STRUCTURAL COMPUTATION
OF
PROPOSED TWO-STOREY RESIDENTIAL HOUSE
PHASE 7-A BLOCK 17 LOT 04 ORCHARD & RESIDENTIAL ESTATE, SALITRAN, DASMARIAS, CAVITE
Prepared by:
GIL S. BELTRAN
Civil Engineer
PRC Reg. No.
PTR No.
Date Issued
Place Issued
TIN
: 64544
: 8642641
: 1/9/2009
: Dasmarias, Cavite
: 157-467-966
Page 1 of 9
PROPOSED TWO-STOREY RESIDENTIAL HOUSE
PHASE 7-A BLOCK 17 LOT 04 ORCHARD & RESIDENTIAL ESTATE, SALITRAN, DASMARIAS, CAVITE
Owner: MS. LYDA B. FIX
DESIGN OF SLABS
A. DESIGN OF TWO-WAY SLAB (S-1)
Direct Design Method
Design Specifications
L1 =
2.30 m
column size =
L2 =
Fy =
3.35 m
275 Mpa
0.20m x 0.40m
beam size =
0.20m x 0.35m
f'c =
20.7 Mpa
cc =
Considering the interior slab
1 Relative values
x L2/L1 =
1.46
x L1/L2 =
0.86
2 Slab thickness, t
t
=
m = 2x(1 + 2)/4
Ln (800 + 0.73Fy)
36,000 + 5000 [m - 0.12(1 + 1/
where: Ln = L2 - column width
Ln = L1 - column width
= (Ln long/Ln short) direction clear span ratio
1.25 (long direction)
25 mm
1.16
78.05 mm
3.35 m
2.30 m
1.46
It should not be less than
tmin =
Ln (800 + 0.73Fy) =
36000 + 9000
68.27 mm
ok
It should not be more than
tmax =
Ln (800 + 0.73Fy) =
36000
93.13 mm
ok
Try t =
1 (short direction)
100 mm for all two way slabs
3 Design moments
Dead Load = W slab + W ceiling+finish =
Live Load
41.48 KN m;
2.3 m
L2 =
4.8 Kpa
Wu = 1.4DL + 1.7LL (consider 1-m strip) =
Long Span:
2
Mu = Wu L1 Ln2 /8
L1 =
3.35 Kpa
3.35 m
0.9
12.86 Kpa
Mu/
Mn =
46.09 KN m
Distribution of Mn between section of positive and negative moment
at midspan: +Mms =
0.35 Mn =
16.13 KN m
at support: -Ms =
0.65 Mn =
-29.96 KN m
Percentage of moment at support
Column strip:
L1/L2 =
2 =
1.25
By interpolation:
L1/L2
2L1/L2
0.5
0.69
1
90
?
75
2L1/L2 =
0.69
x
%M
=
=
Code assigns 85% of the column strip moment to the beam
Column strip negative
Mn =
-25.28 KN m
Beam negative
Mn =
-21.49 KN m
Slab negative
Mn =
-3.79 KN m
Page 2 of 9
0.86
5.60 %
84.40 %
-1.90 KN m /half strip
Column strip positive
Beam positive
Slab positive
Mn
Mn
Mn
=
=
=
13.61 KN m
11.57 KN m
2.04 KN m
1.02 KN m /half strip
Mu/
Middle strip (takes the remaining moment)
Middle strip negative
Mn =
-4.67 KN m
Middle strip positive
Mn =
2.52 KN m
Short Span:
2
Mu = Wu L2 Ln1 /8
28.48 KN m;
Mn =
31.64 KN m
Distribution of Mn between section of positive and negative moment
at midspan: +Mms =
0.35 Mn =
11.07 KN m
at support: -Ms =
0.65 Mn =
-20.57 KN m
Percentage of moment at support
Column strip:
=
1
L2/L1 =
1.46
By interpolation:
L2/L1
L2/L1 =
1.46
L2/L1
1
75
x
x =
1.46
?
%M =
2
45
Code assigns 85% of the column strip moment to the beam
Column strip negative
Mn =
-12.61 KN m
Beam negative
Mn =
-10.72 KN m
Slab negative
Mn =
-1.89 KN m
-0.95 KN m /half strip
Column strip positive
Beam positive
Slab positive
0.51 KN m /half strip
Mn
Mn
Mn
=
=
=
6.79 KN m
5.77 KN m
1.02 KN m
13.70 %
61.30 %
Middle strip (takes the remaining moment)
Middle strip negative
Mn =
-7.96 KN m
Middle strip positive
Mn =
4.29 KN m
Fy
275 Mpa
Slab thickness, t (mm)
Steel reinforcement (mm)
Middle Strips
Strip Width, b (mm)
Mn (KN m)
Mn (KN m)
d (mm)
As = [Mn(106)]/[Fy(0.95d)] (mm2)
Min As = 0.002bt (mm2)
Spacing, S = Ab /As (mm)
Max S = 2t (mm)
Column Strips
Strip Width, b (mm)
Mn (KN m)
Mn (KN m)
d (mm)
As = [Mn(106)]/[Fy(0.95d)] (mm2)
Min As = 0.002bt (mm2)
Spacing, S = Ab /As (mm)
Max S = 2t (mm)
Adopted Spacing, S (mm)
Middle Strips (10mm bars)
Column Strips (10mm bars)
LONG SPAN
-M
+M
100
10
SHORT SPAN
-M
+M
100
10
1000
46.09
-4.67
2.52
75
75
238.46
128.40
200
200
329.36
392.70
200
200
1000
31.64
-7.96
4.29
75
50
406.18 328.07
200
200
193.36 239.40
200
200
1000
46.09
-1.90
1.02
75
75
96.78
52.11
200
200
392.70
392.70
200
200
1000
31.64
-0.95
0.51
75
50
48.26
38.98
200
200
392.70 392.70
200
200
200
200
Page 3 of 9
200
200
DESIGN OF BEAMS
A. FLOOR BEAM, FB1
1 Design loads
TA =
10.12
Beam size: b =
0.20
h=
0.35
d=
0.34
Dead loads:
W slab =
W c+f =
W beam =
W DL =
m2
m
m
m
23.82
7.2864
5.52
Slab Thickness =
Beam span L =
LL =
KN
KN
36.63 KN
10.93 KN/m
48.576 KN
= 1.4DL + 1.7LL
=
=
14.50 KN/m
39.96 KN/m
W LL =
Live loads:
Wu
2 Design Moments
Assuming fully restrained beam
Max. +Moment =
WuL2/24
Max. -Moment =
-WuL2/12
Max. Shear =
WuL/2
3 Reinforcement Design
At Support (Negative Moment)
Mu =
-37.37 KN m
Mn = Mu/0.90 =
41.52 KN m
bal =
max =
M1 =
=
=
=
18.68 KN m
-37.37 KN m
66.93 KN
f'c =
Fy =
A =
20.7 Mpa
275 Mpa
201.06 mm2
max = 0.75bal
[0.85f'c /Fy][600+(600+Fy)]
0.75bal
0.037
0.028
0.3bal
0.011
=
use
s1bd
a
100 mm
3.35 m
4800 Pa
As1Fy/(0.85f'cb)
As1Fy(d-a/2)
No. of bars required (use 16 mm
n = As/A
=
3.8 say
Reinforcement:
4 pcs - 16mm
(Top bar)
2 pcs - 16mm
(Bottom bar)
At Midspan (Positive Moment)
Mu =
18.68 KN/m
Mn = Mu/0.90 =
20.76 KN/m
bal =
max =
59.01 mm
63.96 KN m 37.37
KN m
Treat as singly reinforced beam
4
f'c =
Fy =
A =
pcs
20.7 Mpa
275 Mpa
201.06 mm2
max = 0.75bal
[0.85f'c /Fy][600+(600+Fy)]
0.75bal
0.15bal
=
use
s1bd
a
= As1Fy/(0.85f'cb)
M1 =
As1Fy(d-a/2)
0.037
0.028
0.006
=
=
=
No. of bars required (use 16 mm
n = As/A
=
1.9 say
Reinforcement:
2 pcs - 16mm
(Top bar)
4 pcs - 16mm
(Bottom bar)
4 Stirrup
Vu =
755.17 mm2
66.93 KN
Shear capacity of beam
377.58 mm2
29.51 mm
33.51 KN m 18.68
KN m
Treat as singly reinforced beam
2
Vcr = Vu - Wu d =
Page 4 of 9
pcs
53.44 KN
Vc = (f'c)bd/6
Vc/2
Vn =
=
=
51.18 KN
21.75 KN
Stirrup is needed
41.12 KN
<
53.44
Vcr/ - Vn
Vs =
=
Using 10mm
A =
78.54 mm2
Spacing S = AFyd/Vs
=
354.53 mm
Max S = d/2
=
168.75 mm
Use 10mm stirrups spaced @: 3 @ 50mm; 2 @ 100mm; 2 rest @ 150mm
B. FLOOR BEAM, FB2
1 Design loads
TA =
5.06
Beam size: b =
0.20
h=
0.30
d=
0.29
Dead loads:
W slab =
W c+f =
W beam =
W DL =
m2
m
m
m
11.91
3.6432
4.73
Slab Thickness =
Beam span L =
LL =
KN
KN
20.29 KN
6.06 KN/m
24.288 KN
= 1.4DL + 1.7LL
=
=
7.25 KN/m
20.80 KN/m
W LL =
Live loads:
Wu
2 Design Moments
Assuming fully restrained beam
Max. +Moment =
WuL2/24
Max. -Moment =
-WuL2/12
Max. Shear =
WuL/2
3 Reinforcement Design
At Support (Negative Moment)
Mu =
-19.46 KN m
Mn = Mu/0.90 =
21.62 KN m
bal =
max =
M1 =
=
=
=
9.73 KN m
-19.46 KN m
34.84 KN
f'c =
Fy =
A =
20.7 Mpa
275 Mpa
201.06 mm2
max = 0.75bal
[0.85f'c /Fy][600+(600+Fy)]
0.75bal
=
use
s1bd
a
100 mm
3.35 m
4800 Pa
0.25bal
0.037
0.028
0.009
As1Fy/(0.85f'cb)
As1Fy(d-a/2)
No. of bars required (use 16 mm
n = As/A
=
2.7 say
Reinforcement:
3 pcs - 16mm
(Top bar)
2 pcs - 16mm
(Bottom bar)
At Midspan (Positive Moment)
Mu =
9.73 KN/m
Mn = Mu/0.90 =
10.81 KN/m
bal =
max =
536.08 mm2
41.89 mm
39.30 KN m 19.46
KN m
Treat as singly reinforced beam
3
f'c =
Fy =
A =
pcs
20.7 Mpa
275 Mpa
201.06 mm2
max = 0.75bal
[0.85f'c /Fy][600+(600+Fy)]
0.75bal
0.037
0.028
0.2bal
0.007
=
use
s1bd
a
= As1Fy/(0.85f'cb)
M1 =
As1Fy(d-a/2)
=
=
=
No. of bars required (use 16 mm
n = As/A
=
2.1 say
Page 5 of 9
428.86 mm2
33.51 mm
31.93 KN m 9.73
KN m
Treat as singly reinforced beam
3
pcs
Reinforcement:
2 pcs - 16mm
3 pcs - 16mm
4 Stirrup
Vu =
(Top bar)
(Bottom bar)
34.84 KN
Shear capacity of beam
Vc = (f'c)bd/6
Vc/2
Vn =
Vcr = Vu - Wu d =
=
=
28.86 KN
43.60 KN
18.53 KN
Stirrup is needed
15.43 KN
<
28.86
Vcr/ - Vn
Vs =
=
Using 10mm
A =
78.54 mm2
Spacing S = AFyd/Vs
=
805.02 mm
Max S = d/2
=
143.75 mm
Use 10mm stirrups spaced @: 3 @ 50mm; 2 @ 100mm; rest @ 150mm o.c.
DESIGN OF COLUMNS
A. EXTERIOR COLUMNS (C1)
Trial Section
b
=
200 mm
h
=
400 mm
bar
=
12 mm
n
=
6 pcs
Design Specifications
f'c
=
Fy
=
1 Axial loads
PDL
=
Pu
=
PuTotal =
20.7 MPa
275 MPa
Ag
Ast
tie
=
=
=
=
80000 mm2
678.58401 mm2
PLL
18.31 kN
(1.4DL + 1.7LL)x1.5
=
Pu x no. of sides x no. of floors =
10 mm
0.7
0.85
=
100.39 kN
602.37 kN
24.29 kN
(for one side only)
2 Check capacity of column
Puall
=
0.80 [ 0.85f'c (Ag - Ast) + FyAst ]
Puall
=
886.07 kN
since:
Puall
>
Pu
3 Check steel ratio
act
=
Ast/Ag
max
=
0.85f'c (600)
Fy (600 + Fy)
min
=
1.4/Fy
0.005
min
since:
<
0.008
act
then:
The column section is safe!
0.008
0.037
0.005
0.037
max
then:
<
4 Lateral ties
s
16 (bar)
192 mm
48 (tie)
s
=
=
480 mm
s
=
least dimension
=
200 mm
Thus: Use 6 - 12mm dia bar with 10mm dia lateral ties @ 200mm o.c.
B. INTERIOR COLUMNS (C2)
Trial Section
b
=
200 mm
h
=
300 mm
bar
=
12 mm
n
=
6 pcs
Ag
Ast
tie
=
=
=
Page 6 of 9
60000 mm2
678.58401 mm2
10 mm
The steel ratio is safe!
Design Specifications
f'c
=
Fy
=
1 Axial loads
PDL
=
Pu
=
PuTotal =
20.7 MPa
275 MPa
=
=
0.7
0.85
PLL
18.31 kN
(1.4DL + 1.7LL)x1.5
=
Pu x no. of sides x no. of floors =
=
100.39 kN
401.58 kN
24.29 kN
(for one side only)
2 Check capacity of column
Puall
=
0.80 [ 0.85f'c (Ag - Ast) + FyAst ]
Puall
=
689.01 kN
since:
Puall
>
Pu
3 Check steel ratio
act
=
Ast/Ag
max
=
0.85f'c (600)
Fy (600 + Fy)
min
=
1.4/Fy
0.005
min
since:
<
0.011
act
then:
The column section is safe!
0.011
0.037
0.005
0.037
max
then:
<
The steel ratio is safe!
4 Lateral ties
s
16 (bar)
192 mm
48 (tie)
s
=
=
480 mm
s
=
least dimension
=
200 mm
Thus: Use 6 - 16mm dia bar with 10mm dia lateral ties @ 200mm o.c.
DESIGN OF FOOTING
A. INTERIOR FOOTING (F1)
Design Specifications
f'c
=
20.7 MPa
Fy
=
275 MPa
bar
=
16 mm
conc
=
23.5 kN/m3
H
h
qall
=
=
600 mm
300 mm
190 kPa
soil
15.7 kN/m
colb
200 mm
cc
100 mm
colh
400 mm
0.85
1 Service loads
PT
=
PDL + PLL
2 Base dimensions
qnet
qall - [ hconc + Hsoil ]
=
255.62 kN
173.53 kPa
1.47 m2
1.21 m
Aact
2.25 m2
401.58 kN
PU / Aact
178.48 kPa
4 Check punching shear
d
=
h - cc
colb + d
b
=
200 mm
400 mm
600 mm
2000 mm2
Areqd
B2
=
Trial section:
B
PT / qnet
Areqd
1.5 m
3 Soil pressure due to factored loads
PU
=
1.4DL + 1.7LL
qu
c
bo
colh + d
Vu
[2b + 2c]
PU - qu x b x c
Page 7 of 9
358.74 kN
(assume)
3
(assume)
Vc
0.33 bo d f'c
Vc
>
since:
=
Vu
5 Check beam shear
x1
(B - colb - 2d)/2
=
Vu
qu B x1
Vc
0.17 B d f'c
Vc
>
since:
Mu
2
120.47 kN
197.23 kN
SAFE
qu B x /2
0.65 m
56.555771 kN m
f'c Bd (1-0.59)
1.69
+
0.08576
2
=
use =
As
=
1.4/Fy
Ast/A
Use
0
0.052
0.004
=
=
=
Bd
=
=
=
f'c/Fy
min
Thus:
0.45 m
Vu
2
2
=
=
=
=
510.48 kN
SAFE
6 Design of reinforcement
x2
(B - colb)/2
=
Mu
0.005
0.005
1527.27 mm2
=
7.59
say
8 pcs
16mm dia bar on both sides of footing.
B. EXTERIOR FOOTING (F2)
Design Specifications
f'c
=
20.7 MPa
Fy
=
275 MPa
bar
=
16 mm
conc
=
23.5 kN/m3
H
h
qall
=
=
500 mm
300 mm
190 kPa
(assume)
soil
15.7 kN/m3
(assume)
colb
200 mm
cc
100 mm
colh
300 mm
0.85
1 Service loads
PT
=
PDL + PLL
2 Base dimensions
qnet
qall - [ hconc + Hsoil ]
=
Areqd
B2
=
Trial section:
B
175.10 kPa
0.97 m2
0.99 m
Aact
1.44 m2
PT / qnet
Areqd
1.2 m
170.41 kN
3 Soil pressure due to factored loads
PU
=
1.4DL + 1.7LL
267.72 kN
PU / Aact
185.92 kPa
4 Check punching shear
d
=
h - cc
colb + d
b
=
200 mm
400 mm
qu
c
bo
colh + d
500 mm
1800 mm2
Vu
[2b + 2c]
PU - qu x b x c
Vc
since:
0.33 bo d f'c
Vc
>
Vu
230.54 kN
459.43 kN
SAFE
Page 8 of 9
5 Check beam shear
x1
(B - colb - 2d)/2
=
Vu
qu B x1
Vc
0.17 B d f'c
Vc
>
since:
=
=
Mu
2
f'c Bd2 (1-0.59)
1.69
+
0.05286
f'c/Fy
min
=
use =
As
=
1.4/Fy
Ast/A
Thus:
Bd
=
Use
157.78 kN
SAFE
qu B x22/2
=
=
=
=
66.93 kN
=
Vu
6 Design of reinforcement
x2
(B - colb)/2
=
Mu
0.3 m
0.5 m
27.887461 kN m
=
=
=
=
=
=
0
0.032
0.002
0.005
0.005
1221.82 mm2
=
6.08
say
7 pcs
16mm dia bar on both sides of footing.
Page 9 of 9