STM 32 L 100 RC
STM 32 L 100 RC
Features
• Ultra-low-power platform LQFP64 (10 × 10 mm)
– 1.65 V to 3.6 V power supply
– -40 °C to 105 °C temperature range
– 0.29 µA Standby mode (3 wakeup pins) • Memories
– 1.15 µA Standby mode + RTC – 256 Kbytes of Flash memory with ECC
– 0.44 µA Stop mode (16 wakeup lines) – 16 Kbytes of RAM
– 1.4 µA Stop mode + RTC – 4 Kbytes of true EEPROM with ECC
– 8.6 µA Low-power run mode – 20-byte backup register
– 185 µA/MHz Run mode
• LCD Driver for up to 8x28 segments
– 10 nA ultra-low I/O leakage
• Analog peripherals
– 8 µs wakeup time
– 12-bit ADC 1Msps up to 20 channels
• Core: ARM® Cortex®-M3 32-bit CPU
– 12-bit DACs 2 channels with output buffers
– From 32 kHz up to 32 MHz max
– 2x ultra-low-power-comparators
– 1.25 DMIPS/MHz (Dhrystone 2.1) (window mode and wakeup capability)
– Memory protection unit
• DMA controller 12x channels
• Reset and supply management
• 9x peripheral communication interfaces
– Low-power, ultrasafe BOR (brownout reset)
– 1x USB 2.0 (internal 48 MHz PLL)
with 5 selectable thresholds
– 3x USARTs
– Ultra-low-power POR/PDR
– Up to 8x SPIs (2x I2Ss, 3x 16 Mbits/s)
– Programmable voltage detector (PVD)
– 2xI2Cs (SMBus/PMBus)
• Clock sources
• 10x timers: 6x 16-bit with up to 4 IC/OC/PWM
– 1 to 24 MHz crystal oscillator
channels, 2x 16-bit basic timers, 2x watchdog
– 32 kHz oscillator for RTC with calibration timers (independent and window)
– High Speed Internal 16 MHz
• CRC calculation unit
– Internal low-power 37 kHz RC
– Internal multispeed low-power 65 kHz to
4.2 MHz
– PLL for CPU clock and USB (48 MHz)
• Pre-programmed bootloader
– USB and USART supported
• Development support
– Serial wire debug supported
– JTAG supported
• 51 fast I/Os (42 I/Os 5V tolerant), all mappable
on 16 external interrupt vectors
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Shared peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Common system strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 ARM® Cortex®-M3 core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.4 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 22
3.6 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.8 DMA (direct memory access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9 LCD (liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.10 ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.10.1 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.11 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.12 Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 25
3.13 System configuration controller and routing interface . . . . . . . . . . . . . . . 25
3.14 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.14.1 General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and
TIM11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.14.2 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1.7 Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.8 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 46
6.3.3 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3.5 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.1 LQFP64, 10 x 10 mm, 64-pin low-profile quad flat
package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
List of tables
List of figures
1 Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32L100RC ultra-low-power ARM® Cortex®-M3 based microcontroller product line.
The ultra-low-power STM32L100RC device is a microcontroller of 256 Kbytes in a 64-pin
package, the description below gives an overview of the complete range of peripherals
proposed in this device.
These features make the ultra-low-power STM32L100RC microcontroller suitable for a wide
range of applications:
• Medical and handheld equipment
• Application control and user interface
• PC peripherals, gaming, GPS and sport equipment
• Alarm systems, wired and wireless sensors, video intercom
• Utility metering
This STM32L100RC datasheet should be read in conjunction with the STM32L1xxxx
reference manual (RM0038). The application note “Getting started with STM32L1xxxx
hardware development” (AN3216) gives a hardware implementation overview. Both
documents are available from the STMicroelectronics website www.st.com.
For information on the ARM® Cortex®-M3 core please refer to the ARM® Cortex®-M3
technical reference manual, available from the www.arm.com website. Figure 1 shows the
general block diagram of the device.
2 Description
RAM (Kbytes) 16
General-
6
16-bit purpose
Timers
Basic 2
SPI 8(3)(1)
I2S 2
Communica
tion I2C 2
interfaces
USART 3
USB 1
GPIOs 51
12-bit DAC 2
Number total of channels 2
LCD
4x32 or 8x28
COM x SEG
Comparators 2
Package LQFP64
memory, Low-power run mode, op-amp, AES 128-bit, DAC, USB crystal-less and many
others will clearly allow to build very cost-optimized applications by reducing BOM.
Note: STMicroelectronics as a reliable and long-term manufacturer ensures as much as possible
the pin-to-pin compatibility between any STM8Lxxxxx and STM32Lxxxxx devices and
between any of the STM32Lx and STM32Fx series. Thanks to this unprecedented
scalability, the old applications can be upgraded to respond to the latest market features and
efficiency demand.
2.2.1 Performance
All the families incorporate highly energy-efficient cores with both Harvard architecture and
pipelined execution: advanced STM8 core for STM8L families and ARM Cortex-M3 core for
STM32L family. In addition specific care for the design architecture has been taken to
optimize the mA/DMIPS and mA/MHz ratios.
This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.
2.2.4 Features
ST ultra-low-power continuum also lies in feature compatibility:
• More than 15 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm
• Memory density ranging from 2 to 512 Kbytes
3 Functional overview
((3520 R E O
,QWHUIDFH
-7&.6:&/.
-7066:'$7 'EXV .%352*5$0 9UHI
)PD[0+]
%XV0DWUL[06
-7'2 .%'$7$ 6XSSO\PRQLWRULQJ
DV$) .%%227
03 8 6\VWHP 3'5 1567
*3'0$FKDQQHOV #9''
26&B,1
;7$/26& 26&B287
#9''$ 0+]
*3'0$FKDQQHOV
$+%3&/.
3//
$3%3&/.
+&/. &ORFN
0JPW
)&/. :'*.
6XSSO\ 6WDQGE\
PRQLWRULQJ 5&+6, LQWHUIDFH
9''$
%25%JDS %25 5&06,
966$ 26&B,1
;7$/N+]
,QW 26&B287
39'
#5&/6,
9'' $ 57&B287
$+%)PD[ 0+]
3$>@ *3,23257$
9/&' 9WR9
/&'%RRVWHU
3%>@ *3,23257%
7,0(5 FKDQQHOV
3&>@ *3,23257&
7,0(5 FKDQQHOV
3'>@ *3,23257'
7,0(5 FKDQQHOV
3+>@ *3,23257+
7,0(56 ELWV FKDQQHOV
5;7;&76576
86$57 6PDUW&DUGDV$)
86$57 5;7;&76576
6PDUW&DUGDV$)
(;7,7
$) :.83 $+%$3% $+%$3%
026,0,62 63,
6&.166DV$) 026,0,626&.166:6&.
63,,6 0&.6'DV$)
[ [ELW
5;7;&76576
6PDUW&DUGDV$) 86$57 63,,6 026,0,626&.166:6&.
86%65$0% [ [ELW 0&.6'DV$)
$3%)PD[ 0+]
$3%)PD[ 0+]
#9''$
,& 6&/6'$60%XV30%XV
$V$)
7,0(5
86%B'3
86%)6GHYLFH
7,0(5 86%B'0
*HQHUDOSXUSRVH
WLPHUV 6(*[
/&'[ [
FKDQQHOV 7,0(5 &20[
#9''$
FKDQQHO 7,0(5
ELW'$& '$&B287DV$)
FKDQQHO 7,0(5 ,)
,,)
)
ELW'$& '$&B287DV$)
06Y9
Conversion time
VDD = 2.0 to 2.4 V up to Functional(2) Range 1, range 2 or range 3
500 Ksps
Conversion time
VDD = 2.4 to 3.6 V up to Functional(2) Range 1, range 2 or range 3
1 Msps
1. The GPIO speed also depends from VDD voltage and the user has to refer to Table 43: I/O AC
characteristics for more information about I/O speed.
2. To be USB compliant from the IO voltage standpoint, the minimum VDD is 3.0 V.
CPU Y -- Y -- -- -- -- --
Flash Y Y Y Y -- -- -- --
RAM Y Y Y Y Y -- -- --
Backup Registers Y Y Y Y Y -- Y --
EEPROM Y Y Y Y Y -- -- --
Brown-out rest
Y Y Y Y Y Y Y --
(BOR)
DMA Y Y Y Y -- -- -- --
Programmable
Voltage Detector Y Y Y Y Y Y Y --
(PVD)
Power On Reset
Y Y Y Y Y Y Y --
(POR)
Power Down Rest
Y Y Y Y Y -- Y --
(PDR)
High Speed
Y Y -- -- -- -- -- --
Internal (HSI)
High Speed
Y Y -- -- -- -- -- --
External (HSE)
Low Speed Internal
Y Y Y Y Y -- Y --
(LSI)
Low Speed
Y Y Y Y Y -- Y --
External (LSE)
Multi-Speed
Y Y Y Y -- -- -- --
Internal (MSI)
Inter-Connect
Y Y Y Y -- -- -- --
Controller
RTC Y Y Y Y Y Y Y --
RTC Tamper Y Y Y Y Y Y Y Y
Auto WakeUp
Y Y Y Y Y Y Y Y
(AWU)
LCD Y Y Y Y Y -- -- --
USB Y Y -- -- -- Y -- --
(1)
USART Y Y Y Y Y -- --
SPI Y Y Y Y -- -- -- --
(1)
I2C Y Y -- -- -- -- --
ADC Y Y -- -- -- -- -- --
DAC Y Y Y Y Y -- -- --
Tempsensor Y Y Y Y Y -- -- --
OP amp Y Y Y Y Y -- -- --
Comparators Y Y Y Y Y Y -- --
16-bit and 32-bit
Y Y Y Y -- -- -- --
Timers
IWDG Y Y Y Y Y Y Y Y
WWDG Y Y Y Y -- -- -- --
Touch sensing Y Y -- -- -- -- -- --
Systic Timer Y Y Y Y -- -- --
GPIOs Y Y Y Y Y Y -- 3 pins
Wakeup time to
0 µs 0.4 µs 3 µs 46 µs < 8 µs 58 µs
Run mode
0.43 µA 0.29 µA
(no RTC) (no RTC)
VDD=1.8V VDD=1.8V
1.15 µA 0.9 µA
(with RTC) (with RTC)
Consumption Down to 185 Down to 34.5 VDD=1.8V VDD=1.8V
Down to Down to
VDD=1.8 to 3.6 V µA/MHz (from µA/MHz (from
8.6 µA 4.4 µA 0.44 µA 0.29 µA
(Typ) Flash) Flash)
(no RTC) (no RTC)
VDD=3.0V VDD=3.0V
1.4 µA 1.15 µA
(with RTC) (with RTC)
VDD=3.0V VDD=3.0V
1. The startup on communication line wakes the CPU which was made possible by an EXTI, this induces a delay before
entering run mode.
The memory protection unit (MPU) improves system reliability by defining the memory
attributes (such as read/write access permissions) for different memory regions. It provides
up to eight different regions and an optional predefined background region.
Owing to its embedded ARM core, the STM32L100RC device is compatible with all ARM
tools and software.
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To
reduce the power consumption in Stop mode, it is possible to automatically switch off the
internal reference voltage (VREFINT) in Stop mode. The device remains in reset mode when
VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external
reset circuit.
Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the start-
up time at power-on can be decreased down to 1 ms typically for a device with BOR inactive
at power-up.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An
interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when
VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
24# ENABLE
24#
,3% /3# ,3% TEMPO
,3 ,3 ,3 ,3
6$$#/2%
#+?,#$
-(Z ,#$ ENABLE
6
#+?!$#
-3) 2# CK?LSI !$# ENABLE
CK?LSE
LEVEL SHIFTERS
6$$#/2% -#/
NOT DEEPSLEEP
6 #+?072
NOT DEEPSLEEP
(3) 2#
#+?&#,+
LEVEL SHIFTERS NOT SLEEP OR
DEEPSLEEP
6$$#/2%
#+?#05
3YSTEM NOT SLEEP OR
6 CLOCK DEEPSLEEP
(3% CK?MSI #+?4)-393
/3# CK?HSI
!("
LEVEL SHIFTERS CK?HSE PRESCALER
6$$#/2%
6 CK?PLL
0,, !0" !0"
CK?PLLIN 8
PRESCALER PRESCALER
,3
6
-(Z CLOCK
DETECTOR LEVEL SHIFTERS
#LOCK
6$$#/2% SOURCE
(3% PRESENT OR NOT
,3 CONTROL
-36
3.7 Memories
The STM32L100RC device has the following features:
• 16 Kbytes of embedded RAM accessed (read/write) at CPU clock speed with 0 wait
states. With the enhanced bus matrix, operating the RAM does not lead to any
performance penalty during accesses to the system bus (AHB and APB buses).
• The non-volatile memory is divided into three arrays:
– 128 Kbytes of embedded Flash program memory
– 4 Kbytes of data EEPROM
– Options bytes
The options bytes are used to write-protect or read-out protect the memory (with 4
Kbytes granularity) and/or readout-protect the whole memory with the following
options:
– Level 0: no readout protection
– Level 1: memory readout protection, the Flash memory cannot be read from or
written to if either debug features are connected or boot in RAM is selected
– Level 2: chip readout protection, debug features (ARM Cortex-M3 JTAG and serial
wire) and boot in RAM selection disabled (JTAG fuse)
The whole non-volatile memory embeds the error correction code (ECC) feature.
TIM2,
Up, down, Any integer between
TIM3, 16-bit Yes 4 No
up/down 1 and 65536
TIM4
Up, down, Any integer between
TIM9 16-bit No 2 No
up/down 1 and 65536
TIM10, Any integer between
16-bit Up No 1 No
TIM11 1 and 65536
TIM6, Any integer between
16-bit Up Yes 0 No
TIM7 1 and 65536
They can also be used as simple time bases and be clocked by the LSE clock source
(32.768 kHz) to provide time bases independent from the main CPU clock.
4 Pin descriptions
"//4
6$$?
633?
0#
0#
0#
0!
0!
0$
0"
0"
0"
0"
0"
0"
0"
6,#$ 6$$?
0# 7+50 633?
0# /3#?). 0!
0# /3#?/54 0!
0( /3#?). 0!
0( /3#?/54 0!
.234 0!
0# 0!
0# ,1&0 0#
0# 0#
0# 0#
633! 0#
6$$! 0"
0! 7+50 0"
0! 0"
0! 0"
6$$?
6$$?
0!
633?
0!
0!
0!
0!
0"
0"
0"
0"
0"
633?
0#
0#
AIC
Unless otherwise specified in brackets below the pin name, the pin function
Pin name
during and after reset is the same as the actual pin name
S Supply pin
Pin type I Input only pin
I/O Input / output pin
FT 5 V tolerant I/O
TC Standard 3.3 V I/O
I/O structure
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Unless otherwise specified by a note, all I/Os are set as floating inputs during
Notes
and after reset
Alternate
Functions selected through GPIOx_AFR registers
functions
Pin
functions Additional
Functions directly selected/enabled through peripheral registers
functions
Main
Type(1)
LQFP64
1 VLCD S - VLCD - -
WKUP2/RTC_TAMP1/
2 PC13-WKUP2 I/O FT PC13 -
RTC_TS/RTC_OUT
PC14-
3 I/O - PC14 - OSC32_IN
OSC32_IN(3)
PC15-
4 I/O - PC15 - OSC32_OUT
OSC32_OUT(3)
5 PH0-OSC_IN(4) I - PH0 - OSC_IN
PH1-
6 O - PH1 - OSC_OUT
OSC_OUT(4)
7 NRST I/O NRST - -
8 PC0 I/O FT PC0 LCD_SEG18 ADC_IN10/COMP1_INP
9 PC1 I/O FT PC1 LCD_SEG19 ADC_IN11/COMP1_INP
I / O Level(2)
Main
Type(1)
LQFP64
I / O Level(2)
Main
Type(1)
LQFP64
31 VSS_1 S - VSS_1 - -
32 VDD_1 S - VDD_1 - -
TIM10_CH1/I2C2_SMBA/
33 PB12 I/O FT PB12 SPI2_NSS/I2S2_WS/ ADC_IN18/COMP1_INP
USART3_CK/LCD_SEG12
TIM9_CH1/SPI2_SCK/
34 PB13 I/O FT PB13 I2S2_CK/ USART3_CTS/ ADC_IN19/COMP1_INP
LCD_SEG13
TIM9_CH2/SPI2_MISO/ ADC_IN20/COMP1_INP
35 PB14 I/O FT PB14
USART3_RTS/LCD_SEG14
TIM11_CH1/SPI2_MOSI/ ADC_IN21/COMP1_INP/
36 PB15 I/O FT PB15
I2S2_SD/LCD_SEG15 RTC_REFIN
TIM3_CH1/I2S2_MCK/
37 PC6 I/O FT PC6 -
LCD_SEG24
TIM3_CH2/I2S3_MCK/
38 PC7 I/O FT PC7 -
LCD_SEG25
39 PC8 I/O FT PC8 TIM3_CH3/LCD_SEG26 -
40 PC9 I/O FT PC9 TIM3_CH4/LCD_SEG27 -
USART1_CK/MCO/
41 PA8 I/O FT PA8 -
LCD_COM0
42 PA9 I/O FT PA9 USART1_TX/LCD_COM1 -
43 PA10 I/O FT PA10 USART1_RX/LCD_COM2 -
44 PA11 I/O FT PA11 USART1_CTS/SPI1_MISO USB_DM
45 PA12 I/O FT PA12 USART1_RTS/SPI1_MOSI USB_DP
JTMS-
46 PA13 I/O FT JTMS-SWDIO -
SWDIO
47 VSS_2 S VSS_2 - -
48 VDD_2 S VDD_2 - -
JTCK-
49 PA14 I/O FT JTCK-SWCLK -
SWCLK
TIM2_CH1_ETR/SPI1_NSS/
50 PA15 I/O FT JTDI SPI3_NSS/ -
I2S3_WS/LCD_SEG17/JTDI
I / O Level(2)
Main
Type(1)
LQFP64
SPI3_SCK/I2S3_CK/
51 PC10 I/O FT PC10 USART3_TX/LCD_SEG28/ -
LCD_SEG40/LCD_COM4
SPI3_MISO/USART3_RX/
52 PC11 I/O FT PC11 LCD_SEG29 -
/LCD_SEG41/LCD_COM5
SPI3_MOSI/I2S3_SD/
53 PC12 I/O FT PC12 USART3_CK/LCD_SEG30/ -
LCD_SEG42/LCD_COM6
TIM3_ETR/LCD_SEG31/
54 PD2 I/O FT PD2 -
LCD_SEG43/LCD_COM7
TIM2_CH2/SPI1_SCK/
55 PB3 I/O FT JTDO SPI3_SCK/I2S3_CK/ COMP2_INM
LCD_SEG7/JTDO
TIM3_CH1/SPI1_MISO/
56 PB4 I/O FT NJTRST SPI3_MISO/LCD_SEG8/ COMP2_INP
NJTRST
TIM3_CH2/I2C1_SMBA/
57 PB5 I/O FT PB5 SPI1_MOSI/SPI3_MOSI/ COMP2_INP
I2S3_SD/LCD_SEG9
TIM4_CH1/I2C1_SCL/
58 PB6 I/O FT PB6 COMP2_INP
USART1_TX
TIM4_CH2/I2C1_SDA/ COMP2_INP/PVD_IN
59 PB7 I/O FT PB7
USART1_RX
60 BOOT0 I - BOOT0 - -
TIM4_CH3/TIM10_CH1/
61 PB8 I/O FT PB8 -
I2C1_SCL/LCD_SEG16
TIM4_CH4/TIM11_CH1/
62 PB9 I/O FT PB9 -
I2C1_SDA/LCD_COM3
63 VSS_3 S - VSS_3 - -
64 VDD_3 S - VDD_3 - -
1. I = input, O = output, S = supply.
2. FT = 5 V tolerant.
3. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is ON (by setting the
LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can be used as general-purpose
PH0/PH1 I/Os, respectively, when the LSE oscillator is off (after reset, the LSE oscillator is off). The LSE has priority over
the GPIO function. For more details, refer to Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins
section in the STM32L100xx, STM32L151xx, STM32L152xx and STM32L162xx reference manual (RM0038).
4. The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is ON (by setting the HSEON
bit in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os,
respectively, when the HSE oscillator is off ( after reset, the HSE oscillator is off ). The HSE has priority over the GPIO
function.
Pin descriptions
Table 8. Alternate function input/output
Digital alternate function number
. .
AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO11 AFIO14 AFIO15
. .
Port name
Alternate function
TIM9/
SYSTEM TIM2 TIM3/4 I2C1/2 SPI1/2 SPI3 USART1/2/3 LCD CPRI SYSTEM
10/11
EVENT
BOOT0 BOOT0 - - - - - - - - -
OUT
NRST NRST - - - - - - - - - -
EVENT
PA0-WKUP1 - TIM2_CH1_ ETR - - - - - USART2_CTS - TIMx_IC1
OUT
DocID024995 Rev 5
EVENT
PA1 - TIM2_CH2 - - - - - USART2_RTS SEG0 TIMx_IC2
OUT
EVENT
PA2 - TIM2_CH3 - TIM9_CH1 - - - USART2_TX SEG1 TIMx_IC3
OUT
EVENT
PA3 - TIM2_CH4 - TIM9_CH2 - - - USART2_RX SEG2 TIMx_IC4
OUT
SPI3_NSS EVENT
PA4 - - - - - SPI1_NSS USART2_CK - TIMx_IC1
I2S3_WS OUT
EVENT
PA5 - TIM2_CH1_ETR - - - SPI1_SCK - - - TIMx_IC2
OUT
EVENT
PA6 - - TIM3_CH1 TIM10_ CH1 - SPI1_MISO - - SEG3 TIMx_IC3
OUT
EVENT
PA7 - - TIM3_CH2 TIM11_ CH1 - SPI1_MOSI - - SEG4 TIMx_IC4
OUT
EVENT
PA8 MCO - - - - - - USART1_CK COM0 TIMx_IC1
OUT
EVENT
PA9 - - - - - - - USART1_TX COM1 TIMx_IC2
STM32L100RC
OUT
EVENT
PA10 - - - - - - - USART1_RX COM2 TIMx_IC3
OUT
EVENT
PA11 - - - - - SPI1_MISO - USART1_CTS - TIMx_IC4
OUT
Table 8. Alternate function input/output (continued)
STM32L100RC
Digital alternate function number
. .
AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO11 AFIO14 AFIO15
. .
Port name
Alternate function
TIM9/
SYSTEM TIM2 TIM3/4 I2C1/2 SPI1/2 SPI3 USART1/2/3 LCD CPRI SYSTEM
10/11
EVENT
PA12 - - - - - SPI1_MOSI - USART1_RTS - TIMx_IC1
OUT
EVENT
PA13 JTMS-SWDIO - - - - - - - - TIMx_IC2
OUT
EVEN
PA14 JTCK-SWCLK - - - - - - - - TIMx_IC3
TOUT
SPI3_NSS EVEN
PA15 JTDI TIM2_CH1_ETR - - - SPI1_NSS - SEG17 TIMx_IC4
I2S3_WS TOUT
DocID024995 Rev 5
EVEN
PB0 - - TIM3_CH3 - - - - - SEG5 -
TOUT
EVENT
PB1 - - TIM3_CH4 - - - - - SEG6 -
OUT
EVENT
PB2 BOOT1 - - - - - - - - -
OUT
SPI3_SCK EVENT
PB3 JTDO TIM2_CH2 - - - SPI1_SCK - SEG7 -
I2S3_CK OUT
EVENT
PB4 NJTRST - TIM3_CH1 - - SPI1_MISO SPI3_MISO - SEG8 -
OUT
EVENT
PB6 - - TIM4_CH1 - I2C1_SCL - - USART1_TX - -
OUT
EVENT
PB7 - - TIM4_CH2 - I2C1_SDA - - USART1_RX - -
OUT
EVENT
PB8 - - TIM4_CH3 TIM10_CH1 I2C1_SCL - - - SEG16 -
OUT
EVENT
PB9 - - TIM4_CH4 TIM11_CH1 I2C1_SDA - - - COM3 -
OUT
EVENT
PB10 - TIM2_CH3 - - I2C2_SCL - - USART3_TX SEG10 -
37/106
OUT
Table 8. Alternate function input/output (continued)
38/106
Pin descriptions
Digital alternate function number
. .
AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO11 AFIO14 AFIO15
. .
Port name
Alternate function
TIM9/
SYSTEM TIM2 TIM3/4 I2C1/2 SPI1/2 SPI3 USART1/2/3 LCD CPRI SYSTEM
10/11
EVENT
PB11 - TIM2_CH4 - - I2C2_SDA - - USART3_RX SEG11 -
OUT
SPI2_NSS EVENT
PB12 - - - TIM10_CH1 I2C2_SMBA - USART3_CK SEG12 -
I2S2_WS OUT
SPI2_SCK EVENT
PB13 - - - TIM9_CH1 - - USART3_CTS SEG13 -
I2S2_CK OUT
EVENT
PB14 - - - TIM9_CH2 - SPI2_MISO - USART3_RTS SEG14 -
OUT
DocID024995 Rev 5
SPI2_MOSI EVENT
PB15 - - - TIM11_CH1 - - - SEG15 -
I2S2_SD OUT
EVENT
PC0 - - - - - - - - SEG18 TIMx_IC1
OUT
EVENT
PC1 - - - - - - - - SEG19 TIMx_IC2
OUT
EVENT
PC2 - - - - - - - - SEG20 TIMx_IC3
OUT
EVENT
PC3 - - - - - - - - SEG21 TIMx_IC4
OUT
EVENT
PC4 - - - - - - - - SEG22 TIMx_IC1
OUT
EVENT
PC5 - - - - - - - - SEG23 TIMx_IC2
OUT
EVENT
PC6 - - TIM3_CH1 - - I2S2_MCK - - SEG24 TIMx_IC3
OUT
EVENT
PC7 - - TIM3_CH2 - - - I2S3_MCK - SEG25 TIMx_IC4
OUT
STM32L100RC
EVENT
PC8 - - TIM3_CH3 - - - - - SEG26 TIMx_IC1
OUT
EVENT
PC9 - - TIM3_CH4 - - - - - SEG27 TIMx_IC2
OUT
Table 8. Alternate function input/output (continued)
STM32L100RC
Digital alternate function number
. .
AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO11 AFIO14 AFIO15
. .
Port name
Alternate function
TIM9/
SYSTEM TIM2 TIM3/4 I2C1/2 SPI1/2 SPI3 USART1/2/3 LCD CPRI SYSTEM
10/11
COM4/
SPI3_SCK EVENT
PC10 - - - - - - USART3_TX SEG28/ TIMx_IC3
I2S3_CK OUT
SEG40
COM5/
EVENT
PC11 - - - - - - SPI3_MISO USART3_RX SEG29 TIMx_IC4
OUT
/SEG41
COM6/
SPI3_MOSI EVENT
PC12 - - - - - - USART3_CK SEG30/ TIMx_IC1
I2S3_SD OUT
SEG42
DocID024995 Rev 5
EVENT
PC13-WKUP2 - - - - - - - - - TIMx_IC2
OUT
PC14 EVENT
- - - - - - - - - TIMx_IC3
OSC32_IN OUT
PC15 EVENT
- - - - - - - - - TIMx_IC4
OSC32_OUT OUT
COM7/
EVENT
PD2 - - TIM3_ETR - - - - - SEG31/ TIMx_IC3
OUT
SEG43
PH0OSC_IN - - - - - - - - - - -
PH1OSC_OUT - - - - - - - - - - -
39/106
Memory mapping STM32L100RC
5 Memory mapping
06Y9
6 Electrical characteristics
0&8SLQ 0&8SLQ
& S)
9,1
DLF DLG
6WDQGE\SRZHUFLUFXLWU\
/6(57&:DNHXS
ORJLF57&EDFNXS
UHJLVWHUV
/HYHOVKLIWHU
287
,2
*3,2V /RJLF .HUQHOORJLF
,1
&38
'LJLWDO
9'' 0HPRULHV
9''
5HJXODWRU
1îQ)
î)
966
9''$
9''$
95()
95()
Q) $QDORJ
) Q) $'& 26&3//&203
95() '$& «
)
966$
1±QXPEHURI
9''966SDLUV
069
2SWLRQ 9/&'
Q) /&'
9/&'
2SWLRQ
&(;7
9661
069
1. Option 1: LCD power supply is provided by a dedicated VLCD supply source, VSEL switch is open.
2. Option 2: LCD power supply is provided by the internal step-up converter, VSEL switch is closed, an
external capacitance is needed for correct behavior of this converter.
$ 1[9''
1[Q)
[)
1[966
9/&'
9''$
Q) 95()
)
95()
966$
069
IVDD(Σ) Total current into sum of all VDD_x power lines (source)(1) 100
(2)
IVSS(Σ) Total current out of sum of all VSS_x ground lines (sink)(1) 100
IVDD(PIN) Maximum current into each VDD_x power pin (source)(1) 70
IVSS(PIN) Maximum current out of each VSS_x ground pin (sink)(1) -70
Output current sunk by any I/O and control pin 25
IIO
Output current sourced by any I/O and control pin - 25 mA
Total output current sunk by sum of all IOs and control pins(2) 60
ΣIIO(PIN)
(2)
Total output current sourced by sum of all IOs and control pins -60
Injected current on five-volt tolerant I/O(4), RST and B pins -5/+0
IINJ(PIN) (3)
Injected current on any other pin (5)
±5
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(6) ± 25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.17.
4. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must never be
exceeded. Refer to Table 9 for maximum allowed input voltage values.
5. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be
exceeded. Refer to Table 9: Voltage characteristics for the maximum allowed input voltage values.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 13. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 16. Current consumption in Run mode, code with data processing running from Flash
Symbol Parameter Conditions fHCLK Typ Max(1) Unit
Table 17. Current consumption in Run mode, code with data processing running from RAM
Symbol Parameter Conditions fHCLK Typ Max(1) Unit
1 MHz 50 130
Range 3,
VCORE=1.2 V 2 MHz 78.5 195
VOS[1:0] = 11
4 MHz 140 310
fHSE = fHCLK up to
4 MHz 165 310
16 MHz included, Range 2,
fHSE = fHCLK/2 VCORE=1.5 V 8 MHz 310 440
above 16 MHz (PLL VOS[1:0] = 10
16 MHz 590 830
ON)(2)
8 MHz 350 550
Range 1,
Supply current VCORE=1.8 V 16 MHz 680 990
in Sleep VOS[1:0] = 01
mode, Flash 32 MHz 1600 2100
OFF Range 2,
VCORE=1.5 V 16 MHz 640 890
HSI clock source VOS[1:0] = 10
(16 MHz) Range 1,
VCORE=1.8 V 32 MHz 1600 2200
VOS[1:0] = 01
MSI clock, 65 kHz 65 kHz 19 60
Range 3,
MSI clock, 524 kHz VCORE=1.2 V 524 kHz 33 99
VOS[1:0] = 11
MSI clock, 4.2 MHz 4.2 MHz 145 210
IDD (Sleep) µA
1 MHz 60.5 130
Range 3,
VCORE=1.2 V 2 MHz 89.5 190
VOS[1:0] = 11
4 MHz 150 320
fHSE = fHCLK up to
4 MHz 180 320
16 MHz included, Range 2,
fHSE = fHCLK/2 VCORE=1.5 V 8 MHz 320 460
above 16 MHz (PLL VOS[1:0] = 10
16 MHz 605 840
Supply current ON)(2)
in Sleep 8 MHz 380 540
Range 1,
mode, Flash
VCORE=1.8 V 16 MHz 695 1000
ON
VOS[1:0] = 01
32 MHz 1600 2100
Range 2,
VCORE=1.5 V 16 MHz 650 910
HSI clock source VOS[1:0] = 10
(16 MHz) Range 1,
VCORE=1.8 V 32 MHz 1600 2200
VOS[1:0] = 01
Supply current MSI clock, 65 kHz 65 kHz 30 90
Range 3,
in Sleep
MSI clock, 524 kHz VCORE=1.2V 524 kHz 44 96
mode, Flash
VOS[1:0] = 11
ON MSI clock, 4.2 MHz 4.2 MHz 155 220
1. Guaranteed by characterization results, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register)
TA = -40 °C to 25 °C 8.6 12
MSI clock, 65 kHz
TA = 85 °C 19 25
fHCLK = 32 kHz
All
peripherals TA = 105 °C 35 47
OFF, code TA =-40 °C to 25 °C 14 16
executed MSI clock, 65 kHz
from RAM, TA = 85 °C 24 29
fHCLK = 65 kHz
Flash TA = 105 °C 40 51
switched
OFF, VDD TA = -40 °C to 25 °C 26 29
from 1.65 V TA = 55 °C 28 31
to 3.6 V MSI clock, 131 kHz
fHCLK = 131 kHz TA = 85 °C 36 42
Supply
IDD (LP current in TA = 105 °C 52 64
Run) Low-power TA = -40 °C to 25 °C 20 24
run mode MSI clock, 65 kHz
TA = 85 °C 32 37 µA
fHCLK = 32 kHz
All TA = 105 °C 49 61
peripherals TA = -40 °C to 25 °C 26 30
OFF, code MSI clock, 65 kHz
executed TA = 85 °C 38 44
fHCLK = 65 kHz
from Flash, TA = 105 °C 55 67
VDD from
1.65 V to TA = -40 °C to 25 °C 41 46
3.6 V TA = 55 °C 44 50
MSI clock, 131 kHz
fHCLK = 131 kHz TA = 85 °C 56 87
TA = 105 °C 73 110
Max allowed
VDD from
IDD max current in
1.65 V to - - - 200
(LP Run) Low-power
3.6 V
run mode
1. Guaranteed by characterization results, unless otherwise specified.
TA = -40°C to 25°C
1.15 -
VDD = 1.8 V
TA = -40°C to 25°C 1.4 -
LCD
OFF TA = 55°C 2 -
TA= 85°C 3.4 10
RTC clocked by LSI TA = 105°C 6.35 23
or LSE external clock
(32.768kHz), TA = -40°C to 25°C 1.55 6
regulator in LP mode, LCD
ON TA = 55°C 2.15 7
HSI and HSE OFF
(no independent (static T = 85°C 3.55 12
A
watchdog) duty)(2)
TA = 105°C 6.3 27
TA = -40°C to 25°C 3.9 10
LCD TA = 55°C 4.65 11
ON (1/8
duty)(3) TA= 85°C 6.25 16
TA = 105°C 9.1 44
TA = -40°C to 25°C 1.5 -
Supply current in
IDD (Stop TA = 55°C 2.15 -
Stop mode with RTC LCD µA
with RTC)
enabled OFF TA= 85°C 3.7 -
TA = 105°C 6.75 -
TA = -40°C to 25°C 1.6 -
LCD
ON TA = 55°C 2.3 -
RTC clocked by LSE (static T = 85°C 3.8 -
A
external quartz duty)(2)
TA = 105°C 6.85 -
(32.768kHz),
regulator in LP mode, TA = -40°C to 25°C 4 -
HSI and HSE OFF LCD
(no independent TA = 55°C 4.85 -
ON (1/8
watchdog(4) duty)(3) TA= 85°C 6.5 -
TA = 105°C 9.1 -
TA = -40°C to 25°C
1.2 -
VDD = 1.8V
LCD TA = -40°C to 25°C
1.5 -
OFF VDD = 3.0V
TA = -40°C to 25°C
1.75 -
VDD = 3.6V
Table 21. Typical and maximum current consumptions in Stop mode (continued)
Symbol Parameter Conditions Typ Max(1) Unit
TA = -40 °C to 25 °C
0.905 -
VDD = 1.8 V
T = -40 °C to 25 °C 1.15 1.9
RTC clocked by LSI (no A
independent watchdog) TA = 55 °C 1.5 2.2
TA= 85 °C 1.75 4
IDD Supply current in TA = 105 °C 2.1 8.3(2)
(Standby Standby mode with RTC
with RTC) enabled TA = -40 °C to 25 °C
0.98 -
VDD = 1.8 V
RTC clocked by LSE
TA = -40 °C to 25 °C 1.3 -
external quartz (no
µA
independent TA = 55 °C 1.7 -
watchdog)(3)
TA= 85 °C 2.05 -
TA = 105 °C 2.45 -
Independent watchdog
TA = -40 °C to 25 °C 1 1.7
and LSI enabled
Supply current in TA = -40 °C to 25 °C 0.29 0.6
IDD
Standby mode (RTC
(Standby) Independent watchdog TA = 55 °C 0.345 0.9
disabled)
and LSI OFF TA = 85 °C 0.575 2.75
TA = 105 °C 1.45 7(2)
IDD Supply current during
(WU from wakeup time from - TA = -40 °C to 25 °C 1 - mA
Standby) Standby mode
1. Guaranteed by characterization results, unless otherwise specified.
2. Guaranteed by test in production.
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF
loading capacitors.
SYSCFG &
2.6 2.0 1.6 2.0
RI
TIM9 7.9 6.4 5.0 6.4
TIM10 5.9 4.7 3.8 4.7
APB2
TIM11 5.9 4.6 3.7 4.6
(2)
ADC 10.5 8.3 6.6 8.3
SPI1 4.3 3.4 2.8 3.4
USART1 8.8 7.1 5.6 7.1
GPIOA 4.3 3.3 2.6 3.3
GPIOB 4.3 3.5 2.8 3.5 µA/MHz
(fHCLK)
GPIOC 4.0 3.2 2.5 3.2
GPIOD 4.1 3.3 2.5 3.3
GPIOE 4.2 3.4 2.7 3.4
AHB
GPIOH 3.7 3.0 2.3 3.0
CRC 0.8 0.6 0.5 0.6
FLASH 11.1 9.4 8 -(3)
DMA1 15.6 12.7 10 12.7
DMA2 16.3 13.4 10.5 13.4
All enabled 187 154 120 144.6
IDD (RTC) 0.4
IDD (LCD) 3.1
IDD (ADC)(4) 1450
IDD (DAC)(5) 340
IDD (COMP1) 0.16 µA
Slow mode 2
IDD (COMP2)
Fast mode 5
IDD (PVD / BOR)(6) 2.6
IDD (IWDG) 0.25
1. Data based on differential IDD measurement between all peripherals OFF an one peripheral with clock
enabled, in the following conditions: fHCLK = 32 MHz (range 1), fHCLK = 16 MHz (range 2), fHCLK = 4 MHz
(range 3), fHCLK = 64kHz (Low-power run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for
each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling.
2. HSI oscillator is OFF for this measure.
3. In Low-power sleep and run mode, the Flash memory must always be in power-down mode.
4. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC
conversion (HSI consumption not included).
5. Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC
conversion of VDD/2. DAC is in buffered mode, output is left floating.
6. Including supply current of internal reference voltage.
CSS is on or
1 8 32 MHz
User external clock source PLL is used
fHSE_ext
frequency CSS is off, PLL
0 8 32 MHz
not used
VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD
V
VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD
tw(HSEH)
OSC_IN high or low time 12 - -
tw(HSEL) -
ns
tr(HSE)
OSC_IN rise or fall time - - 20
tf(HSE)
Cin(HSE) OSC_IN input capacitance - 2.6 - pF
1. Guaranteed by design.
WZ +6(+
9+6(+
9+6(/
WU +6( W
WI +6( WZ +6(/
7+6(
069
WZ /6(+
9/6(+
9/6(/
WU /6( W
WI /6( WZ /6(/
7/6(
069
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 12). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
I+6(WRFRUH
5P
&2 5)
/P
&/
&P 26&B,1
JP
5HVRQDWRU
&RQVXPSWLRQ
FRQWURO
5HVRQDWRU
670
26&B287
&/
DLE
Note: For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to
15 pF range selected to match the requirements of the crystal or resonator (see Figure 13).
CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load
capacitance which is the series combination of CL1 and CL2.
Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where
Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is
between 2 pF and 7 pF.
Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended
to use a resonator with a load capacitance CL ≤7 pF. Never use a resonator with a load
capacitance of 12.5 pF.
Example: if the user chooses a resonator with a load capacitance of CL = 6 pF and
Cstray = 2 pF, then CL1 = CL2 = 8 pF.
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
&/
26&B,1 I/6(
%LDV
N+]
5) FRQWUROOHG
UHVRQDWRU
JDLQ
26&B287 670/[[
&/
DLE
MSI range 0 - 40
MSI range 1 - 20
MSI range 2 - 10
MSI range 3 - 4
MSI range 4 - 2.5
tSTAB(MSI)(2) MSI oscillator stabilization time µs
MSI range 5 - 2
MSI range 6,
Voltage range 1 - 2
and 2
MSI range 3,
- 3
Voltage range 3
Any range to
- 4
range 5
fOVER(MSI) MSI oscillator frequency overshoot MHz
Any range to
- 6
range 6
1. This is a deviation for an individual part, once the initial frequency has been measured.
2. Guaranteed by characterization results.
RAM memory
Operating voltage
VDD - 1.65 - 3.6 V
Read / Write / Erase
Programming/ erasing Erasing - 3.28 3.94
tprog time for byte / word / ms
double word / half-page Programming - 3.28 3.94
Table 35. Flash memory and data EEPROM endurance and retention
Value
Symbol Parameter Conditions Unit
Min(1) Typ Max
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electrostatic
TA = +25 °C, conforming
VESD(HBM) discharge voltage 2 2000 V
to JESD22-A114
(human body model)
Electrostatic
TA = +25 °C, conforming
VESD(CDM) discharge voltage C4 500 V
to ANSI/ESD STM5.3.1.
(charge device model)
1. Guaranteed by characterization results.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
• A supply overvoltage is applied to each power supply pin
• A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
VOL(1)(2) Output low level voltage for an I/O pin IIO = 8 mA - 0.4
VOH (2)(3)
Output high level voltage for an I/O pin 2.7 V < VDD < 3.6 V VDD-0.4 -
VOL (3)(4) Output low level voltage for an I/O pin IIO = 4 mA - 0.45
V
VOH (3)(4) Output high level voltage for an I/O pin 1.65 V < VDD < 3.6 V V -0.45 -
DD
VOL(1)(4) Output low level voltage for an I/O pin IIO = 20 mA - 1.3
VOH (3)(4) Output high level voltage for an I/O pin 2.7 V < VDD < 3.6 V VDD-1.3 -
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 10
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
2. Guaranteed by test in production.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 10 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
4. Guaranteed by characterization results.
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 14 and
Table 43, respectively.
Unless otherwise specified, the parameters given in Table 43 are derived from tests
performed under the conditions summarized in Table 12.
-AXIMUM FREQUENCY IS ACHIEVED IF T R TF 4 AND IF THE DUTY CYCLE IS
WHEN LOADED BY P&
AIC
9''
([WHUQDOUHVHWFLUFXLW
538 ,QWHUQDOUHVHW
1567
)LOWHU
)
670/[[
DLE
1. The reset network protects the device against parasitic resets. 0.1 uF capacitor must be placed as close as
possible to the chip.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 44. Otherwise the reset will not be taken into account by the device.
- 1 - tTIMxCLK
tres(TIM) Timer resolution time
fTIMxCLK = 32 MHz 31.25 - ns
sͺ/Ϯ sͺ/Ϯ
ZW ZW ^dDϯϮ>ϭdždž
Z^
^
/ϮďƵƐ Z^
^>
^ dZdZWd
^ dZd
ƚƐƵ;^dͿ ^ dZd
^
ƚĨ;^Ϳ ƚƌ;^Ϳ ƚƐƵ;^Ϳ
^ dKW ƚƐƵ;^d͗^dKͿ
ƚŚ;^dͿ ƚǁ;^<>Ϳ ƚŚ;^Ϳ
^>
ƚǁ;^<,Ϳ ƚƌ;^<Ϳ ƚĨ;^<Ϳ ƚƐƵ;^dKͿ
ĂŝϭϳϴϱϱĐ
Table 47. SCL frequency (fPCLK1= 32 MHz, VDD = VDD_I2C = 3.3 V)(1)(2)
I2C_CCR value
fSCL (kHz)
RP = 4.7 kΩ
400 0x801B
300 0x8024
200 0x8035
100 0x00A0
50 0x0140
20 0x0320
1. RP = External pull-up resistance, fSCL = I2C speed.
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external
components used to design the application.
SPI characteristics
Unless otherwise specified, the parameters given in the following table are derived from
tests performed under the conditions summarized in Table 12.
Refer to Section 6.3.12: I/O current injection characteristics for more details on the
input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Master mode - 16
fSCK
SPI clock frequency Slave mode - 16 MHz
1/tc(SCK)
Slave transmitter - 12(3)
tr(SCK)(2)
SPI clock rise and fall time Capacitive load: C = 30 pF - 6 ns
tf(SCK)(2)
DuCy(SCK) SPI slave input clock duty cycle Slave mode 30 70 %
tsu(NSS) NSS setup time Slave mode 4tHCLK -
th(NSS) NSS hold time Slave mode 2tHCLK -
tw(SCKH)(2)
SCK high and low time Master mode tSCK/2 − 5 tSCK/2 +3
tw(SCKL)(2)
tsu(MI)(2) Master mode 5 -
Data input setup time
tsu(SI)(2) Slave mode 6 -
(2)
th(MI) Master mode 5 - ns
Data input hold time
(2)
th(SI) Slave mode 5 -
ta(SO)(4) Data output access time Slave mode 0 3tHCLK
tv(SO) (2) Data output valid time Slave mode - 33
(2)
tv(MO) Data output valid time Master mode - 6.5
(2)
th(SO) Slave mode 17 -
Data output hold time
th(MO)(2) Master mode 0.5 -
1. The characteristics above are given for voltage range 1.
2. Guaranteed by characterization results.
3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty cycle (DuCy(SCK))
ranging between 40 to 60%.
4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.
Figure 18. SPI timing diagram - slave mode and CPHA = 1(1)
166LQSXW
&3+$
&32/ WZ 6&.+
&3+$ WZ 6&./
&32/
WU 6&.
WY 62 WK 62 WGLV 62
WD 62 WI 6&.
0,62
06%287 %,7287 /6%287
287387
WVX 6, WK 6,
026,
,1387 06%,1 %,7,1 /6%,1
DLE
166LQSXW
WF 6&.
6&.2XWSXW
&3+$
&32/
&3+$
&32/
6&.2XWSXW
&3+$
&32/
&3+$
&32/
WZ 6&.+ WU 6&.
WVX 0, WZ 6&./ WI 6&.
0,62
,13 87 06%,1 %,7,1 /6%,1
WK 0,
026,
06%287 % , 7287 /6%287
287387
WY 02 WK 02
DLF
USB characteristics
The USB interface is USB-IF certified (full speed).
Input levels
Output levels
Figure 20. USB timings: definition of data signal rise and fall time
&URVVRYHU
SRLQWV
'LIIHUHQWLDO
GDWDOLQHV
9&56
966
WI WU
DLE
tr Rise time(2) CL = 50 pF 4 20 ns
tf Fall Time(2) CL = 50 pF 4 20 ns
trfm Rise/ fall time matching tr/tf 90 110 %
VCRS Output signal crossover voltage 1.3 2.0 V
1. Guaranteed by design.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
I2S characteristics
Note: Refer to the I2S section of the product reference manual for more details about the sampling
frequency (Fs), fMCK, fCK and DCK values. These values reflect only the digital peripheral
behavior, source clock precision might slightly change them. DCK depends mainly on the
ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of
(I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition.
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
VREF+ = VDDA 16
VREF+ < VDDA
8
2.4 V ≤VDDA ≤3.6 V VREF+ > 2.4 V
Voltage
ADC clock VREF+ < VDDA
fADC range 1 & 2 0.480 4 MHz
frequency VREF+ ≤2.4 V
VREF+ = VDDA 8
1.8 V ≤VDDA ≤2.4 V
VREF+ < VDDA 4
Voltage range 3 4
Direct channels
0.25 - -
2.4 V ≤VDDA ≤3.6 V
Multiplexed channels
0.56 - -
2.4 V ≤VDDA ≤3.6 V
µs
tS(5) Sampling time Direct channels
0.56 - -
1.8 V ≤VDDA ≤2.4 V
Multiplexed channels
1 - -
1.8 V ≤VDDA ≤2.4 V
- 4 - 384 1/fADC
fADC = 16 MHz 1 - 24.75 µs
Total conversion time
tCONV 4 to 384 (sampling phase) +12
(including sampling time) - 1/fADC
(successive approximation)
95() 9''$
>/6%,'($/ RUGHSHQGLQJRQSDFNDJH
(* ([DPSOHRIDQDFWX DOWUDQVIH UFXUYH
7KHLGHDOWUDQVIHUFX UYH
(QGSRLQWFRUUHODWLRQOLQH
(7 7RWDOXQDGMXVWHG(UURUPD[LPXPGHYLDWLRQ
(7 EHWZHHQWKHDFWXDODQGWKHLGHDOWUDQVIHUFXUYHV
(2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO
WUDQVLWLRQDQGWKHODVWDFWXDORQH
(* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVWLGHDO
WUDQVLWLRQDQGWKHODVWDFWXDORQH
(2 (/ (' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDFWXDOVWHSVDQGWKHLGHDORQH
(' (/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW
/6%,'($/ FRUUHODWLRQOLQH
966$ 9''$
DLH
9''$ 670/[[
6DPSOHDQGKROG
$'&FRQYHUWHU
5$,1 $,1[ ELW
,/Q$ FRQYHUWHU
&SDUDVLWLF
9$,1
&$'&
DLH
1. Refer to Table 56: Maximum source impedance RAIN max for the value of RAIN and Table 54: ADC
characteristics for the value of CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
Figure 25. Maximum dynamic current consumption on VREF+ supply pin during ADC
conversion
ADC clock
Iref+
700µA
300µA
MS36686V1
Connected to
5 - -
DAC output VSSA
RL Resistive load kΩ
buffer ON Conected to
25 - -
VDDA
(2)
CL Capacitive load DAC output buffer ON - - 50 pF
RO Output impedance DAC output buffer OFF 12 16 20 kΩ
CL ≤ 50 pF, RL ≥ 5 kΩ
- 1.5 3
Differential non DAC output buffer ON
DNL(1)
linearity(3)
No RL, CL ≤ 50 pF
- 1.5 3
DAC output buffer OFF
CL ≤ 50 pF, RL ≥ 5 kΩ
- 2 4
DAC output buffer ON
INL(1) Integral non linearity(4)
No RL, CL ≤ 50 pF LSB
- 2 4
DAC output buffer OFF
CL ≤ 50 pF, RL ≥ 5 kΩ
- ±10 ±25
Offset error at code DAC output buffer ON
Offset(1)
0x800 (5) No RL, CL ≤ 50 pF
- ±5 ±8
DAC output buffer OFF
Offset error at code No RL, CL ≤ 50 pF
Offset1(1) - ±1.5 ±5
0x001(6) DAC output buffer OFF
VDDA = 3.3V
VREF+ = 3.0V
-20 -10 0
TA = 0 to 50 ° C
Offset error temperature DAC output buffer OFF
dOffset/dT(1) µV/°C
coefficient (code 0x800) V = 3.3V
DDA
VREF+ = 3.0V
0 20 50
TA = 0 to 50 ° C
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
- +0.1 / -0.2% +0.2 / -0.5%
DAC output buffer ON
Gain(1) Gain error(7) %
No RL, CL ≤ 50 pF
- +0 / -0.2% +0 / -0.4%
DAC output buffer OFF
VDDA = 3.3V
VREF+ = 3.0V
-10 -2 0
TA = 0 to 50 ° C
Gain error temperature DAC output buffer OFF
dGain/dT(1) µV/°C
coefficient VDDA = 3.3V
VREF+ = 3.0V
-40 -8 0
TA = 0 to 50 ° C
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
- 12 30
DAC output buffer ON
TUE(1) Total unadjusted error LSB
No RL, CL ≤ 50 pF
- 8 12
DAC output buffer OFF
Settling time (full scale:
for a 12-bit code
transition between the
tSETTLING lowest and the highest CL ≤ 50 pF, RL ≥ 5 kΩ - 7 12 µs
input codes till
DAC_OUT reaches final
value ±1LSB
Max frequency for a
correct DAC_OUT
change (95% of final
Update rate CL ≤ 50 pF, RL ≥ 5 kΩ - - 1 Msps
value) with 1 LSB
variation in the input
code
Wakeup time from off
state (setting the ENx bit
tWAKEUP CL ≤ 50 pF, RL ≥ 5 kΩ - 9 15 µs
in the DAC Control
(8)
register)
VDDA supply rejection
PSRR+ ratio (static DC CL ≤ 50 pF, RL ≥ 5 kΩ - -60 -35 dB
measurement)
1. Data based on characterization results.
2. Connected between DAC_OUT and VSSA.
3. Difference between two consecutive codes - 1 LSB.
4. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.
5. Difference between the value measured at Code (0x800) and the ideal value = VREF+/2.
6. Difference between the value measured at Code (0x001) and the ideal value.
7. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when
buffer is OFF, and from code giving 0.2 V and (VDDA – 0.2) V when buffer is ON.
8. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).
%XIIHU
5/
ELW '$&B287[
GLJLWDOWR
DQDORJ
FRQYHUWHU
&/
AI6
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
6.3.20 Comparator
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-
inverting input set to the reference.
3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not
included.
7 Package information
6($7,1*3/$1(
&
$
$
PP
*$8*(3/$1(
$
F
FFF &
$
' .
' /
' /
E
(
(
3,1
,'(17,),&$7,21 H
:B0(B9
Table 62. LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data
millimeters inches(1)
Symbol
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 11.800 12.000 12.200 0.4646 0.4724 0.4803
D1 9.800 10.000 10.200 0.3858 0.3937 0.4016
D3 - 7.500 - - 0.2953 -
E 11.800 12.000 12.200 0.4646 0.4724 0.4803
E1 9.800 10.000 10.200 0.3858 0.3937 0.4016
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
K 0.0 3.5 7.0 0.0 3.5 7.0
1. Values in inches are converted from mm and rounded to 4 decimal digits.
AIC
3URGXFWLGHQWLILFDWLRQ 5HYLVLRQFRGH
5
670/
5&7
'DWHFRGH
< ::
3LQ
LQGHQWLILHU
06Y9
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
)RUELGGHQDUHD
7-!7-PD[
3' P:
/4)3[PP
7HPSHUDWXUH & 069
)RUELGGHQDUHD
7-!7-PD[
3' P:
/4)3[PP
7HPSHUDWXUH & 06Y9
8 Ordering information
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
L = Low power
Device subfamily
100: Device with LCD
Pin count
R = 64 pins
Package
T = LQFP
Temperature range
6 = Industrial temperature range, –40 to 85 °C
7 = Industrial temperature range, –40 to 105°C
Packing
TR = tape and reel
No character = tray or tube
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
9 Revision history
Updated Table 41: I/O static characteristics pull-up and pull-down values.
Updated Table 44: NRST pin characteristics pull-up values.
Updated Section 7: Package information adding information about other
optional marking or inset/upset marks.
Updated note 1 below all the package device marking figures.
Updated Section 7: Package information replacing “Marking of
engineering samples” by “device marking”.
Updated all the notes, removing ‘not tested in production’.
Updated Nested vectored interrupt controller (NVIC) in Section 3.2:
ARM® Cortex®-M3 core with MPU about process state automatically
saved.
Updated Table 2: Functionalities depending on the operating power
supply range removing I/O operation column and adding note about
GPIO speed.
Updated Table 40: I/O current injection susceptibility note by ‘injection is
not possible’.
28-Aug-2017 5
Updated Figure 15: Recommended NRST pin protection note about the
0.1uF capacitor.
Updated cover page putting eight SPIs in the peripheral communication
interface list.
Updated Table 4: Functionalities depending on the working mode (from
Run/active down to standby) LSI and LSE functionalities putting “Y” in
Standby mode.
Removed note 1 below Figure 2: Clock tree.
Updated Table 9: Voltage characteristics adding note about VREF- pin.
Updated Table 38: ESD absolute maximum ratings CDM class.
Updated Table 57: DAC characteristics resistive load.
Updated Section 3.1: Low-power modes Low-power run mode (MSI) RC
oscillator clock.
Updated Table 4: Functionalities depending on the working mode (from
Run/active down to standby) disabling I2C functionality in Low-power
Run and Low-power Sleep modes.
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.