0% found this document useful (0 votes)
8 views5 pages

Memo 3

This document contains solutions and explanations for various engineering mathematics problems, including integrals and trigonometric identities. It covers topics such as integration techniques, substitution methods, and properties of trigonometric functions. The solutions are detailed and include steps for deriving results, showcasing a comprehensive approach to solving complex mathematical problems.

Uploaded by

profacademy100
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
8 views5 pages

Memo 3

This document contains solutions and explanations for various engineering mathematics problems, including integrals and trigonometric identities. It covers topics such as integration techniques, substitution methods, and properties of trigonometric functions. The solutions are detailed and include steps for deriving results, showcasing a comprehensive approach to solving complex mathematical problems.

Uploaded by

profacademy100
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

ENGINEERING MATHEMATICS 145 INGENIEURSWISKUNDE 145

MEMO 3 7 AUGUST/AUGUSTUS 2025 MEMO 3

Z Z
3x 1 3x
1. (a) xe dx = x · 3e − 1
3 1 · e3x dx = 13 xe3x − 19 e3x + C

Z Z
7 3
cos7 (x) 1 − cos2 x sin(x) dx

(b) cos (x) sin (x) dx =
Z
= − u7 1 − u2 du,

u = cos(x), − du = sin(x) dx
Z
u9 − u7 du

=
1 10
= 10 u − 81 u8 + C = 1
10 cos10 x − 81 cos8 x + C
Z ln 2 ln 2
Z ln 2
(c) y sinh(y) dy = y cosh(y) − cosh(y) dy
0 0 0
ln 2
= ln(2) cosh(ln 2) − sinh(y)
0
= ln(2) · 21 2 + 21 − sinh(ln 2) + sinh(0)


= 54 ln 2 − 21 2 − 12 = 54 ln 2 − 43


Z Z
ln t ln t 1 1
(d) dt = − 2 + dt
t3 2t 2 t3
ln t 1
=− 2 − 2 +C
2t 4t
Z
tan4 (2x) sec4 (2x) dx = tan4 (2x) tan2 (2x) + 1 sec2 (2x) dx

(e)
Z
1
u6 + u4 du, 1
du = sec2 (2x) dx

=2 u = tan(2x), 2
1 7 1 5
= 14 u + 10 u + C
1 7 1 5
= 14 tan (2x) + 10 tan (2x) +C

(f) cos(4x + 10x) = cos(4x) cos(10x) − sin(4x) sin(10x) So


cos(4x − 10x) = cos(4x) cos(10x) + sin(4x) sin(10x)
1
=⇒ cos(14x) + 12 cos(−6x)
cos(4x) cos(10x) = 2
Z Z
1

cos(4x) cos(10x) dx = 2 cos(14x) + cos(6x) dx
1 1
= 28 sin(14x) + 12 sin(6x) + C

1
Z π iπ Z π
2 2
h
2
 2
 2
(g) x + 2x sin(x) dx = − x + 2x cos(x) +2 (x + 1) cos(x) dx
0 0 0
π Z π
2 2
= 0 + 2(x + 1) sin(x) −2 sin(x) dx
0 0
h iπ
2
= π + 2 − 2 − cos x = π + 2 − 2 = π
0
√ √ √
Z 3 Z 3
1
 h
1
i 3 x 1
(h) arctan x dx = x arctan x + 2
· 2 dx
−1 −1 −1 1 + 1/x x
√ √
√ Z 3 √
π 3 π x π 3 π 1
h
2
i 3
= 6 − 4 + dx = 6 − 4 + 2 ln x +1
−1 x2 + 1 −1
√ √
π 3 π π 3
= 6 − 4 + 12 ln 4 − 12 ln 2 = π 1
6 − 4 + 2 ln 2

Z π Z π
6 6
5
(i) tan(θ) sec (θ) dθ = sec4 (θ) · sec(θ) tan(θ) dθ
− π3 − π3
2 u = sec θ, du = sec(θ)
 tan(θ) dθ
Z
= u4 du, π 2
u 6 = 3, u − 3 = 2
√ π
− √2
3
h i √2
1 5 3 32 32
= 5u 2 = √
45 3
− 5

Z Z Z
cos4 (θ) dθ = 1
(1 + cos(2θ))2 dθ = 1
1 + 2 cos(2θ) + cos2 (2θ) dθ

(j) 4 4
Z
1 1
+ 12 cos(4θ) dθ

= 4 1 + 2 cos(2θ) + 2

= 38 θ + 41 sin(2θ) + 1
32 sin(4θ) + C

(k) sin(5x + 2x) = sin(5x) cos(2x) + sin(2x) cos(5x) So


sin(5x − 2x) = sin(5x) cos(2x) − sin(2x) cos(5x)
1
=⇒ sin(7x) + 12 sin(3x)
sin(5x) cos(2x) = 2
Z Z
1 1
cos(7x) − 16 cos(3x)

cos(−2x) sin(5x) dx = 2 sin(7x) + sin(3x) dx = − 14

Z Z Z
2 4 2 2
tan2 (t) sec2 (t) dt
 
(l) tan (t) + tan (t) dt = tan (t) 1 + tan t dt =
Z
= u2 du, u = tan(t), du = sec2 (t) dt

= 31 u3 + C = 1
3 tan3 t + C

2

sin3 ( x) √
Z Z
(m) √ dx = 2 sin3 u du, u = x, 2 du = √1x dx
x
Z
sin u − cos2 (u) sin u du

=2
√ √
= −2 cos u + 23 cos3 u + C = −2 cos x + 23 cos3 x + C
Z Z
sin(t)
(n) dt = − u−3 du, u = cos(t), du = − sin(t) dt
cos3 (t)
= 21 u−2 + C = 1
2 sec2 t + C

√ √
Z Z
x
2. (a) e dx = 2 ueu du, u = x =⇒ du = 2√1 x dx = 2u 1
dx =⇒ 2u du = dx
√ √ √
Z
= 2ueu − 2 eu du = 2ueu − 2eu + C = 2 xe x − 2e x + C
Z Z Z
2 2 2 1
(b) (arcsin x) dx = 1 · (arcsin x) dx = x · (arcsin x) − x · 2 arcsin(x) · √ dx
1 − x 2
Z
2x
= x(arcsin x)2 − √ · arcsin(x) dx
1 − x2
 p Z p 
2 2 2
1
= x(arcsin x) − −2 1 − x arcsin x + 2 1−x · √ dx
1 − x2
p
= x(arcsin x)2 + 2 1 − x2 arcsin x − 2x + C
Z
*(c) x arccos x dx

Let u = arccos x. Then cos(u) = x, and

du 1 1 1 1
= −√ = −√ =− =− =⇒ − sin(u) du = dx
dx 1−x 2 2
1 − cos u | sin u| sin u

Recall, the range of arccos x is [0, π], and u ∈ [0, π] and therefore sin u ≥ 0, which
explains why | sin u| = sin u
Now
Z Z Z
x arccos x dx = − 12
cos(u) · u · (− sin u) du = u sin(2u) du
Z
= 14 u cos(2u) − 14 cos(2u) du = 14 u cos(2u) − 18 sin(2u) + C

Further, since sin u ≥ 0 and cos(u) = x, we have


p p p
sin u = sin2 u = 1 − cos2 u = 1 − x2

3
So, finally,
Z
x arccos x dx = 14 u cos(2u) − 18 sin(2u) + C

= 14 u cos2 u − 41 u sin2 u − 14 sin(u) cos(u) + C


p
= 41 x2 arccos x − 14 1 − x2 arccos x − 14 x 1 − x2 + C

p
= 21 x2 arccos x − 14 arccos x − 14 x 1 − x2 + C

*(c) Alternative solution: We have


Z Z
1
x arccos x dx = 2 x arccos x + 2 x2 √
1 2 1
dx
1 − x2
Notice that
1 − 1 − x2
Z Z 
1 2 1 1
I= 2 x √ dx = 2
√ dx
1 − x2 Z 1 − x 2
Z p
1
= 12 √ dx − 12 1 − x2 dx
1 − x2 Z
p x
= 12 arcsin x − 12 x 1 − x2 − 12 x · √ dx
1 − x2
p
= 12 arcsin x − 12 x 1 − x2 − I
Solving for I, we get
p
1
I= 4 arcsin x − 14 x 1 − x2
Finally,
Z p
x arccos x dx = 12 x2 arccos x + 14 arcsin x − 14 x 1 − x2 + C

Z 1 p p 
3 7
*(d) 1 − x7 − 1 − x3 dx
0

3
Let u = 1 − x7 , then
 
3 7
p
7 d p
7
u =1−x =⇒ x = 1 − u3 =⇒ dx = 1 − u3 du
du
So now
Z 1 Z 0  
p
3 7
d p
7 3
1 − x dx = u 1−u du
0 1 du
h p i0 Z 0 p Z 1 p
7 7 7
= u 1 − u3 − 1 − u3 du = 0 + 1 − u3 du
1 1 0

Consequently,
Z 1 p p 
3 7
1 − x7 − 1 − x3 dx = 0
0

4
3. (a) We have

cos(mx − nx) = cos(mx) cos(nx) + sin(mx) sin(nx)


cos(mx + nx) = cos(mx) cos(nx) − sin(mx) sin(nx)
1
=⇒ sin(mx) sin(nx) = 2 cos(mx − nx) − 21 cos(mx + nx)

So
Z π Z π
sin(mx) sin(nx) dx = 2 sin(mx) sin(nx) dx since sin(mx) sin(nx) is even
−π 0
Z π 
= cos(mx − nx) − cos(mx + nx) dx
0

If n ̸= m, then
Z π h iπ
1 1

cos(mx−nx)−cos(mx+nx) dx = m−n sin(mx − nx) − m+n sin(mx + nx) = 0
0 0

since sin(kπ) = 0 for any k ∈ Z


If n = m, then
Z π Z π
 
cos(nx − nx) − cos(nx + nx) dx = 1 − cos(2nx) dx
0
h0 iπ
1
= x − 2nx sin(2nx)
0
=π−0=π

(b) We have, for any m = 1, 2, . . . , N ,

f (x) = a1 sin(x) + a2 sin(2x) + . . . + an sin(N x)


Z π Z π Z π
f (x) sin(mx) dx = a1 sin(x) sin(mx) dx + a2 sin(2x) sin(mx) dx + . . .
−π −π −π
Z π Z π
+ am sin(mx) sin(mx) dx + . . . + aN sin(N x) sin(mx) dx
−π −π
= 0 + 0 + . . . + 0 + am π + 0 + . . . + 0 = πam

Hence
Z π
1
am = f (x) sin(mx) dx
π −π

You might also like