Name______________________________________________
Chapter 5                    Analytic Trigonometry
Section 5.1 Using Fundamental Identities
Objective: In this lesson you learned how to use fundamental
           trigonometric identities to evaluate trigonometric functions
           and simplify trigonometric expressions.
I. Introduction (Page 374)                                                       What you should learn
                                                                                 How to recognize and
Name four ways in which the fundamental trigonometric                            write the fundamental
identities can be used:                                                          trigonometric identities
1) to evaluate trigonometric functions
2) to simplify trigonometric expressions
3) to develop additional trigonometric identities
4) to solve trigonometric equations
The Fundamental Trigonometric Identities
List six reciprocal identities:                               List six cofunction identities:
1) sin u = 1/(csc u)                                          1) sin(π/2 − u) = cos u
2) cos u = 1/(sec u)                                          2) cos(π/2 − u) = sin u
3) tan u = 1/(cot u)                                          3) tan(π/2 − u) = cot u
4) csc u = 1/(sin u)                                          4) cot(π/2 − u) = tan u
5) sec u = 1/(cos u)                                          5) sec(π/2 − u) = csc u
6) cot u = 1/(tan u)                                          6) csc(π/2 − u) = sec u
List two quotient identities:                                 List six even/odd identities:
1) tan u = (sin u)/(cos u)
                                                              1) sin(− u) = − sin u
2) cot u = (cos u)/(sin u)
                                                              2) cos(− u) = cos u
List three Pythagorean identities:
                                                              3) tan(− u) = − tan u
       2          2
1) sin u + cos u = 1
                                                              4) csc(− u) = − csc u
            2         2
2) 1 + tan u = sec u
                                                              5) sec(− u) = sec u
            2         2
3) 1 + cot u = csc u
                                                              6) cot(− u) = − cot u
Larson/Hostetler Precalculus/Precalculus with Limits Notetaking Guide IAE
Copyright © Houghton Mifflin Company. All rights reserved.                                                  99
100     Chapter 5    •    Analytic Trigonometry
II. Using the Fundamental Identities (Pages 375−378)
                                                                                What you should learn
Example 1: Explain how to use the fundamental trigonometric                     How to use the funda-
           identities to find the value of tan u given that                     mental trigonometric
           sec u = 2 .                                                          identities to evaluate
                                                                                trigonometric functions,
                                                                                simplify trigonometric
             Use the Pythagorean identity 1 + tan2 u = sec2 u.
                                                                                expressions, and rewrite
             Substitute 2 for the value of sec u and solve for
                                                                                trigonometric expressions
             tan u.
Example 2: Explain how to use the fundamental trigonometric
           identities to simplify sec x − tan x sin x .
             Rewrite the expression in terms of sines and
             cosines. Combine the resulting fractions to obtain
             (1 − sin2 x)/(cos x). Using the Pythagorean identity
             sin2 u + cos2 u = 1, replace the numerator with
             cos2 x. Simplify the result to obtain cos x.
Additional notes
 Homework Assignment
 Page(s)
 Exercises
                                     Larson/Hostetler Precalculus/Precalculus with Limits Notetaking Guide IAE
                                                         Copyright © Houghton Mifflin Company. All rights reserved.