0% found this document useful (0 votes)
7 views3 pages

Limit

Uploaded by

Muffin2
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
7 views3 pages

Limit

Uploaded by

Muffin2
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

LIMIT

- Kelvin Asclepius Minor –

1 1−√𝑥
1. Find lim ! 21. Find lim !
𝑥→0 𝑥 𝑥→1 1−𝑥

1
2. Find lim ! 𝑥 2 −25
𝑥→0 𝑥 2 22. Find lim !
𝑥→5 𝑥−5

3. Find lim √𝑥 ! 𝑥 2 +𝑥−12


𝑥→0 23. Find lim !
𝑥→3 𝑥−3
1
4. Find lim ! 1 1
+
𝑥→0 √𝑥 𝑥 2
24. Find lim !
𝑥→−2 𝑥 3 +8
1
5. Find lim !
𝑥→∞ 𝑥 𝑥 4 −1
25. Find lim !
𝑥→1 𝑥 5 −1
𝑥
6. Find lim 𝑒 !
𝑥→∞
𝑥−4
26. Find lim !
𝑥 𝑥→4 √𝑥−2
7. Find lim 𝑒 !
𝑥→−∞
𝑥−3
27. Find lim !
2 𝑥 𝑥→3 2𝑥−6
8. Find lim ( ) !
𝑥→∞ 5
(𝑥−2)2 −1
28. Find lim !
𝑥→3 𝑥−3
−𝑥 + 3 , 𝑤ℎ𝑒𝑛 𝑥 < 2
9. 𝑓(𝑥) = {
√𝑥 − 2 + 1 , 𝑤ℎ𝑒𝑛 𝑥 ≥ 2 𝑥
29. Find lim !
a. Find lim 𝑓(𝑥) ! 𝑥→0 √𝑥
𝑥→2
b. Find lim 𝑓(𝑥) ! 𝑥 2 −𝑥−2
𝑥→6 , 𝑤ℎ𝑒𝑛 𝑥 ≠ 2
3−𝑥 , 𝑤ℎ𝑒𝑛 𝑥 < 1 30. 𝑓(𝑥) = { 𝑥−2

1 , 𝑤ℎ𝑒𝑛 𝑥 = 1 1 , 𝑤ℎ𝑒𝑛 𝑥 = 2
10. 𝑓(𝑥) = {
Find lim 𝑓(𝑥) !
2 + √𝑥 − 1 , 𝑤ℎ𝑒𝑛 𝑥 > 1 𝑥→2
a. Find lim 𝑓(𝑥) ! 31. Find lim (3𝑥 2 + 2𝑥 + 1) !
𝑥→0 𝑥→∞
b. Find lim 𝑓(𝑥) !
𝑥→1 4𝑥 2 +3𝑥+5
2 32. Find lim !
11. Find lim(8 − 3𝑥 + 12𝑥 ) ! 𝑥→∞ 7𝑥 2 +2𝑥+1
𝑥→2

6+4𝑥 𝑥 4 +3𝑥 2 +1
12. Find lim ! 33. Find lim !
𝑥→∞ 𝑥 2 +5
𝑥→−3 𝑥 2 +1

𝑥−1 𝑥 3 +𝑥 2 +1
13. Find lim ! 34. Find lim
𝑥→0 𝑥+2 𝑥→∞ 2𝑥+𝑥 4

𝜋 3+2𝑥
14. Find lim 2sin( ) ! 35. Find lim !
𝑥→4 𝑥 𝑥→∞ 2+3𝑥

𝜋𝑥 𝑥 2 −9
15. Find lim cos( ) ! 36. Find lim !
𝑥→1 3
𝑥→3 √𝑥 2 +7−4

16. Find lim sec(2𝑥) ! √2𝑥−1−√3𝑥−2


𝑥→0 37. Find lim !
𝑥→1 2𝑥−2
17. Find lim ln(𝑥) !
𝑥→0 𝑥 2 −𝑥−6
38. Find lim !
𝑥→3 4−√5𝑥+1
18. Find lim arctan(𝑥) !
𝑥→∞
(𝑥 3 +𝑥−10)(𝑥−√𝑥+2)
39. Find lim 2 !
2𝑥 2 𝑥→2 (√3𝑥+10−4)
19. Find lim !
𝑥→1 𝑥 2 −1
40. Find lim (√𝑥 2 + 1 − 𝑥) !
2𝑥 2 𝑥→∞
20. Find lim !
𝑥→−1 𝑥 2 −1

- Kelvin Asclepius Minor -


LIMIT
- Kelvin Asclepius Minor –

1 1 2 1 2 3
1 𝑥 1 (1− )
𝑥
(1− )(1− )
𝑥 𝑥
(1− )(1− )(1− )
𝑥 𝑥 𝑥
41. If (1 + ) = 1 + + + + +⋯
𝑥 1! 2! 3! 4!
𝑥2 𝑥3 𝑥4
and 𝑒 𝑥 = 1 + 𝑥 + + + +⋯
2! 3! 4!
1 𝑥 1 𝑥
Find lim (1 + ) and lim (1 + ) !
𝑥→∞ 𝑥 𝑥→−∞ 𝑥

1
𝑥−5 3−2𝑥
42. Find lim(1 + 𝑥)𝑥 ! 47. Find lim ( ) !
𝑥→0 𝑥→∞ 𝑥−4

𝑥
1 4𝑥−20 3−2𝑥
43. Find lim (1 − ) ! 48. Find lim ( ) !
𝑥→∞ 4𝑥 𝑥→∞ 𝑥−4

1
1+𝑥 4𝑥 𝑒 𝑥 −1
44. Find lim ( ) ! 49. Find lim !
𝑥→0 𝑥
𝑥→0 1−𝑥

2𝑥
2𝑥+3 3𝑥 50. Find lim !
45. Find lim ( ) ! 𝑥→0 4 𝑥 −1
𝑥→∞ 2𝑥−1

2𝑥+3 3𝑥+4
46. Find lim ( ) !
𝑥→∞ 2𝑥−1

sin (4𝑥)
51. If √5 − 2𝑥 2 ≤ 𝑓(𝑥) ≤ √5 − 𝑥 2 56. Find lim !
𝑥→0 4x

Find lim 𝑓(𝑥) ! 𝑥


𝑥→0 57. Find lim !
𝑥→0 sin (𝑥)
2−cos (𝑥)
52. Find lim ! sin (4𝑥)
𝑥→∞ 𝑥+3 58. Find lim !
𝑥→0 2𝑥
5𝑥 2 −sin (3𝑥)
53. Find lim ! sin (5𝑥)
𝑥→∞ 𝑥 2 +10 59. Find lim !
𝑥→0 tan (2𝑥)
1
54. Find lim 𝑥 2 cos ( ) ! 4𝑥+3 sin(𝑥)+4tan (2𝑥)
𝑥→0 𝑥 60. Find lim 𝑥 !
𝑥→0 𝑥+2sin ( )
2
sin(𝑥) 𝑥3 𝑥5 𝑥7 𝑥9
55. Find lim ! (sin(𝑥) = 𝑥 − + − + − ⋯)
𝑥→0 𝑥 3! 5! 7! 9!

cos(𝑥)−1 1 1
61. Find lim ! 66. Find lim( − )!
𝑥→0 𝑥 𝑥→0 𝑥 𝑒 𝑥 −1

62. Find lim


cos(𝑥)−1
! 67. Find lim 𝑥𝑒 𝑥 !
𝑥→−∞
𝑥→0 sin(𝑥)
1
tan(𝑥−2) 68. Find lim 𝑥 𝑥 !
63. Find lim ! 𝑥→∞
𝑥→2 𝑥 2 −4

sin(𝑥)−cos(𝑥) 69. Find lim 𝑥 ln(𝑥) !


64. Find lim𝜋 2 2 ! 𝑥→0
𝑥→ cos (𝑥)−sin (𝑥)
4
70. Find lim 𝑥 sin (𝑥) !
(𝑥+sin(𝑥))4 𝑥→0
65. Find lim !
𝑥→0 𝑥4

- Kelvin Asclepius Minor -


LIMIT
- Kelvin Asclepius Minor –

71. Find an equation of the tangent line to the parabola 𝑦 = 𝑥 2 at the point P (1, 1) !
1
72. Find an equation of the tangent line to the parabola 𝑦 = at the point P (2, -1) !
1−𝑥

73. A ball is thrown into the air, and its height t seconds later is given by 𝑠 = 40𝑡 − 16𝑡 2 𝑓𝑒𝑒𝑡. What is the (instantaneous)

velocity of the ball when it is thrown into the air ?

74. A ball is thrown into the air, and its height t seconds later is given by 𝑠 = 40𝑡 − 16𝑡 2 𝑓𝑒𝑒𝑡. What is the (instantaneous)

velocity of the ball after 2 seconds ?

𝑛2 +𝑛
75. If ∑𝑛𝑥=1 1 = 𝑛 and ∑𝑛𝑥=1 𝑥 = , find the area under 𝑓(𝑥) = 4𝑥 − 1 and above 𝑥 − 𝑎𝑥𝑖𝑠 from 𝑥 = 1 to 𝑥 = 4 using infinite
2

rectangles!

- Kelvin Asclepius Minor -

You might also like