To get more please visit: www.creativeworld9.blogspot.com   0 6 6   1.
The matrix  6 0 6  is a matrix 6 6 0
(a) Skew-symmetric (b) Symmetric (c) Nilpotent (d) Orthogonal  2 2  2. A =  1 3 1 2 (a) Nilpotent (b) Involutary (c) Orthogonal (d) Idempotent matrix 3x 2  4x 3. Find the value of x such that A is singular were A =  2 2 4 (a) 2 (b) 4 (c) 5 (d) 3 4. If A = 1 0 0 ,B= 1 0 1 1 and C = 0 cos  sin  then  sin  cos    2  1   (1 + x)  4  4  is 3
(a) C = A sin  - B cos  (b) C = A cos  + B sin  (c) C = A cos  - B sin  (d) C = A sin  + B cos  5. If a matrix A is 4  3 and B is 3  5. The number of multiplication operations needed to calculate the matrix product AB are (a) 64 (b) 65 (c) 60 (d) 61 6. If A
mn
and B
pq
are two matrices, state the condition for the existance of AB+BA
(a) n = p (b) m = p,n = q (c) m = n = p = q (d) q = m 1 0  7. What is the rank of A =  0 1 0 0 (a) 2 (b) 1 (c) 3 (d) 0 8. If 3  4 matrix is of rank 2, then its nullity is (a) 0 (b) 3 (c) 1 (d) 2 9. The system of equations AX = B has no solution if (a) R(AB) = R(A)<n (b) R(AB) = R(A) (c) R(AB) = R(A) (d) R(AB) = R(A)> n     1 2 3 x 4  and X =  y  then the system L X = 0 has a solution 10. If L =  0 1 0 0 1 z (a) x = 0, y = 0, z = 0 (b) x = -1, y = 1, z = 1 (c) x = 1, y = 1, z = 1 (d) x = 1, y = 1, z = 0 11. X is a characteristic root of A if and only if there exists (a) unit vector (b) Zero vector (c) Negative vector (d) Non zero vector   1 3 4 12. If A =  0 2 6  then the eigen values of A1 are 0 0 5 (a) 1. 2. 5 (b) -1, -1/2, 1/5 (c) 1, 1/2, 1/5 (d) 1, -1/2, 1/5 13. If one of the eigen value is zero, then |A| is (a) zero (b) - |A | (c) non - zero  x1 14. If X =  x2  be the eigen vector corresponding to the eigen value  , then x3 ( A - I) X= (a) 0 (b) - 1 (c) 1 (d) I 15. If X is an eigen vector of A corresponding to an eigen value  and k is any non zero scalar, then vector of A for the same eigen value  . (a) -kX (b) X (c) kX (d) - X 16. For the square matrix A = (a) 25 I (b) - 10 I (c) 10 I (d) - 25 I 17. If A = (a) (b) (c) (d) 1 2 2 1 , then by Cayley- Hamilton theorem, A8 is 5 4 0 5 , then A2 - 10A = is an eigen (d) unity  vector such that A X = X   0  0 1
625 0 0 625 624 0 0 624 623 0 0 623 626 0 0 626 1 1 1 1 is not diagonalizable, why?
18. The matrix A =
(a) real eigen values (b) repeated eigen values (c) no real eigen values (d) zero eigen values 19. If 1 , 2 , 3 are the eigen values of matrix A and An = BDn B 1 then Dn =  n  1 0 0 (a)  0 n 0  2 0 0 n 3   n 1 0 0  (b)  0  n 0 2 n 0 0  3  n  1 0 0 (c)  0 n 0  2 0 0 n 3   1 0 0 (d)  0 2 0  0 0 3 20. If X1 = (a) (b) (c) (d) 2 3 2 1 2 3 1 1 3 1 , X2 = 1 1 are the eigen vectors of A , then modal matrix of A is
2 1 3 1 2 1 3 1