Dr.
Ahlem Nemer                                                                                                   1
    Course : Algebra 3                                                               Year : 2023/2024
    Chapter 4 : Vector spaces                                                        Department of Computer Science
                                               Solutions
Solution 0.1 .
   1) For x ∈ Rn , we find
                                                           n
                                                           X
                                             < x, x >=           x2i < 0                                         (1)
                                                           i=1
and when < x, x >= 0, we get
                                                   n
                                                   X
                                                         x2i = 0,                                                (2)
                                                   i=1
then, x1 = x2 = · · · = xn = 0. We deduce that x = 0.
   2) For x, y ∈ Rn , we have
                                                                n
                                                                X
                                            < x, y >     =            xi yi
                                                                i=1
                                                                Xn
                                                         =            yi xi
                                                                i=1
                                                         = < y, x >
   3) For x, y, z ∈ Rn , we have
                                                          n
                                                          X
                                    < x + y, z >   =            (xi + yi )zi
                                                          i=1
                                                          Xn               n
                                                                           X
                                                   =            xi zi +           yi zi
                                                          i=1               i=1
                                                   = < x, z > + < y, z >
   4) For x, y ∈ Rn and a real scalar α, we can get
                                                                n
                                                                X
                                          < αx, y > =                 αxi yi
                                                                i=1
                                                                  Xn
                                                         =      α         xi yi
                                                                    i=1
                                                         =      α < x, y >
Finally, we can say that < x, y > is an inner product on Rn .
Dr. Ahlem Nemer                                                                                                         2
Solution 0.2 .
   1) For f ∈ C[a, b], we have
                                                          Z      b
                                          < f, f >=                  w(t)f 2 (t)dt < 0,                                (3)
                                                             a
because w(t)  0 and f 2 (t) < 0 and when
                                                                         Z       b
                                       < f, f >= 0 ⇔                                 w(t)f 2 (t)dt = 0
                                                                             a
                                                          ⇔ w(t)f 2 (t) = 0
                                                          ⇔ f (t) = 0
because w(t)  0. Then, < f, f >= 0 ⇔ f = 0.
    2) For f, g ∈ C[a, b], we have
                                                                 Z           b
                                          < f, g >       =                       w(t)f (t)g(t)dt
                                                                     a
                                                                 Z           b
                                                         =                       w(t)g(t)f (t)dt
                                                                     a
                                                         =       < g, f >
   3) For f, g, h ∈ C[a, b], we have
                                                Z    b
                           < f + g, h >     =            w(t)(f + g)(t)h(t)dt
                                                 a
                                                Z    b                                       Z    b
                                            =            w(t)f (t)h(t)dt +                            w(t)g(t)h(t)dt
                                                 a                                            a
                                            =   < f, h > + < g, h >
   4) For f, g ∈ C[a, b] and a scalar α
                                                              Z          b
                                       < αf, g > =                           w(t)(αf )(t)g(t)dt
                                                                     a
                                                                     Z           b
                                                         = α                         w(t)f (t)g(t)dt
                                                                             a
                                                         = α < f, g >
Finally, we can say that < f, g > is an inner product on C[a, b].
Dr. Ahlem Nemer                                                                               3
Solution 0.3
                                                        Z    π
                                       < f, g >   =              f (t)g(t)dt
                                                        Z0 π
                                                  =              cos(t) sin(t)dt
                                                         0
                                                        1 π
                                                            Z
                                                  =          sin(2t)dt
                                                        2 0
                                                        1 cos(2t) π
                                                  =       [−       ]0
                                                        2      2
                                                           1
                                                  =     − (cos(2π) − cos(0))
                                                           4
                                                           1
                                                  =     − (1 − 1)
                                                           4
                                                  =     0
Then, f (t) and g(t) are orthogonal.
Solution 0.4 We have v1 = 1, v2 = x and v3 = x2 . By employing Gram-Schmidt process, we get
                                                      u1 = v1 = 1.
                                                            < v2 , u1 >
                                           u2     =    v2 −             u1
                                                              k u1 k2
                                                           R1
                                                               xdx
                                                  =    x − R−1
                                                            1
                                                            −1
                                                                1dx
                                                          1 x2
                                                  =    x − [ ]1−1
                                                          2 2
                                                  =    x
                                                2
                                               X   < v3 , ui >
                                  u3    = v3 −                 ui
                                               i=1
                                                    k ui k2
                                               < v3 , u1 >       < v3 , u2 >
                                        = v3 −             u1 −              u2
                                                 k u1 k2          k u2 k2
                                               R1 2         R1 3
                                                −1
                                                   x dx          x dx
                                           2
                                        = x − R1          − R−1
                                                              1        x
                                                 −1
                                                    1dx       −1
                                                                 x2 dx
                                               1
                                        = x2 −
                                               3
Dr. Ahlem Nemer                                                                                        4
Solution 0.5
                     1                        1             1
                  k √ (v1 − v2 ) k2     = < √ (v1 − v2 ), √ (v1 − v2 ) >
                      2                        2             2
                                          1
                                        =   (< v1 , v1 > − < v2 , v1 > − < v1 , v2 > + < v2 , v2 >)
                                          2
                                          1
                                        =   (< v1 , v1 > + < v2 , v2 >)
                                          2
                                        = 1
                     1                        1             1
                  k √ (v1 + v2 ) k2     = < √ (v1 + v2 ), √ (v1 + v2 ) >
                      2                        2             2
                                          1
                                        =   (< v1 , v1 > + < v2 , v1 > + < v1 , v2 > + < v2 , v2 >)
                                          2
                                          1
                                        =   (< v1 , v1 > + < v2 , v2 >)
                                          2
                                        = 1
                                           1             1
                                        < √ (v1 − v2 ), √ (v1 + v2 ) >         =   0
                                            2             2
Solution 0.6 .
   1) For a scalar α ∈ Y and for x, y 6= 0
                                0   4   k x − αy k2
                                    =   < x − αy, x − αy >
                                    =   k x k2 −α < x, y > −α(< y, x > −α k y k2 ).
               < y, x >
We take α =             . This leads to get
                k y k2
                                                              < y, x >< x, y >
                                           0       4 k x k2 −
                                                                    k y k2
                                                              | < x, y > |2
                                                   = k x k2 −               .
                                                                 k y k2
Then, we have
                                                    | < x, y > | 4k x kk y k                          (4)
   2) For x, y ∈ V
                              k x + y k2       = < x + y, x + y >
                                               = k x k2 + < x, y > + < y, x > + k y k2
                                               4 k x k2 +2 k x kk y k + k y k2
                                               =    (k x k + k y k)2 .
Then, we deduce that
                                                    k x + y k4k x k + k y k                           (5)