0% found this document useful (0 votes)
98 views6 pages

Trigonometric Integrals: XDX X XDX X

1) The document discusses trigonometric integrals of the form sin ax cos bx, sin ax sin bx, and cos ax cos bx with a ≠ b. It presents identities that can be used to evaluate these integrals. 2) For integrals of the form sinm x cosn x, the document explains how to use trigonometric substitutions of u = sin x or u = cos x depending on if m or n is odd. 3) Several examples of evaluating integrals using the trigonometric substitutions are provided.

Uploaded by

Arif Arashi
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
98 views6 pages

Trigonometric Integrals: XDX X XDX X

1) The document discusses trigonometric integrals of the form sin ax cos bx, sin ax sin bx, and cos ax cos bx with a ≠ b. It presents identities that can be used to evaluate these integrals. 2) For integrals of the form sinm x cosn x, the document explains how to use trigonometric substitutions of u = sin x or u = cos x depending on if m or n is odd. 3) Several examples of evaluating integrals using the trigonometric substitutions are provided.

Uploaded by

Arif Arashi
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 6

Trigonometric integrals

Previous lecture
Z

1
sin x cos x =
2

sin2 x dx =
Z

1
2

1
cos x dx =
2

1
sin 2x dx = cos 2x + C,
4

(1 cos 2x) dx =

x 1
sin 2x + C
2 4

(1 + cos 2x) dx =

x 1
+ sin 2x + C
2 4

Integrals of the form


Z

sin ax cos bx dx,

sin ax sin bx dx,

cos ax cos bx dx,

a 6= b

Two basic identities:


sin (x + y) = sin x cos y + cos x sin y
cos (x + y) = cos x cos y sin x sin y
(for small x, y sin is increasing, +, cos is decreasing, )
Change y to y
sin (x y) = sin x cos y cos x sin y
cos (x y) = cos x cos y + sin x sin y
2 sin x cos y = sin (x + y) + sin (x y)
2 cos x cos y = cos (x + y) + cos (x y)
2 sin x sin y = cos (x y) cos (x + y)
Application to integrals.
Example
Z

1
sin 2x cos 3x dx =
2
=

1
2

(sin (2x + 3x) + sin (2x 3x)) dx =

MATH115 T2 Winter 04, A.Potapov

sin 5x dx

1
2

sin x dx =

1
1
cos 5x + cos x + C.
10
2
1

www.math.ualberta.ca/apotapov/math115.htm

Example
Z

cos 3x cos 5x dx =
=

1
2

1
2

(cos (3x + 5x) + cos (3x 5x)) dx =

cos 8x dx +

1
2

cos 2x dx =

1
1
sin 8x + sin 2x + C.
16
4

=
Example
Z

1
sin 3x sin 5x dx =
2
1
=
2

(cos (3x 5x) cos (3x + 5x)) dx =

1
cos 2x dx
2

cos 8x dx =

1
1
sin 2x
sin 8x + C.
4
16

Integrals of the form


Z

sinm x cosn x dx,

tanm x secn x dx,

cotm x cscn x dx.

Idea use substitution to transform to integral of polynomial


Z

Pk (u)du

or

Pk (u)
ds.
us

Actual substitution depends on m, n, and the type of the integral.


Typical substitutions: u = sin x, cos x, tan x, sec x, cot x, csc x.
Task: find, which substitution integral can be transformed

Even or odd powers in

P (u)du without

1 u2 or similar.

cosm x sinn x dx

cosm x sinn x dx = cosm1 x sinn x cos xdx


cos xdx = d (sin x), u = sin x, but have to express cosm1 x through sin x.

If m = 2k + 1 (odd) we can: cos2k x = cos2 x


If m = 2k (even) we can not without

= 1 sin2 x

= 1 u2

1 sin2 x.

Similarly
cosm x sinn x dx = cosm x sinn1 x sin xdx
MATH115 T2 Winter 04, A.Potapov

www.math.ualberta.ca/apotapov/math115.htm

If n = 2k + 1 (odd) we can use u = cos x, if n = 2k (even) cannot.


sincos rule: if one has odd power, use other for substitution.
1) Odd power at cos x, u = sin x, du = cos x dx, cos2 x = 1 u2
Z

cos2k+1 x sinn x dx =

cos2k x sinn x cos xdx =

1 u2

un du

Example: no sin x, but still u = sin x


Z

cos x

cos x dx =
Z

cos x dx =

1 u2

du =

2
1
1 2u2 + u4 du = u u3 + u5 + C =
3
5

= sin x

2
1
sin3 x + sin5 x + C.
3
5

2) Odd power at sin x, u = cos x, du = sin x dx, sin2 x = 1 u2


Z

Z
m

2k+1

cos x sin

Z
m

x dx =

2k

cos x sin

um 1 u2

x sin xdx =

du

3) Odd powers at both: use for u one with bigger power:


Example: a) u = cos x
Z

cos3 x sin9 x dx =
Z

cos3 x sin8 x sin xdx =

u3 1 u2

du =

u3 1 4u2 + 6u4 4u6 + u8 du =

4
6
4
1
1
cos10 x
cos12 x + C
= cos4 x + cos6 x cos8 x +
4
6
8
10
12
b) u = sin x
Z

Z
3

cos x sin x dx =
Z

u9 u11 du =

cos x sin x cos xdx =

1 u2 u9 du =

1 10
1
1
1
u u12 + C =
sin10 x
sin12 x + C
10
12
10
12

which is simpler?
4) Even powers at both. No good substitution. Transform with double angle formulas (x 2x) to smaller
powers:
sin2 x =

1 cos 2x
,
2

MATH115 T2 Winter 04, A.Potapov

cos2 x =

1 + cos 2x
,
2

sin x cos x =

sin 2x
2

www.math.ualberta.ca/apotapov/math115.htm

Example:
Z

sin4 x cos6 xdx =


Z

=
1
=
64

(sin x cos x)4 cos2 x =

1
1 + cos 2x 1
sin4 2x
d (2x) = [z = 2x]
16
2
2

1
sin zdz [double angle] +
64
4

1
=
64
1
=
256

1 cos 2z
2

sin4 z cos zdz [u = sin z] =

1
dz +
64

u4 du =

1 2 cos 2z + cos2 2z dz +
Z

1 5
u +C =
320

z
1
1

sin z +
256 256
512

x
1
x
1
1

sin 2x +
+
sin 4z +
sin5 2x + C =
128 256
256 2048
320
=

1
sin5 z + C =
320

3
1
1
1
x
sin 2x +
sin 8x +
sin5 2x + C.
256
256
2048
320
R

Even or odd powers in

(1 + cos 4z) dz +

tanm x secn x dx

If m = 2k + 1 is odd, you can rewrite and use the substitution u = cos x


Z

Z
2k+1

tan

x sec x dx =

sin2k+1 x
dx =
cos2k+1+n x

1 u2
du.
u2k+1+n

Example:
Z

tan x dx =

sin x
dx [u = cos x] =
cos x

du
= ln |cos x| + C
u

Example:
Z

Z
3

tan x dx =
Z

Z
3

du +

sin3 x
dx = [u = cos x] =
cos3 x

1 u2
du =
u3

1
1
u1 du = u2 + ln |u| + C = sec2 x + ln |cos x| + C
2
2

Other possibility to use substitutions


a)

u = tan x,

du = sec2 x dx,

sec2 x = 1 + u2

so the power at sec x must be even, power at tan x may be any;


b)

u = sec x,

du = tan x sec x dx,

tan2 x = u2 1

So the power at tan x must be odd, power at sec x may be any;


MATH115 T2 Winter 04, A.Potapov

www.math.ualberta.ca/apotapov/math115.htm

1) Even power at sec x, n = 2k + 2, u = tan x,


Z

tanm x sec2k+2 x dx =

um 1 + u2

du.

Example:
Z

tan4 x sec4 x dx =

u4 1 + u2 du =

u4 + u6 du =

1
1
1
1
= u5 + u7 + C = tan5 x + tan7 x + C
5
7
5
7
Example: no tan x, but still u = tan x
Z

Z
4

sec x dx =

sec x sec x dx =

1 + u2 du =

1
1
= u + u3 + C = tan x + tan3 x + C.
3
3
2) Odd power at tan x, m = 2k + 1, u = sec x,
Z

tan2k+1 x secn x dx =

tan2 x

secn1 x tan x sec xdx =

u2 1

un1 du.

Example:
Z

tan1 x sec0 xdx =

tan xdx =

(sec x)1 tan x sec xdx =

u1 du =

= ln |u| + C = ln |sec x| + C = ln |cos x| + C

Other types:

tan2k+2 x dx

Reduction formula
Z

tan
Z

tan2k x sin2 x sec2 x dx =

x dx =

tan2k x 1 cos2 x sec2 x dx =

=
Z

2k+2

Z
2k

tan

x dx =

MATH115 T2 Winter 04, A.Potapov

Z
2k

u du +

tan2k x sec2 x dx [u = tan x] +

tan2k2 x 1 cos2 x sec2 x dx = ...

www.math.ualberta.ca/apotapov/math115.htm

Other types:

seck x dx, k = 1, 3, 5, ...


R

Denote for brevity Jk =

seck x dx

k=1
Z

J1 =

sec xdx =
Z

dx
=
cos x

du
1
=
2
1u
2

1
1
+
du =
1+u 1u

cos xdx
= [u = sin x]
cos2 x

1
1 1 + u
1 1 + sin x
(ln |1 + u| ln |1 u|) + C = ln
+ C = ln
+C =

2
2
1u
2
1 sin x

(1 + sin x)
(1 + sin x)2
1 (1 + sin x)2
1

+C =
+ C = ln
= ln
+ C = ln
2

2
(1 sin x) (1 + sin x)
2
cos x
1 sin x

= ln |sec x + tan x| + C
k 3: reduction formula
Z

Jk =

seck x dx =

seck2 x sec2 xdx =

seck2 x (tan x)0 dx =

= sec

k2

x tan x

tan x (k 2) seck3 x tan x sec xdx =


Z

= seck2 x tan x (k 2)
= seck2 x tan x (k 2)

tan2 x seck2 xdx =

sec2 x 1 seck2 xdx =

= seck2 x tan x (k 2) (Jk Jk2 )


Reduction formula
Jk =

1
k2
seck2 x tan x +
Jk2
k1
k1

Application:
J3 =
Integrals of Ik =

1
1
1
1
sec x tan x + J1 = sec x tan x + ln |sec x + tan x| + C
2
2
2
2

csck x dx can be evaluated in a similar way..

MATH115 T2 Winter 04, A.Potapov

www.math.ualberta.ca/apotapov/math115.htm

You might also like