0% found this document useful (0 votes)
173 views33 pages

Kalman Filter: From Wikipedia, The Free Encyclopedia

The document discusses the Kalman filter, an algorithm that uses a series of noisy measurements over time to produce more precise estimates of unknown variables than using a single measurement. It was developed by Rudolf Kalman and has applications in guidance, navigation, and control. The algorithm works recursively in two steps: prediction using a state model and update integrating a new measurement.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
173 views33 pages

Kalman Filter: From Wikipedia, The Free Encyclopedia

The document discusses the Kalman filter, an algorithm that uses a series of noisy measurements over time to produce more precise estimates of unknown variables than using a single measurement. It was developed by Rudolf Kalman and has applications in guidance, navigation, and control. The algorithm works recursively in two steps: prediction using a state model and update integrating a new measurement.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

Kalmanfilter
FromWikipedia,thefreeencyclopedia

Kalmanfiltering,alsoknownaslinear
quadraticestimation(LQE),isan
algorithmthatusesaseriesof
measurementsobservedovertime,
containingstatisticalnoiseandother
inaccuracies,andproducesestimatesof
unknownvariablesthattendtobemore
precisethanthosebasedonasingle
measurementalone.Thefilterisnamed
afterRudolfE.Klmn,oneofthe
primarydevelopersofitstheory.
TheKalmanfilterkeepstrackoftheestimatedstateofthesystemand
TheKalmanfilterhasnumerous
thevarianceoruncertaintyoftheestimate.Theestimateisupdated
applicationsintechnology.Acommon
usingastatetransitionmodelandmeasurements.
denotesthe
applicationisforguidance,navigation
estimateofthesystem'sstateattimestepkbeforethekth
andcontrolofvehicles,particularly
measurementykhasbeentakenintoaccount
isthe
aircraftandspacecraft.Furthermore,the
correspondinguncertainty.
Kalmanfilterisawidelyapplied
conceptintimeseriesanalysisusedin
fieldssuchassignalprocessingand
econometrics.Kalmanfiltersalsoareoneofthemaintopicsinthefieldofroboticmotionplanningand
control,andtheyaresometimesincludedintrajectoryoptimization.Themultifractionalorderestimatoris
asimpleandpracticalalternativetotheKalmanfilterfortrackingtargets.

Thealgorithmworksinatwostepprocess.Inthepredictionstep,theKalmanfilterproducesestimatesof
thecurrentstatevariables,alongwiththeiruncertainties.Oncetheoutcomeofthenextmeasurement
(necessarilycorruptedwithsomeamountoferror,includingrandomnoise)isobserved,theseestimatesare
updatedusingaweightedaverage,withmoreweightbeinggiventoestimateswithhighercertainty.The
algorithmisrecursive.Itcanruninrealtime,usingonlythepresentinputmeasurementsandthepreviously
calculatedstateanditsuncertaintymatrixnoadditionalpastinformationisrequired.
TheKalmanfilterdoesnotrequireanyassumptionthattheerrorsareGaussian.[1]However,thefilteryields
theexactconditionalprobabilityestimateinthespecialcasethatallerrorsareGaussiandistributed.
Extensionsandgeneralizationstothemethodhavealsobeendeveloped,suchastheextendedKalmanfilter
andtheunscentedKalmanfilterwhichworkonnonlinearsystems.TheunderlyingmodelisaBayesian
modelsimilartoahiddenMarkovmodelbutwherethestatespaceofthelatentvariablesiscontinuousand
wherealllatentandobservedvariableshaveGaussiandistributions.

Contents
1Namingandhistoricaldevelopment
2Overviewofthecalculation

https://en.wikipedia.org/wiki/Kalman_filter

1/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

2Overviewofthecalculation
3Exampleapplication
4Technicaldescriptionandcontext
5Underlyingdynamicsystemmodel
6Details
6.1Predict
6.2Update
6.3Invariants
6.4Optimalityandperformance
7Exampleapplication,technical
8Derivations
8.1Derivingtheaposterioriestimatecovariancematrix
8.2Kalmangainderivation
8.3Simplificationoftheaposteriorierrorcovarianceformula
9Sensitivityanalysis
10Squarerootform
11RelationshiptorecursiveBayesianestimation
12Marginallikelihood
13Informationfilter
14Fixedlagsmoother
15Fixedintervalsmoothers
15.1RauchTungStriebel
15.2ModifiedBrysonFraziersmoother
15.3Minimumvariancesmoother
16FrequencyWeightedKalmanfilters
17Nonlinearfilters
17.1ExtendedKalmanfilter
17.2UnscentedKalmanfilter
18KalmanBucyfilter
19HybridKalmanfilter
20Variantsfortherecoveryofsparsesignals
21Applications
22Seealso
23References
24Furtherreading
25Externallinks

Namingandhistoricaldevelopment
ThefilterisnamedafterHungarianmigrRudolfE.Klmn,althoughThorvaldNicolaiThiele[2][3]and
PeterSwerlingdevelopedasimilaralgorithmearlier.RichardS.BucyoftheUniversityofSouthern
Californiacontributedtothetheory,leadingtoitoftenbeingcalledtheKalmanBucyfilter.StanleyF.
SchmidtisgenerallycreditedwithdevelopingthefirstimplementationofaKalmanfilter.Herealizedthat
thefiltercouldbedividedintotwodistinctparts,withonepartfortimeperiodsbetweensensoroutputsand
anotherpartforincorporatingmeasurements.[4]ItwasduringavisitbyKalmantotheNASAAmes
ResearchCenterthathesawtheapplicabilityofhisideastotheproblemoftrajectoryestimationforthe

https://en.wikipedia.org/wiki/Kalman_filter

2/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

Apolloprogram,leadingtoitsincorporationintheApollo
navigationcomputer.ThisKalmanfilterwasfirstdescribedand
partiallydevelopedintechnicalpapersbySwerling(1958),Kalman
(1960)andKalmanandBucy(1961).
Kalmanfiltershavebeenvitalintheimplementationofthe
navigationsystemsofU.S.Navynuclearballisticmissile
submarines,andintheguidanceandnavigationsystemsofcruise
missilessuchastheU.S.Navy'sTomahawkmissileandtheU.S.Air
Force'sAirLaunchedCruiseMissile.Itisalsousedintheguidance
andnavigationsystemsoftheNASASpaceShuttleandtheattitude
controlandnavigationsystemsoftheInternationalSpaceStation.

RudolfEmilKalman,coinventorand
developeroftheKalmanfilter.

ThisdigitalfilterissometimescalledtheStratonovichKalmanBucyfilterbecauseitisaspecialcaseofa
moregeneral,nonlinearfilterdevelopedsomewhatearlierbytheSovietmathematicianRuslan
Stratonovich.[5][6][7][8]Infact,someofthespecialcaselinearfilter'sequationsappearedinthesepapersby
Stratonovichthatwerepublishedbeforesummer1960,whenKalmanmetwithStratonovichduringa
conferenceinMoscow.

Overviewofthecalculation
TheKalmanfilterusesasystem'sdynamicsmodel(e.g.,physicallawsofmotion),knowncontrolinputsto
thatsystem,andmultiplesequentialmeasurements(suchasfromsensors)toformanestimateofthe
system'svaryingquantities(itsstate)thatisbetterthantheestimateobtainedbyusinganyonemeasurement
alone.Assuch,itisacommonsensorfusionanddatafusionalgorithm.
Allmeasurementsandcalculationsbasedonmodelsareestimatestosomedegree.Noisysensordata,
approximationsintheequationsthatdescribehowasystemchanges,andexternalfactorsthatarenot
accountedforintroducesomeuncertaintyabouttheinferredvaluesforasystem'sstate.TheKalmanfilter
averagesapredictionofasystem'sstatewithanewmeasurementusingaweightedaverage.Thepurposeof
theweightsisthatvalueswithbetter(i.e.,smaller)estimateduncertaintyare"trusted"more.Theweights
arecalculatedfromthecovariance,ameasureoftheestimateduncertaintyofthepredictionofthesystem's
state.Theresultoftheweightedaverageisanewstateestimatethatliesbetweenthepredictedand
measuredstate,andhasabetterestimateduncertaintythaneitheralone.Thisprocessisrepeatedeverytime
step,withthenewestimateanditscovarianceinformingthepredictionusedinthefollowingiteration.This
meansthattheKalmanfilterworksrecursivelyandrequiresonlythelast"bestguess",ratherthantheentire
history,ofasystem'sstatetocalculateanewstate.
Becausethecertaintyofthemeasurementsisoftendifficulttomeasureprecisely,itiscommontodiscuss
thefilter'sbehaviorintermsofgain.TheKalmangainisafunctionoftherelativecertaintyofthe
measurementsandcurrentstateestimate,andcanbe"tuned"toachieveparticularperformance.Withahigh
gain,thefilterplacesmoreweightonthemeasurements,andthusfollowsthemmoreclosely.Withalow
gain,thefilterfollowsthemodelpredictionsmoreclosely,smoothingoutnoisebutdecreasingthe
responsiveness.Attheextremes,againofonecausesthefiltertoignorethestateestimateentirely,whilea
gainofzerocausesthemeasurementstobeignored.

https://en.wikipedia.org/wiki/Kalman_filter

3/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

Whenperformingtheactualcalculationsforthefilter(asdiscussedbelow),thestateestimateand
covariancesarecodedintomatricestohandlethemultipledimensionsinvolvedinasinglesetof
calculations.Thisallowsforrepresentationoflinearrelationshipsbetweendifferentstatevariables(suchas
position,velocity,andacceleration)inanyofthetransitionmodelsorcovariances.

Exampleapplication
Asanexampleapplication,considertheproblemofdeterminingthepreciselocationofatruck.Thetruck
canbeequippedwithaGPSunitthatprovidesanestimateofthepositionwithinafewmeters.TheGPS
estimateislikelytobenoisyreadings'jumparound'rapidly,thoughalwaysremainingwithinafewmeters
oftherealposition.Inaddition,sincethetruckisexpectedtofollowthelawsofphysics,itspositioncan
alsobeestimatedbyintegratingitsvelocityovertime,determinedbykeepingtrackofwheelrevolutions
andtheangleofthesteeringwheel.Thisisatechniqueknownasdeadreckoning.Typically,dead
reckoningwillprovideaverysmoothestimateofthetruck'sposition,butitwilldriftovertimeassmall
errorsaccumulate.
Inthisexample,theKalmanfiltercanbethoughtofasoperatingintwodistinctphases:predictandupdate.
Inthepredictionphase,thetruck'soldpositionwillbemodifiedaccordingtothephysicallawsofmotion
(thedynamicor"statetransition"model)plusanychangesproducedbytheacceleratorpedalandsteering
wheel.Notonlywillanewpositionestimatebecalculated,butanewcovariancewillbecalculatedaswell.
Perhapsthecovarianceisproportionaltothespeedofthetruckbecausewearemoreuncertainaboutthe
accuracyofthedeadreckoningpositionestimateathighspeedsbutverycertainaboutthepositionestimate
whenmovingslowly.Next,intheupdatephase,ameasurementofthetruck'spositionistakenfromthe
GPSunit.Alongwiththismeasurementcomessomeamountofuncertainty,anditscovariancerelativeto
thatofthepredictionfromthepreviousphasedetermineshowmuchthenewmeasurementwillaffectthe
updatedprediction.Ideally,ifthedeadreckoningestimatestendtodriftawayfromtherealposition,the
GPSmeasurementshouldpullthepositionestimatebacktowardstherealpositionbutnotdisturbittothe
pointofbecomingrapidlychangingandnoisy.

Technicaldescriptionandcontext
TheKalmanfilterisanefficientrecursivefilterthatestimatestheinternalstateofalineardynamicsystem
fromaseriesofnoisymeasurements.Itisusedinawiderangeofengineeringandeconometricapplications
fromradarandcomputervisiontoestimationofstructuralmacroeconomicmodels,[9][10]andisanimportant
topicincontroltheoryandcontrolsystemsengineering.Togetherwiththelinearquadraticregulator(LQR),
theKalmanfiltersolvesthelinearquadraticGaussiancontrolproblem(LQG).TheKalmanfilter,the
linearquadraticregulatorandthelinearquadraticGaussiancontrolleraresolutionstowhatarguablyare
themostfundamentalproblemsincontroltheory.
Inmostapplications,theinternalstateismuchlarger(moredegreesoffreedom)thanthefew"observable"
parameterswhicharemeasured.However,bycombiningaseriesofmeasurements,theKalmanfiltercan
estimatetheentireinternalstate.
InDempsterShafertheory,eachstateequationorobservationisconsideredaspecialcaseofalinearbelief
functionandtheKalmanfilterisaspecialcaseofcombininglinearbelieffunctionsonajointreeor
Markovtree.AdditionalapproachesincludebelieffilterswhichuseBayesorevidentialupdatestothestate
equations.
https://en.wikipedia.org/wiki/Kalman_filter

4/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

AwidevarietyofKalmanfiltershavenowbeendeveloped,fromKalman'soriginalformulation,nowcalled
the"simple"Kalmanfilter,theKalmanBucyfilter,Schmidt's"extended"filter,theinformationfilter,anda
varietyof"squareroot"filtersthatweredevelopedbyBierman,Thorntonandmanyothers.Perhapsthe
mostcommonlyusedtypeofverysimpleKalmanfilteristhephaselockedloop,whichisnowubiquitous
inradios,especiallyfrequencymodulation(FM)radios,televisionsets,satellitecommunicationsreceivers,
outerspacecommunicationssystems,andnearlyanyotherelectroniccommunicationsequipment.

Underlyingdynamicsystemmodel
TheKalmanfiltersarebasedonlineardynamicsystemsdiscretizedinthetimedomain.Theyaremodelled
onaMarkovchainbuiltonlinearoperatorsperturbedbyerrorsthatmayincludeGaussiannoise.Thestate
ofthesystemisrepresentedasavectorofrealnumbers.Ateachdiscretetimeincrement,alinearoperator
isappliedtothestatetogeneratethenewstate,withsomenoisemixedin,andoptionallysomeinformation
fromthecontrolsonthesystemiftheyareknown.Then,anotherlinearoperatormixedwithmorenoise
generatestheobservedoutputsfromthetrue("hidden")state.TheKalmanfiltermayberegardedas
analogoustothehiddenMarkovmodel,withthekeydifferencethatthehiddenstatevariablestakevalues
inacontinuousspace(asopposedtoadiscretestatespaceasinthehiddenMarkovmodel).Thereisa
strongdualitybetweentheequationsoftheKalmanFilterandthoseofthehiddenMarkovmodel.Areview
ofthisandothermodelsisgiveninRoweisandGhahramani(1999)[11]andHamilton(1994),Chapter
13.[12]
InordertousetheKalmanfiltertoestimatetheinternalstateofaprocessgivenonlyasequenceofnoisy
observations,onemustmodeltheprocessinaccordancewiththeframeworkoftheKalmanfilter.This
meansspecifyingthefollowingmatrices:Fk,thestatetransitionmodelHk,theobservationmodelQk,the
covarianceoftheprocessnoiseRk,thecovarianceoftheobservationnoiseandsometimesBk,thecontrol
inputmodel,foreachtimestep,k,asdescribedbelow.
The

ModelunderlyingtheKalmanfilter.Squaresrepresentmatrices.Ellipsesrepresentmultivariatenormal
distributions(withthemeanandcovariancematrixenclosed).Unenclosedvaluesarevectors.Inthesimple
case,thevariousmatricesareconstantwithtime,andthusthesubscriptsaredropped,buttheKalmanfilter
allowsanyofthemtochangeeachtimestep.

Kalmanfiltermodelassumesthetruestateattimekisevolvedfromthestateat(k1)accordingto

https://en.wikipedia.org/wiki/Kalman_filter

5/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

where
Fkisthestatetransitionmodelwhichisappliedtothepreviousstatexk1
Bkisthecontrolinputmodelwhichisappliedtothecontrolvectoruk
wkistheprocessnoisewhichisassumedtobedrawnfromazeromeanmultivariatenormal
distributionwithcovarianceQk.
\mathbf{w}_k\simN(0,\mathbf{Q}_k)
Attimekanobservation(ormeasurement)zkofthetruestatexkismadeaccordingto
\mathbf{z}_k=\mathbf{H}_{k}\mathbf{x}_k+\mathbf{v}_k
whereHkistheobservationmodelwhichmapsthetruestatespaceintotheobservedspaceandvkisthe
observationnoisewhichisassumedtobezeromeanGaussianwhitenoisewithcovarianceRk.
\mathbf{v}_k\simN(0,\mathbf{R}_k)
Theinitialstate,andthenoisevectorsateachstep{x0,w1,,wk,v1vk}areallassumedtobemutually
independent.
Manyrealdynamicalsystemsdonotexactlyfitthismodel.Infact,unmodelleddynamicscanseriously
degradethefilterperformance,evenwhenitwassupposedtoworkwithunknownstochasticsignalsas
inputs.Thereasonforthisisthattheeffectofunmodelleddynamicsdependsontheinput,and,therefore,
canbringtheestimationalgorithmtoinstability(itdiverges).Ontheotherhand,independentwhitenoise
signalswillnotmakethealgorithmdiverge.Theproblemofseparatingbetweenmeasurementnoiseand
unmodelleddynamicsisadifficultoneandistreatedincontroltheoryundertheframeworkofrobust
control.[13][14]

Details
TheKalmanfilterisarecursiveestimator.Thismeansthatonlytheestimatedstatefromtheprevioustime
stepandthecurrentmeasurementareneededtocomputetheestimateforthecurrentstate.Incontrastto
batchestimationtechniques,nohistoryofobservationsand/orestimatesisrequired.Inwhatfollows,the
notation
representstheestimateof attimengivenobservationsupto,andincludingattimemn.
Thestateofthefilterisrepresentedbytwovariables:
,theaposterioristateestimateattimekgivenobservationsuptoandincludingattimek
,theaposteriorierrorcovariancematrix(ameasureoftheestimatedaccuracyofthestate
estimate).
TheKalmanfiltercanbewrittenasasingleequation,howeveritismostoftenconceptualizedastwo
distinctphases:"Predict"and"Update".Thepredictphaseusesthestateestimatefromtheprevious
timesteptoproduceanestimateofthestateatthecurrenttimestep.Thispredictedstateestimateisalso
knownastheaprioristateestimatebecause,althoughitisanestimateofthestateatthecurrenttimestep,it
https://en.wikipedia.org/wiki/Kalman_filter

6/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

doesnotincludeobservationinformationfromthecurrenttimestep.Intheupdatephase,thecurrentapriori
predictioniscombinedwithcurrentobservationinformationtorefinethestateestimate.Thisimproved
estimateistermedtheaposterioristateestimate.
Typically,thetwophasesalternate,withthepredictionadvancingthestateuntilthenextscheduled
observation,andtheupdateincorporatingtheobservation.However,thisisnotnecessaryifanobservation
isunavailableforsomereason,theupdatemaybeskippedandmultiplepredictionstepsperformed.
Likewise,ifmultipleindependentobservationsareavailableatthesametime,multipleupdatestepsmaybe
performed(typicallywithdifferentobservationmatricesHk).[15][16]

Predict
Predicted(apriori)stateestimate
Predicted(apriori)estimatecovariance

Update
Innovationormeasurementresidual

\tilde{\mathbf{y}}_k=\mathbf{z}_k
\mathbf{H}_k\hat{\mathbf{x}}_{k\mid
k1}

Innovation(orresidual)covariance
OptimalKalmangain
Updated(aposteriori)stateestimate
Updated(aposteriori)estimatecovariance
TheformulafortheupdatedestimatecovarianceaboveisonlyvalidfortheoptimalKalmangain.Usageof
othergainvaluesrequireamorecomplexformulafoundinthederivationssection.

Invariants
Ifthemodelisaccurate,andthevaluesfor
and
accuratelyreflectthedistributionoftheinitial
statevalues,thenthefollowinginvariantsarepreserved:(allestimateshaveameanerrorofzero)

where
istheexpectedvalueof ,andcovariancematricesaccuratelyreflectthecovarianceof
estimates

Optimalityandperformance
https://en.wikipedia.org/wiki/Kalman_filter

7/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

ItfollowsfromtheorythattheKalmanfilterisoptimalincaseswherea)themodelperfectlymatchesthe
realsystem,b)theenteringnoiseiswhiteandc)thecovariancesofthenoiseareexactlyknown.Several
methodsforthenoisecovarianceestimationhavebeenproposedduringpastdecades,includingALS,
mentionedinthepreviousparagraph.Afterthecovariancesareestimated,itisusefultoevaluatethe
performanceofthefilter,i.e.whetheritispossibletoimprovethestateestimationquality.IftheKalman
filterworksoptimally,theinnovationsequence(theoutputpredictionerror)isawhitenoise,thereforethe
whitenesspropertyoftheinnovationsmeasuresfilterperformance.Severaldifferentmethodscanbeused
forthispurpose.[17]

Exampleapplication,technical
Consideratruckonfrictionless,straightrails.Initiallythetruckis
stationaryatposition0,butitisbuffetedthiswayandthatby
randomuncontrolledforces.Wemeasurethepositionofthetruck
everytseconds,butthesemeasurementsareimprecisewewantto
maintainamodelofwherethetruckisandwhatitsvelocityis.We
showherehowwederivethemodelfromwhichwecreateour
Kalmanfilter.
Since

\mathbfF,\mathbfH,\mathbfR,\mathbfQ areconstant,

Black:truth,green:filteredprocess,
red:observations

theirtimeindicesaredropped.
Thepositionandvelocityofthetruckaredescribedbythelinearstatespace

where isthevelocity,thatis,thederivativeofpositionwithrespecttotime.
Weassumethatbetweenthe(k1)andktimestepuncontrolledforcescauseaconstantaccelerationofak
thatisnormallydistributed,withmean0andstandarddeviationa.FromNewton'slawsofmotionwe
concludethat
\mathbf{x}_{k}=\mathbf{F}\mathbf{x}_{k1}+\mathbf{G}a_{k}
(notethatthereisno

termsincewehavenoknowncontrolinputs.Instead,weassumethatakisthe

effectofanunknowninputand

appliesthateffecttothestatevector)where

\mathbf{F}=\begin{bmatrix}1&\Deltat\\0&1\end{bmatrix}
and

https://en.wikipedia.org/wiki/Kalman_filter

8/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

sothat
\mathbf{x}_{k}=\mathbf{F}\mathbf{x}_{k1}+\mathbf{w}_{k}
where

and

Ateachtimestep,anoisymeasurementofthetruepositionofthetruckismade.Letussupposethe
measurementnoisevkisalsonormallydistributed,withmean0andstandarddeviationz.

where

and

Weknowtheinitialstartingstateofthetruckwithperfectprecision,soweinitialize

andtotellthefilterthatweknowtheexactpositionandvelocity,wegiveitazerocovariancematrix:

Iftheinitialpositionandvelocityarenotknownperfectlythecovariancematrixshouldbeinitializedwitha
suitablylargenumber,sayL,onitsdiagonal.

Thefilterwillthenprefertheinformationfromthefirstmeasurementsovertheinformationalreadyinthe
model.

Derivations
Derivingtheaposterioriestimatecovariancematrix
https://en.wikipedia.org/wiki/Kalman_filter

9/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

StartingwithourinvariantontheerrorcovariancePk|kasabove

substituteinthedefinitionof

andsubstitute
\mathbf{P}_{k\midk}=\textrm{cov}(\mathbf{x}_{k}(\hat{\mathbf{x}}_{k\midk1}+
\mathbf{K}_k(\mathbf{z}_k\mathbf{H}_k\hat{\mathbf{x}}_{k\midk1})))
and

\mathbf{z}_{k}
\mathbf{P}_{k\midk}=\textrm{cov}(\mathbf{x}_{k}(\hat{\mathbf{x}}_{k\midk1}+
\mathbf{K}_k(\mathbf{H}_k\mathbf{x}_k+\mathbf{v}_k
\mathbf{H}_k\hat{\mathbf{x}}_{k\midk1})))

andbycollectingtheerrorvectorsweget
\mathbf{P}_{k|k}=\textrm{cov}((I\mathbf{K}_k\mathbf{H}_{k})(\mathbf{x}_k
\hat{\mathbf{x}}_{k\midk1})\mathbf{K}_k\mathbf{v}_k)
Sincethemeasurementerrorvkisuncorrelatedwiththeotherterms,thisbecomes

bythepropertiesofvectorcovariancethisbecomes
\mathbf{P}_{k\midk}=(I\mathbf{K}_k\mathbf{H}_{k})\textrm{cov}(\mathbf{x}_k
\hat{\mathbf{x}}_{k\midk1})(I\mathbf{K}_k\mathbf{H}_{k})^{\text{T}}+
\mathbf{K}_k\textrm{cov}(\mathbf{v}_k)\mathbf{K}_k^{\text{T}}
which,usingourinvariantonPk|k1andthedefinitionofRkbecomes

Thisformula(sometimesknownasthe"Josephform"ofthecovarianceupdateequation)isvalidforany
valueofKk.ItturnsoutthatifKkistheoptimalKalmangain,thiscanbesimplifiedfurtherasshown
below.

Kalmangainderivation
TheKalmanfilterisaminimummeansquareerrorestimator.Theerrorintheaposterioristateestimation
is
https://en.wikipedia.org/wiki/Kalman_filter

10/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

\mathbf{x}_{k}\hat{\mathbf{x}}_{k\midk}
Weseektominimizetheexpectedvalueofthesquareofthemagnitudeofthisvector,
Thisisequivalenttominimizingthetraceoftheaposterioriestimatecovariancematrix
expandingoutthetermsintheequationaboveandcollecting,weget:

.
.By

\begin{align}\mathbf{P}_{k\midk}&=\mathbf{P}_{k\midk1}\mathbf{K}_k
\mathbf{H}_k\mathbf{P}_{k\midk1}\mathbf{P}_{k\midk1}\mathbf{H}_k^\text{T}
\mathbf{K}_k^\text{T}+\mathbf{K}_k(\mathbf{H}_k\mathbf{P}_{k\midk1}
\mathbf{H}_k^\text{T}+\mathbf{R}_k)\mathbf{K}_k^\text{T}\\[6pt]&=\mathbf{P}_{k\mid
k1}\mathbf{K}_k\mathbf{H}_k\mathbf{P}_{k\midk1}\mathbf{P}_{k\midk1}
\mathbf{H}_k^\text{T}\mathbf{K}_k^\text{T}+\mathbf{K}_k
\mathbf{S}_k\mathbf{K}_k^\text{T}\end{align}
Thetraceisminimizedwhenitsmatrixderivativewithrespecttothegainmatrixiszero.Usingthegradient
matrixrulesandthesymmetryofthematricesinvolvedwefindthat
\frac{\partial\\mathrm{tr}(\mathbf{P}_{k\midk})}{\partial\\mathbf{K}_k}=2
(\mathbf{H}_k\mathbf{P}_{k\midk1})^\text{T}+2\mathbf{K}_k\mathbf{S}_k=0.
SolvingthisforKkyieldstheKalmangain:

\mathbf{K}_{k}=\mathbf{P}_{k\midk1}\mathbf{H}_k^\text{T}\mathbf{S}_k^{1}
Thisgain,whichisknownastheoptimalKalmangain,istheonethatyieldsMMSEestimateswhenused.

Simplificationoftheaposteriorierrorcovarianceformula
TheformulausedtocalculatetheaposteriorierrorcovariancecanbesimplifiedwhentheKalmangain
equalstheoptimalvaluederivedabove.MultiplyingbothsidesofourKalmangainformulaontherightby
SkKkT,itfollowsthat

Referringbacktoourexpandedformulafortheaposteriorierrorcovariance,

wefindthelasttwotermscancelout,giving

Thisformulaiscomputationallycheaperandthusnearlyalwaysusedinpractice,butisonlycorrectforthe
optimalgain.Ifarithmeticprecisionisunusuallylowcausingproblemswithnumericalstability,orifanon
optimalKalmangainisdeliberatelyused,thissimplificationcannotbeappliedtheaposteriorierror
https://en.wikipedia.org/wiki/Kalman_filter

11/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

covarianceformulaasderivedabove(Josephform)mustbeused.

Sensitivityanalysis
TheKalmanfilteringequationsprovideanestimateofthestate
anditserrorcovariance
recursively.Theestimateanditsqualitydependonthesystemparametersandthenoisestatisticsfedas
inputstotheestimator.Thissectionanalyzestheeffectofuncertaintiesinthestatisticalinputstothe
filter.[18]Intheabsenceofreliablestatisticsorthetruevaluesofnoisecovariancematrices
\mathbf{Q}_{k} and
,theexpression

nolongerprovidestheactualerrorcovariance.Inotherwords,
.
InmostrealtimeapplicationsthecovariancematricesthatareusedindesigningtheKalmanfilterare
differentfromtheactual(true)noisecovariancesmatrices.Thissensitivityanalysisdescribesthebehavior
oftheestimationerrorcovariancewhenthenoisecovariancesaswellasthesystemmatrices and
thatarefedasinputstothefilterareincorrect.Thus,thesensitivityanalysisdescribestherobustness(or
sensitivity)oftheestimatortomisspecifiedstatisticalandparametricinputstotheestimator.
Thisdiscussionislimitedtotheerrorsensitivityanalysisforthecaseofstatisticaluncertainties.Herethe
actualnoisecovariancesaredenotedby and \mathbf{R}^{a}_k respectively,whereasthedesign
valuesusedintheestimatorare
denotedby

\mathbf{Q}_k and

\mathbf{P}_{k\midk}^a and

Riccativariable.When

and

respectively.Theactualerrorcovarianceis

ascomputedbytheKalmanfilterisreferredtoasthe

\mathbf{R}_k\equiv\mathbf{R}^{a}_k ,thismeansthat

\mathbf{P}_{k\midk}=\mathbf{P}_{k\midk}^a .Whilecomputingtheactualerrorcovarianceusing
,substitutingfor
usingthefactthat

\widehat{\mathbf{x}}_{k\midk} and

E[\mathbf{w}_k\mathbf{w}_k^\mathrm{T}]=\mathbf{Q}_{k}^a and
,resultsinthefollowingrecursiveequationsfor

\mathbf{P}_{k\midk}^a :

and

Whilecomputing
,bydesignthefilterimplicitlyassumesthat
E[\mathbf{w}_k\mathbf{w}_k^\mathrm{T}]=\mathbf{Q}_{k} and
recursiveexpressionsfor
and

\mathbf{P}_{k\midk}^a and

\mathbf{R}_{k}^a inplaceofthedesignvalues

.Notethatthe

areidenticalexceptforthepresenceof
\mathbf{Q}_{k} and

respectively.

Squarerootform
https://en.wikipedia.org/wiki/Kalman_filter

12/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

OneproblemwiththeKalmanfilterisitsnumericalstability.IftheprocessnoisecovarianceQkissmall,
roundofferroroftencausesasmallpositiveeigenvaluetobecomputedasanegativenumber.Thisrenders
thenumericalrepresentationofthestatecovariancematrixPindefinite,whileitstrueformispositive
definite.
PositivedefinitematriceshavethepropertythattheyhaveatriangularmatrixsquarerootP=SST.This
canbecomputedefficientlyusingtheCholeskyfactorizationalgorithm,butmoreimportantly,ifthe
covarianceiskeptinthisform,itcanneverhaveanegativediagonalorbecomeasymmetric.Anequivalent
form,whichavoidsmanyofthesquarerootoperationsrequiredbythematrixsquarerootyetpreservesthe
desirablenumericalproperties,istheUDdecompositionform,P=UDUT,whereUisaunittriangular
matrix(withunitdiagonal),andDisadiagonalmatrix.
Betweenthetwo,theUDfactorizationusesthesameamountofstorage,andsomewhatlesscomputation,
andisthemostcommonlyusedsquarerootform.(Earlyliteratureontherelativeefficiencyissomewhat
misleading,asitassumedthatsquarerootsweremuchmoretimeconsumingthandivisions,[19]:69whileon
21stcenturycomputerstheyareonlyslightlymoreexpensive.)
EfficientalgorithmsfortheKalmanpredictionandupdatestepsinthesquarerootformweredevelopedby
G.J.BiermanandC.L.Thornton.[19][20]
TheLDLTdecompositionoftheinnovationcovariancematrixSkisthebasisforanothertypeof
numericallyefficientandrobustsquarerootfilter.[21]ThealgorithmstartswiththeLUdecompositionas
implementedintheLinearAlgebraPACKage(LAPACK).Theseresultsarefurtherfactoredintothe
LDLTstructurewithmethodsgivenbyGolubandVanLoan(algorithm4.1.2)forasymmetric
nonsingularmatrix.[22]Anysingularcovariancematrixispivotedsothatthefirstdiagonalpartitionis
nonsingularandwellconditioned.Thepivotingalgorithmmustretainanyportionoftheinnovation
covariancematrixdirectlycorrespondingtoobservedstatevariablesHkxk|k1thatareassociatedwith
auxiliaryobservationsinyk.theldltsquarerootfilterrequiresorthogonalizationoftheobservation
vector.[20][21]Thismaybedonewiththeinversesquarerootofthecovariancematrixfortheauxiliary
variablesusingMethod2inHigham(2002,p.263).[23]

RelationshiptorecursiveBayesianestimation
TheKalmanfiltercanbepresentedasoneofthemostsimpledynamicBayesiannetworks.TheKalman
filtercalculatesestimatesofthetruevaluesofstatesrecursivelyovertimeusingincomingmeasurements
andamathematicalprocessmodel.Similarly,recursiveBayesianestimationcalculatesestimatesofan
unknownprobabilitydensityfunction(PDF)recursivelyovertimeusingincomingmeasurementsanda
mathematicalprocessmodel.[24]
InrecursiveBayesianestimation,thetruestateisassumedtobeanunobservedMarkovprocess,andthe
measurementsaretheobservedstatesofahiddenMarkovmodel(HMM).

https://en.wikipedia.org/wiki/Kalman_filter

13/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

becauseofthemarkovassumption,thetruestateisconditionallyindependentofallearlierstatesgiventhe
immediatelypreviousstate.
p(\textbf{x}_k\mid\textbf{x}_0,\dots,\textbf{x}_{k1})=p(\textbf{x}_k\mid\textbf{x}_{k1})
Similarlythemeasurementatthekthtimestepisdependentonlyuponthecurrentstateandisconditionally
independentofallotherstatesgiventhecurrentstate.
p(\textbf{z}_k\mid\textbf{x}_0,\dots,\textbf{x}_{k})=p(\textbf{z}_k\mid\textbf{x}_{k})
UsingtheseassumptionstheprobabilitydistributionoverallstatesofthehiddenMarkovmodelcanbe
writtensimplyas:
p(\textbf{x}_0,\dots,\textbf{x}_k,\textbf{z}_1,\dots,\textbf{z}_k)=
p(\textbf{x}_0)\prod_{i=1}^kp(\textbf{z}_i\mid\textbf{x}_i)p(\textbf{x}_i\mid\textbf{x}_{i
1})
However,whentheKalmanfilterisusedtoestimatethestatex,theprobabilitydistributionofinterestis
thatassociatedwiththecurrentstatesconditionedonthemeasurementsuptothecurrenttimestep.Thisis
achievedbymarginalizingoutthepreviousstatesanddividingbytheprobabilityofthemeasurementset.
ThisleadstothepredictandupdatestepsoftheKalmanfilterwrittenprobabilistically.Theprobability
distributionassociatedwiththepredictedstateisthesum(integral)oftheproductsoftheprobability
distributionassociatedwiththetransitionfromthe(k1)thtimesteptothekthandtheprobability
distributionassociatedwiththepreviousstate,overallpossible x_{k1} .
p(\textbf{x}_k\mid\textbf{Z}_{k1})=\intp(\textbf{x}_k\mid\textbf{x}_{k1})
p(\textbf{x}_{k1}\mid\textbf{Z}_{k1})\,d\textbf{x}_{k1}
Themeasurementsetuptotimetis
\textbf{Z}_{t}=\left\{\textbf{z}_{1},\dots,\textbf{z}_{t}\right\}
Theprobabilitydistributionoftheupdateisproportionaltotheproductofthemeasurementlikelihoodand
thepredictedstate.
https://en.wikipedia.org/wiki/Kalman_filter

14/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

Thedenominator
p(\textbf{z}_k\mid\textbf{Z}_{k1})=\intp(\textbf{z}_k\mid\textbf{x}_k)p(\textbf{x}_k\mid
\textbf{Z}_{k1})d\textbf{x}_k
isanormalizationterm.
Theremainingprobabilitydensityfunctionsare
p(\textbf{x}_k\mid\textbf{x}_{k1})=\mathcal{N}(\textbf{F}_k\textbf{x}_{k1},
\textbf{Q}_k)
p(\textbf{z}_k\mid\textbf{x}_k)=\mathcal{N}(\textbf{H}_{k}\textbf{x}_k,\textbf{R}_k)
p(\textbf{x}_{k1}\mid\textbf{Z}_{k1})=\mathcal{N}(\hat{\textbf{x}}_{k1},\textbf{P}_{k
1})
NotethatthePDFattheprevioustimestepisinductivelyassumedtobetheestimatedstateandcovariance.
Thisisjustifiedbecause,asanoptimalestimator,theKalmanfiltermakesbestuseofthemeasurements,
thereforethePDFfor \mathbf{x}_k giventhemeasurements istheKalmanfilterestimate.

Marginallikelihood
RelatedtotherecursiveBayesianinterpretationdescribedabove,theKalmanfiltercanbeviewedasa
generativemodel,i.e.,aprocessforgeneratingastreamofrandomobservationsz=(z0,z1,z2,).
Specifically,theprocessis
1. Sampleahiddenstate
2. Sampleanobservation

\mathbf{x}_0 fromtheGaussianpriordistribution
.
\mathbf{z}_0 fromtheobservationmodel
.

3. For
,do
1. Samplethenexthiddenstate
2. Sampleanobservation

\mathbf{x}_k fromthetransitionmodel
.
fromtheobservationmodel

NotethatthisprocesshasidenticalstructuretothehiddenMarkovmodel,exceptthatthediscretestateand
observationsarereplacedwithcontinuousvariablessampledfromGaussiandistributions.
Insomeapplications,itisusefultocomputetheprobabilitythataKalmanfilterwithagivensetof
parameters(priordistribution,transitionandobservationmodels,andcontrolinputs)wouldgeneratea
particularobservedsignal.Thisprobabilityisknownasthemarginallikelihoodbecauseitintegratesover
https://en.wikipedia.org/wiki/Kalman_filter

15/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

("marginalizesout")thevaluesofthehiddenstatevariables,soitcanbecomputedusingonlytheobserved
signal.Themarginallikelihoodcanbeusefultoevaluatedifferentparameterchoices,ortocomparethe
KalmanfilteragainstothermodelsusingBayesianmodelcomparison.
Itisstraightforwardtocomputethemarginallikelihoodasasideeffectoftherecursivefiltering
computation.Bythechainrule,thelikelihoodcanbefactoredastheproductoftheprobabilityofeach
observationgivenpreviousobservations,
p(\mathbf{z})=\prod_{k=0}^Tp(\mathbf{z}_k\mid\mathbf{z}_{k1},\ldots,\mathbf{z}_0) ,
andbecausetheKalmanfilterdescribesaMarkovprocess,allrelevantinformationfromprevious
observationsiscontainedinthecurrentstateestimate
.Thusthemarginallikelihoodis
givenby

i.e.,aproductofGaussiandensities,eachcorrespondingtothedensityofoneobservationzkunderthe
currentfilteringdistribution
.Thiscaneasilybecomputedasasimplerecursiveupdate
however,toavoidnumericunderflow,inapracticalimplementationitisusuallydesirabletocomputethe
logmarginallikelihood \ell=\logp(\mathbf{z}) instead.Adoptingtheconvention \ell^{(1)}=0 ,
thiscanbedoneviatherecursiveupdaterule
\ell^{(k)}=\ell^{(k1)}\frac{1}{2}\left(\tilde{\mathbf{y}}_k^T\mathbf{S}^{1}_k
\tilde{\mathbf{y}}_k+\log\left|\mathbf{S}_k\right|+d_{y}\log2\pi\right)
,
where

isthedimensionofthemeasurementvector.[25]

Animportantapplicationwheresucha(log)likelihoodoftheobservations(giventhefilterparameters)is
usedismultitargettracking.Forexample,consideranobjecttrackingscenariowhereastreamof
observationsistheinput,however,itisunknownhowmanyobjectsareinthescene(or,thenumberof
objectsisknownbutisgreaterthanone).Insuchascenario,itcanbeunknownaprioriwhich
observations/measurementsweregeneratedbywhichobject.Amultiplehypothesistracker(MHT)typically
willformdifferenttrackassociationhypotheses,whereeachhypothesiscanbeviewedasaKalmanfilter
https://en.wikipedia.org/wiki/Kalman_filter

16/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

(inthelinearGaussiancase)withaspecificsetofparametersassociatedwiththehypothesizedobject.
Thus,itisimportanttocomputethelikelihoodoftheobservationsforthedifferenthypothesesunder
consideration,suchthatthemostlikelyonecanbefound.

Informationfilter
Intheinformationfilter,orinversecovariancefilter,theestimatedcovarianceandestimatedstateare
replacedbytheinformationmatrixandinformationvectorrespectively.Thesearedefinedas:
\textbf{Y}_{k\midk}=\textbf{P}_{k\midk}^{1}
\hat{\textbf{y}}_{k\midk}=\textbf{P}_{k\midk}^{1}\hat{\textbf{x}}_{k\midk}
Similarlythepredictedcovarianceandstatehaveequivalentinformationforms,definedas:
\textbf{Y}_{k\midk1}=\textbf{P}_{k\midk1}^{1}
\hat{\textbf{y}}_{k\midk1}=\textbf{P}_{k\midk1}^{1}\hat{\textbf{x}}_{k\midk1}
ashavethemeasurementcovarianceandmeasurementvector,whicharedefinedas:
\textbf{I}_{k}=\textbf{H}_{k}^{\text{T}}\textbf{R}_{k}^{1}\textbf{H}_{k}
\textbf{i}_{k}=\textbf{H}_{k}^{\text{T}}\textbf{R}_{k}^{1}\textbf{z}_{k}
Theinformationupdatenowbecomesatrivialsum.
\textbf{Y}_{k\midk}=\textbf{Y}_{k\midk1}+\textbf{I}_{k}
\hat{\textbf{y}}_{k\midk}=\hat{\textbf{y}}_{k\midk1}+\textbf{i}_{k}
ThemainadvantageoftheinformationfilteristhatNmeasurementscanbefilteredateachtimestepsimply
bysummingtheirinformationmatricesandvectors.
\textbf{Y}_{k\midk}=\textbf{Y}_{k\midk1}+\sum_{j=1}^N\textbf{I}_{k,j}
\hat{\textbf{y}}_{k\midk}=\hat{\textbf{y}}_{k\midk1}+\sum_{j=1}^N\textbf{i}_{k,j}
Topredicttheinformationfiltertheinformationmatrixandvectorcanbeconvertedbacktotheirstate
spaceequivalents,oralternativelytheinformationspacepredictioncanbeused.
\textbf{M}_{k}=[\textbf{F}_{k}^{1}]^{\text{T}}\textbf{Y}_{k1\midk1}
\textbf{F}_{k}^{1}
\textbf{C}_{k}=\textbf{M}_{k}[\textbf{M}_{k}+\textbf{Q}_{k}^{1}]^{1}
\textbf{L}_{k}=I\textbf{C}_{k}
\textbf{Y}_{k\midk1}=\textbf{L}_{k}\textbf{M}_{k}\textbf{L}_{k}^{\text{T}}+
\textbf{C}_{k}\textbf{Q}_{k}^{1}\textbf{C}_{k}^{\text{T}}

https://en.wikipedia.org/wiki/Kalman_filter

17/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

\hat{\textbf{y}}_{k\midk1}=\textbf{L}_{k}
[\textbf{F}_{k}^{1}]^{\text{T}}\hat{\textbf{y}}_{k1\midk1}
NotethatifFandQaretimeinvariantthesevaluescanbecached.NotealsothatFandQneedtobe
invertible.

Fixedlagsmoother
Theoptimalfixedlagsmootherprovidestheoptimalestimateof
givenfixedlag

N usingthemeasurementsfrom

\hat{\textbf{x}}_{kN\midk} fora

\textbf{z}_{1} to

\textbf{z}_{k} .Itcanbe

derivedusingtheprevioustheoryviaanaugmentedstate,andthemainequationofthefilteristhe
following:
\begin{bmatrix}\hat{\textbf{x}}_{t\midt}\\\hat{\textbf{x}}_{t1\midt}\\\vdots\\
\hat{\textbf{x}}_{tN+1\midt}\\\end{bmatrix}=\begin{bmatrix}\textbf{I}\\0\\\vdots\\0\\
\end{bmatrix}\hat{\textbf{x}}_{t\midt1}+\begin{bmatrix}0&\ldots&0\\\textbf{I}&0&
\vdots\\\vdots&\ddots&\vdots\\0&\ldots&I\\\end{bmatrix}\begin{bmatrix}
\hat{\textbf{x}}_{t1\midt1}\\\hat{\textbf{x}}_{t2\midt1}\\\vdots\\\hat{\textbf{x}}_{t
N+1\midt1}\\\end{bmatrix}+\begin{bmatrix}\textbf{K}^{(0)}\\\textbf{K}^{(1)}\\\vdots\\
\textbf{K}^{(N1)}\\\end{bmatrix}\textbf{y}_{t\midt1}
where:
\hat{\textbf{x}}_{t\midt1} isestimatedviaastandardKalmanfilter
\textbf{y}_{t\midt1}=\textbf{z}(t)\textbf{H}\hat{\textbf{x}}_{t\midt1} istheinnovation
producedconsideringtheestimateofthestandardKalmanfilter
thevarious \hat{\textbf{x}}_{ti\midt} with i=1,\ldots,N1 arenewvariables,i.e.theydonot
appearinthestandardKalmanfilter
thegainsarecomputedviathefollowingscheme:
\textbf{K}^{(i)}=\textbf{P}^{(i)}\textbf{H}^{T}\left[\textbf{H}\textbf{P}
\textbf{H}^\mathrm{T}+\textbf{R}\right]^{1}
and
\textbf{P}^{(i)}=\textbf{P}\left[\left[\textbf{F}\textbf{K}\textbf{H}\right]^{T}
\right]^{i}
where

\textbf{P} and

\textbf{K} arethepredictionerrorcovarianceandthegainsofthe

standardKalmanfilter(i.e.,

\textbf{P}_{t\midt1} ).

Iftheestimationerrorcovarianceisdefinedsothat
\textbf{P}_{i}:=E\left[\left(\textbf{x}_{ti}\hat{\textbf{x}}_{ti\midt}\right)^{*}\left(
\textbf{x}_{ti}\hat{\textbf{x}}_{ti\midt}\right)\midz_{1}\ldotsz_{t}\right],
https://en.wikipedia.org/wiki/Kalman_filter

18/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

thenwehavethattheimprovementontheestimationof

\textbf{x}_{ti} isgivenby:

\textbf{P}\textbf{P}_{i}=\sum_{j=0}^{i}\left[\textbf{P}^{(j)}\textbf{H}^{T}\left[
\textbf{H}\textbf{P}\textbf{H}^\mathrm{T}+\textbf{R}\right]^{1}\textbf{H}\left(
\textbf{P}^{(i)}\right)^\mathrm{T}\right]

Fixedintervalsmoothers
Theoptimalfixedintervalsmootherprovidestheoptimalestimateof
k<n )usingthemeasurementsfromafixedinterval

\hat{\textbf{x}}_{k\midn} (

\textbf{z}_{1} to

\textbf{z}_{n} .Thisisalso

called"KalmanSmoothing".Thereareseveralsmoothingalgorithmsincommonuse.

RauchTungStriebel
TheRauchTungStriebel(RTS)smootherisanefficienttwopassalgorithmforfixedinterval
smoothing.[26]
TheforwardpassisthesameastheregularKalmanfilteralgorithm.Thesefilteredstateestimates
\hat{\textbf{x}}_{k\midk} andcovariances \textbf{P}_{k\midk} aresavedforuseinthebackwards
pass.
Inthebackwardspass,wecomputethesmoothedstateestimates
covariances

\hat{\textbf{x}}_{k\midn} and

\textbf{P}_{k\midn} .Westartatthelasttimestepandproceedbackwardsintimeusingthe

followingrecursiveequations:
\hat{\textbf{x}}_{k\midn}=\hat{\textbf{x}}_{k\midk}+\textbf{C}_k(
\hat{\textbf{x}}_{k+1\midn}\hat{\textbf{x}}_{k+1\midk})

where
\textbf{C}_k=\textbf{P}_{k\midk}\textbf{F}_{k+1}^\mathrm{T}\textbf{P}_{k+1\mid
k}^{1}

ModifiedBrysonFraziersmoother
AnalternativetotheRTSalgorithmisthemodifiedBrysonFrazier(MBF)fixedintervalsmoother
developedbyBierman.[20]ThisalsousesabackwardpassthatprocessesdatasavedfromtheKalmanfilter
forwardpass.Theequationsforthebackwardpassinvolvetherecursivecomputationofdatawhichare
usedateachobservationtimetocomputethesmoothedstateandcovariance.
Therecursiveequationsare

https://en.wikipedia.org/wiki/Kalman_filter

19/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

\tilde{\Lambda}_k=\textbf{H}_k^T\textbf{S}_k^{1}\textbf{H}_k+\hat{\textbf{C}}_k^T
\hat{\Lambda}_k\hat{\textbf{C}}_k
\hat{\Lambda}_{k1}=\textbf{F}_k^T\tilde{\Lambda}_{k}\textbf{F}_k
\hat{\Lambda}_n=0
\tilde{\lambda}_k=\textbf{H}_k^T\textbf{S}_k^{1}\textbf{y}_k+\hat{\textbf{C}}_k^T
\hat{\lambda}_k
\hat{\lambda}_{k1}=\textbf{F}_k^T\tilde{\lambda}_{k}
\hat{\lambda}_n=0
where

\textbf{S}_k istheresidualcovarianceand

\hat{\textbf{C}}_k=\textbf{I}\textbf{K}_k\textbf{H}_k .Thesmoothedstateandcovariancecan
thenbefoundbysubstitutionintheequations
\textbf{P}_{k\midn}=\textbf{P}_{k\midk}\textbf{P}_{k\mid
k}\hat{\Lambda}_k\textbf{P}_{k\midk}
\textbf{x}_{k\midn}=\textbf{x}_{k\midk}\textbf{P}_{k\midk}\hat{\lambda}_k
or
\textbf{P}_{k\midn}=\textbf{P}_{k\midk1}\textbf{P}_{k\midk
1}\tilde{\Lambda}_k\textbf{P}_{k\midk1}
\textbf{x}_{k\midn}=\textbf{x}_{k\midk1}\textbf{P}_{k\midk1}\tilde{\lambda}_k.
AnimportantadvantageoftheMBFisthatitdoesnotrequirefindingtheinverseofthecovariancematrix.

Minimumvariancesmoother
Theminimumvariancesmoothercanattainthebestpossibleerrorperformance,providedthatthemodels
arelinear,theirparametersandthenoisestatisticsareknownprecisely.[27]Thissmootherisatimevarying
statespacegeneralizationoftheoptimalnoncausalWienerfilter.
Thesmoothercalculationsaredoneintwopasses.Theforwardcalculationsinvolveaonestepahead
predictorandaregivenby
\hat{\textbf{x}}_{k+1\midk}=\textbf{(F}_{k}
\textbf{K}_{k}\textbf{H}_{k})\hat{\textbf{x}}_{k\midk1}+\textbf{K}_{k}\textbf{z}_{k}
{\alpha}_{k}=\textbf{S}_k^{1/2}\textbf{H}_{k}\hat{\textbf{x}}_{k\midk1}+
\textbf{S}_k^{1/2}\textbf{z}_{k}
TheabovesystemisknownastheinverseWienerHopffactor.Thebackwardrecursionistheadjointofthe
aboveforwardsystem.Theresultofthebackwardpass \beta_{k} maybecalculatedbyoperatingthe
forwardequationsonthetimereversed

\alpha_{k} andtimereversingtheresult.Inthecaseofoutput

estimation,thesmoothedestimateisgivenby
https://en.wikipedia.org/wiki/Kalman_filter

20/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

\hat{\textbf{y}}_{k\midN}=\textbf{z}_{k}\textbf{R}_{k}\beta_{k}
Takingthecausalpartofthisminimumvariancesmootheryields
\hat{\textbf{y}}_{k\midk}=\textbf{z}_{k}\textbf{R}_{k}\textbf{S}_k^{1/2}\alpha_{k}
whichisidenticaltotheminimumvarianceKalmanfilter.Theabovesolutionsminimizethevarianceofthe
outputestimationerror.NotethattheRauchTungStriebelsmootherderivationassumesthatthe
underlyingdistributionsareGaussian,whereastheminimumvariancesolutionsdonot.Optimalsmoothers
forstateestimationandinputestimationcanbeconstructedsimilarly.
Acontinuoustimeversionoftheabovesmootherisdescribedin.[28][29]
Expectationmaximizationalgorithmsmaybeemployedtocalculateapproximatemaximumlikelihood
estimatesofunknownstatespaceparameterswithinminimumvariancefiltersandsmoothers.Often
uncertaintiesremainwithinproblemassumptions.Asmootherthataccommodatesuncertaintiescanbe
designedbyaddingapositivedefinitetermtotheRiccatiequation.[30]
Incaseswherethemodelsarenonlinear,stepwiselinearizationsmaybewithintheminimumvariance
filterandsmootherrecursions(extendedKalmanfiltering).

FrequencyWeightedKalmanfilters
PioneeringresearchontheperceptionofsoundsatdifferentfrequencieswasconductedbyFletcherand
Munsoninthe1930s.Theirworkledtoastandardwayofweightingmeasuredsoundlevelswithin
investigationsofindustrialnoiseandhearingloss.Frequencyweightingshavesincebeenusedwithinfilter
andcontrollerdesignstomanageperformancewithinbandsofinterest.
Typically,afrequencyshapingfunctionisusedtoweighttheaveragepoweroftheerrorspectraldensityin
aspecifiedfrequencyband.Let \textbf{y} \hat{\textbf{y}} denotetheoutputestimationerror
exhibitedbyaconventionalKalmanfilter.Also,let

\textbf{W} denoteacausalfrequencyweighting

transferfunction.Theoptimumsolutionwhichminimizesthevarianceof
\hat{\textbf{y}} )arisesbysimplyconstructing
Thedesignof

\textbf{W} (

\textbf{y}

\textbf{W}^{1}\hat{\textbf{y}} .

\textbf{W} remainsanopenquestion.Onewayofproceedingistoidentifyasystem

whichgeneratestheestimationerrorandsetting

\textbf{W} equaltotheinverseofthatsystem.[31]This

proceduremaybeiteratedtoobtainmeansquareerrorimprovementatthecostofincreasedfilterorder.
Thesametechniquecanbeappliedtosmoothers.

Nonlinearfilters
ThebasicKalmanfilterislimitedtoalinearassumption.Morecomplexsystems,however,canbe
nonlinear.Thenonlinearitycanbeassociatedeitherwiththeprocessmodelorwiththeobservationmodel
orwithboth.
https://en.wikipedia.org/wiki/Kalman_filter

21/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

ExtendedKalmanfilter
IntheextendedKalmanfilter(EKF),thestatetransitionandobservationmodelsneednotbelinear
functionsofthestatebutmayinsteadbenonlinearfunctions.Thesefunctionsareofdifferentiabletype.
\textbf{x}_{k}=f(\textbf{x}_{k1},\textbf{u}_{k})+\textbf{w}_{k}
\textbf{z}_{k}=h(\textbf{x}_{k})+\textbf{v}_{k}
Thefunctionfcanbeusedtocomputethepredictedstatefromthepreviousestimateandsimilarlythe
functionhcanbeusedtocomputethepredictedmeasurementfromthepredictedstate.However,fandh
cannotbeappliedtothecovariancedirectly.Insteadamatrixofpartialderivatives(theJacobian)is
computed.
AteachtimesteptheJacobianisevaluatedwithcurrentpredictedstates.Thesematricescanbeusedinthe
Kalmanfilterequations.Thisprocessessentiallylinearizesthenonlinearfunctionaroundthecurrent
estimate.

UnscentedKalmanfilter
Whenthestatetransitionandobservationmodelsthatis,thepredictandupdatefunctions

f and

arehighlynonlinear,theextendedKalmanfiltercangiveparticularlypoorperformance.[32]Thisisbecause
thecovarianceispropagatedthroughlinearizationoftheunderlyingnonlinearmodel.Theunscented
Kalmanfilter(UKF)[32]usesadeterministicsamplingtechniqueknownastheunscentedtransformtopick
aminimalsetofsamplepoints(calledsigmapoints)aroundthemean.Thesesigmapointsarethen
propagatedthroughthenonlinearfunctions,fromwhichthemeanandcovarianceoftheestimatearethen
recovered.Theresultisafilterwhichmoreaccuratelycapturesthetruemeanandcovariance.(Thiscanbe
verifiedusingMonteCarlosamplingorthroughaTaylorseriesexpansionoftheposteriorstatistics.)In
addition,thistechniqueremovestherequirementtoexplicitlycalculateJacobians,whichforcomplex
functionscanbeadifficulttaskinitself(i.e.,requiringcomplicatedderivativesifdoneanalyticallyorbeing
computationallycostlyifdonenumerically).
Predict
AswiththeEKF,theUKFpredictioncanbeusedindependentlyfromtheUKFupdate,incombinationwith
alinear(orindeedEKF)update,orviceversa.
Theestimatedstateandcovarianceareaugmentedwiththemeanandcovarianceoftheprocessnoise.
\textbf{x}_{k1\midk1}^{a}=[\hat{\textbf{x}}_{k1\midk1}^\mathrm{T}\quad
E[\textbf{w}_{k}^\mathrm{T}]\]^\mathrm{T}
\textbf{P}_{k1\midk1}^{a}=\begin{bmatrix}&\textbf{P}_{k1\midk1}&&0&\\&0&
&\textbf{Q}_{k}&\end{bmatrix}
Asetof2L+1sigmapointsisderivedfromtheaugmentedstateandcovariancewhereListhedimension
oftheaugmentedstate.
https://en.wikipedia.org/wiki/Kalman_filter

22/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

\chi_{k1\midk1}^{0}=\textbf{x}_{k1\midk1}^{a}
\chi_{k1\midk1}^{i}=\textbf{x}_{k1\midk1}^{a}+\left(\sqrt{(L+\lambda)
\textbf{P}_{k1\midk1}^{a}}\right)_{i},\qquadi=1,\ldots,L
\chi_{k1\midk1}^{i}=\textbf{x}_{k1\midk1}^{a}\left(\sqrt{(L+\lambda)
\textbf{P}_{k1\midk1}^{a}}\right)_{iL},\qquadi=L+1,\dots{},2L
where
\left(\sqrt{(L+\lambda)\textbf{P}_{k1\midk1}^{a}}\right)_{i}
istheithcolumnofthematrixsquarerootof
(L+\lambda)\textbf{P}_{k1\midk1}^{a}
usingthedefinition:squareroot

\textbf{A} ofmatrix

\textbf{B} satisfies

\textbf{B}\triangleq\textbf{A}\textbf{A}^\mathrm{T}.\,
Thematrixsquarerootshouldbecalculatedusingnumericallyefficientandstablemethodssuchasthe
Choleskydecomposition.
Thesigmapointsarepropagatedthroughthetransitionfunctionf.
\chi_{k\midk1}^{i}=f(\chi_{k1\midk1}^{i})\quadi=0,\dots,2L
where
covariance.

.Theweightedsigmapointsarerecombinedtoproducethepredictedstateand

\hat{\textbf{x}}_{k\midk1}=\sum_{i=0}^{2L}W_{s}^{i}\chi_{k\midk1}^{i}
\textbf{P}_{k\midk1}=\sum_{i=0}^{2L}W_{c}^{i}\[\chi_{k\midk1}^{i}
\hat{\textbf{x}}_{k\midk1}][\chi_{k\midk1}^{i}\hat{\textbf{x}}_{k\midk
1}]^\mathrm{T}
wheretheweightsforthestateandcovariancearegivenby:
W_{s}^{0}=\frac{\lambda}{L+\lambda}
W_{c}^{0}=\frac{\lambda}{L+\lambda}+(1\alpha^2+\beta)
W_{s}^{i}=W_{c}^{i}=\frac{1}{2(L+\lambda)}
\lambda=\alpha^2(L+\kappa)L\,\!
\alpha and

\kappa controlthespreadofthesigmapoints.

Normalvaluesare
Gaussian,

\alpha=10^{3} ,

\kappa=0 and

\beta isrelatedtothedistributionof

\beta=2 .Ifthetruedistributionof

x.

x is

\beta=2 isoptimal.[33]

https://en.wikipedia.org/wiki/Kalman_filter

23/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

Update
Thepredictedstateandcovarianceareaugmentedasbefore,exceptnowwiththemeanandcovarianceof
themeasurementnoise.
\textbf{x}_{k\midk1}^{a}=[\hat{\textbf{x}}_{k\midk1}^\mathrm{T}\quad
E[\textbf{v}_{k}^\mathrm{T}]\]^\mathrm{T}
\textbf{P}_{k\midk1}^{a}=\begin{bmatrix}&\textbf{P}_{k\midk1}&&0&\\&0&
&\textbf{R}_{k}&\end{bmatrix}
Asbefore,asetof2L+1sigmapointsisderivedfromtheaugmentedstateandcovariancewhereListhe
dimensionoftheaugmentedstate.
\begin{align}\chi_{k\midk1}^{0}&=\textbf{x}_{k\midk1}^{a}\\[6pt]\chi_{k\midk1}^{i}
&=\textbf{x}_{k\midk1}^{a}+\left(\sqrt{(L+\lambda)\textbf{P}_{k\midk1}^{a}}\right
)_{i},\qquadi=1,\dots,L\\[6pt]\chi_{k\midk1}^{i}&=\textbf{x}_{k\midk1}^{a}\left(
\sqrt{(L+\lambda)\textbf{P}_{k\midk1}^{a}}\right)_{iL},\qquadi=L+1,\dots,2L
\end{align}
AlternativelyiftheUKFpredictionhasbeenusedthesigmapointsthemselvescanbeaugmentedalongthe
followinglines
\chi_{k\midk1}:=[\chi_{k\midk1}^\mathrm{T}\quadE[\textbf{v}_{k}^\mathrm{T}]\
]^\mathrm{T}\pm\sqrt{(L+\lambda)\textbf{R}_{k}^{a}}
where
\textbf{R}_{k}^{a}=\begin{bmatrix}&0&&0&\\&0&&\textbf{R}_{k}&\end{bmatrix}
Thesigmapointsareprojectedthroughtheobservationfunctionh.
\gamma_{k}^{i}=h(\chi_{k\midk1}^{i})\quadi=0..2L
Theweightedsigmapointsarerecombinedtoproducethepredictedmeasurementandpredicted
measurementcovariance.
\hat{\textbf{z}}_{k}=\sum_{i=0}^{2L}W_{s}^{i}\gamma_{k}^{i}
\textbf{P}_{z_{k}z_{k}}=\sum_{i=0}^{2L}W_{c}^{i}\[\gamma_{k}^{i}
\hat{\textbf{z}}_{k}][\gamma_{k}^{i}\hat{\textbf{z}}_{k}]^\mathrm{T}
Thestatemeasurementcrosscovariancematrix,

https://en.wikipedia.org/wiki/Kalman_filter

24/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

isusedtocomputetheUKFKalmangain.
K_{k}=\textbf{P}_{x_{k}z_{k}}\textbf{P}_{z_{k}z_{k}}^{1}
AswiththeKalmanfilter,theupdatedstateisthepredictedstateplustheinnovationweightedbythe
Kalmangain,
\hat{\textbf{x}}_{k\midk}=\hat{\textbf{x}}_{k\midk1}+K_{k}(\textbf{z}_{k}
\hat{\textbf{z}}_{k})
Andtheupdatedcovarianceisthepredictedcovariance,minusthepredictedmeasurementcovariance,
weightedbytheKalmangain.
\textbf{P}_{k\midk}=\textbf{P}_{k\midk1}K_{k}\textbf{P}_{z_{k}z_{k}}
K_{k}^\mathrm{T}

KalmanBucyfilter
TheKalmanBucyfilter(namedafterRichardSnowdenBucy)isacontinuoustimeversionoftheKalman
filter.[34][35]
Itisbasedonthestatespacemodel
\frac{d}{dt}\mathbf{x}(t)=\mathbf{F}(t)\mathbf{x}(t)+\mathbf{B}(t)\mathbf{u}(t)+
\mathbf{w}(t)
\mathbf{z}(t)=\mathbf{H}(t)\mathbf{x}(t)+\mathbf{v}(t)
where

\mathbf{Q}(t) and

\mathbf{w}(t) and

\mathbf{R}(t) representtheintensitiesofthetwowhitenoiseterms

\mathbf{v}(t) ,respectively.

Thefilterconsistsoftwodifferentialequations,oneforthestateestimateandoneforthecovariance:
\frac{d}{dt}\hat{\mathbf{x}}(t)=\mathbf{F}(t)\hat{\mathbf{x}}(t)+\mathbf{B}(t)\mathbf{u}
(t)+\mathbf{K}(t)(\mathbf{z}(t)\mathbf{H}(t)\hat{\mathbf{x}}(t))
\frac{d}{dt}\mathbf{P}(t)=\mathbf{F}(t)\mathbf{P}(t)+\mathbf{P}(t)\mathbf{F}^{T}(t)+
\mathbf{Q}(t)\mathbf{K}(t)\mathbf{R}(t)\mathbf{K}^{T}(t)
wheretheKalmangainisgivenby
\mathbf{K}(t)=\mathbf{P}(t)\mathbf{H}^{T}(t)\mathbf{R}^{1}(t)

https://en.wikipedia.org/wiki/Kalman_filter

25/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

Notethatinthisexpressionfor

\mathbf{K}(t) thecovarianceoftheobservationnoise

\mathbf{R}(t)

representsatthesametimethecovarianceofthepredictionerror(orinnovation)
\tilde{\mathbf{y}}(t)=\mathbf{z}(t)\mathbf{H}(t)\hat{\mathbf{x}}(t) thesecovariancesareequalonly
inthecaseofcontinuoustime.[36]
ThedistinctionbetweenthepredictionandupdatestepsofdiscretetimeKalmanfilteringdoesnotexistin
continuoustime.
Theseconddifferentialequation,forthecovariance,isanexampleofaRiccatiequation.

HybridKalmanfilter
Mostphysicalsystemsarerepresentedascontinuoustimemodelswhilediscretetimemeasurementsare
frequentlytakenforstateestimationviaadigitalprocessor.Therefore,thesystemmodelandmeasurement
modelaregivenby
\begin{align}\dot{\mathbf{x}}(t)&=\mathbf{F}(t)\mathbf{x}(t)+\mathbf{B}(t)\mathbf{u}
(t)+\mathbf{w}(t),&\mathbf{w}(t)&\simN\bigl(\mathbf{0},\mathbf{Q}(t)\bigr)\\\mathbf{z}_k
&=\mathbf{H}_k\mathbf{x}_k+\mathbf{v}_k,&\mathbf{v}_k&\sim
N(\mathbf{0},\mathbf{R}_k)\end{align}
where
\mathbf{x}_k=\mathbf{x}(t_k) .
Initialize
\hat{\mathbf{x}}_{0\mid0}=E\bigl[\mathbf{x}(t_0)\bigr],\mathbf{P}_{0\mid
0}=Var\bigl[\mathbf{x}(t_0)\bigr]
Predict
\begin{align}&\dot{\hat{\mathbf{x}}}(t)=\mathbf{F}(t)\hat{\mathbf{x}}(t)+\mathbf{B}(t)
\mathbf{u}(t)\text{,with}\hat{\mathbf{x}}(t_{k1})=\hat{\mathbf{x}}_{k1\midk1}\\
\Rightarrow&\hat{\mathbf{x}}_{k\midk1}=\hat{\mathbf{x}}(t_k)\\&\dot{\mathbf{P}}(t)=
\mathbf{F}(t)\mathbf{P}(t)+\mathbf{P}(t)\mathbf{F}(t)^T+\mathbf{Q}(t)\text{,with}
\mathbf{P}(t_{k1})=\mathbf{P}_{k1\midk1}\\\Rightarrow&\mathbf{P}_{k\midk1}=
\mathbf{P}(t_k)\end{align}
ThepredictionequationsarederivedfromthoseofcontinuoustimeKalmanfilterwithoutupdatefrom
measurements,i.e., \mathbf{K}(t)=0 .Thepredictedstateandcovariancearecalculatedrespectivelyby
solvingasetofdifferentialequationswiththeinitialvalueequaltotheestimateatthepreviousstep.
Update
\mathbf{K}_{k}=\mathbf{P}_{k\midk
1}\mathbf{H}_{k}^T\bigl(\mathbf{H}_{k}\mathbf{P}_{k\midk
1}\mathbf{H}_{k}^T+\mathbf{R}_{k}\bigr)^{1}
\hat{\mathbf{x}}_{k\midk}=\hat{\mathbf{x}}_{k\midk1}+\mathbf{K}_k(\mathbf{z}_k
\mathbf{H}_k\hat{\mathbf{x}}_{k\midk1})
https://en.wikipedia.org/wiki/Kalman_filter

26/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

\mathbf{P}_{k\midk}=(\mathbf{I}\mathbf{K}_{k}\mathbf{H}_{k})\mathbf{P}_{k\midk
1}
TheupdateequationsareidenticaltothoseofthediscretetimeKalmanfilter.

Variantsfortherecoveryofsparsesignals
RecentlythetraditionalKalmanfilterhasbeenemployedfortherecoveryofsparse,possiblydynamic,
signalsfromnoisyobservations.Bothworks[37]and[38]utilizenotionsfromthetheoryofcompressed
sensing/sampling,suchastherestrictedisometrypropertyandrelatedprobabilisticrecoveryarguments,for
sequentiallyestimatingthesparsestateinintrinsicallylowdimensionalsystems.

Applications
AttitudeandHeadingReferenceSystems
Autopilot
Batterystateofcharge(SoC)estimation[39][40]
Braincomputerinterface
Chaoticsignals
TrackingandVertexFittingofchargedparticlesinParticleDetectors[41]
Trackingofobjectsincomputervision
Dynamicpositioning
Economics,inparticularmacroeconomics,timeseriesanalysis,andeconometrics[42]
Inertialguidancesystem
OrbitDetermination
Powersystemstateestimation
Radartracker
Satellitenavigationsystems
Seismology[43]
SensorlesscontrolofACmotorvariablefrequencydrives
Simultaneouslocalizationandmapping
Speechenhancement
Visualodometry
Weatherforecasting
Navigationsystem
3Dmodeling
Structuralhealthmonitoring
Humansensorimotorprocessing[44]

Seealso
Alphabetafilter
BayesianMMSEestimator
Covarianceintersection
Dataassimilation
EnsembleKalmanfilter
https://en.wikipedia.org/wiki/Kalman_filter

27/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

ExtendedKalmanfilter
FastKalmanfilter
Filteringproblem(stochasticprocesses)
Generalizedfiltering
InvariantextendedKalmanfilter
Kerneladaptivefilter
LinearquadraticGaussiancontrol
Movinghorizonestimation
Nonlinearfilter
Particlefilterestimator
Predictorcorrector
Recursiveleastsquares
SchmidtKalmanfilter
Separationprinciple
Slidingmodecontrol
Stochasticdifferentialequations
Volterraseries
Wienerfilter
Zakaiequation

References
1. Kalman,R.E.(1960)."ANewApproachtoLinearFilteringandPredictionProblems".JournalofBasic
Engineering82:35.doi:10.1115/1.3662552(https://dx.doi.org/10.1115%2F1.3662552).
2. SteffenL.Lauritzen(http://www.stats.ox.ac.uk/~steffen/)."Timeseriesanalysisin1880.Adiscussionof
contributionsmadebyT.N.Thiele".InternationalStatisticalReview49,1981,319333.JSTOR1402616
(http://www.jstor.org/stable/1402616)
3. SteffenL.Lauritzen,Thiele:PioneerinStatistics(http://www.oup.com/uk/catalogue/?ci=9780198509721),
OxfordUniversityPress,2002.ISBN0198509723.
4. MohinderS.GrewalandAngusP.Andrews(http://ieeecss.org/CSM/library/2010/june10/11
HistoricalPerspectives.pdf)
5. Stratonovich,R.L.(1959).Optimumnonlinearsystemswhichbringaboutaseparationofasignalwithconstant
parametersfromnoise.Radiofizika,2:6,pp.892901.
6. Stratonovich,R.L.(1959).Onthetheoryofoptimalnonlinearfilteringofrandomfunctions.Theoryof
ProbabilityanditsApplications,4,pp.223225.
7. Stratonovich,R.L.(1960)ApplicationoftheMarkovprocessestheorytooptimalfiltering.RadioEngineering
andElectronicPhysics,5:11,pp.119.
8. Stratonovich,R.L.(1960).ConditionalMarkovProcesses.TheoryofProbabilityanditsApplications,5,
pp.156178.
9. IngvarStridKarlWalentin(April2009)."BlockKalmanFilteringforLargeScaleDSGEModels"
(http://www.riksbank.se/en/Pressandpublished/PublishedfromtheRiksbank/Otherreports/WorkingPaper
Series/2008/No224BlockKalmanfilteringforlargescaleDSGEmodels/).ComputationalEconomics
(Springer)33(3):277304.doi:10.1007/s1061400891604(https://dx.doi.org/10.1007%2Fs1061400891604).
10. MartinMllerAndreasen(2008)."NonlinearDSGEModels,TheCentralDifferenceKalmanFilter,andThe
MeanShiftedParticleFilter"(ftp://ftp.econ.au.dk/creates/rp/08/rp08_33.pdf)(PDF).
11. Roweis,SGhahramani,Z(1999)."Aunifyingreviewoflineargaussianmodels".Neuralcomputation11(2):
30545.doi:10.1162/089976699300016674(https://dx.doi.org/10.1162%2F089976699300016674).
PMID9950734(https://www.ncbi.nlm.nih.gov/pubmed/9950734).
12. Hamilton,J.(1994),TimeSeriesAnalysis,PrincetonUniversityPress.Chapter13,'TheKalmanFilter'.
13. Ishihara,J.Y.Terra,M.H.Campos,J.C.T.(2006)."RobustKalmanFilterforDescriptorSystems".IEEE
TransactionsonAutomaticControl51(8):1354.doi:10.1109/TAC.2006.878741
(https://dx.doi.org/10.1109%2FTAC.2006.878741).
https://en.wikipedia.org/wiki/Kalman_filter

28/33

7/27/2015

14.
15.
16.
17.

18.
19.
20.
21.
22.
23.
24.

25.
26.

27.

28.

29.
30.

KalmanfilterWikipedia,thefreeencyclopedia

(https://dx.doi.org/10.1109%2FTAC.2006.878741).
Terra,MarcoH.Cerri,JoaoP.Ishihara,JoaoY.(2014)."OptimalRobustLinearQuadraticRegulatorfor
SystemsSubjecttoUncertainties".IEEETransactionsonAutomaticControl59(9):2586.
doi:10.1109/TAC.2014.2309282(https://dx.doi.org/10.1109%2FTAC.2014.2309282).
Kelly,Alonzo(1994)."A3DstatespaceformulationofanavigationKalmanfilterforautonomousvehicles"
(http://www.dtic.mil/dtic/tr/fulltext/u2/a282853.pdf)(PDF).DTICDocument:13.2006CorrectedVersion
(http://www.frc.ri.cmu.edu/~alonzo/pubs/reports/kalman_V2.pdf)
Reid,IanTerm,Hilary."EstimationII"
(http://www.robots.ox.ac.uk/~ian/Teaching/Estimation/LectureNotes2.pdf)(PDF).www.robots.ox.ac.uk.Oxford
University.Retrieved6August2014.
ThreeoptimalitytestswithnumericalexamplesaredescribedinPeter,Matisko,(2012)."OptimalityTestsand
AdaptiveKalmanFilter".16thIFACSymposiumonSystemIdentification.16thIFACSymposiumonSystem
Identification.p.1523.doi:10.3182/201207113BE2027.00011(https://dx.doi.org/10.3182%2F201207113BE
2027.00011).ISBN9783902823069.
Anderson,BrianD.O.Moore,JohnB.(1979).OptimalFiltering.NewYork:PrenticeHall.pp.129133.
ISBN0136381227.
Thornton,CatherineL.(15October1976)."TriangularCovarianceFactorizationsforKalmanFiltering"
(http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770005172_1977005172.pdf)(PDF).(PhDthesis).NASA.
NASATechnicalMemorandum33798.
Bierman,G.J.(1977)."FactorizationMethodsforDiscreteSequentialEstimation".FactorizationMethodsfor
DiscreteSequentialEstimation(AcademicPress).Bibcode:1977fmds.book.....B
(http://adsabs.harvard.edu/abs/1977fmds.book.....B).
BarShalom,YaakovLi,X.RongKirubarajan,Thiagalingam(July2001).EstimationwithApplicationsto
TrackingandNavigation.NewYork:JohnWiley&Sons.pp.308317.ISBN9780471416555.
Golub,GeneH.VanLoan,CharlesF.(1996).MatrixComputations.JohnsHopkinsStudiesintheMathematical
Sciences(Thirded.).Baltimore,Maryland:JohnsHopkinsUniversity.p.139.ISBN9780801854149.
Higham,NicholasJ.(2002).AccuracyandStabilityofNumericalAlgorithms(Seconded.).Philadelphia,PA:
SocietyforIndustrialandAppliedMathematics.p.680.ISBN9780898715217.
Masreliez,C.JohanMartin,RD(1977)."RobustBayesianestimationforthelinearmodelandrobustifyingthe
Kalmanfilter"(http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1101538).IEEETransactionson
AutomaticControl22(3):361.doi:10.1109/TAC.1977.1101538
(https://dx.doi.org/10.1109%2FTAC.1977.1101538).
Ltkepohl,Helmut(1991).IntroductiontoMultipleTimeSeriesAnalysis.Heidelberg:SpringerVerlagBerlin,.
p.435.
Rauch,H.E.Tung,F.Striebel,C.T.(August1965)."Maximumlikelihoodestimatesoflineardynamic
systems"(http://pdf.aiaa.org/getfile.cfm?
urlX=7%3CWIG7D%2FQKU%3E6B5%3AKF2Z%5CD%3A%2B82%2A%40%24%5E%3F%40%20%0A&urla
=%25%2ARL%2F%220L%20%0A&urlb=%21%2A%20%20%20%0A&urlc=%21%2A0%20%20%0A&urld=%
21%2A0%20%20%0A&urle=%27%2BB%2C%27%22%20%22KT0%20%20%0A).AIAAJ3(8):14451450.
Bibcode:1965AIAAJ...3.1445(http://adsabs.harvard.edu/abs/1965AIAAJ...3.1445).doi:10.2514/3.3166
(https://dx.doi.org/10.2514%2F3.3166).
Einicke,G.A.(March2006)."OptimalandRobustNoncausalFilterFormulations".IEEETrans.Signal
Processing54(3):10691077.Bibcode:2006ITSP...54.1069E
(http://adsabs.harvard.edu/abs/2006ITSP...54.1069E).doi:10.1109/TSP.2005.863042
(https://dx.doi.org/10.1109%2FTSP.2005.863042).
Einicke,G.A.(April2007)."AsymptoticOptimalityoftheMinimumVarianceFixedIntervalSmoother".IEEE
Trans.SignalProcessing55(4):15431547.Bibcode:2007ITSP...55.1543E
(http://adsabs.harvard.edu/abs/2007ITSP...55.1543E).doi:10.1109/TSP.2006.889402
(https://dx.doi.org/10.1109%2FTSP.2006.889402).
Einicke,G.A.Ralston,J.C.Hargrave,C.O.Reid,D.C.Hainsworth,D.W.(December2008)."Longwall
MiningAutomation.AnApplicationofMinimumVarianceSmoothing".IEEEControlSystemsMagazine28(6):
2837.doi:10.1109/MCS.2008.929281(https://dx.doi.org/10.1109%2FMCS.2008.929281).
Einicke,G.A.(December2009)."AsymptoticOptimalityoftheMinimumVarianceFixedIntervalSmoother".
IEEETrans.AutomaticControl54(12):29042908.Bibcode:2007ITSP...55.1543E
(http://adsabs.harvard.edu/abs/2007ITSP...55.1543E).doi:10.1109/TSP.2006.889402

https://en.wikipedia.org/wiki/Kalman_filter

29/33

7/27/2015

31.
32.

33.

34.
35.
36.
37.

38.
39.

40.
41.
42.
43.

44.

KalmanfilterWikipedia,thefreeencyclopedia

(http://adsabs.harvard.edu/abs/2007ITSP...55.1543E).doi:10.1109/TSP.2006.889402
(https://dx.doi.org/10.1109%2FTSP.2006.889402).
Einicke,G.A.(December2014)."IterativeFrequencyWeightedFilteringandSmoothingProcedures".IEEE
SignalProcessingLetters21(12):14671470.doi:10.1109/LSP.2014.2341641
(https://dx.doi.org/10.1109%2FLSP.2014.2341641).
Julier,SimonJ.Uhlmann,JeffreyK.(1997)."AnewextensionoftheKalmanfiltertononlinearsystems"
(http://www.cs.unc.edu/~welch/kalman/media/pdf/Julier1997_SPIE_KF.pdf)(PDF).Int.Symp.Aerospace/Defense
Sensing,Simul.andControls.SignalProcessing,SensorFusion,andTargetRecognitionVI3:182.
Bibcode:1997SPIE.3068..182J(http://adsabs.harvard.edu/abs/1997SPIE.3068..182J).doi:10.1117/12.280797
(https://dx.doi.org/10.1117%2F12.280797).Retrieved20080503.
Wan,E.A.VanDerMerwe,R.(2000)."TheunscentedKalmanfilterfornonlinearestimation".Proceedingsof
theIEEE2000AdaptiveSystemsforSignalProcessing,Communications,andControlSymposium(Cat.
No.00EX373)(http://www.lara.unb.br/~gaborges/disciplinas/efe/papers/wan2000.pdf)(PDF).p.153.
doi:10.1109/ASSPCC.2000.882463(https://dx.doi.org/10.1109%2FASSPCC.2000.882463).ISBN078035800
7.
Bucy,R.S.andJoseph,P.D.,FilteringforStochasticProcesseswithApplicationstoGuidance,JohnWiley&
Sons,19682ndEdition,AMSChelseaPubl.,2005.ISBN0821837826
Jazwinski,AndrewH.,Stochasticprocessesandfilteringtheory,AcademicPress,NewYork,1970.ISBN012
3815509
Kailath,T.(1968)."AninnovationsapproachtoleastsquaresestimationPartI:Linearfilteringinadditivewhite
noise".IEEETransactionsonAutomaticControl13(6):646655.doi:10.1109/TAC.1968.1099025
(https://dx.doi.org/10.1109%2FTAC.1968.1099025).
Carmi,AvishyGurfil,PiniKanevsky,Dimitri(2010)."MethodsforsparsesignalrecoveryusingKalman
filteringwithembeddedpseudomeasurementnormsandquasinorms".IEEETransactionsonSignalProcessing
58(4):24052409.Bibcode:2010ITSP...58.2405C(http://adsabs.harvard.edu/abs/2010ITSP...58.2405C).
doi:10.1109/TSP.2009.2038959(https://dx.doi.org/10.1109%2FTSP.2009.2038959).
Vaswani,Namrata(2008)."KalmanfilteredCompressedSensing".200815thIEEEInternationalConferenceon
ImageProcessing.p.893.doi:10.1109/ICIP.2008.4711899(https://dx.doi.org/10.1109%2FICIP.2008.4711899).
ISBN9781424417650.
Vasebi,AmirPartovibakhsh,MaralBathaee,S.MohammadTaghi(2007)."Anovelcombinedbatterymodelfor
stateofchargeestimationinleadacidbatteriesbasedonextendedKalmanfilterforhybridelectricvehicle
applications".JournalofPowerSources174:30.doi:10.1016/j.jpowsour.2007.04.011
(https://dx.doi.org/10.1016%2Fj.jpowsour.2007.04.011).
Vasebi,A.Bathaee,S.M.T.Partovibakhsh,M.(2008)."Predictingstateofchargeofleadacidbatteriesfor
hybridelectricvehiclesbyextendedKalmanfilter".EnergyConversionandManagement49:75.
doi:10.1016/j.enconman.2007.05.017(https://dx.doi.org/10.1016%2Fj.enconman.2007.05.017).
Fruhwirth,R.(1987)."ApplicationofKalmanfilteringtotrackandvertexfitting".Nucl.Instrum.Meth.A262
(23):444450.Bibcode:1987NIMPA.262..444F(http://adsabs.harvard.edu/abs/1987NIMPA.262..444F).
doi:10.1016/01689002(87)908874(https://dx.doi.org/10.1016%2F01689002%2887%29908874).
Harvey,AndrewC.(1994)."ApplicationsoftheKalmanfilterineconometrics".InBewley,Truman.Advances
inEconometrics.NewYork:CambridgeUniversityPress.pp.285f.ISBN0521467268.
Bock,Y.Crowell,B.Webb,F.Kedar,S.Clayton,R.Miyahara,B.(2008)."FusionofHighRateGPSand
SeismicData:ApplicationstoEarlyWarningSystemsforMitigationofGeologicalHazards".American
GeophysicalUnion43:01.Bibcode:2008AGUFM.G43B..01B
(http://adsabs.harvard.edu/abs/2008AGUFM.G43B..01B).
Wolpert,D.M.Miall,R.C.(1996)."ForwardModelsforPhysiologicalMotorControl".NeuralNetw.9(8):
12651279.PMID12662535(https://www.ncbi.nlm.nih.gov/pubmed/12662535).

Furtherreading
Einicke,G.A.(2012).Smoothing,FilteringandPrediction:EstimatingthePast,PresentandFuture
(http://www.intechopen.com/books/smoothingfilteringandpredictionestimatingthepastpresentandfuture).
Rijeka,Croatia:Intech.ISBN9789533077529.
JinyaSuBaibingLiWenHuaChen(2015)."Onexistence,optimalityandasymptoticstabilityoftheKalman

https://en.wikipedia.org/wiki/Kalman_filter

30/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

JinyaSuBaibingLiWenHuaChen(2015)."Onexistence,optimalityandasymptoticstabilityoftheKalman
filterwithpartiallyobservedinputs".Automatica53:149154.doi:10.1016/j.automatica.2014.12.044
(https://dx.doi.org/10.1016%2Fj.automatica.2014.12.044).
Gelb,A.(1974).AppliedOptimalEstimation.MITPress.
Kalman,R.E.(1960)."Anewapproachtolinearfilteringandpredictionproblems"
(http://www.elo.utfsm.cl/~ipd481/Papers%20varios/kalman1960.pdf)(PDF).JournalofBasicEngineering82(1):
3545.doi:10.1115/1.3662552(https://dx.doi.org/10.1115%2F1.3662552).Retrieved20080503.
Kalman,R.E.Bucy,R.S.(1961)."NewResultsinLinearFilteringandPredictionTheory"
(http://www.dtic.mil/srch/doc?collection=t2&id=ADD518892).Retrieved20080503.
Harvey,A.C.(1990).Forecasting,StructuralTimeSeriesModelsandtheKalmanFilter.CambridgeUniversity
Press.
Roweis,S.Ghahramani,Z.(1999)."AUnifyingReviewofLinearGaussianModels".NeuralComputation11
(2):305345.doi:10.1162/089976699300016674(https://dx.doi.org/10.1162%2F089976699300016674).
PMID9950734(https://www.ncbi.nlm.nih.gov/pubmed/9950734).
Simon,D.(2006).OptimalStateEstimation:Kalman,HInfinity,andNonlinearApproaches
(http://academic.csuohio.edu/simond/estimation/).WileyInterscience.
Stengel,R.F.(1994).OptimalControlandEstimation(http://www.princeton.edu/~stengel/OptConEst.html).
DoverPublications.ISBN0486682005.
Warwick,K.(1987)."OptimalobserversforARMAmodels"
(http://www.informaworld.com/index/779885789.pdf)(PDF).InternationalJournalofControl46(5):14931503.
doi:10.1080/00207178708933989(https://dx.doi.org/10.1080%2F00207178708933989).Retrieved20080503.
Bierman,G.J.(1977).FactorizationMethodsforDiscreteSequentialEstimation.MathematicsinScienceand
Engineering128(Mineola,N.Y.:DoverPublications).ISBN9780486449814.
Bozic,S.M.(1994).DigitalandKalmanfiltering.ButterworthHeinemann.
Haykin,S.(2002).AdaptiveFilterTheory.PrenticeHall.
Liu,W.Principe,J.C.andHaykin,S.(2010).KernelAdaptiveFiltering:AComprehensiveIntroduction.John
Wiley.
Manolakis,D.G.(1999).StatisticalandAdaptivesignalprocessing.ArtechHouse.
Welch,GregBishop,Gary(1997)."SCAAT:incrementaltrackingwithincompleteinformation"
(http://www.cs.unc.edu/~welch/media/pdf/scaat.pdf)(PDF).SIGGRAPH'97Proceedingsofthe24thannual
conferenceonComputergraphicsandinteractivetechniques.ACMPress/AddisonWesleyPublishingCo.
pp.333344.doi:10.1145/258734.258876(https://dx.doi.org/10.1145%2F258734.258876).ISBN0897918967.
Jazwinski,AndrewH.(1970).StochasticProcessesandFiltering.MathematicsinScienceandEngineering.New
York:AcademicPress.p.376.ISBN0123815509.
Maybeck,PeterS.(1979).StochasticModels,Estimation,andControl.MathematicsinScienceandEngineering.
1411.NewYork:AcademicPress.p.423.ISBN0124807011.
Moriya,N.(2011).PrimertoKalmanFiltering:APhysicistPerspective.NewYork:NovaSciencePublishers,
Inc.ISBN9781616683115.
Dunik,J.SimandlM.StrakaO.(2009)."Methodsforestimatingstateandmeasurementnoisecovariance
matrices:Aspectsandcomparisons".Proceedingsof15thIFACSymposiumonSystemIdentification(France):
372377.
Chui,CharlesK.Chen,Guanrong(2009).KalmanFilteringwithRealTimeApplications.SpringerSeriesin
InformationSciences17(4thed.).NewYork:Springer.p.229.ISBN9783540878483.
Spivey,BenHedengren,J.D.andEdgar,T.F.(2010)."ConstrainedNonlinearEstimationforIndustrialProcess
Fouling"(http://pubs.acs.org/doi/abs/10.1021/ie9018116).Industrial&EngineeringChemistryResearch49(17):
78247831.doi:10.1021/ie9018116(https://dx.doi.org/10.1021%2Fie9018116).
ThomasKailathAliH.SayedBabakHassibi(2000).LinearEstimation.NJ:PrenticeHall.ISBN978013
0224644.
AliH.Sayed(2008).AdaptiveFilters.NJ:Wiley.ISBN9780470253885.

Externallinks
https://en.wikipedia.org/wiki/Kalman_filter

31/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

ANewApproachtoLinearFilteringandPredictionProblems
(http://www.cs.unc.edu/~welch/kalman/kalmanPaper.html),byR.E.Kalman,1960
KalmanBucyFilter(http://www.eng.tau.ac.il/~liptser/lectures1/lect6.pdf),agoodderivationofthe
KalmanBucyFilter
MITVideoLectureontheKalmanfilter(https://www.youtube.com/watch?v=d0D3VwBh5UQ)on
YouTube
AnIntroductiontotheKalmanFilter
(http://www.cs.unc.edu/~tracker/media/pdf/SIGGRAPH2001_CoursePack_08.pdf),SIGGRAPH
2001Course,GregWelchandGaryBishop
Kalmanfilteringchapter(http://www.cs.unc.edu/~welch/kalman/media/pdf/maybeck_ch1.pdf)from
StochasticModels,Estimation,andControl,vol.1,byPeterS.Maybeck
KalmanFilter(http://www.cs.unc.edu/~welch/kalman/)webpage,withlotsoflinks
"KalmanFiltering"
(https://web.archive.org/web/20130623214223/http://www.innovatia.com/software/papers/kalman.ht
m).Archivedfromtheoriginal(http://www.innovatia.com/software/papers/kalman.htm)on201306
23.
KalmanFilters,thoroughintroductiontoseveraltypes,togetherwithapplicationstoRobot
Localization(http://www.negenborn.net/kal_loc/)
KalmanfiltersusedinWeathermodels(http://www.siam.org/pdf/news/362.pdf),SIAMNews,
Volume36,Number8,October2003.
CriticalEvaluationofExtendedKalmanFilteringandMovingHorizonEstimation
(http://pubs.acs.org/cgibin/abstract.cgi/iecred/2005/44/i08/abs/ie034308l.html),Ind.Eng.Chem.
Res.,44(8),24512460,2005.
KalmanandBayesianFiltersinPython(http://github.com/rlabbe/KalmanandBayesianFiltersin
Python)FreebookonKalmanFilteringimplementedinIPythonNotebook.
Sourcecodeforthepropellermicroprocessor(http://obex.parallax.com/object/326):Well
documentedsourcecodewrittenfortheParallaxpropellerprocessor.
GeraldJ.Bierman'sEstimationSubroutineLibrary(http://netlib.org/a/esl.tgz):Correspondstothe
codeintheresearchmonograph"FactorizationMethodsforDiscreteSequentialEstimation"
originallypublishedbyAcademicPressin1977.RepublishedbyDover.
MatlabToolboximplementingpartsofGeraldJ.Bierman'sEstimationSubroutineLibrary
(http://www.mathworks.com/matlabcentral/fileexchange/32537):UD/UDU'andLD/LDL'
factorizationwithassociatedtimeandmeasurementupdatesmakinguptheKalmanfilter.
MatlabToolboxofKalmanFilteringappliedtoSimultaneousLocalizationandMapping
(http://eia.udg.es/~qsalvi/Slam.zip):Vehiclemovingin1D,2Dand3D
Derivationofa6DEKFsolutiontoSimultaneousLocalizationandMapping
(http://www.mrpt.org/6DSLAM)(InoldversionPDF
(http://mapir.isa.uma.es/~jlblanco/papers/RangeBearingSLAM6D.pdf)).Seealsothetutorialon
implementingaKalmanFilter(http://www.mrpt.org/Kalman_Filters)withtheMRPTC++libraries.
TheKalmanFilterExplained(http://www.tristanfletcher.co.uk/LDS.pdf)Averysimpletutorial.
TheKalmanFilterinReproducingKernelHilbertSpaces
(http://www.cnel.ufl.edu/~weifeng/publication.htm)Acomprehensiveintroduction.
MatlabcodetoestimateCoxIngersollRossinterestratemodelwithKalmanFilter
(http://www.mathfinance.cn/kalmanfilterfinancerevisited/):Correspondstothepaper"estimating
andtestingexponentialaffinetermstructuremodelsbykalmanfilter"publishedbyReviewof
QuantitativeFinanceandAccountingin1999.
ExtendedKalmanFilters(http://apmonitor.com/wiki/index.php/Main/Background)explainedinthe
contextofSimulation,Estimation,Control,andOptimization
OnlinedemooftheKalmanFilter(http://www.dataassimilation.net/Tools/AssimDemo/?
method=KF).DemonstrationofKalmanFilter(andotherdataassimilationmethods)usingtwin
https://en.wikipedia.org/wiki/Kalman_filter

32/33

7/27/2015

KalmanfilterWikipedia,thefreeencyclopedia

experiments.
Botella,GuillermoMartnh.,JosAntonioSantos,MatildeMeyerBaese,Uwe(2011)."FPGA
BasedMultimodalEmbeddedSensorSystemIntegratingLowandMidLevelVision".Sensors11
(12):12511259.doi:10.3390/s110808164(https://dx.doi.org/10.3390%2Fs110808164).
HookesLawandtheKalmanFilter(http://finmathblog.blogspot.com/2013/10/hookeslawand
kalmanfilterlittle.html)Alittle"springtheory"emphasizingtheconnectionbetweenstatisticsand
physics.
ExamplesandhowtoonusingKalmanFilterswithMATLAB
(http://www.mathworks.com/discovery/kalmanfilter.html)ATutorialonFilteringandEstimation
ExplainingFiltering(Estimation)inOneHour,TenMinutes,OneMinute,andOneSentence
(http://blog.sciencenet.cn/home.php?mod=space&uid=1565&do=blog&id=851754)byYuChiHo
Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Kalman_filter&oldid=672721435"
Categories: Controltheory Nonlinearfilters Linearfilters Signalestimation
Stochasticdifferentialequations Robotcontrol Markovmodels Hungarianinventions
Thispagewaslastmodifiedon23July2015,at12:13.
TextisavailableundertheCreativeCommonsAttributionShareAlikeLicenseadditionaltermsmay
apply.Byusingthissite,youagreetotheTermsofUseandPrivacyPolicy.Wikipediaisa
registeredtrademarkoftheWikimediaFoundation,Inc.,anonprofitorganization.

https://en.wikipedia.org/wiki/Kalman_filter

33/33

You might also like