0% found this document useful (0 votes)
297 views4 pages

Mutual Inductance and Transformer Circuits With Ltspice Iv

This document describes how to use LTspice IV to simulate circuits containing mutual inductance and ideal transformers. It provides two examples of circuits with coupled inductors that are translated into equivalent LTspice schematics. Simulation results from LTspice match theoretical analyses for both current phasors in the coupled inductor circuits. It also presents an ideal transformer circuit example and shows how LTspice can accurately simulate it using a model from the University of Evansville simulation library.

Uploaded by

Steiner
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
297 views4 pages

Mutual Inductance and Transformer Circuits With Ltspice Iv

This document describes how to use LTspice IV to simulate circuits containing mutual inductance and ideal transformers. It provides two examples of circuits with coupled inductors that are translated into equivalent LTspice schematics. Simulation results from LTspice match theoretical analyses for both current phasors in the coupled inductor circuits. It also presents an ideal transformer circuit example and shows how LTspice can accurately simulate it using a model from the University of Evansville simulation library.

Uploaded by

Steiner
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

Mutual Inductance and Transformer Circuits

with LTspice IV
University of Evansville
July 27, 2009
In addition to LTspice IV, this tutorial assumes that you have installed the University of Evansville Simulation Library for
LTspice IV. This library extends LTspice IV by adding symbols and models that make it easier for students with no
previous SPICE experience to get started with LTspice IV.

Mutual Inductance
We will use LTspice IV to determine the mesh currents I1 and I2 in the phasor circuit shown in Figure 1. This circuit
includes a pair of couple inductors with a mutual inductance of j3 .

j3

j4

12 0 V +

I1

j5

j6

I2

12

Figure 1: Example Circuit


The corresponding LTspice IV schematic is shown in Figure 2. The coupled_inductor_pair_1 component from the
03_coupled_inductors component directory is used to represent the coupled inductor pair. There are three parameter
values that must be set when using a pair of coupled inductors. You must set the self-inductance values (L1 and L2) and the
value of mutual inductance (M). The method discussed in the AC Analysis tutorial for simulating phasor circuits is used
here: inductance values are equal to the inductive reactances, capacitance values are equal to the negative reciprocal of the
capacitive reactances and the circuit is simulated at a frequency of = 1 rad/s (f = 1/2 Hz).

Figure 2: LTspice IV Schematic Corresponding to Figure 1


Simulation results are shown in Table 1. Phasor current I1 is the current through the capacitor and is equal to
13.01 -49.40 A and phasor current I2 is the current through the resistor and is 2.91 14.04 A. A theoretical analysis of
1 of 4

the circuit gives identical results. Note that LTspice defines the current through a voltage source as positive when entering
the positive terminal of the source. The current through V1 is therefore the negative of the current through C1. The
negative of a phasor can be obtained by either adding or subtracting 180 from the phase angle (by convention phasor
angles are in the range from -180 to +180, we either add or subtract 180 so that the phase angle of the result is within this
range.).
frequency: 0.16

Hz

I(C1):

mag:

13.0158 phase:

-49.3987

device_current

I(R1):

mag:

2.91043 phase:

14.0362

device_current

I(V1):

mag:

13.0158 phase:
130.601
Table 1: Simulation Results for Figure 2

device_current

A second example circuit with a pair of coupled inductors is shown in Figure 3.

20 60 V +

I1

j2

j3
j6

I2

j4

Figure 3: A Second Mutual Inductance Example Circuit


The corresponding LTspice IV schematic is shown in Figure 4. Note how the inductor pair is oriented and connected so
that the dots match those in Figure 3.

Figure 4: LTspice IV Schematic Corresponding to Figure 3


Simulation results are shown in Table 2. Current I1 is equivalent to current I(R1) and is 3.578 86.565 A. Current I2 is
equivalent to current I(C1) and is 5.367 86.565 A. These results agree with those obtained from a theoretical analysis of
the circuit.

2 of 4

frequency: 0.16

Hz

I(C1):

mag:

5.36656 phase:

86.5651

device_current

I(R1):

mag:

3.57771 phase:

86.5651

device_current

I(V1):

mag:

3.57771 phase:
-93.4349
Table 2: Simulation Results for Figure 4

device_current

Linear Transformers
Linear transformers are just a special case of a pair of coupled inductors. Separate linear transformer components are
available in the UE library, but the underlying model is equivalent to that of a coupled inductor pair.

Ideal Transformers
The ideal transformer shown in Figure 5 is modeled in the UE library as shown in Figure 6.

ip

NP : Ns

is

ip

vp

vs

vp

Figure 5: Ideal Transformer Symbol

is
+
+ (N /N ) v

s
p
p

(Ns/Np) is

vs

Figure 6: UE LTspice IV Ideal Transformer Model

A phasor domain ideal transformer circuit is shown in Figure 7. The equivalent LTspice IV schematic is shown in Figure 8.
The UE ideal transformer model requires that values for the number of winding turns in the primary and secondary be
specified. It is not necessary to specify the actual number of turns, it is only necessary that the ratio of turns be correct. In
the schematic shown in Figure 8, NP:NS values of 1:4, 0.25:1, or 2:8 all give identical results.

120 0 Vrms

1:4

16
+
Vo

j 24

Figure 7: Ideal Transformer Circuit


Simulation results are shown in Table 3. There is again excellent agreement with results obtained by theoretical analysis.

3 of 4

Figure 8: LTspice IV Schematic Corresponding to Figure 7


frequency: 0.16

Hz

V(vo):

mag:

214.663 phase:

116.565

I(C1):

mag:

8.94427 phase:

-153.435

device_current

I(R2):

mag:

8.94427 phase:

-153.435

device_current

I(R1):

mag:

35.7771 phase:

26.5651

device_current

I(V1):

mag:

35.7771 phase:
-153.435
Table 3: Simulation Results for Figure 8

device_current

4 of 4

voltage

You might also like