MIT - 16.
20
                                                            Fall, 2002
                             16.20 HANDOUT #5
                                   Fall, 2002
                            Stability and Buckling
          Bifurcation Buckling         and       Snap-Through Buckling
               bifurcation point
BIFURCATION BUCKLING
                                        Z
       Perfect Column:                       X
                                             EI = constant
                                     d 4w  d 2
w
         • Governing Equation:	    EI 4 + P 2
 = 0
                                     dx    dx
                                         P            P
         • Solution:        w = Asin        x + B cos    x + C + D x
                                         EI           EI
Paul A. Lagace © 2002                                        Handout 5-1
MIT - 16.20                                                                 Fall, 2002
                                 n 2π 2 EI                      nπ x
       • Simply supported: Pcr =           mode shape: w = Asin
                                    l2                           l
                                                         π 2 EI
                        Euler buckling load:     Pcr   =
                                                           l2
     • 	General Case:
                                 c π 2 EI
                         Pcr   =               c = coefficient of edge fixity
                                    l2
     • Various Boundary Conditions
          – Simply-supported (pinned)
                                                        w=0
                                                              d 2w
                                                        M = EI 2 = 0
                                                              dx
          – Fixed end (clamped)
                                                        w=0
                                                        dw
                                                           = 0
                                                        dx
          – Free end
                                                             d 2w
                                                       M = EI 2 = 0
                                                             dx
                                                           d    d 2w 
                                                       S =    EI 2  = 0
                                                           dx   dx 
          – Sliding
                                                            d   d 2w 
                                                       S =    EI 2  = 0
                                                           dx   dx 
                                                       dw
                                                           = 0
                                                       dx
Paul A. Lagace © 2002                                             Handout 5-2
MIT - 16.20                                                      Fall, 2002
          – Free end with axial load
                                               d 2w
                                         M = EI 2 = 0
                                               dx
                                             d    d 2w       dw
                                         S =	  E I 2  = − P0
                                             dx   dx         dx
          – Vertical spring
                                             d 2w
                                       M = EI 2 = 0
                                             dx
                                            d    d 2w 
                                        S =    EI 2      = kf w
                                            dx   dx 
          – Torsional spring
                                        w=0
                                             d 2w        dw
                                       M = EI 2   = − kT
                                             dx          dx
     • Various Configurations
                                                             torsional
                                                             spring kT
                  c=1          c= 4    c = 0.25   1<c<4
Paul A. Lagace © 2002                                  Handout 5-3
MIT - 16.20                                                                Fall, 2002
     • Important Definitions
                                                  12
         - radius of gyration = ρ =       (I    A)
         -	 slenderness ratio =  L ρ
         - effective length = L′ =
                                   L
                                     c
     • Effects of Initial Imperfections
                                          d 4w  d 2w
        Governing equation still:       EI 4 + P 2 = 0
                                          dx    dx
       --> Boundary Conditions Change: Primary Moment = -eP
                               P                                  
                      1 − cos EI       l                          
                                               P          P       
              w = e                          sin    x + cos    x − 1
                              P                  EI         EI      
                          sin    l
                             EI                                     
                                                                    
                                                                  π 2 EI
                                                          Pcr   =
                                                                    l2
                                      increasing eccentricity (e/ll)
                                                 P                            
                                       1 −  cos     l                          
                      d 2w                       EI      P                P 
           M = E I 2 = − eP                             sin    x + cos         x
                      dx                        P           EI               EI 
                                           sin     l
                                               EI                               
Paul A. Lagace © 2002                                            Handout 5-4    
MIT - 16.20                                                  Fall, 2002
BEAM-COLUMN
     • Resultant Relations
              dF          d  d w
                 = − px −    S        ≈ -px
              dx          dx  dx 
              dS        d  dw 
                 = pz +     F
              dx        dx  dx 
              dM
                 = S
              dx
     • Governing Equation:
              d2       d 2w    d  d w
                    EI       −    F     = pz
              dx 2     dx 2    dx  d x 
     • Buckling of Beam-Column:
                d 2w
              EI 2 + P w = M primary
                dx
Paul A. Lagace © 2002                              Handout 5-5
MIT - 16.20                                                                     Fall, 2002
OTHER ISSUES
     • Fracture/Failure via “squashing”
                                                    Euler curve
                                                                  compressive yield
                                                                     actual behavior
                        P
              σ =           = σcu for “squashing”
                        A
                        compressive ultimate
       • Progressive Yielding
                                                      use tangent modulus
Paul A. Lagace © 2002                                                 Handout 5-6
MIT - 16.20                                                                        Fall, 2002
     • Nonuniform Beams
          d2        d 2w   d 2w
                  EI 2  + P 2 = 0
          dx 2      dx     dx
     • Plates
                                                                π 2 EI
                                                      Pcr   = 2
        Pin-sliding	
                                                              l (1 − ν 2 )
                                                                  simply-supported
                                                                  isotropic plate
                 Free                                                  mπ x     nπ y
                                                    w = wmn sin             sin
                                                                        a        b
     • Cylinders
                                                             local “crippling”
                                          σcr(linear) = 0.606 E h            (isotropic)
                                                                       R
                         due to
                         imperfections:   σ cr( actual ) ≈ (0.15 to 0.9) σ cr( linear )
     • Reinforced Plates
                    Consider buckling/crippling of elements of stiffness as well
                      as of panels
Paul A. Lagace © 2002                                                   Handout 5-7
MIT - 16.20                                                                  Fall, 2002
        • Postbuckling
                                                       actual behavior w/post-
                                                       buckling capability
                                                    perfect linear behavior
                                      behavior with imperfection
                                                   dθ                 1   d 2w
              large deformations       curvature =    =                 2    2
                                                   ds             dw  ds
                                                              1−  
                                                                  ds 
                    Basic Equation:
                                           2
                                 1  dw             d 2w   P
                             1 +            + H.O.T.      +     w = 0
                                 2  ds             ds 2
                                                              E I
                        Use Galerkin Method (minimize residuals)
Paul A. Lagace © 2002                                              Handout 5-8