110 1008 188 95.8 95.9 95.4 91.1 0.85 0.83 0.76 0.52 2.7 6.5 4.84 1110
AGGA–315MN–06 132 1008 225 95.9 96.1 95.9 91.2 0.85 0.82 0.74 0.52 2.7 6.8 4.84 1110
Special type series
AGGA–315LL–06 160 1008 275 96.0 96.0 95.5 92.5 0.85 0.81 0.72 0.49 2.7 6.7 6.0 1300
AGGA–315LM–06 200 1007 344 96.2 96.3 96.0 94.0 0.84 0.82 0.76 0.52 2.6 6.9 6.80 1410
Type Rated Rated Rated Efficiency η Power factor cosϕ Break- Starting Moment Weight
output speed current down current of inertia Gen.
torque
PN nN IN JGen
at P/PN at P/PN
at 4/4 3/4 2/4 1/4 4/4 3/4 2/4 1/4 as a multiple of
400 V the
rated rated ap-
torque current prox.
AGGA–160MD–08 5.5 780 11.5 88.0 88.0 87.0 83.0 0.70 0.65 0.53 0.33 2.60 4.4 0.120 108
AGGA–160LB–08 7.5 775 15.1 89.0 89.2 88.6 84.0 0.72 0.66 0.57 0.36 2.50 4.5 0.158 130
AGGA–180LB–08 11 770 21 90.5 91.0 90.7 85.0 0.78 0.75 0.66 0.44 2.50 4.6 0.189 176
AGGA–200LG–08 15 770 29 91.5 92.0 90.8 85.5 0.75 0.72 0.59 0.37 2.90 5.0 0.329 258
AGGA–225SE–08 18.5 770 34 91.5 92.0 91.4 88.4 0.79 0.75 0.66 0.50 2.90 5.0 0.464 305
AGGA–225ME–08 22 770 40 92.0 92.6 92.5 87.0 0.81 0.79 0.73 0.50 2.80 5.5 0.553 325
AGGA–250ME–08 30 765 55 93.0 93.0 92.0 85.6 0.79 0.75 0.65 0.40 3.00 6.0 1.00 415
AGGA–280SG–08 37 760 65 93.2 93.2 92.5 88.2 0.82 0.79 0.69 0.44 3.00 6.8 1.87 585
AGGA–280MG–08 45 760 78 93.6 93.8 92.8 88.8 0.83 0.79 0.70 0.43 3.00 6.8 2.26 640
AGGA–315SL–08 55 760 100 94.0 94.0 93.0 88.5 0.78 0.74 0.63 0.40 2.70 5.9 3.38 950
AGGA–315ML–08 75 760 130 94.2 94.1 93.2 89.8 0.81 0.77 0.68 0.44 2.50 5.6 4.06 1030
AGGA–315MM–08 90 760 163 94.3 94.2 93.6 90.0 0.81 0.77 0.68 0.44 2.75 5.5 4.84 1110
AGGA–315MN–08 110 760 195 94.5 94.4 94.0 90.5 0.81 0.77 0.67 0.43 2.50 5.5 4.84 1110
AGGA–315LL–082 132 758 232 95.0 95.0 94.6 91.4 0.81 0.78 0.69 0.47 2.70 6.5 5.97 1300
AGGA–315LM–082 160 758 290 95.2 95.2 94.6 91.4 0.81 0.77 0.68 0.46 2.70 6.5 6.80 1410
EC Declaration of conformity
EC Declaration of conformity
EC Declaration of conformity
EC Declaration of conformity
GOST Certificates
–60 oC up to +60 oC
NEPSI – Certificates
Operating instructions
EN 50014 / EN 50019: N–R 443 en 09.03 EN 60079–0/ EN 60079–7: N–R 468 en 09.03
EN 50014 / EN 50018: N–R 445 en 09.03 EN 60079–0/ EN 60079–1: N–R 472 en 04.07
Connection diagrams
Title TI–No.
TI–No. 02/02
Cable glands and dummy plugs
– Rev. g
TI–No. 04/04
Mechanical vibrations
Standard modification
TI–No. 04/05
Risk assessment for
protection type Ex nA II
Slide rails
Tensioning bolt
Designation of a slide rail with l1 = 400 mm, with fixing bolts and
tensioning bolt: slide rail 400 DIN 42923
In the entire technical list the dimension drawings are assigned to the respective type series.
The dimension drawings as described herein are available:
The numbers of the compiled dimension drawings are indicated for all type series.
With a click on the blue marked number fields the dimension drawings are
indicated as PDF file (Acrobat Reader) and can be printed for information.
Assignment of the single dimension drawings, data sheets and characteristic curves to all standard motors is
made in the output tables on the left margin.
With a click on the yellow fields the dimension drawings are indicated as PDF file (Acrobat Reader).
Three mounting types each (B3 ..., B5 ..., B35 ....) are opened when called and can be leafed through and printed
for information.
The same dimension drawings with the same file name are also available as DXF file to scale for CAD applica-
tions.
In the following tables the dimension drawing numbers are selectable as assigned to the types and the mounting
types.
The files can be called directly from the CAD application on this CD and inserted.
They can be found in the folders:
Number of poles 02: = 2–pole or pole–changing with 2–pole winding (e.g. 4/2, 8/4/2, ...)
Number of poles y04: = y 4–pole or pole–changing without 2–pole winding (e.g. 8/4, 6/4, 8/6, ...)
* Chemstar, noise grade 3
Number of poles 02: = 2–pole or pole–changing with 2–pole winding (e.g. 4/2, 8/4/2, ...)
Number of poles y04: = y 4–pole or pole–changing without 2–pole winding (e.g. 8/4, 6/4, 8/6, ...)
Medium–voltage motors
Dimension drawings with terminal box right from the driving end
Type Frame size Number Noise grade Dimension drawing Dimension drawing
of poles mounting mounting
arrangement arrangement
IM B3 IM B5, IM V1
280L. 02 1 MLA28–1002.dxf MLA28–1008.dxf
AJSA AJSK
AJSA,
315LF 02 3 MLA31–1067.dxf MLA31–1068.dxf
DJSW
315LF 02 3 MLD31–1043.dxf MLD31–1044.dxf