DESIGN Aqueduct
DESIGN Aqueduct
DESIGN OF AQUEDUCT
1. Hydraulic particulars of canal at the location of the structure
S.No.
1
2
3
4
5
6
7
8
9
10
11
12
13
Description
Units
Discharge Required
Cumecs
Designed
Cumecs
Bed Width
m
Full supply depth
m
Free board
m
Bed fall
m
Velocity
m/sec
Value of 'n'
Side slopes (I/O)
Top width of banks (E/P)
m
Canal bed level
m
Full supply level
m
Top of bank
m
G.L / SBL
m
Particulars
3.454
3.685
3.750
1.250
0.600
1 in 5800
0.5898
0.0200
1.5:1/
2.0:1.0
1.2 / 3.0 2.5 / 5.75
71.790
73.040
73.640
68.150
71.760
2 Stream Particulars:
1. Catchment Area =
12.846 Sq. Km
2. Stream bed level at crossing =
68.150 m
Catchment Area =
12.846 Sq. Km
Dickens Formula
Q = CM3/4
where C =
16.700 for catchment areas from > 2.5 & < 75 Sq. Kms
=
113.316 cumecs
3. Maximum Flood Discharge & Vent Way for stream flow:
Existing size of vent
=
3 v
3.50
Existing area of vent way
=
47.25 m2
Now proposed as
2
vent
with SLRB for continuty
Trough level
Roof level
Floor level
7.00
x 4.50
of inspectionpath.
=
71.790
=
71.450
=
67.050
Size of Trough =
0.885 m/sec
Size of Trough
x 4.50
3.685
0.885
4.165 =
1.250
3.332
3.750
x
=
=
=
=
=
4.1653 m2
1.850 m
0.225
0.04
0.075
71.790
71.450
III - 1
m
m
x
m
m
0.225 m
3.750 m
3.750 m
13.36
3
13.360
13.36
22
12.96
13
67.250
=
=
=
say
22.0
m at the structure
m
m
m
7
4
6' 6
67.05
Provide
=
=
22.0
Stream flow
3 4
1
5 6' 6
Canal Flow
13
13
10.250
Floor depth at exit with BY-WIER formula Q = 1.05 L H
113.316 =
There fore
1.5
1.05 x 22.0 H
2/3
113.316
23.1
1.5
2.887 m
69.937
68.450
2.887
+
1.5:1
67.050
22 m
Maximum Flood discharge =
Maximum Flood Level at the end of transition =
Floor level =
Depth of flow available =
Area of flow =
(22.00 +
1.5 x
=
76.016 sq.m.
Velocity =
113.316 / 76.016
=
1.491 m/sec
V2/2g =
=
1.491 2 /
0.1133 m
69.937
69.937
70.050 m
MFL at 8 - 8 =
TEL at 8 - 8 =
113.316
69.937
67.050
2.887
2.887
cumecs
m
m
m
) x
2x
0.1133
III - 2
2.887
9.81 )
69.911
2.861
+
67.050
22
Assume a depth of flow of
Area
2.861 m
=
22
x
=
62.942 sq.m.
Wetted Perimeter
=
27.722 m
Velocity
V
=
113.316 / 62.942
=
1.800 m/sec
R hydraulic radius =
A/ P =
2.270 m
V2/2g
=
1.800 2 / (
=
0.1652 m
Loss of head =
0.5 x (
0.1652
=
0.0260
due to change in velocity from section 8 - 8 to section 7 - 7
TEL at 7 - 7 wrt section 8 - 8. =
70.050 +
=
70.076
TEL at section 7 - 7 wrt assumed depth =
=
67.0500 +
=
70.076
HENCE O.K.
2.861
2x
9.81 )
0.1133 )
0.0260
2.861 +
0.1652
2.647
+
71.150
67.050
13.36 m
Velocity
=
=
=
Weted perimetre
2.647 m
13.36 m
+14.42
2
36.759 sq.m.
113.316/ 36.759
3.083 m/sec
13.360 + ( 2.00 x
18.758 m
= A/ P
=
3.083 2 /
(
0.4843 m
1.0198
1.9597
S=
0.0019
2.7150
2.647
x 13.00 =
III - 3
x 2.647 )
m
2x
9.81 )
0.1652 )
V= Average velocity
R average
n Value
Length
0.0092
=
=
=
=
2.441 m/sec
2.115 m
0.018
13
0.0957
2.647 +
0.4843
The barrel roof level is 71.450 which is more than M.F.L at section 6-6
Hence Barrel Runs partially
Section6' - 6' : (Just inside the barrel at the exit end)
71.450
71.15
+
69.697
15
2.647
+
+ 0.009
i.e
+ 69.697
67.050
-0.484
13.36 m
Area =
13.36
A=
=
=
=
=
=
3.083
=
Velocity
Wetted perimeter
R , A/P
V2/2g
+14.42
2.00
36.759
113.316
3.083
13.360 +
18.758
1.960
2
/
(
0.4843
2.647
sq.m.
/ 36.759
m/sec
( 2.00 x
m
1.0198
2x
9.81 )
67.050 +
70.181
x 2.647 )
2.647
0.4843
Section 5 - 5: (Just inside the barrel at the location of pier under trough.)
71.45
71.15
+
69.646
15
2.596
+
67.050
0.000
12.36 m
Area =
Velocity
Wetted perimeter
R , A/P
V2/2g
12.36
A=
=
=
=
=
=
3.389
=
+13.40
2.00
33.434
113.316
3.389
12.360 +
17.655
1.894
2
/
(
0.5855
69.646 +
=
2.596
sq.m.
/ 33.434
m/sec
( 2.00 x
m
1.0198
2x
m
0.585
70.231
III - 4
x 2.596 )
9.81 )
70.181
70.231
+0.50
(0.5855
-0.484 )=
+13.398
2.596
2
=
=
=
Velocity V
Wetted perimeter
=
V2/2g
=
=
Head loss due to change in velocity = 0.3 (
=
Friction Losses:
Average Area A
=
=
=
Avg.Wetted perimeter p
R
frictional losses
S =
S=
TEL @ 4 - 4
33.434
113.316
3.389
12.360 +
17.655
3.389
0.5855
sq.m.
33.434
m/sec
( 2.00 x
m
2
/
(
m
0.5855
2x
-
(33.43 +
33.434 sq.m
18 m
10 )
0.585 )
33.434 )/ 2
V= Average velocity
R average
n Value
Length
x 13.00 =
0.021
70.231 +
70.252
x 2.596 )
0.0000
= A/P
=
33.434
17.655
=
1.894 m
V2 n 2/ R 4/3 x L
0.0037
2.3430
1.0198
0.0207
0.021
69.880
2.830
67.050
13.36
Assume a depth of flow of
2.830 m
13.36
Velocity V
=
=
+ 14.492 x
2.00
39.411 sq.m.
113.316 / 39.411
III - 5
2.830
=
=
=
=
3.389 m/sec
1.894 m
0.018
13.000
=
=
=
V2/2g
2.875 m/sec
2.875 2 /
0.4214 m
(2 x
10 )
0.4214 )
0.0492
2.830
+0.4214
0.000
22 m
Assume a depth of flow of
Area A
3.175 m
= (
22.000 x
=
69.841 sq.m.
wetted perimeter p
=
28.349 m
Velocity V
=
113.316 / 69.841
=
1.622 m/sec
V2/2g
=
1.622 2 /
(
=
0.1342 m
Loss of head due to gradual contraction =
=
0.2 x (
0.4214
=
0.0574
(Due to change in velocity from section 3 - 3 to section 2 - 2)
TEL at 2 - 2 wrt section 3 - 3 =
70.301 +
=
70.359
TEL at section 2 - 2 wrt assumed depth =
=
67.050
+
=
70.359
HENCE O.K.
3.175 )
2x
10 )
0.1342 )
0.0574
3.175
0.1342
0.222
70.225
67.250
2.975
75 mm wearing coat
67.050
66.975
0.200
q =
5.151
113.316
=
5.151
22.000
q = 1.705 h3/2 + 0.8 (2gh)XH
=
1.705
h3/2
+0.8 (2g)
III - 6
h1/2 X
2.975
3.0210
1.705
h3/2
10.5
h3/2
6.182
h1/2
h=
0.22249026
Solving for h,
3.0210
3.0210
h1/2
( LHS =RHS )
70.225
70.447 m
0.2225
1
3
2
U/S
D/S
Canal Waterway
AT FSL
3.75
7.50
71.790
71.790
7.50 AT FSL
17.000
5.000 m
5.000 m
4
2
=
=
=
=
=
=
3.750
x 1.250
1.5 :1
3.750
7.031
3.685
3.685
7.031
0.524
V2
2g
0.524
2x 9.81
0.014
CBL
FSL
T E L
=
=
=
71.790
73.040
FSL
T E L @ section 4 - 4
=
=
=
1.5 :1
1.250
+ 1.50
sq.m
x 1.250
m3/sec
m/s
2
m
3.750
73.040
73.054 m
III - 7
+
+
V2
2g
0.0140
x 1.250
=
=
=
Velocity
=
=
3.750
x 1.235
sq.m
3.750
4.633
x 1.235
1.235
3.750
=
=
3.685
4.633
0.795 m/s
V2
2g
0.795 2
2 x 9.81
0.032243 m
=
=
=
Velocity
3.750
side slopes = 0.0
Velocity Head @ section 3 -3
3.750
3.750
4.633
x 1.235
x 1.235
sq.m
1.235
=
=
=
=
3.685
4.633
0.795 m/s
V2
2g
0.795 2
9.810
0.032 m
=
=
=
=
b + 2* d
3.750
3.750
6.221
A
P
4.633
6.221
2
+
0.018
Vn
R 2/3
0.7954
0.7448
0.00030
III - 8
x 1.235
2.4710
0.745
x 0.018 2
2/3
Length of waterway
=
Loss of head in the waterway portion from section 2 - 2 to 3- 3
=
=
TEL's @ section 2-2
=
=
3.750
1.500
x 1.258
+ 1.50
sq.m
Area
=
=
3.750
7.092
Velocity
3.685
7.092
0.520 m/s
=
=
=
1.258
=
0.0003 x 17.00
0.0052 m
73.058
73.060 m
1.5 :1
17.000
0.0052
x 1.258
x 1.258
V2
2g
0.520
2
2 x 9.81
0.014 m
3.750
Loss of head due to gradual Contraction from section 3 - 3 to 4 - 4
=
0.100
=
0.002
T E L @ section 1 - 1 (w.r. to previous section)
FSL. is at the
FSL arrived
+ 71.790
=
=
+ 1.25
q=
R=
2 1/ 3
( )
q
f
= 1.5 x R
= 4.862
=
70.447
=
=
=
f =
73.040
73.048 m
0.812 cm Hence ok
- 4.862
q2
1. 34
f
1/ 3
( )
113.316
0.0138
0.002
113.316
= 5.151 cumecs
22.000
3.241 m
q=
+ 73.060
+ 73.062 m
0.0322
=
+ 71.790
+ 1.258 + 0.014
=
+ 73.062 m
Hence, Assumed depth of the section is OK
Afflux
= 5.151 cumecs
III - 9
65.586 m
22.00
III - 10
R=
3.241 m
= 1.5 x R
= 4.862
=
69.937
- 4.862
65.075 m
q=
q2
1. 34
f
1/ 3
( )
3.685
= 0.655 cumecs
5.625
0.820 m
R=
Max scour depth
Maximum scour level
= 1.5 x R
= 1.230
=
73.060
- 1.230
71.830 m
70.290 m
D/S
Mean scour depth =
q=
R=
1. 34
q2
f
1/ 3
( )
3.685
= 0.655 cumecs
5.63
0.820 m
= 1.5 x R
= 1.230
=
73.040
1.230
III - 11
71.810 m
70.290 m
2.190
1.25
0.04
0.340
0.075
0.225
3.750
Stress in Steel
Concrete mix
=
=
1900 kg/cm2
M20 grade
Unit weight of R .C .C
2500 Kg/m2
1000 Kg/m2
=
=
=
=
13.333
0.329
0.890
10.263
Size of trough
=
1
bay of
3.75
m width
depth of flow in the trough
=
1.250
m
Free board
=
0.60
m
Depth of water considered
=
depth of flow in the trough
+
free board
Depth of water considered
=
1.250
+
0.60
=
1.850 m
Depth of trough
=
1.850
m
width of bay
=
3.750
m
The trough bottom slab is designed as Simply supported spanning between beams
Assuming thickness of slab
=
225
mm with
40
mm thick sealing coat over it
Assuming clear cover of
30 mm and
Adopting
16
mm bars as main reinforcement
Effective depth of slab
=
225
30
8
=
187 mm or
18.7 cm
Effective span of slab
=
=
=
clear span
=
=
0.225
0.04
3.750
3.937
deff
0.187
x
x
Total weight ( W)
III - 11
2500
2500
=
=
562.5
100
kg/m
kg/m
662.5
kg/m
0.250
0.6
3.750
Mix adopted
Stress in steel
Q
J
n
=
=
=
1.25
2.190
M20
1900 Kg/cm2
10.263
0.890
0.329
C =
m =
70 Kg/cm2
13.333
0.04
0.225
0.075
0.225
Total height of side wall =
0.60
+
1.25
+
0.04
+
0.225
+
=
2.190
m (or)
219 cm
The side wall is designed as a simply supported beam in between the abutment & piers with
clear span of
7.00
m
to support the vertical load due to own weight and
the load coming from the trough slab and the water in the trough. The side wall is also checked for the water thrust
Assuming the width of beam
=
25 cm
Clear span
=
7.000 m
Top width of abutment
=
0.900 m
Width of pier
=
1.000 m
Width of bearing
=
0.494 m
Clear cover to beam
=
0.050
assume the dia of Main reinforcement =
20 mm
Effective depth of beam =
2190
50.0
10
=
2130.0 mm
=
213.0 cm
Effective span
=
7.000
+
0.494
=
7.494 m
Slenderness limits for beams to ensure lateral stability :
To ensure lateral stability, The clear distance between the lateral supports
according to para 23.3 of IS:456-2000 should not exceed.
i)
60b (or)
whichever is less
ii)
250 b2/d
0.075
Where
'd' is the effective depth of the beam and
'b' the breadth of the compression face
The clear distance between lateral supports
=
clear span
i)
ii)
60b
250 b2 / d
Mininum of above i and ii
=
=
=
=
=
x
60
250
733.57 cm
HENCE SAFE
7.00 m
700 cm
25
=
2.93
greater than
1500
cm
733.6
700
cm
cm
=
=
i)
ii)
ii)
v)
v)
i)
=
=
=
=
=
=
2.190
0.225
0.04
0.075
0.075
1.85
x
x
x
x
x
x
=
=
700.00
213.00
3.29
<
0.25
3.75
3.75
0.225
0.225
3.75
d (available)
x
x
x
x
x
x
/2
/2
/2
/2
/2
6121.88
x
4297559 Kgcm
MR
=
Q bd2
d(req.) = M/Qb
=
4297559
=
129.42 cm
213.000 cm
HENCE SAFE
III - 12
20
HENCE SAFE
2500
2500
2500
2500
2500
1000
=
=
=
=
=
=
Total weight:
7.494 2 x
100
10.26329
> d(Req.)
129.42 cm
25
1368.75
1054.69
187.50
21.09
21.09
3468.75
6121.88
/
Kg
Kg
Kg
Kg
Kg
Kg
Kg
Abutment
TBL
73.640
W8
1.85
w1 w1'
+71.790
W7
71.72
0.340
+71.150
+71.450
0.494
W6
P1
w2
W9
1
W3
5.100
5.740
0.494
P2
W5
5
0.250
W4
0.60
0.820
0.3
3.420
w5'
1.000
W 10
1.600
B
67.05 SBL
w4'
1.000
1.820
+66.050
1.250
2.190
0.04
0.500
+65.550
0.225
3.750
4.420
5.020
0.340
0.250
Density of concrete RCC
Density of concrete CC
Density of soil
Density of water
Surcharge Load
Width of bearing
Load from Trough
=
=
=
=
=
=
W1
=
=
=
=
2.0 x
2.0 x
2.00 x
=
=
2.500
2.400
2.100
1.000
1.100
0.494
0.25
3.75
3.75
0.225
0.150
3.75
x
x
x
x
x
x
t/m3
t/m3
t/m3
t/m3
t/m3
Clear span
2.190
0.225
0.04
0.075
0.15
1.85
x
x
x
x
x
x
7.988
7.988
7.988
7.988
7.988
7.988
7.00 m
x
x
x
x
x
x
2.50
2.50
2.40
2.400
2.400
1.000
Total Load
Load shared on abutment
Length of abutment
load / m run
=
=
=
=
=
W1
Load of w1'
49.259
1.00 x
t
3.75
4.750 m
49.259
10.370 t/m
0.506
+ 2 x
+ 2 x
4.750
0.3
0.250
0.250
=
=
=
=
=
=
21.867
16.850
2.876
0.647
0.863
55.417
98.519 t
x 2.40 =
0.3643 t/m
Description
W 1+w1'
Load (t)
Hor.
Ver.
L.A
Moment (t-m)
10.735
2.353
W2
0.494 x
0.640 x
2.400
0.759
1.847
1.401
W3
1.000 x
4.100 x
2.400
9.840
2.100
20.664
25.259
W4
0.500 x
0.820 x
4.100 x
2.400
4.034
2.873
11.592
W5
0.500 x
1.600 x
4.665 x
2.400
8.957
1.067
9.554
W6
0.500 x
1.600 x
4.215 x
2.100
7.081
0.533
3.777
0.525 x
2.400
2.016
0.800
1.613
1.850 x
1.000
3.874
1.047
4.056
1.757
----
W7
1.600 x
W8
2.094 x
Pv
0.0384 x
7.042^2 -2.83 ^2
1.100
Ph
0.1340 x
7.042^2 -2.83 ^2
1.100
6.132
2.390
14.655
1.000
8.769
2.37
20.783
P1
1.850 x
4.740 x
III - 13
t
t
t
t
t
t
P2
0.50 x
4.740 x
4.740 x
1.000
V
11.234
=
III - 14
49.053 t
1.580
M =
17.749
131.103 t - m
1.85
1.100
x 1.00
1.85
1.100
x 1.00 +
0.525 x
2.400
+4.215
2.400
7.042
1.100
0.525 x
2.827
1.100
Lever arm
=
=
=
M
131.103
2.673 m
1.710 m
Ecentricity
V
49.053
=
Lever arm - base width /2
=
0.963 m
=
b/6
=
0.570 m
<
0.963 m
Revise the section
Allowable ecentricity
=
=
 V/b (1 + 6 x e / b)
38.567 t / m2
Min.Compressive stress
=
=
 V/b (1 - 6 x e / b)
-9.881 t / m2
W 1+w1'
Ver.
L.A
Moment (t-m)
10.735
2.353
0.494 x
0.640 x
2.400
0.759
1.847
1.401
W3
1.000 x
4.100 x
2.400
9.840
2.100
20.664
0.500 x
0.500 x
0.820 x
1.000 x
4.100 x
1.000 x
2.400
2.400
4.034
1.200
2.873
3.753
11.592
4.504
0.500 x
1.600 x
3.420 x
4.625 x
1.000 x
2.400
2.400
8.880
8.208
1.067
1.710
9.472
14.036
0.500 x
1.600 x
5.215 x
2.100
8.761
0.053
0.467
0.525 x
2.400
2.016
0.800
1.613
1.850 x
1.000
3.874
1.047
4.056
2.100
----
W4
W5'
W6
W7
1.600 x
W8
2.094 x
25.259
Pv
0.0384 x
7.374^2 -2.16 ^2
1.100
Ph
0.1340 x
7.374^2 -2.16 ^2
1.100
7.328
2.818
20.651
P1
P2
Hor.
W2
W4'
W5
Load (t)
Load
0.50 x
1.850 x
5.740 x
1.000
10.619
2.870
30.477
5.740 x
5.740 x
1.000
16.474
V =
1.913
M =
31.520
175.711 t - m
x 1.00 +
0.525 x
1.000
+5.215
1.000
1.100
Lever arm
=
=
=
M
175.711
2.909 m
2.210 m
V
60.407
III - 15
60.407 t
2.159
7.374
Ecentricity
=
Lever arm - base width /2
=
0.699 m
=
b/6
=
0.737 m
>
0.699 m
Hence Ok
Allowable ecentricity
=
=
 V/b (1 + 6 x e / b)
26.631 t / m2
Min.Compressive stress
=
=
 V/b (1 - 6 x e / b)
0.703 t / m2
Description
W 1+w1'
W2
W3
W4
W4'
W5
W5'
W6
Moment (t-m)
10.735
2.653
28.479
0.494 x
0.640 x
2.400
0.759
2.147
1.629
1.000 x
4.100 x
2.400
9.840
2.400
23.616
0.820 x
1.000 x
4.100 x
1.000 x
2.400
2.400
4.034
1.200
3.173
4.053
12.802
4.864
0.500 x
1.600 x
3.420 x
4.100 x
1.000 x
2.400
2.400
7.872
8.208
1.367
2.010
10.758
16.498
0.500 x
1.600 x
5.215 x
2.100
8.761
0.353
3.096
0.525 x
2.400
2.016
1.100
2.218
1.600 x
W8
2.094 x
1.850 x
1.000
3.8739
1.347
5.218
W9
0.300 x
0.300 x
5.740 x
1.850 x
1.100
1.000
1.894
0.555
0.150
0.150
0.284
0.083
15.120
W 10
5.020 x
Pv
0.0384 x
Ph
0.1340 x
P1
P2
L.A
0.500 x
0.500 x
W7
Load (t)
Ver.
Hor.
0.50 x
2.400
6.024
2.510
7.899^2 -2.16 ^2
0.500 x
1.100
2.439
----
7.899^2 -2.16 ^2
1.100
8.510
3.029
25.777
1.850 x
6.240 x
1.000
11.544
3.12
36.017
6.240 x
6.240 x
1.000
19.469
V =
x 1.00 +
0.525 x
=
=
=
M
226.955
3.327 m
2.510 m
Ecentricity
Allowable ecentricity
1.000
+5.740
1.000
1.100
Lever arm
V
68.211 t
=
Lever arm - base width /2
=
0.817 m
=
b/6
=
0.837 m
>
0.817 m
Hence Ok
=
=
 V/b (1 + 6 x e / b)
26.860 t / m2
Min.Compressive stress
=
=
 V/b (1 - 6 x e / b)
0.315 t / m2
III - 16
68.211 t
2.080
M =
=
2.159
40.495
226.955 t - m
7.899
Weight of trough including Side walls, wearing coat, honches and Fillets
2.
=
55.42 t
Total Load = 98.52 t
=
=
98.519
49.259
=
=
49.26
24.630
=
=
0.506 x
0.266
43.102 t
=
=
=
=
=
24.90
0.506 x 0.7
70.286
t/m2
7.03
Kg /cm2
0.70
size
x
0.3
2.5
t
24.630
24.895 t
0.266
0.494
0.506
0.30
Which is Permissible.
Adopting the bed blocks in VRCC M 20
1.00
10 No.s 16 mm  Bars
Providing 1% of G.S.A.
=
1 x
30 x
100
=
15
Sq. cm
No. of
16
Provide
Provide 4 Legged
mm diameter bars
5
mm bars
50.60
7.55
bars at bottom
10
No.s
Section X-X
III - 17
0.02
W7
TBL
73.565
73.640
W1
w3
72.975
W2
00
7.590
W6
0.49 72.675
71.15
W5
5.925
stresses at Base
max
31.134
min
3.648
67.050
1.000
stresses on soil
max
22.438
min
9.510
W8
W4
A 1.70
0.300
0.5
1.0
w5'
B
4.520
w4'
0.82
1.820 w4''
0.3
w9
66.050
65.550
5.120
Design same as done for Single Lane Road Bridge
III - 17
11.DESIGN OF PIER
+ 71.790
0.040
0.225
0.075
+ 71.450
71.150
1.000
SMFL
+ 69.646
4.900
0.5
0.5
0.5
0.3
0.3
1.000
1.600
0.3
0.3
SBL + 67.050
+ 66.550
+ 66.050
+ 65.550
2.200
5.550
4.550
1.000
6.150
1.600
2.200
Design same as done for Super Passage
III - 18
6.750
stresses at Base
max
33.984
stresses on soil
max
14.132
11.DESIGN OF PIER
min
23.047
min
9.495
III - 19
4.25
5.0
1.3
1.3
e.Size of footing
4.8
f. Depth of footing
0.60
7.0
h. Bearing
0.49
h.Effective span
7.49
0.70
i. Effective cover
50
mm
1.3
0.8
modular ratio
10
1.327
m2
0.0106
m2
or
106.19
= Ac + (m-1) As
(10-1)
0.011
Moment of inertia I
1.327
1.423
m2
22
x D4
64
22
0.1403
1.3
7
Mean diametre of the column, Dm
cm2
64
m4
= D- 2 ('effective cover )
=
1.3
1.2
x0.05
x 0.0106
x1.20
= I +(m-1) As x D m 2 / 8
=
0.1403
+(10-1)
2
8
0.140
0.157
m4
Ie /d/2
0.157
0.242
m3
0.0172
1.30/2
Equivalent area
1.423
m2
Z of column at base
0.242
m3
Radius og Gyration
radius
4.8
2
Properties of foundation section
Area
2
=
3.142
4
=
18.098
Zxx
3.142
4.8
32
=
Zyy
10.859
10.859
m3
m3
III - 19
0.727
RCL
Deck slab
0.075
0.590
+ 73.640
+ 72.975
72.175
1.000
2.529
1.3
6.025
SMFL
+ 69.646
2.596
SBL
1.300
+ 67.050
0.90
+ 66.150
1.500
0.30
+65.850
4.800
0.30
+65.550
+65.250
0.3
5.400
5.00
12.2.0 Loads comming on the columns
a) Dead load
0.25
=
=
=
4) Weight of column
a. Up to footing
(72.175
- 66.150 )=
6.025
73.561 t
8.669 t
1.25 t
1.3
(5x0.25+((5-1.30)/2)x0.45+1.3x0.45)x1.3x 2.5
(5.0x 0.1x2.5x1)
1.327
6.025 x
2.5
19.993 t
19.993
19.993
x 1.00
2.5
18.793 t
Volume of footing
10.334
Weight
25.834
x15.00
100
6. Weight of foundation
25.834
1.5
2.5
15.501 t
2.7
1.1
11.4
3.2
7.49
C
1.2
m
0.69
Reaction calculations
Taking moments about C
Ra x
7.49 =
12.549
7.49 =
11.400
Rb
14.469
Ra +Rb
27.017
6.8
4.3
0.51
6.80
6.8
3
0.19
7.49 m
Ra
11.4
Ra
11.4
Rb
2.700
x 3.60
+2.70
2.5
x3.19
+6.80
0.19
7.490
6.8
and
Ra - Rb
III - 20
1.920 t
0.45
27.017
Impact factor
4.5
t
=
0.33
6+L
Live load reaction
27.017 t
Maximum reaction
Dead loads =
73.561 t
100.578 t
7.28
1.813 t
1.2
7.28
1.08
x ( 1.2
+0.59
+0.075
)/
7.49
for span CA
Braking effect on simply supported span
Braking force
Braking force
1.08
0.269 t
( 72.975
0.2 x ( 2 x 7)
1.2
1.813 -
+ 66.150
x ( 1.2
+0.59
0.269 =
7.28
1.080
66.150 )
+0.075
)/
7.49
1.544 t
6.825
2
=
+65.550 =
28.5285 tm
7.28
6.825
1.08 x(
+0.60 )
2
=
31.0365 t -m
4.25
-1.30
1.3 m
0.825 m
2
4.25
1.3
1.8
0.15 0.5
0.825
0.5
e
2.125
Max. live load reaction =
27.017 +
1.544 =
28.561 t
28.561 x
0.825 =
b) Transverse eccentricity
23.563 t-m
0.02
0.51
1
0.245 m
1.3
Maximum live load Ra-Rb
Eccentricity
1.920 +
1.544 =
0.51
3.464 t
0.255 m
2
Moment
3.464 x
0.255 =
III - 21
0.883 t-m
deck
0.665 m
Kerb
0.225 m
0.6 m
1.490 m
C.G of exposed area
=
0.890 x
0.890
/2 +
0.6
x 1.190
0.890 +
0.6
+ 72.975 +
0.745 =
73.720 m
73.720 -
+69.646 =
4.074 m
73.720 -
+67.050 =
6.670 m
=
acting @ E.L
0.745 m
m height
40 Kg /m2
m height
52 Kg /m2
m height
63 Kg /m2
m height
73 Kg /m2
m height
82 Kg /m2
10
m height
91 Kg /m2
Horizontal pressure @
6.670 m height
76.015 Kg /m2
Horizontal pressure @
4.074 m height
63.370 Kg /m2
wind force at
4.074 m height
7.98
=
wind force at
6.670 m height
63.370 /
1000
1.490
76.015 /
1000
1.490
0.7535 t
7.98
0.9038 t
0.7535 x
7.570 =
5.704 t-m
0.7535 x
8.170 =
6.156 t-m
0.904 x
7.570 =
6.842 t-m
0.904 x
8.170 =
7.384 t-m
7.98 m
As per clause 212.4 of IRC -6:2000 the wind force should be 300 kg/linear m for ordinary bridge .
For classA- loading,the max . force will be acing on
Wind force =
300
1000
2.394 t
acting at a height of
0.665
=
2.394
21.52 t-m
2.394
22.96 t-m
1.5
2.165
x(
2.165 +
6.825 )
x(
2.165 +
7.425 )
Case A+B total moment due to wind force on super structure and on Live load
Moment at the base of the column
6.8420
21.52 =
28.364 t-m
7.384
22.96 =
30.343 t-m
Case 2 As per 212.6 of IRC -6 :2000 the wind force shall not be less than
450 kg/m acting @ kerb level i.e +
Height up to column base
73.865
73.865
-
+ 66.150 =
III - 22
7.715
73.865
7.98
Wind force =
+65.550 =
450
8.315
/
1000
3.591 t
3.591 x
7.715 =
27.70 t-m
3.591 x
8.315 =
29.86 t-m
Case 3 As per 212.7 of IRC -6 :2000 the wind force shall not be less than
Wind force =
1.490
2.854 t
2.854 x
2.854 x
28.364 t-m
30.343 t-m
7.98 /
7.570 =
1000
21.60 t-m
(6.67+0.9 )
8.170 =
23.31 t-m
12.5.0 Force due to water currents in the canal ( as per para 213.2.0 of IRC -6:2000)
Intencity of pressure due to water currents
P =
where k =
Maximum mean velocity of the canal(v)
52 K V2
0.66 (semi circular)
113.32 /
33.434 =
3.389 m/sec
1.414 x
3.389 =
4.792 m/sec
Maximum V2
22.966 m/sec
0
m/sec
V2 = 2 v 2 =
22.966
+ 69.646
4.1
+ 67.050
0 0
1.5
12.6.1 Water force across the direction of streamflow
Pressure @ MFL @ + (
case 1
transverse
+65.550
Pressure @ SBL
52
269.583 kg/m
+ 67.050 =
Lever arm
0.66
22.966
sin 200
kg/m
2.596
x 2.00 =
1.731
3
Total force on the column
269.583
2.596
1.300
454.894 kgs
(1.731
0.90 )
1.197 t-m
2.631
0.6
)=
2
Moment at the base of the column
454.894
x
1000
454.894
1.470
1000
12.6.2 force due to water currents along the direction of stream flow as per para 213.2.0 of IRC
Pressure @ MFL @
Pressure @ SBL @
Lever arm
=
=
52
740.672 kg/m
+ 0.000 =
=
(Case 2 )
52 k v 2 cos200
0.66
kg/m
1.731
m
III - 23
22.966
cos 200
t-m
740.672
2.596
1.300
1249.8
kgs
0.90 ) =
3.288
t-m
)=
4.038
t-m
2
Moment at the base of the column
1249.812
(1.731 +
1000
Moment about the top of the soil
1249.812
x(
2.631 +
0.6
1000
The moment obtained in case (1) should not be less than the moments due to net hydrostatic pressure with a difference of
250 mm in water levels on opposite faces of column ( As per 213.6 of IRC bridge code ) as below
MFL + 69.646
2.596
1.3
69.396
2.346
SBL + 67.050
1.300
0.900
+ 66.150
0.600
+ 65.550
2.596
1.30
m
m
0.000
0.90
m
2
Moment at +
66.150
M1
7.733 t-m
M2
1/2 x (
1/2 x
2.596
) x
2.596
0.900 x
1.30
3
2
=
M1 - M2
2.346
)x (
6.017 t-m
1.716
2.346
0.900 )x
1.30
t-m
2
Moment at
65.550
1/2 x
M1
M2
1/2 x
8.164 t-m
2.596
2.346
) (
2.596
/3 +
1.50
)x
1.30
) (
2.346
/3 +
1.50
)x
1.30
10.361 t-m
2
0
2.198 t-m
Govering moments @
M1 - M2
66.150 =
1.716 t-m
Govering moments @
65.550 =
2.198 t-m
With 15 % Buoyancy
73.561
73.561
8.669
8.669
1.25
1.25
4) Live load
27.017
27.017
5) weight of column
19.993
18.793
III - 24
1.813
1.813
132.30
131.10
Bearing pedestals
Bed blocks
Live loads
Water currents
3.288
wind force
28.36
132.30
131.10
23.563
0.883
28.5285
132.303
131.10
26.851
132.303
131.10
55.215
26.851
31.128 =
2
Bending moment with out buoyancy
Transverse
23.563
1.716
31.128
41.108
t-m
37.686
t-m
2
+
29.412 =
0.000
Resultan BM with wind effect
Bending moment with buoyancy
0.000
=
2
55.215
2
+
31.128 =
63.385
t-m
0.000
Bending moment with out buoancy
2
51.927
2
+
29.412 =
59.678
t-m
0.000
12.7.2 tabulation of loads & moments on top of soil
Weight of footing
25.834
15.501
Total weight of foundation (including dead and live load ) with out buoyancy
158.137
Total weight of foundation (including dead and live load ) with buoyancy
146.604
Sno
1
with out
with 15 % buoyancy
Longitudinal moment
Transverse
158.137 146.604
Live load
2
23.563
Braking force
Water currents
4.038
30.34
0.883
31.0365
158.137 146.604
27.601
158.137 146.604
57.943
27.601
23.563
2.198
34.117
2
+
34.117
31.920
43.884
t-m
39.675
t-m
2
0.000
0.000
=
2
57.943
2
+
34.117
67.242
0.000
2
III - 25
t-m
53.906
31.920
132.303
37.686
1.423
0.242
92.98 +
Max
248.56 t/m2
155.6
Min
-62.59 t/m2
Stress on soil
158.137 +
39.675
18.098
10.859
8.738 +
Max
12.392
Min
5.084
3.654
131.103
41.108
1.423
0.242
92.14 +
Max
261.84 t/m2
169.7
Min
-77.56 t/m2
Stress on soil
146.604 +
43.884
18.098
10.859
8.101 +
Max
12.142
Min
4.059
4.041
132.30
59.678
1.423
0.242
92.98 +
246.4
Max
339.34 t/m
Min
-153.38 t/m2
Stress on soil
158.137 +
62.647
18.098
10.859
8.738 +
Max
14.507
Min
2.969
5.769
131.103
1.423
Max
92.14 +
353.80 t/m2
63.385
0.242
261.7
III - 26
62.647
t-m
Min
-169.52 t/m2
Stress on soil
146.604 +
67.242
18.098
10.859
8.101 +
6.192
Max
14.293 t/m2
Min
1.908 t/m2
132.303
92.982 t/m2
1.423
500 t/m2
41.108
169.699 t/m2
0.242
bending stress allowable
667 t/m2
As per para 306.5.3, as per IRC 21-2000and as per para B-4- 4.1 the direct and bending stresses calculated shall satisfy the
Direct stress calculated
following conditions
92.982
169.699
500
667
0.186
0.2544
0.440 <
Hence O.K
Ie/radius of gyration
Ie=
9.391 <
6.83
radius of gyration =
0.7267
12 Short column
reinforce ment shall not be less than 0.15 % gross sectional area of column. Hence 0.8 % is provided.
P = Ac x cc + sc x Asc
where sc =
1900 Kg / cm2
where cc =
50 Kg / cm2
Ac =
D2 - Asc
13273.23 -
assuming 0.8 % of bd
Ac
106.186 cm2
13167.04 cm2
860105.24 Kg
=
Area of steel
Asc
Area of steel
860.11 t
>
132.303 Hence ok
106.186 cm2
21.632
say
22 numbers
Lateral ties
according to the IS 456:2000 the diametre of the lateral ties shall not be less than
1)
2)
There fore provide
6 mm
8 mm as the diameter of tie bar
300 mm
130 cm
2)
40 cm
3)
30 cm
III - 27
Pitch of ties
30 cm
Distribution steel
8 mm @
300 mm c/c
5.0
0.25
b
0.70 a
c.g of cantilever portion = h - (( 2a+b)/(a+b))x h/3
1.85
1.3
h
Load on column due to super structure
1.250 t
27.017 t
101.828 t
Total
Length of hammer head
73.561 t
5 m
20.37 t/m
1.85 m
34.851 m
2.86 t
0.779 m
2.225 t-m
Total B.M
37.075 t-m
wl2/2
13
70 kg/cm2
1900 kg/cm2
cleatr cover =
50
mm
0.324
Dia of bar
20
mm
0.892
10.11
Required depth
Effectve depth =
53.112 cm
70
64.00 cm
<
64.00 cm
-1.00
Qb
fy =
area of steel required
Minimum steel
tx jxd
3707526 =
108467.2
As/bd=0.85/fy
0.85
415
34.181 cm2
x
1300
x 700 =
1863.86 mm2
415
18.64
cm2 <
34.181 cm2
20 mm dia bars
12 bars
37.68 cm2
% of steel
0.4529 %
c=
2.8492 Kg/cm2
20.37
1.85
37.676
2.86 t
balance shear
40.532 t
4.87 Kg/cm2
2.022 x
>
130 x
64.00 =
III - 28
16826.7 kg
Vertical stirrups =
Vs =
Sv a sv d
8 mm dia assumed
Sv
 Sv
Asv
2300 Kg /cm2
4 x
2
3.14 x
0.8
2.0096 cm2
4
Sv
2300 x
2.0096
64.00 =
17.580 cm
16826.7
provide
mm 4 legged stirrups @
12 cm c/c.
11.7 cm2
16 mm dia bars
number of bars
6 nos
Provide side face reinforcement Through the depth is less than 750 mm .
Design of footing
Load from super structure
73.561 t
8.669 t
19.993 t
Weight of footing
25.834 t
Total weight
129.307 t
Liveload reaction
27.017 t
Total load
156.325 t
1.25 t
4.8 m
max
14.507 t/m2
min
2.969 t/m2
r
1.30
1.75
R
14.507
4.8
2.969
1.75
4.8
=
11.539
4.8
x
3.05
7.332
10.300 t/m2
R = Radius of footing
2.4 m
r= Radius of column
0.65 m
m2
4.8 m
0.6 R 2 + r 2 + R r
0.6
R+r
=
1.523 m
Area shaded =
4
Load on shaded area =
Maximum bending moment =
2.4
+0.65
2.4
- 0.65
4
10.300 x
4.192 =
43.180 x
1.523 =
43.180 t
65.768 t-m
1.3
4
Adopting C =
R2 - r2
2.4
7 N/mm2
t =
190 N/mm2
1021 mm
4.192
10.11 bd2
10.11 x
d=
provide
25.241
1021.0 d2
cm
<
65.77 x 1000x100
60.00 cm
60 mm
60
+20
+10.00
90.00 mm
510 mm
10.300
182.97 t
x (
4.80
0.65
12 kg/cm2
130 x D
D
Steel required for the footing
x 12.00 =
182973.45
37.335 cm
65.768
x 1000
1900
x 0.892
24.00
bars of
x 100 =
76.090 cm2
x51.00
The reinforcement to the above extent should be provided in two principle direction and in a width equal to the sides of squence
inscribed in the plan of the footing. Length of the side of the inscribed in the plan of the footing. Length of the sides
of the inscribed square
R 2=
2.40 2 =
or
3.3941 m
3394.0 mm
0.30 m
x=
87.429
510
600 -
1.3
87.43 =
513 mm
513
=
Radius at the critical section
90.00
0.30
650.0 +
1160.0 mm
510
2 
=
=
x 116.00
0.65
=
=
x 42.3
0.0056 kg/cm2
24.00
3.140
116.0
x 42.3
2
stress
4.8
2.4
 x
stress allowed with out shear reinforcement
0.30
r+ d
10.3004 (
510
-
422.6 mm
1750
1160
1750
1.30
x 100
0.9787 %
3.874 kg/cm2
>
0.006
III - 30
kg/cm2
=
=
2.400
2.100
t
t
0.5
W4
TBL
73.640
W5
W2
+ 71.15
stressmax min
16.782
9.470
stressmax min
16.805
10.788
W1
1
5
W3
W3'
0.30
0.82
3.05
+ 67.050
SB
W4'
1.000
1.820
0.50
4.050
W6
4.65
1.730 B 0.30
C
+ 66.050
0.5
+ 65.550
III - 31
W1
w4'
W2
0.764
4.820
67.05
0.300
0.936
B
2.200
W7
C
2.800
0.654
stressesmax min
16.434
5.058
SBL
A
w5
0.500
stressesmax min
20.514
1.000
0.30
+
66.050
0.50
III - 32
65.550
2.400 t
section 9-9
unit wt of earth
= 2.100 t
surcharge load
= 1.200 t
CALCULATION OF STRESSES IN CONCRETE :
0.5 +
73.640
73.04
TBL
W3
W5
FSL
W1
stresses at Base
max
W2
1.850
Pva
w5'' + 71.790
PV
A
1.000 0.500
W4
Ph
w5'
0.30 B
CBL
-5.100
min
1.236
+ 5.740 Pha
w5'''
0.30
66.050
1.7
3.200
W6
3.800
41.209
stresses on soil
max
36.629
min
0.5
+ 65.550
=
=
=
2.400 t
2.100 t
1.200 t
0.5 +
73.640
73.04
TBL
w4
w6'
FSL
W1
stresses at Base
max
69.829
W2
w6
stresses on soil
PV
A
0.600
0.500
B
0.30
C
2.856
3.86
W5
4.456
max
63.323
w4'' Pva
CBL +
w4'''
1.756
W3
Ph
min
-3.328
W4'
1.0
71.790
5.740
0.3
Pha
66.050
0.5
+ 65.550
III - 33
min
0.937
=
=
=
section 9'-9'
2.400 t
2.100 t
1.200 t
0.5 +
73.640
73.04
TBL
W3
W5
FSL
W1
stresses at Base
max
45.721
W2
stresses on soil
1.850
pva
w5'' + 71.790
w5'''
A
1.000 0.500
pv
W4
w5'
ph
min
-7.910
0.30 B
1.0
0.30
2.500
W6
3.100
max
38.136
min
0.894
CBL
5.740
pha
66.050
0.5
+ 65.550
section 8'-8'
with out surcharge load
unit wt of concrete
= 2.400 t
unit wt of earth
= 2.100 t
surcharge load
= 1.200 t
CALCULATION OF STRESSES IN CONCRETE :
w4
0.5 +
73.640
73.04
w6'
TBL
stresses at Base
max
FSL
W1
38.524
min
-4.150
stresses on soil
max
W2
w6
0.600 0.500
W4'
2.856
0.3
3.16
pva
CBL +
w4''
1.756
W3
B
0.30
35.196
W5
3.756
w4'''
0.3
71.790
5.740
pha
66.050
0.5
+ 65.550
III - 34
min
2.116