GURU GOBIND SINGH COLLEGE FOR MTMS
AL  7 Main Jail Road, Hari Nagar, New Delhi  110064 
   Ph. 9810455330, 25138338, 25138339  
Series:-A   
1.  Where was George cantor born? 
(a) Lincoln  (b) Cork  (c) Petersburg      (d) None of these    
2.   We list out all its member and write then with in bracket  method is   Called ------------ 
(a) Rule method    (b) Roster method  (c) Set builder method   (d) None      
3.  If set A has 7 elements, then how many members in P (A) 
(a) 128    (b) 256    (c) 64     (d) 512          
4.  U= ? 
(a) U     (b)         (c) Either a or b      (d) None of these      
5.  Find X and Y if (3x+y, x-1)=(x+3,2y-2x) 
(a) X=3, y=1  (b) x=2, y=2  (c) X=1, y=1  (d) x=1, y=3          
6.  If A={1,2,3} B={2,4,5} find (AB) (A  B) 
(a) {(1,2), (3,2), (4,2), (5,2),}  (b) {(2,1), (3,1), (4,1), (5,1)} 
(c) {(1,1), (2,2), (3,3), (4,4)}  (d) {(1,3), (2,3), (3,3), (4,3)}         
7.  If A={/is a Positive Prime <8}, B={6,7,8}, C={7,8,9} find (A  B)  (B C) 
(a) {(7,7), (8,8))  (b) {(7,8), (8,7))  (c) {(7,7), (7,8))  (d) None     
8.  Let A={1,2,3} & B={2,3,5,6} then find out (A-B) U (AB) U (B-A) 
(a) A    (b) B     (c) U     (d) None of these      
9.  A H (BUC) Which law will apply fall this 
(a) Distributive law  (b) Associative law  (c) De Morgan law  (d) None   
10.  Find the negation of the following P  (Pv~q) 
(a) ~p~(pv~q)  (b) ~(pv~q} ~p  (c) p (~pq)    (d) p (~q~p)   
11.  Write the Inverse of (pvq} (pq) 
(a) (pq)  (pvq)    (b) (~pv~q)  (~p~q) 
(c) (~pv~q)  (~pv~q)   (d) (~p~q)  (~pv~q)         
12.  [(pq)]  (qr)] (pr) 
(a)  p    (b)   q      (c)  r      (d)  t          
13.  (~pv {~qv}} v |{qv} v {pv}]E 
(a)  F    (b)  T      (c)   r      (d)   q          
GURU GOBIND SINGH COLLEGE FOR MTMS 
AL  7 Main Jail Road, Hari Nagar, New Delhi  110064    
Ph. 9810455330, 25138338, 25138339 
The value of ~[pq] is 
(a) ~(pq) ~(qp)    (b) ~(qp)  (pq) 
(c) (p~q) v (q~p)    (d) None of these          
14.  P (pv~p} 1s equa1 fo 
(a)  T      (b)  F       (c)  P      (d)  None of these      
15.  If Two propositions are make same answer after change their places Law is called 
(a) Associative    (b) De Morgans law  (c) (a) and (b)    (d) None    
16.  If  P=T and q=f then find out inverse of the P to q. 
(a)    T       (b)    F      (c)   P      (d)   None of these      
17.  If there are 9 propositions then how many combination will come out 
(a)   256  (b)   512  (c)   1024  (d)  None of these      
18.  pqrst then which type of network is performed  
(a) parallel Network         (b) Basic Parallel Network 
(c) Series-series Combination       (d)None of these.          
19.  The values 0 and 1 attached to the switches are called_____________? 
(a) Transmittance   (b) off circuit      (c) on circuit       (d) None of these        
20.  [(pvq) ~p] p is_____ 
(a) Tautology        (b) Contradiction 
(c) Neither tautology Nor Contradiction  (d) Either tautology or Contradiction.      
21.  In Z, Binary operation is defined by + then 
(a) Semi Group       (b) Abelian Group     (c) Group   (d) Monoid        
22.  Let R defined by product, then 
(a) Semi Group  (b) Abelian Group     (c) Group   (d) Monoid                      
23.  In Z, defined by a*b=min (a, b). Then is there associativity in this Set? 
(a) Yes      (b) No       (c) Cant Say       (d) None of these        
24.  A set together with a number of operations on set is called an________? 
(a) System  (b) Group   (c) Algebraic System         (d) None of these       
25.  If a number is divided by itself and only single time is called 
(a) Positive Prime  (b) Prime No.   (c) Negative prime  (d) All of these      
26.  If a*b = a+b+3 then find out its inverse 
(a) 3    (b)+3    (c) a-6        (d) a+6            
27.  Let a*b= ab is Set Z then 
(a) Monoid  (b) Abelian Group  (c) Group  (d) Semi Group      
GURU GOBIND SINGH COLLEGE FOR MTMS 
AL  7 Main Jail Road, Hari Nagar, New Delhi  110064    
Ph. 9810455330, 25138338, 25138339 
28.  Let a*b=a_b+8 then is there associativity 
(a) Yes    (b) No           (c) Cant Say      (d) None of these      
29.  If * is defined by () Implication, then which property Satisfied 
(a) Commutativity  (b) Associativity  (c) (a) and (b) both  (d) None  
30.  If K
7 
is a Graph then How many edges in this graph 
(a)  7       (b)   42     (c)   21     (d)  None of these      
31.  If K
7
 is a graph then How many edges in this graph 
(a)   14     (b)   49     (c)   42     (d) None of these      
32.  If (m,n) Graph then total degree of graph is 
(a)   m   (b)   n   (c)   mn   (d)   2mn              
33.  What is the relation among  ,  and deg v
i 
(a)  > deg v
i
 >    (b)  > deg v
i 
<   (c)  < deg(v
i
) <   (d) None     
34.  A (p ,q) graph has t points of degree n and all other points are of degree m then. 2q= 
(a) Pn+(m-n)t  (b) Pm+(n-m)t    (c) Pn+(n-m)t     (d) None of these        
35.  In a graph K
l,m
 what is relation between degrees of each partition. 
a) The both have same degrees of l and m  b) l & m both has even degrees 
c) l & m both has odd degrees.      D) (b) and (d)          
36.  In which case =degv
i
 = 
(a) Bi-partite  (b) Complete graph  (c) Degree sequence  (d) Algebraic System  
37.  Which type of this graph?    
(a) Labeled Graph  (b) Unlabelled Graph 
(c) Bi Graph    (d) Null Graph              
38. Z {-------- -3,-2,-1,0,1,2,3 ----------} this is a Group for Binary operation + find 
out 2Z 
(a) Z` ={------ -3, -1,0,1,3 ----------}       (b) Z` ={------ -4,-2, 0,2,4 ----------} 
(c) Z ={------ -3, -1,0,1,3 ----------}        (d) Z
n
 ={ ------ -3,-1,0,1,3 ----------}            
39.  A U (B  C)=(AUB) (AUC )which law in this part 
(a) Idem potent Law  (b) De Morgan law  (c) Distributive law        (d) None