Link
LinkBudgetOverview
       Budget Overview
PreparedbyARABSATESC
    p      y
   forDivona Engineers
     26th  29th December 2014
         Algiers-Divona
            g           HQ
Introduction
 Linkanalysisistheprocessofcalculatingthecarrierpowerlevelstobe
transmittedfromtheEarthStationandtheSatelliteinordertoprovidethe
requiredoverallcarriertonoiseratioatthereceiveendofthelink.
Thepowerlevelswilldependonthetypeofservice,thecodingrate,the
EarthStationlocations,theSatellitescharacteristics.
Thedesignprocesswillalsobeconcernedwiththeallocationofsufficient
linkmargintoprovideanacceptablepropagationavailability.
TradeoffbetweenEarthStationcostsandSatelliteutilizationcostsmust
becarriedouttodefinetheminimumoverallsystemcost.
TheEarthStationpoweramplifiers,antennadiametersandlownoise
receivercharacteristicswillbeoptimizedtoarriveataminimumcost
solution
solution.
                                                                           2
Therearethreemajorsetsofparameterswhichconstituteinput
Th         th       j    t f        t     hi h     tit t i    t
valuestoconductlinkbudget.
                        Satellite
         Earth
                                         Carriers
        Stations
                                                                   3
    Earth
   Stations
SiteLocationCoordinates.
AntennaSpecification[OperatingFrequencyRange,CPI,Gain,
G/T Diameter ]
G/T,Diameter].
     ,      ,
HPA,SSPA,BUCSize.
LNA/LNBNoiseFigure(orNoiseTemp).
 Feed,Waveguide,CableLosses
                                                                 4
 Carriers
- Modulation scheme
             scheme,
  Modulation scheme BPSK   QPSK      8PSK     16PSK
  No. of phases
  No.ofphases        2         4      8      16
  Bitspersymbol      1         2      3      4
- Data Rate
- FEC Code rate
1/2,2/3,3/4,7/8,etc TPC, LDPC
- Roll-off
  R ll ff factor
           f t
20%, 25%,30%,35%
- BER , : 10E
          10E-7
              7, 10E
                 10E-8
                     8 etc & Corresponding Eb/No
                                                      5
Transponder throughput versus modulation scheme,
Transponder bw      36 Mhz
FEC                 3/4
Roll-0ff factor     1.31
S b l rate
Symbol  t           27 5 MSps
                    27.5
 Modulation          BPSK`
                     BPSK       QPSK    8PSK    16PSK   32PSK
 scheme
 No. of phases             2     4       8       16`     32`
 Bits per symbol           1     2       3        4       5
 Through (MB/s)       20.62     41.25   61.87   82.5    103.12
 put
 Eb/No (dB) BER =         2.8    4.5     6.8    10.2     12.3
 1E-7
                                                                 6
BER:
Biterrorrate(orratio).
Theratioofbitsreceived
inerrortothetotal
number of bits
numberofbits
transmitted.BERisa
measureofthequality
ofadigitalsignal.
                       7
Satellite
 Longitude
 Frequencyband
 SFD
 EIRP
 G/T
 TransponderBW
  Transponder BW
 TransponderIBO/OBO
       p       /
 TransponderC/IM
 Uplink/DownlinkCrossPol IsolationPerformance
                                                       8
       LinkBudgetProcess:Insertinputstoobtainanoutput
                              (2) S/C
             (1) ES
                            P
                            Parameters
                                    t
I/P Values Parameters
                                                                  (3) Carrier
                                                                 Parameters
                                LB
   ALBT
                             Analysis
                             Program
                               Database
                                                             Note : If any
                                                             two sets are
                                 LB                          given, the
O/P Values
                               Results                       third set will
                                                             b determined
                                                             be d t     i d
                                                                          9
DigitalCarrierModulationParametersRelationships:
ConsiderthefollowingParameters:                       Modulat   Noof   Bits/
ModulationScheme=QPSK                  ion       phases   symbol
Numberofphases(M)=4
Bits
BitsperSymbol(m)
     per Symbol (m)                        =2
                                             2             BPSK    2        1
InformationRate[B/s]=IR
OverheadRate[B/s]=OH
DataRate[B/s](DR)=IR+OH             QPSK      4        2
FECCodeRateFEC=3/4
       d                                    /
RSRate=188/204
CompositeRate =CR=(3/4)*(188/204) 8PSK        8        3
                          [ /]
TransmissionRate[B/s]=Tx          R=DR/CR
                                                     /
Rollofffactor( )[%]=30%             16PSK     16       4
SymbolRate[S/s]=Tx R/m
NoiseBandwidth[Hz](Nbw)=Tx R/m
All t d B d idth [H ] (B ) (Nb )*(1+ )
AllocatedBandwidth[Hz](Ba)=(Nbw)*(1+)(A1)    (A1)
LetEb/No=5.5(dB)atBERof1E6
ThenRequiredC/N=Eb/No+10LOG(DR/Nbw)(A2)
or C/N Rqd=5.5+10LOG(CR*m)(dB)..(A2)
orC/N   = 5 5+10LOG(CR*m) (dB)            (A2)
                                                                                10
SatelliteLINK
                 11
UplinkEIRP
HavingaTXESwithanAntennasizeDiameterandHPA/BUC
size we can start defining our uplink EIRP by
sizewecanstartdefiningouruplinkEIRPby
     EIRP=HPA OBO WGLoss+AntennaGain
Assuming0dBOBOand0dBwaveguidelossesthecomputed
 p                                p
uplinkEIRPofastationwithHPApowerof20dBW and
AntennaGainof50dBi
                                                             12
  FluxEquationandFluxDensity
  Thepowerpersquaremeterthatarrivesatthereceive
  sideofthetransponder
  The flux density, or power per unit area at a distance d from an
  isotropic radiator is:
         PT
                                dBW/
        4 d            2          m2
Th
Theareaexpandswiththesquareofthedistance
              d ith th            f th di t
                              1
YouwillnotethattheisarepresentationofFreeSpacePathLoss
                            4 d 2
(FSPL)
                                                                                  13
 FluxEquationandFluxDensity
 NowforFluxdensityreceivedatsatelliteinputreference.The
 actualPowersourceistheTXESHPApower(P)andwithAntenna
 GainAmplificationtheUplinkEIRPcomputed.ThusFluxDensity
 willbeupdatedas
        PT G T
                            dBW/
        4 d 2                 m2
   Flux=EIRP FSPL
AddingsomefurtherAtmosphericandrainloss(Lr )dB
     Flux=EIRPFSPLLr
     Flux = EIRP FSPL Lr
                                                               14
   SatelliteSFD
   TheSFD(saturatedfluxdensity)isthepowerper
   squaremeterthatisneededattheinputtosaturatethe
   transponder(maximumoutputpowerofthe
   transponderamplifier)
   Typicalvalue: 80~90dBW/m
SinceSatelliteSFDreferenceusedforanormalized1m2areasurfacearea,
thecomparisonbetweenSFDandCarrieruplinkFluxshallbeconsideredas:
                                                            4
             FluxDelta=SFD(sat) (EIRPFSPLLr )+
                                                            2
ThisFluxDeltawillbeamajorinputforthecalculationasCarrierInputBackOff
                                                                             15
OperationIBO/OBO
EachTransponderwillhavearecommendedIBO/OBOvaluesfrom
theoperatorforthefullloadingofthetransponderbasedonmode
ofoperation.
 Thisrecommendedoperationismainlytoguaranteethesignal
  Thi            d d       ti i       i l t        t th i l
amplificationtomaintainwithinalinearrange.
                                                                  16
OperationIBO/OBO
BelowaresponseIBO/OBOplotshowingthreemainmodesof
loading(SingleCarrier,TwoCarrier,MultiCarriers)
                             0
                                         Single-Carrier OBO (dB)
                             -2          Two-Carrier OBO (dB)
                                         M ulti-Carrier OBO (dB)
                             -4
                             -6
          ut Backoff (dB)
                             -8
                            -10
      Outpu
                            -12
                            -14
                            -16
                            -18
                                  -20   -18    -16      -14        -12    -10       -8   -6   -4   -2   0
                                                                    Input Backoff (dB)
                                                                                                            17
OperationIBO/OBO
BelowtableshowingtherecommendedIBO/OBOhighestvaluesto
maintainlinearperformanceperoperationmode.
ThosevalueswillbeusedforcomputingcarriersBackoffandEIRP
thatbeenamplified.
 Single Carrier Input Single Carrier Output Two Carrier Input   Two Carrier Output   Multi Carrier Input   Multi Carrier Output
       Backoff               Backoff            Backoff              Backoff               Backoff               Backoff
        (IBO)                 (OBO)              (IBO)               (OBO)                  (IBO)                 (OBO)
       0.0 dB               0.0 dB               -3.7 dB             -2.3 dB               -4.3 dB               -3.1 dB
ADeltafactor(F)willbepresentedasF=OBOIBO.
ThisValuewillusedforCarriersPowerComputation
                                              p
                                                                                                                           18
CarrierIBO/OBO
ItshallbeNotedthatSFDvaluetobeconsideredovertheuplink
locationstation.
TheEarlyDefinedFluxDeltaisourCarrierIBO.
                                                                       4
          (CarrierIBO)FluxDelta=SFD(sat) (EIRPFSPLLr )+
                                                                       2
NowtoknowtheCarrierAmplifiedEIRPbytheSatellitewewill
simply
simply
                      CarrierOBO=CarrierIBO+F
           CarrierEIRPDownlink=EIRP(sat) {CarrierOBO}
                                                                            19
CarrierIBO/OBO
   Whensaturatingthetransponder,thesatellitetransmitswith
   When   saturating the transponder the satellite transmits with
   theEIRPindicatedintheEIRPfootprints
                                                                      20
CarrierIBO/OBO
   TopreventnonlineareffectsduetosaturationoftheTWTA,
   To prevent non linear effects due to saturation of the TWTA
   someinputbackoff istaken,whichresultsinoutputbackoff
                                                                   21
CarrierIBO/OBO
   Thesatelliteinputandoutputbackoff percarrierchangeaccordingly
                                                                           22
CarrierIBOandPEB!
TheCarrierUplinkTowardasatellitetransponderwouldhaveaflux
Th  C i U li k T        d      t llit t        d       ld h     fl
projectionthatbeenhighlightedasCarrierIBO.
IfMulticarrieroperatedoverthesametransponderthetotalflux
valuesshallnotexceedthetransponderSFDdesignatedvalueandits
recommendedOperatingpoint(IBO)ofthetransponder!
ToAllowusunderstandingtheuplinkCarrierEIRPlimitintothe
transponderwedefinePowerEquivalentBW(PEB)whichisa
functionofCarrierIBOtoTransponderIBOanditsBWashereunder:
                 CarrierPEB       
   10 * log
        l                             CarrierIBO
                                         C i IBO       Transponde
                                                        T       d    r . IBO
              Transponde r . BW    
                                                                               23
CarrierIBOandPEB!
                 CarrierPEB       
   10 * log                           CarrierIBO    Transponde   r . IBO
              Transponde r . BW    
  Case                        A             B            C           D
  TransponderBW              36            36          72            72
  TransponderIBO              4            4           4           6
  CarrierIBO                 12            9          12           9
  CxrIBO TPIBO             8            5           8           3
  LinearValue                0.2           0.3          0.2          0.5
  PEB( Mhz )                5.7           11.4        11.4         36.1
From here
F    h     comes th
                  the statement
                        t t    t off P
                                     Power lilimited
                                                it d When
                                                     Wh PEB comes
higher than Carrier Allocated BW !  The limit coming from excess
Power Consumed on Transponder level
                                                                               24
UplinkC/No&C/NDerivation
As we have seen in a previous section, the product of transmit
power and antenna gain is called the "Equivalent Isotropically
Radiated Power" and is a figure
                           g    of merit of the transmitting
                                                           g station.
We can therefore write:
          EIRP
                        dBW/m2
          4 d   2
The received carrier power collected by the receiving antenna
having an effective aperture area Ae is given by:
                           EIRP
          C   * Ae                 * Ae   dBW
                           4 d   2
                                                                   25
 UplinkC/No&C/NDerivation
Recall that the receive antenna gain is given in terms of its effective
aperture by:
                  GR  4  Ae
                       2
Therefore we can write the received power as:
              2                  2                 2
    EIRP GR                            4 d          EIRP
 C              EIRP         RG  EIRP          G       GR
    4 d 2 4          4 d                   R   FSL
                                                               2
                                                     4 d 
Where FSL stands for the Free Space Loss,               
                                                      
FSL, is the path free space loss in Decibels = -20 log (4  d/ ) dB
In more easier form ,,FSL= 32.4+20 log
                                     g d + 20 log
                                                gf
Where d is distance in Km ,
While f is Frequency in Mhz                                           26
UplinkC/No&C/NDerivation
Note once again that this FSL term is a function of frequency and
is not just the inverse square law energy spreading loss. This form
is very convenient for use in link analysis. Since the total path is
not in free space, but passes through the atmosphere, a loss term
for atmospheric absorption must be added. The equation now
becomes:
     C       EIRP     GR
                                      dBW
              FSL       L
The actual level of the carrier received is not critical since the
receiver has gain to restore the signal to a workable level.
                                                                     27
                          UplinkC/No&C/NDerivation
                       RecallingtheThermalNoisePower causedbyrandommotionofelectrons.
                       relatedtoTemperature.
                        Noise
                         NoisePower
                               Power
                                    No =kTB
                                                   T=NoiseTemperature
                                                                              (
                                                   k=TheBoltzmannconstant(1.38x1023 J/K))
                                       B=ReceiverBandwidth
                       kcanhaveunitsdBJ/KordBW/Hz/K
26Jan15 Sat.TelecomOverveiw                                                                     28
UplinkC/No&C/NDerivation
   C  EIRP G R 1
   NO  FSL L K T SYS
   C  10Log  EIRP 1   10Log  GR  10Log K
                        NO         FSL L          T     
                                   SYS                                           
   C  EIRP  FSPL  L  G / T  228.6           dB.Hz
   NO
  Where 228.6 is the Boltzmanns Constant in Decibel
            C       C
                        10 log(NoiseBW )       dB
            N       No
                                                         29
    UplinkC/No&C/NDerivation
C  EIRP  FSPL  L  G / T  228.6  10Log ( Nbw)          dB
N
         P     ti FSPL = 32.4+20
         Presenting      32 4+20 log
                                 l d + 20 log
                                          l f
C
     EIRP  32.4  20Log (d )  20 log( f )  L  G / T  228.6 10Log ( Nbw)
N
       Approximate
        pp         FSPL p
                        per band to GEO can be used as :
       C-Band (200 dB)
       Ku-Band (207 dB)
       Ka Band (214 dB).
       Ka-Band      dB)
                                                                       30
    DownlinkC/No&C/NDerivation
             The Downlink C/N will be using same derivation as
                         uplink C/N with EIRP considered the carrier
                         downlink EIRP and G/T value of the Earth
                         Station Reception side
C
     EIRP  32.4  20Log (d )  20 log( f )  L  G / T  228.6 10Log ( Nbw)
N
                                                                       31
    DownlinkC/No&C/NDerivation
             The Downlink C/N will be using same derivation as
                         uplink C/N with EIRP considered the carrier
                         downlink EIRP and G/T value of the Earth
                         Station Reception side
C
     EIRP  32.4  20Log (d )  20 log( f )  L  G / T  228.6 10Log ( Nbw)
N
Obtaining G and T, then,   G/T = G - Tsys       (dB/K)
We will need to compute the reception system Thermal Noise as
following slide
                                                                       32
 SystemNoiseTemperature
ConsiderNcascadedandimpedancematchedsystemseachwiththesame
bandwidthbutwithitsownpowergainGi (orlossGi=1/Li)andnoisefigureFi
Overallnoisefigureofthesystem
  Effectiveinputnoisetemperature
                                                                          33
 SystemNoiseTemperature
ThusNoiseTemperatureandNoiseFigurearerelatedasbelowequation
Th    N i T       t      d N i Fi             l t d b l          ti
state
                                                                         34
SystemNoiseTemperature
                                             LNA
                       LOSS                   GLNA=60dB
                                               LNA = 60 dB        RECEIVER
                          L                                          F
                      L=0.5dB                                Noise Figure F= 1 35 dB
                                                               NoiseFigureF=1.35dB
    350K
 Ta=35                                           400K
                                           TLNA=40
             MajorNoiseContribution
Using the input of the Low Noise Amplifier (LNA) as a reference point, the
totall system noise
                i temperature iis calculated
                                    l l d as ffollows:
                                                 ll
                     a       0 ( L 1)                0 ( f 1)
           sysy                           1 
                     L            L                          GLNA
TSYS 
           35
                290
                     1.122 1  40  290 1.35 1
                                                      31.2  31.5  40  0.00001
         1.122         1.122                  105
                                                      =102.7K
                                                                                 35
SystemNoiseTemperature
                            36
TotalC/No
             37
   TotalC/No(DownlinkDominant)
Theaboveexampleofadominantdownlink(duesmallG/T)thateven
The above example of a dominant downlink ( due small G/T ) that even
increasinguplinkpowerby3dBaveryminor0.2dBimprovedinthetotal
C/No
                                                                             38
  TotalC/No(DownlinkDominant)
Butforthesamelink,increasingreceptiongainby3dBwillhaveadirect
impactonthetotalC/No
                                                                               39
  TotalC/No(UplinkDominant)
HavingabigreceptionAntennawithbigG/T,ifweincreaseitsgainby3dB,
theimpactwillbeverylowontotalC/No
                                                                            40
  TotalC/No(UplinkDominant)
However,the3dBincreaseontheuplinkEIRPwillhaveanoticedimpacton
theoverallC/No.
                                                                         41
TransponderC/IM                            IntermodulationProducts
 Case(1):SingleCleanCarrier
                                                    O/P
                                   I/P
Case (2) : Two Clean Carriers
Case(2):TwoCleanCarriers
                             I/P              O/P
       fA         fB
                                         2fA  fB         fA     fB   2fB  fA
                                                                         42
TransponderC/IM
                         IntermodProducts:ThreeCleanCarriers
                                d    d        h    Cl    C i
I/P
                                     fA   fB   fC
0/P
          fA +fB fC               fA   fB   fC
                                                          fC +fA fB
                          fB +fC fA
                                                                        43
TransponderC/IM
                 IntermodProducts:MultiCleanCarriers
I/P
                     fA                     fN
O/P
                                                            44
TransponderC/IM
                     45
TransponderC/IM
  TWTATransferCharacteristics(Tabularformfora36MhzTP)
        Input            Output      Saturated Carrier to Saturated Carrier to
                                       Intermodulation      Intermodulation
       Back-off         Back-off            Nosie                Noise
         (dB)             (dB)         Density (dB-Hz)         C/IM (dB)
         14               8.1
                          8 1               102                  26.4
                                                                 26 4
         13               7.2              100.5                 24.9
         12               6.5                99                  23.4
         11               5.8              97.5                  21.9
         10               5.1                96                  20.4
         9                4.5              94.5                  18.9
         8                3.9                93                  17.4
         7                34
                          3.4              91 5
                                           91.5                  15 9
                                                                 15.9
         6                2.9                90                  14.4
         5                2.5                89                  13.4
         4                2.3                88                  12.4
         3                2.1              86.5                  10.9
                                                                                 46
TransponderC/IM
Aloadedtransponderwithmultiplecarriersshowingthe3rd IM
impactoneachpartofthetransponderspectrum
   p           p                p       p
                                                                  47
OtherImpairments
 BesidecomputedUplink/DownlinkCarriertoThermalnoisethe
 B   id            d U li k /D     li k C i       Th     l i h
 totalCarriertoNoisewillneedtoincludeotherimpairmentsas:
 Crosspolarization
         p
 Adjacentcarrier
 Adjacentsatellite
 AllthoseimpairmentsareexpressedasaC/Ivalueandsimilarto
 aC/Nofthewantedsignal.
 MathematicallyweusuallyPutallthosevaluesinparallelto
 obtainthefinalC/N
                                                                       48
OtherImpairments
                     49
CrossPolarization
         s/cRXxpol=30dB   s/cTXxpol=30dB
  E/STXxpol=30dB                      E/S RX x pol =30dB
                                          E/SRXxpol = 30dB
                                                    50
CrossPolarization
        s/cRXxpol=30dB   s/cTXxpol=30dB
 E/STXxpol=24dB                       E/SRXxpol =17dB
                                                     51
BW&PowerLimited!
Carrier Allocated Bandwidth given by: [Ballocated =symbol rateX(1+) ]
Required C/N given by: [C/Nrequied =Eb/No + 10log(data rate/noise bw) ]
According to the given E/S parameters & S/C parameters, the Link Budget
       lt determines
   result d t    i   h
                     how much h power and
                                        db   d idth are consumed
                                          bandwidth              d iin
   terms of:
   Carrier Allocated Bandwidth [Ballctd]
   Carrier Power Equivalent BW [PEB]
   Carrier power [C/Nresulting]
Bandwidth viewpoint p    :
i- PEBrslt = Ballctd : Optimal operation
ii- PEBrslt  Ballctd : Power limited operation
Iii- PEBrslt Ballctd : Bandwidth limited operation
Power viewpoint :
i- C/Nrslt = C/Nrqd : Link optimal operation
ii- C/Nrslt  C/Nrqd : Link realized. Excess TX Power.
Iii C/Nrslt  C/Nrqd : Link Not realized.
Iii-                             realized Insufficient TX Power
                                                          Power.
                                                                      52
OptimizationofSatelliteOperatingPoint
 For multicarrier RF channel operation (FDMA) the satellite
 operating point must be selected before the link design
 can be finalized. This is determined byy the composite
                                                      p
 input power to the satellite amplifier, or the total input
 backoff, IBO.
                                                     y
 If the individual IBOi for each carrier is reduced by
 increasing the uplink EIRP, then the uplink C/No will be
 increased proportionally. This will also decrease the
 output OBOi and increase the downlink EIRP which
 increases the downlink C/No
                           C/No.
 The decreases in IBOi also decrease the overall IBO and
 OBO. As this occurs, the intermodulation noise increases,
 or the saturated C/Io decreases and each individual carrier
 C/Io decreases.
                                                               53
OptimizationofSatelliteOperatingPoint
  Therefore,, as the carrier levels are increased and the
  transponder operating point changes, the carrier to noise
  ratios increase. However, the carrier to intermodulation
  noise decreases and a tradeoff occurs.
  Therefore, there is an optimum selection of IBO that will
  maximize the overall C/No.
                                                              54
55
56
                  Thank
www.arabsat.com    You
                  http://www.facebook.com/Arabsat   http://twitter.com/arabsat