sikSaKNnaeRKOgbgÁúMGMBIEdk
LRFD STEEL DESIGN
            GñkniBn§³ WIILIAM T. SEGUI
            bkERbeday³ etg qay
                      viTüasßanCatiBhubec©keTskm<úCa
                         mhaviTüal½ysMNg;sIuvil
          qñaM 2010
viTüasßanCatiBhubec©keTskm<úCa                                                                Department of Civil Engineering
                                                              matika
                                                            Contents
                                            I. esckþIepþIm (Introduction)
1>1> karsikSaKNnaeRKOgbgÁúM (Structural Design) ..............................................................1
1>2> bnÞúk (Loads)...............................................................................................................4
1>3> Building Codes .......................................................................................................... 5
1>4> Design Specifications ..................................................................................................5
1>5> eRKOgbgÁúMGMBIEdk (Structural Steel) ...............................................................................6
1>6> rUbragmuxkat;bTdæan (standard Cross-sectional Shapes) ............................................11
II. eKalKMnitkñúgkarsikSaKNnaeRKOgbgÁÁúMEdk (Concepts in Structural Steel Design)
2>1> TsSnviC¢akñúgkarsikSaKNnamuxkat; (Design Philosophies) ...................................... 20
2>2> American Institute of Steel Construction Specification ......................................... 22
2>3> emKuNersIusþg; nigemKuNbnÞúkEdleRbIR)as;enAkñúg AISC Specification
         (Load and Resistance Factors Used in the AISC Specification) ............................. 23
2>4> mUldæanRbU)ab‘ÍlIetrbs;             Load and Resistance Factors
         (Probabilistic Basis of Load and Resistance Factors) ............................................. 25
2>5>     Manual of Steel Construction ................................................................................. 30
                               III. eRKOgbgÁúMrgkarTaj (Tension Members)
3>1> esckþIepþIm (Introduction) ......................................................................................... 30
3>2> ersIusþg;KNna (Design strength) ............................................................................. 31
3>3> RkLaépÞmuxkat;suT§RbsiT§PaB (Effective net area) .................................................... 36
3>4> karteRmobtamEbbqøas; (Staggered fasteners) ......................................................... 43
3>5> Block shear ............................................................................................................. 50
3>6> karKNnaGgát;rgkarTaj (Design of tension members) .......................................... 52
3>7> EdksrésEdlmaneFμj nigExSkab (Threaded rods and Cables)................................ 59
matika                                                         i                                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                                                      NPIC
3>8> Ggát;rgkarTajenAkñúgdMbUl (Tension members in roof trusses) ............................... 61
3>9> Ggát;EdltPa¢b;edayknøas; (Pin-Connection Members) ........................................... 70
                                                  IV.   eRKOgbgÁúMrgkarsgát;
                                                    Compression Members
4>1> esckþIepþIm (introduction) .......................................................................................... 73
4>2> RTwsþIssr(Column Theory) ....................................................................................... 73
4>3> tRmUvkarrbs; AISC (AISC Requirements) ............................................................ 82
4>4> karKNnamuxkat; (Design) ......................................................................................... 89
4>5> esckþIbEnßmsRmab;RbEvgRbsiT§PaB (More on Effective Length) .............................. 92
4>6>karekagedayrmYl nigedayBt;-rmYl (Torsional and Flexural-Torsional Buckling) . 105
4>7> Built-up Member .................................................................................................... 112
                                                               V.   Fñwm
                                                               Beams
5>1> esckþIepþIm (Introduction) ........................................................................................ 120
5>2> kugRtaMgBt; nigm:Um:g;)øasÞic (Bending Stress and the Plastic Moment) ...................... 121
5>3> lMnwg (Stability) ...................................................................................................... 127
5>4> cMNat;fñak;rbs;rUbrag (Classification of Shapes) ..................................................... 129
5>5> Bending Strength of Compact Shapes .................................................................. 130
5>6> Bending Strength of Noncompact Shapes............................................................. 140
5>7> Summary of Moment Strength ............................................................................. 144
5>8> ersIusþg;kmøaMgkat;TTwg (Shear Strength) ................................................................. 145
5>9> PaBdab (Deflection) ............................................................................................... 152
5>10> karKNnamuxkat; (Design) ................................................................................... 154
5>11> rn§RbehagenAkñúgFñwm (Holes in Beam).................................................................. 165
5>12> Open-Web Steel Joists ....................................................................................... 167
5>13> bnÞHRTFñwm nigbnÞH)atssr (Beam Bearing Plates and Column Base Plate) ...... 171
T.Chhay                                                       ii                                                           Contents
viTüasßanCatiBhubec©keTskm<úCa                                                                  Department of Civil Engineering
5>14> Biaxial Bending ................................................................................................. 182
5>15> ersIusþg;m:Um:g;Bt;rbs;rUbragepSg² (Bending Strength of Various Shape) .............. 190
                                                           VI.   Fñwm-ssr
                                                          Beam-Columns
6>1> esckþIepþIm (Introduction) ....................................................................................... 197
6>2> smIkarGnþrkmμ (Interaction Formulas) .................................................................. 198
6>3> m:Um:g;bEnßm (Moment Amplification) .................................................................... 201
6>4> Web Local Buckling in Beam-Columns .............................................................. 204
6>5> eRKagBRgwg nigeRKagGt;BRgwg (Braced versus Unbraced Frame).............................. 206
6>6> Ggát;enAkñúgeRKagEdlBRgwg (Members in Braced Frames) ....................................... 207
6>7> Ggát;enAkñúgeRKagEdlminBRgwg (Members in Unbraced Frames) .............................. 217
6>8 KNnamuxkat;Fñwm-ssr (Design of Beam-Column) ................................................ 224
6>9> Trusses With Top Chord Loads Between Joints ................................................... 234
                                                        VII. tMNsamBaØ
                                                     Simple Connections
7>1> esckþIepþIm (Introduction) ..................................................................................... 241
7>2> Bolted Shear Connections: Failure Mode ............................................................ 244
7>3> Bearing Strength, Spacing and Edge-distance Requirements ............................. 246
7>4> b‘ULúgFmμta (Common Bolts) ................................................................................ 253
7>5> b‘ULúgersIusþg;x<s; (High-Strength Bolts)................................................................... 256
7>6> Shear Strength of High-Strength Bolts ................................................................. 258
7>7> Slip-Critical Connections ..................................................................................... 261
7>8> b‘ULúgersIusþg;x<s;rgkarTaj (High-Strength Bolts in Tension) ............................... 277
7>9> kmøaMgpÁÜbrvagkmøaMgTaj nigkmøaMgTajenAkñúgb‘ULúg (Combined Shear and Tension in
          Fasteners) ............................................................................................................ 287
7>10> tMNpSar (Welded connections)........................................................................... 293
7>11> Fillet Welds........................................................................................................ 295
matika                                                         iii                                                               T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                                                         NPIC
                                                       VIII. tMNcakp©it
                                                   Eccentric Connections
8>1> ]TahrN_sMrab;tMNcakp©it (Examples of Eccentric Connections) .......................... 306
8>2> tMNcMNakp©itedayb‘ULúg³ EtkmøaMgkat; (Eccentric Bolted Connections:
          Shear only) .......................................................................................................... 307
8>3> tMNcMNakp©itedayb‘ULúg³ kmøaMgkat;bUknwgkmøaMgTaj
          Eccentric Bolted Connections: Shear Plus Tension .......................................... 319
8>4> tMNcMNakp©itedaypSar³ EtkmøaMgkat;
          Eccentric Welded Connections: Shear only........................................................ 323
8>5> tMNcMNakp©itedaypSar³ kmøaMgkat; nigkmøaMgTaj
          Eccentric Welded Connections: Shear and Tension ........................................... 333
8>6> tMNTb;m:Um:g; (Moment-Resisting Connection)......................................................... 339
8>7> Column Stiffeners and other Reinforcement ...................................................... 348
8>8> End Plate Connection.......................................................................................... 361
8>9> esckþIsnñidæan (Concluding Remarks) ................................................................. 369
                                                      IX. eRKOgbgÁúMsmas
                                                  Composite Construction
9>1> esckþIepþIm (Introduction)........................................................................................ 370
9>2> karsagsg;edaymankarTb; nigedayminmankarTb;
          Shored Versus Unshored Construction .............................................................. 382
9>3> TTwgsøabRbsiT§PaB (Effect Flange Width ) ............................................................ 384
9>4> Shear Connectors ................................................................................................. 387
9>5> karKNnamuxkat; (Design) ....................................................................................... 390
9>6> PaBdab (Deflections) .............................................................................................. 395
9>7> FñwmsmasCamYynwgkRmalBum<Edk (Composite Beams with Formed Steel Deck) .... 399
9>8> taragsRmab;karviPaK nigkarKNnaFñwmsmas
          Tables for Composite Beam Analysis and Design.............................................. 412
9>9> FñwmCab; (Continuous Beams).................................................................................... 419
9>10> ssrsmas (Composite Columns) ....................................................................... 421
T.Chhay                                                        iv                                                            Contents
viTüasßanCatiBhubec©keTskm<úCa                                                                Department of Civil Engineering
                                                          X. rtEdkbnÞH
                                                          Plate Girder
10>1> esckþIepþIm (Introduction) .................................................................................... 428
10>2> karBicarNaTUeTA (General Considerations ) .......................................................... 429
10>3> tRmUvkarrbs; AISC (AISC Requirements) ...................................................... 433
10>4> ersIusþg;rgkarBt; (Flexural Strength) ..................................................................... 435
10>5> ersIusþg;kmøaMgkat; (Shear Strength) ........................................................................ 438
10>6> GnþrGMeBIénkarBt; nigkmøaMgkat; (Interaction of Flexural and Shear) ..................... 444
10>7> Bearing Stiffeners .............................................................................................. 445
10>8> kaKNnamuxkat; (Design) ...................................................................................... 457
                            Appendix A. karKNna nigkarviPaKedaylkçN³)aøsÞic
                                               Plastic Analysis and Design
A>1> esckþIepþIm (Introduction) ..................................................................................... 478
A>2> AISC Requirements.............................................................................................. 480
A>3> karviPaK (Analysis) ............................................................................................... 481
A>4> karKNnamuxkat; (Design) ....................................................................................... 488
A>5> karsnñidæan (Conclusion Remark)........................................................................... 490
                     Appendix B. karKNnaeRKOgbgÁúMEdkedayQrelIkugRtaMgGnuBaØat
                               Structural Steel Design Based on Allowable Stress
B>1> esckþIepþIm (Introduction) ...................................................................................... 491
B>2> Ggát;rgkarTaj (Tension members) ...................................................................... 493
B>3> Ggát;rgkarsgát; (Compression members) .............................................................. 494
B>4> Fñwm (Beams) ............................................................................................................ 498
B>5> Beam-Columns...................................................................................................... 505
B>6> snñidæan (Concluding Remarks) ............................................................................... 510
matika                                                         v                                                              T.Chhay
viTüasßanCatiBhubec©keTskm<úCa                                       Department of Civil Engineering
                                          I. esckþIepþIm
                                         Introduction
1>1> karsikSaKNnaeRKOgbgÁúM              Structural Design
        karsikSaKNnaeRKOgbgÁúMsMNg;GKar eTaHCaeRKOgbgÁúMGMBIEdk b¤GMBIebtugBRgwgedayEdkk¾
eday KWeKtRmUv[kMNt; nigeRCIserIsmuxkat;smrmürbs;Ggát;eRKOgbgÁúMTaMgGs; edIm,ITb;Tl;nwg bnÞúk
xageRkATaMgGs;EdlmanGMeBImkelIeRKOgbgÁúM. kñúgkrNICaeRcIn sßabtükrmantYnaTIrcnam:UtGKar
edayrYmmankarerobcMcMnYnCan;rbs;GKar nigkarerobcMbøg;tamCan;nImYy² ehIyvisVkreRKOgbgÁúMRtUveFVI
karkñúgEdnkMNt;énkarrcnaenH. CakarEdlRbesIrbMputKW visVkr nigsßabtükrRtUvshkarKñakñúgdMeNIr
karrcna nigsikSaKNnaeRKOgbgÁúMenHedIm,IbBa©b;KMeragedayTTYl)aneCaKC½y. dMeNIrkarénkarsikSa
KNnaeRKOgbgÁúMRtUv)ansegçbdUcteTA³ sßabtükrCaGñksMercnUvesaP½NPaBrbs;GKar ehIyvisVkr
CaGñksikSaKNnamuxkat;rbs;eRKOgbgÁúMRbkbedaylkçN³esdækic© nigedayFananUvsßirPaBdl;sMNg;
GKar. visVkreRKOgbgÁúMRtUvKitCacMbgnUvsuvtßiPaB bnÞab;mkKWkareRbIR)as; niglkçN³esdækic©. lkçN³
esdækic©enAkñúgsMNg;KW sMedAelIkareRbIR)as;nUvsmÖar³ nigkmøaMgBlkmμy:agmanRbsiT§PaB.
        karsikSaKNnad¾l¥KWTamTarnUvbøg;eRKagy:ageRcIn edayrYmmankarteRmobGgát; nigkartP¢ab;
Ggát;tamEbbEpnxus²Kña ehIyeFIVkareRbobeFobnUvlkçN³esdækic©rbs;va. sRmab;bøg;eRKagnImYy²
EdlRtUveFVIkarGegát eKRtUvsikSaKNnamuxkat;rbs;Ggát;nImYy². edIm,IeFVIVdcU enH)an CadMbUgeKRtUv
karsikSaviPaKeRKOgbgÁúM ehIyKNnakmøaMg nigm:Umg: ;Bt;rbs;Ggát;nImYy². CamYynwgTinñn½yTaMgenH
GñksikSaKNnaeRKOgbgÁúMGaceRCIserIsmuxkat;)any:agsmRsb. b:uEnþ munnwgeFVIkarsikSaviPaKRKOg
bgÁúM eKRtUvsMercCadMbUgnUvsmÖar³sRmab;eRbIR)as;kñúgeRKOgbgÁúM EdlCaTUeTAmanebtugBRgwgedayEdk
eRKOgbgÁúMGMBIEdk nigbnSMénsmÖar³TaMgBIr. CakarRbesIbMput eKKYrerobcMnUvCeRmIsénkarsikSaKNna
BIsmÖar³TaMgenH.
        enAkñúgesovePAenH manEtkarENnaMBIkarsikSaKNnamuxkat;eRKOgbgÁúMGMBIEdk nigkartP¢ab;
rbs;vaEtb:ueNÑaH. visVkreRKOgbgÁúMRtUveRCIserIs nigepÞógpÞat;RbB½n§eRKOgbgÁúMTaMgGs;edIm,ITTYl)annUv
karsikSaKNnaRbkbedaylkçN³esdækic© nigsuvtßiPaB.
        munnwgerobrab;BIeRKOgbgÁúMGMBIEdk eyIgcaM)ac;RtUvsÁal;RbePTGgát;nImYy²rbs;eRKOgbgÁúMCamun
sin. rUbTI 1>1 bgðajBI truss CamYynwgkmøaMgcMcMNucbBaÄrEdlGnuvtþRtg;tMNénGgát;xagelI. eday
esckþIepþIm                                   1                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
rkSanUvkarsnμt;énkarviPaK truss ¬tMN pinned nigkmøaMgGnuvtþEtelItMN¦ Ggát;rbs; truss CaGgát;
rgkmøaMgBIr (two-force member) EdlrgkmøaMgsgát; b¤kmøaMgTajtamG½kS. sRmab; truss TRm
samBaØEdlrgbnÞúkdUcbgðajkñúgrUb 1>1 Ggát;xagelICaGgát;rgkarsgát; ehIyGgát;xageRkamCaGgát;
rgkarTaj. Ggát;RTnugGacCaGgát;rgkarTaj b¤rgkarsgát;edayGaRs½yeTAelITItaMg TisTRmuy nig
TItaMgrbs;bnÞúk.
         RbePTepSgeTotrbs;Ggát;RtUv)anbgðajCamYynwgeRKagtMNrwg (rigid frame) enAkñúgrUbTI
1>2. Ggát;rbs;eRKagenHRtUv)antP¢ab;y:agrwgedayTwkbnSar nwgGacsnμt;CaeRKOgbgÁúMCab;. enARtg;
TRm Ggát;RtUv)anpSarP¢ab;eTAnwgbnÞHctuekaNEdlP¢ab;edayb‘ULúgeTAnwgRKwHebtug. edaydak;eRKag
enHRsb²Kña ehIyP¢ab;BYkvaedayGgát;bEnßm EdlbnÞab;mkRtUv)anRKbedaysmÖar³dMbUl nigbiT)aMg
edaysmÖar³CBa¢aMgedIm,IbegáIt)anCaRbB½n§sMNg;TUeTA. karlMGitsMxan;minRtUv)anerobrab;eT b:uEnþGKar
BaNiC¢kmμxñattUcRtUv)ansagsg;tamlkçN³EbbenH. karsikSaKNnaeRKOgbgÁúM nigkarsikSaviPaK
eRKagnImYy²rbs;RbB½n§cab;epþImCamYynwgeRKagkñúgbøg;dUcbgðajenAkñúgrUbTI 1>2 b. cMNaMfa TRm
RtUv)anbgðajCaTRmsnøak; (hinges or pinned) minEmnTRmbgáb; (fixed). RbsinebIeCIgtagman
lT§PaBrgmuMrgVilsþÜcesþIg b¤RbsinebIkartP¢ab;manlkçN³bt;Ebn (flexible) RKb;RKan;edIm,IGnuBaØat
[manmuMrgVil enaHeKcat;TukvaCaTRmsnøak; (pinned). karsnμt;enAkñúgviFITUeTAénkarsikSaviPaKeRKOg
bgÁúMKW kMhYcRTg;RTaymantémøtUc Edlmann½yfamMurgVild¾tictYcrbs;TRmGaceFVI[TRmmanlkçN³Ca
tMNsnøak; (pinned) )an.
         enAeBlEdleKTTYl)annUvragFrNImaRtrbs;eRKag niglkçxNÐTRmehIy eKGackMNt;kardak;
bnÞúk)an. karkMNt;bnÞúkenHTak;TgnwgkarEckrMElkbnÞúksrubTaMgGs;eTAeRKagnImYy². RbsinebI
eRKagEdlBicarNargbnÞúkdMbUlBRgayesμI enaHeRKagnImYy²EdlTTYlnUvcMENkrbs;bnÞúkenHnwgman
TRmg;CabnÞúkBRgayesμIEdlmanlkçN³CabnÞat;dUcbgðajenAkñúgrUbTI 1>2 b.
T.Chhay                                      2                                       Introduction
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
          sRmab;kardak;bnÞúkEdlbgðajenAkñúgrUbTI 1>2 b eRKagnwgxUcRTg;RTaydUcbgðajenAkñúgrUb
edayExSdac;. Ggát;nImYy²rbs;eRKagRtUv)ancat;cMNat;fñak;edayGaRs½yeTAelIRbePTénkareFVIkar
EdlsMEdgedayrUbragEdlxUcRTg;RTay. Ggát;edk AB nig BC rgkarBt;begáag (bending or
flexure) RtUv)aneKehAfaFñwm (beam). Ggát;bBaÄr BD Edlrgm:Um:g;KU (couple) EdlbBa¢ÚnBIFñwm
nImYy² ¬b:uEnþsRmab;eRKagsIuemRTIdUcbgðaj vamantémødUcKña EtTisedApÞúyKña¦ dUcenHeKGacecal
m:Um:g;KU (couple) enH)an. dUcenH Ggát; BD rgEtkmøaMgsgát;tamG½kSEdl)anBIbnÞúkbBaÄr. enA
kñúgsMNg; Ggát;rgkarsgát;bBaÄrdUcGVIEdl)anerobrab;RtUv)aneKehAfassr (column). cMENkGgát;
bBaÄrBIrepSgeTot AE nig CF minRtwmEtRTnUvkmøaMgsgát;tamG½kSb:ueNÑaHeT b:uEnþvaEfmTaMgTb;Tl;
nwgkarBt;begáagEdlmantémøFMeTotpg. Ggát;EbbenHRtUv)aneKehAfa beam-column. Cak;Esþg
RKb;Ggát;TaMgGs; eTaHCaRtUv)ancat;cMNat;fñak;CaFñwm b¤ssrk¾eday k¾vaenAEtrgbnÞúktamG½kS nig
m:Um:g;Bt;Edr b:uEnþenAkñúgkrNICaeRcIn eKGacecal\T§iBlNaEdlmantémøtUc)an.
          bEnßmBIelIRbePTGgát;Edl)anBN’naxagelI esovePAenHnwgerobrab;BIkarKNnakartP¢ab; nig
Ggát;Biess²dUcteTA³ composite beam, composite column nig plate girder.
esckþIepþIm                               3                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
1>2> bnÞúk               Loads
         kmøaMg (force) EdlmanGMeBIelIeRKOgbgÁúMRtUv)aneKehAfabnÞúk (load). bnÞúkRtUv)anEckecj
CaBIrRbePTFM²KW³ bnÞúkefr (dead load) nigbnÞúkGefr (live load). bnÞúkefrCabnÞúkEdlsßitenACa
GciéRnþy_EdlrYmmanTm¶n;rbs;eRKOgbgÁúMxøÜnÉg EdleK[eQμaHfabnÞúkpÞal;xøÜn (self-weight). bEnßmBI
elIbnÞúkpÞal;xøÜn (self-weight) bnÞúkefr (dead load) enAkñúgGKarrYmmanTm¶n;rbs; nonstruc-tural
component EdlmandUcCa floor covering, partition nig suspended ceilings ¬CamYynwgRbB½n§
GKÁisnI smÖar³emkanic nigRbB½n§Twk¦. RKb;bnÞúkEdl)anerobrab;CabnÞúkEdlTak;TgeTAnwgTMnajEpn
dIehIyRtUv)aneKehAfa gravity loads. bnÞúkGefrEdlGacCa gravity load CabnÞúkEdlminenAsßit
esßrdUcbnÞúkefreT. vaGac b¤minGacmanGMeBIelIeRKOgbgÁúMRKb;eBl ehIyTItaMgrbs;vak¾minCab;lab;
Edr. bnÞúkGefrrYmman eRKOgsgðarwm smÖar³ Tm¶n;rbs;mnusSEdlrs;enAelIGKar. CaTUeTAeKminGac
kMNt;TMhMrbs;bnÞúkGefr (live load) )anCak;lak;dUcbnÞúkefr (dead load) eT dUcenHTMhMrbs;vaCa
TMhM)a:n;sμan. kñúgkrNICaeRcIn eKRtUveFVIkarGegáteTAelIGgát;eRKOgbgÁúMsRmab;TItaMgepSg²rbs;bnÞúk
Gefr (live load) EdlkareFVIEbbenHeKnwgminemIlrMlgBIlkçxNÐ)ak;d¾eRKaHfñak;eLIy.
         RbsinebIeKGnuvtþbnÞúkGefreTAelIeRKOgbgÁúMyWt² edaymindkecj b¤dak;eLIgvijsarcuHsar
eLIg enaHeKviPaKeRKOgbgÁúMCalkçN³sþaTic. RbsinebIeKGnuvtþbnÞúky:agelOn dUckñúgkrNIeRKOgbgÁúM
RT]bkrN_sÞÚccl½t eKRtUvKitbBa©Úl\T§iBlTgÁic. RbsinebIbnÞúkRtUv)andak; nigdkcuHeLIg²eRcIndg
kñúgmYyCIvitrbs;eRKOgbgÁúM fatigue stress nwgkøayCabBaðaEdleKRtUvykmksikSa. bnÞúkTgÁicekItman
cMeBaHGKarkñúgkMrittictYc dUcCaGKar]sSahkmμ cMENkÉ fatigue load KWkMrnwgekItmanNas; eRBaHmun
nwg fatigue køayCabBaða luHRtaEtvdþénkardak;bnÞúkmanrab;Ban;dg. edaymUlehtuenH RKb;lkçxNÐ
bnÞúkTaMgGs;EdlmanenAkñúgesovePAenHRtUv)aneKKitCabnÞúksþaTic ehIyeKminBicarNaBI fatigue eT.
         edaysarFmμCatiminzitefrrbs;xül;bk;xÞb; nigbWtenAelIépÞxageRkArbs;GKar eKcat;Tukxül;
kñúgCMBUkbnÞúkGefrEdr. b:uEnþedaysarkarKNnabnÞúkxül;manlkçN³sμúKsμaj eKcat;TukvakñúgCMBUk
dac;edayELk. edaysarbnÞúkxag (lateral load) man\T§iBly:agxøaMgcMeBaHGKarx<s;² dUcenH xül;
manlkçN³minsMxan;cMeBaHGKarTab²eT b:uEnþ uplift énRbB½n§dMbUlRsalGacmaneRKaHfñak;. eTaHbICa
xül;manvtþmanRKb;eBlk¾eday k¾eKminBicarNavaCajwkjykñúgkarsikSaKNnaEdr ehIyeKk¾mincat;
TukvaCa fatigue load eT.
T.Chhay                                     4                                       Introduction
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
        bnÞúkrBa¢ÜydICaCMBUkBiessmYyeTotEdleKcaM)ac;BicarNaBIvasRmab;EtTItaMgPUmisaRsþNaEdl
GacekItmanrBa¢ÜydIb:ueNÑaH. karsikSaviPaKeRKOgbgÁúMEdlrg\T§iBlrBa¢ÜydITamTarkarsikSaviPaK
structure’s response eTAnwgclnarbs;dIEdlbegáIteLIgedayrBa¢ÜydI. eBlxøHeKeRbIviFIgayRsYl
Edl\T§iBlrBa¢ÜydIRtUv)an simulate edayeRbIRbB½n§kmøaMgedk EdlmanlkçN³dUcCasm<aFxül;eday
dak;va[manGMeBItamCan;nImYy²rbs;GKar.
      RBwlCaRbePTbnÞúkGefrmYyEbbeTotEdlRtUvKitkñúgCMBUkdac;edayELk. RBwlGacKrCaBMnUk.
        bnÞúkGefrepSgeTotk¾RtUv)ancat;TukkñúgCMBUkdac;edayELkEdr dUcCasm<aF hydrostatic nig
sm<aFdI.
1>3>      Building Codes
          GKarRtUv)ansikSaKNna (design) nigsagsg;edayGaRs½yelIGVIEdl)anEcgenAkñúg building
code EdlCaÉksarc,ab;EdlmantRmUvkarTak;TgeTAnwgsuvtßiPaBrbs;eRKOgbgÁúM suvtßiPaBelIGKÁIP½y
karerobcMRbB½n§Twk karerobcMRbB½n§xül; nigkarsMrYlkareRbIR)as;dl;CnBikar. Building code min)an
pþl;nUvlMnaMsikSaKNna (design) eT b:uEnþvakMNt;nUvtRmUvkarkñúgkarsikSaKNna (design). lkçN³
sMxan;sRmab;visVkreRKOgbgÁúMKWbBaØtþBIbnÞúkGefrGb,brmaEdlmanGMeBIelIGKar.
          bc©úb,nñ eKman building code mYyEdlGacsMrYldl;kargarrbs;visVkrEdlsikSaKNnaeRKOg
bgÁúMTaMgenAshrdæGaemric k¾dUcbNþaRbeTsepSg²KW International Building Code (IBC).
1>4>      Design Specifications
        pÞúyBI building code, design specification pþl;nUvkarENnaMlMGitsRmab;karsikSaKNna
Ggát;eRKOgbgÁúM nigkartP¢ab;rbs;va. Design Specification tMNag[karGnuvtþvisVkmμd¾l¥EdlQr
elIkarsikSaRsavRCavcugeRkaybMput. vaRtUv)anEksMrYl nigeFVI[kan;EtRbesIreLIgtamxYb. dUcKña nwg
building code Edr design specification RtUv)aneKsresreLIgkñúgTRmg;c,ab;edayGgÁkarEdlmin
rkplcMeNj.
        Specification EdlvisVkreRKOgbgÁúMcab;GarmμN_eRcInKW specification Edle)aHBum<pSayeday
GgÁkardUcxageRkam³
esckþIepþIm                                5                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
          !> American Institute of Steel Construction (AISC): Specification enHpþl;[sRmab;
             sikSaKNnaeRKOgbgÁúMGMBIEdk nigkartP¢ab;rbs;va. vaCa Specification cMbgEdlykcitþ
             Tukdak;edayesovePAenH (AISC, 1993).
          @> American Association of State Highway and Transportation Officials (AASHTO):
             Specification enHRKbdNþb;elIkarsikSaKNnas<an highway nigeRKOgbgÁúMTak;TgepSg²
             eTot. vapþl;RKb;smÖar³TaMgGs;EdleRbICaTUeTAsRmab;s<anEdlmandUcCa Edk ebtugBRgwg
             edayEdk nigeQI (AASHTO, 1992, 1994).
          #> American Railway Engineering Association (AREA): ÉksarenHRKbdNþb;elIkar
             sikSaKNnas<ansRmab;rfePøIg nigeRKOgbgÁúMEdlTak;TgepSgeTot (AREA, 1992).
          $> American Iron and Steel Institute (AISI): specification enHedaHRsayCamYynwg cold-
             formed steel Edlmanerobrab;enAkñúgkfaxNÐ 1>6 kñúgesovePAenH (AISI, 1996).
1>5> eRKOgbgÁúMGMBIEdk Structural Steel
        eKeRbIR)as;EdkdMbUgbg¥s;sRmab;smÖar³tUc²taMgBIRbEhl           4000qñaMmunRKisþskraC
(Murphy, 1957). smÖar³enHmanTRmg;Ca wrought iron EdlplitedaykardutEr:EdkenAkñúgePøIg.
enAkñúgGMLúg cugstvtSr_TI 18 nigedImstvtSr_TI 19 cast iron nig wrought iron RtUv)aneRbIsRmab;
sMNg;s<an. EdksMNg; (steel) CasMelah³én iron nigkarbUn. Edkmansar³FatuminsuT§ nigkabUn
ticCag cast iron EdlRtUv)aneKeRbIsRmab;sMNg;Fn;F¶n;dMbUgkñúgstvtSr_TI 19. CamYynwgkarmk
dl;énkarEkERbrbs; Bessemer enAkñúgqñaM 1855 Edkcab;epþImCMnYs wrought iron nig cast iron kñúg
sMNg;.
        lkçN³rbs;EdkEdlvisVkreRKOgbgÁúMcab;GarmμN_xøaMgCageKKWdüaRkaménlT§plEdkTaj. Rb
sinebIsMNakKMrUBiesaFn_rgkmøaMgtamG½kS P dUcbgðajenAkñúgrUbTI 1>3 a enaHkugRtaMg (stress) nig
bERmbRmYlrageFob (strain) GacRtUv)ankMNt;tamrUbmnþdUcxageRkam³
                                   ΔL
          f =
              P
              A
                       ni g    ε=
                                    L
Edl f = kugRtaMgkmøaMgTajtamG½kS
         A = RkLaépÞmuxkat;
         ε = strain tamG½kS
T.Chhay                                      6                                    Introduction
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
          L= RbEvgrbs;sMNakKMrU
          ΔL = kMhUcRTg;RTay
         RbsinebIeKbegáInbnÞúkBIsUnüeTAdl;cMNucdac; (fracture) ¬kugRtaMg nig strain RtUv)aneKKNna
tamCMhannImYy²¦ ExSekagTMnak;TMngrvagkugRtaMg nigbERmbRmYlrageFob (stress-strain curve)
RtUv)anbgðajenAkñúgrUbTI 1>3 b. ExSekagenHsRmab;RbePTEdksVit (ductile, mild or steel) .
TMnak;TMngrvagkugRtaMg nig strain manlkçN³CabnÞat;BIcMNucsUnürhUtdl;EdnkMNt;smamaRt
(proportional limit) EdlkñúgcenøaHenHsmÖar³eKarBtamc,ab;h‘Uk (Hook’s law). bnÞab;mkvaeTA
dl;cMNuc yield xagelIy:agelOnrYcFøak;mkcMNuc yield xageRkam. bnÞab;BI enaHkugRtaMgenArkSa
témøefr eTaHbICa strain enAEtbnþekIneLIgk¾eday. enARtg;tMNak;kalénkardak;bnÞúkenH sMNak
KMrUBiesaFn_enAEtbnþlUtEvg eTaHbICaeKminbegáInbnÞúkk¾eday ¬EtbnÞúkk¾minRtUv)andkEdr¦. tMbn;kug
RtaMgefrenHRtUv)aneKehAfatMbn;)aøsÞic (plastic range or yield plateau). enARtg; strain Edlman
témøRbEhl 12dgén strain enAtMbn; yield, strain hardening cab;epþImekItman ehIyeKRtUvkar
esckþIepþIm                                  7                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
bnÞúkbEnßm ¬b¤kugRtaMgbEnßm¦ edIm,IeFVI[mansac;lUtbEnßm ¬b¤ strain¦. eRkayeBl vaeTAdl;cMNuc
kugRtaMgGtibrma sMNakKMrUcab;epþIm neck down EdleFVI[kugRtaMgcab;epþImfycuH Et strain enAEtbnþ
ekIneLIgdEdl ehIyekItman fracture.
        eTaHbICamuxkat;RtUv)ankat;bnßykñúgGMLúgeBldak;bnÞúkk¾eday (Poisson effect) k¾eKenAEt
eRbIRkLaépÞmuxkat;edImedIm,IKNnakugRtaMgTaMgGs;. kugRtaMgEdl)anBIkarKNnatamviFIenH RtUv)an
eKsÁal;faCa engineering stress. RbsinebIeKeRbIRbEvgedImedIm,IKNna strain enaHvaRtUv)aneKehA
fa engineering strain.
        EdkEdlRtUv)aneKBiesaFedIm,ITTYl)andüaRkamdUcbgðajkñúgrUbTI 1>3 b Ca ductile eRBaHva
man lT§PaBrgkMhUcRTg;RTayFMmunnwgeFVIkardl; fracture. eKGacvas;PaBsVit (ductility) edayeRbI
sac;lUt (elongation) EdlkMNt;edayrUbmnþ
               L f − Lo
          e=              ×100                                                    (1.1)
                  Lo
Edl       e= sac;lUt ¬KitCaPaKry¦
         L f = RbEvgrbs;sMNakKMrUenAeBldac;
         Lo = RbEvgedIm
        EdneGLasÞic (elastic limit) rbs;smÖar³CakugRtaMgEdlsßitenAcenøaHEdnsmamaRt nigcMNuc
yeild xagelI. smÖar³EdlrgkugRtaMgkñúgtMbn;enH sMNakKMrUnwgminmankMhUcRTg;RTayeRkayeBl
eKdkbnÞúkeT. KnøgénkardkbnÞúknwgsßitenAtamKnøgénkardak;bnÞúk ehIyvaminman permanent
strain eT. tMbn;rbs; stress-strain diagram enH RtUv)aneK[eQμaHfa EdneGLasÞic (elastic rage).
eRkABI elastic limit KnøgénkardkbnÞúknwgsßitenAelIExSRtg;EdlRsbeTAnwgKnøgénkardak; bnÞúk
ehIyvanwgman permanent strain. ]TahrN_ RbsinebIeKdkbnÞúkRtg;cMNuc A kñúgrUbTI 1>3 b
KnøgénkardkbnÞúknwgsßitenAelIExS AB Edlpþl;nUv permanent strain OB .
        rUbTI 1>4 bgðajBIkMENd¾l¥rbs; stress-strain curve. Proportional limit, elastic limit,
upper nig lower yield point KWsßitenAelIcMNucEtmYyEdleKehAfa yield point EdlkMNt;edaykug
RtaMg Fy . cMNucmYyeTotEdlvisVkreRKOgbgÁúMRtUvcab;GarmμN_KWkugRtaMgGtibrma EdleK[eQμaHfa
ultimate tensile strength Fu . rUbragrbs;ExSekagenHCaKMrUsRmab; mild structural steel TaMgGs;
EdlvaxusKñaBImYyeTAmYyedaytémø Fy nig Fu . pleFobkugRtaMgelI strain kñúgEdneGLasÞic
T.Chhay                                    8                                      Introduction
viTüasßanCatiBhubec©keTskm<úCa                                      Department of Civil Engineering
RtUv)ankMNt;eday E EdleKehAfa young’s modulus or modulus of elasticity. E mantMé;lesμI
29,000ksi ≈ 2 ⋅ 10 MPa sRmab;RKb;eRKOgbgÁúMEdkTaMgGs;.
                       5
         rUbTI 1>5 bgðajBIRbePT stress-strain curve sRmab; high-strength steels EdlmanPaBsVit
tUcCag mild steels. eTaHbIvamanEpñk linear elastic nig tensile strength k¾eday Etvaminman yield
point b¤ plastic plateau eT. edIm,IeRbI higher strength steel enH[dUcnwgkareRbIR)as; ductile steel
eKRtUvkartémøkugRtaMg Fy dUcenHeKGaceRbIdMeNIrkar nigrUbmnþdUcKñasRmab;RKb;RbePTEdkTaMg Gs;.
dUcEdl)anbgðajBImun sRmab;EdkEdlrgkugRtaMgeRkABItMbn; elastic limit enAeBleKdkbnÞúk
vanwgsßitenAelIKnøgExSEdlRsbnwgKnøgdak;bnÞúk EtvamineTAdl;cMNuc strain esμIsUnüeT. dUcenHva
man residual strain b¤ permanent strain eRkayeBldkbnÞúk. Yield stress sRmab;EdkCamYy
nwgRbePT stress-strain curve EdlbgðajenAkñúgrUbTI 1>5 RtUv)aneKehAfa yield strength Edl
RtUv)ankMNt;Ca kugRtaMgRtg;cMNucénkardkbnÞúkEdlRtUvnwg permanent strain énbrimaNkMNt;Na
mYy. eKeRCIserIs yk strain esμInwg 0.002 ehIyviFIénkarkMNt; yield strength enHRtUv)aneKehAfa
0.2% offset method. dUcEdl)anerobrab;BImun CaTUeTAeKRtUvkarlkçN³BIrsRmab; structural
strength design KW Fy nig Fu edayminKitBIrUbragrbs; stress-strain curve nigminKitBIrebob
EdlTTYl)an Fy eT. sRmab;mUlehtuenH eKeRbItYTUeTA yield stress ehIyvaGacmann½yCa yield
point b¤ yield strength.
         lkçN³epSg²rbs;eRKOgbgÁúMEdkEdlrYmbBa¢ÚlTaMg strength nig ductility RtUv)ankMNt;eday
smasFatuKImI (chemical composition). Edk (steel) CasMelah³EdlFatupSMcMbgrbs;vaCa iron.
esckþIepþIm                                  9                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                               NPIC
sarFatupSMrbs;eRKOgbgÁúMEdkTaMgGs; ¬eTaHCakñgú brimaNtictYck¾eday¦ KWkabUnEdlCasarFatucUlrYm
kñúgkarbegáIn strength b:uEnþvakat;bnßy ductility. karekIneLIgénPaKrykabUnKWbegáIn strength
Etkat;bnßy ductility EdleFVI[karpSarmankarBi)ak. sarFaturYmpSMdéTeTotrbs;EdksMNg;rYm
mans<an; (copper), manganese, nickel, chromium, molybdenum nig silicon. eRKOgbgÁúMEdk
RtUv)anerobcMCaRkumEdlGaRs½yeTAnwgsarFatupSMrbs;vadUcxageRkam³
        !> Plain carbon steel: EdlPaKeRcInCa iron nigkabUnticCag 1%
        @> Low-alloy steel: man iron nigkabUn EdlrYmpSMCamYynwgsarFatuepSgeTot ¬CaTUeTAtic
            Cag 5% ¦. sarFatubEnßmKWedIm,IbegáInersIusþg; Etvanwgkat;bnßyPaBsVit.
        #> High-alloy or specialty steel: mansarFatupSMRsedogKñanwg low-alloy steel Edr Etman
            sarFatubEnßmeRcInPaKryCag. EdkenHmanersIusþg;FMCag plain carbon steel nigman
            KuNPaBBiessdUcCakarkarBarERcH.
          Graderbs;EdksMNg; (structural steel) RtUv)ankMNt;eday American Society for Testing
and Material (ASTM). GgÁkarenHbegáItbTdæanedIm,IkMNt;smÖar³eTAtamsarFatupSM lkçN³ nigkar
eFVIkarrbs;va (ASTM, 1996a). EdkeRKOgbgÁúMEdleKcUlcitþeRbIsBVéf¶Ca mild steel EdlsMKal;Ca
ASTM A36 b¤sresry:agxøI A36 . vaman stress-strain curve dUcbgðajenAkñúgrUbTI 1>3 b nig 1>4
ehIymanlkçN³rgkarTajdUcxageRkam³
          Yield stress:       Fy = 36 Ksi ≈ 250 MPa
          Tensile strength:   Fu = 58ksi ≈ 400 MPa    eTA 80ksi ≈ 550MPa
T.Chhay                                   10                                     Introduction
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
Edk A36 RtUv)ancat;fñak;Ca plain carbon steel ehIyvamansarFatupSM ¬eRkABI iron¦ dUcxageRkam³
        Carbon:               0.26% ¬Gtibrma¦
        Phosphorous:          0.04% ¬Gtibrma¦
        Sulfur:               0.05% ¬Gtibrma¦
PaKryenHCatémøRbhak;RbEhl témøCak;EsþgGaRs½ynwgTRmg;énkarplitEdk. Edk A36 Ca
ductile steel Edlmansac;lUt (elongation) EdlkMNt;edaysmIkar 1.1 KW 20% edayQrelIRbEvg
edIm Lo = 8in. ≈ 200mm .
        eKRtUvplitEdk A36 edayeKarBtambTdæanrbs; ASTM. témø yield strength nig tensile
strength Edl)anbgðajCatRmUvkarGb,brma EtvaGacFMCagtémøenH. Tensile strength RtUv)aneK
[enAkñúgcenøaHtémømYy eRBaHlkçN³enHminGacTTYl)anedaysuRkitdUc yield strength eT.
        CaTUeTA EdkEdlman yield stress FMCag 36ksi ≈ 250MPa RtUv)anKitCa high-strength
steel. High-strength steel EdleKniymeRbI eRcInCaRbePTEdkEdlman yield strength
50ksi ≈ 345MPa nigman tensile strength 65ksi ≈ 450MPa b¤ 70ksi ≈ 480 MPa ehIyeKk¾man
EdkEdlman yield strength 100ksi ≈ 690MPa . Ca]TahrN_ ASTM A242 Ca low-alloy,
corrosion resistant steel Edlman yield strength 42ksi ≈ 290MPa / 46ksi ≈ 320MPa nig
50ksi ≈ 345MPa CamYynwg tensile strength EdlRtUvKñanwg 63ksi ≈ 435MPa / 67 ksi ≈ 460 MPa
nig 70ksi ≈ 480MPa . cMENksmasFaturYmpSMKImIrbs;vamandUcxageRkam³
        Carbon:               0.15% ¬Gtibrma¦
        Manganese             1.00% ¬Gtibrma¦
        Phosphorus:           0.15% ¬Gtibrma¦
        Sulfur:               0.05% ¬Gtibrma¦
        Copper:               0.20% ¬Gtibrma¦
Edk A242 minEmn ductile dUc A36 . sac;lUtEdlQrelIRbEvgedIm 8in. ≈ 200mm esμInwg 18%
ebIeRbobeFobCamYysac;lUtrbs; A36 EdlmantémøesμInwg 20% .
1>6> rUbragmuxkat;bTdæan          (Standard Cross-sectional Shapes)
        eKalbMNgcMbgkñúgkarsikSaKNnaeRKOgbgÁúMEdkKWkareRCIserIsmuxkat;EdlsmRsbsRmab;
esckþIepþIm                               11                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
Ggát;nImYy². CaTUeTA kareRCIserIsenHtRmUv[eRCIserIsrUbragmuxkat;tambTdæanEdleRbIR)as;y:ag
TUlMTUlayCagkartRmUv[plitrUbragEdlmanxñat niglkçN³Biess. kareRCIserIsrUbragEdkEdl
manRsab; (off-the shelf) CaCMerIsEdlmanlkçN³esdæikc©Cag eTaHbICavaeRbIsmÖar³eRcInCagbnþicbnþÜc
k¾edaykþI. RbePTénrUbragbTdæanEdlFMCageKRtUv)anplitedaykarhUtekþA (hot-rolling). enAkñúg
dMeNIrplitkmμEdleFVIeLIgenAkñúgeragcRkplitEdk (mill) EdkEdlrlayEdl)anBILsøEdkRtUv)an
cak;cUleTAkñúgRbB½n§Bum<EdlCab; edayTuk[EdkeLIgrwg b:uEnþeKminGnuBaØat[vaRtCak;eBj eljeT.
EdkekþAqøgkat; roller Caes‘rI EdlKab[eTACarUbragEdlcg;)an. karhUtEdkkñúgeBlEdlvaenAekþA
GnuBaØat[vaxUcrUbragedaymin)at;bg; ductility rbs;va dUckrNIhUtRtCak;eT. kñúgGMLúgeBlhUt
Ggát;EdllUtRbEvgehIyRtUv)ankat;tamRbEvgbTdæan EdlCaTUeTAmanRbEvgGtibrma BI 65 ft ≈ 20m
eTA 75 ft ≈ 23m ehIyEdlvaRtUv)ankat;CabnþbnÞab;eTAtamRbEvgrbs;eRKOgbgÁúMenA eragCageTAtam
karkMNt;rbs;bøg;.
T.Chhay                                    12                                     Introduction
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
         muxkat;xøHrbs; hot-rolled shape EdlRtUv)aneRbICaTUeTARtUv)anbgðajenAkñúgrUbTI 1>6. xñat
nigkMNt;sMKal;rbs;rUbragbTdæanRtUv)ankMNt;enAkñúg ASTM standard (ASTM, 1996). W-shape
EdleKGacehA)anfa rUbragsøabTUlay (wide flange shape) EdlpSMeLIgedaysøabBIrEdlEjk
edayRTnugmYy. rUbragenHmanG½kSsIuemRTIBIr. kMNt;sMKal;KMrUrbs;vaKW W 18 × 50 Edl W bgðajBI
RbePTrUbrag/ elx 18 Ca nominal depth EdlRsbeTAnwgRTnug nig 50 CaTm¶n;rbs;EdkkñúgmYy
ÉktþaRbEvg. W-shape én nominal size TaMgGs;RtUv)andak;CaRkumEdlmankm<s;BIsøabxagkñúgeTA
søabxagkñúgdUcKña b:uEnþmankMras;søabxusKña.
         American Standard b¤ S-shape KWRsedogKñaeTAnwg W-shape Edr edaymansøabBIrRsbKña
RTnugmYy nigmanG½kSsIuemRTIBIr. PaBxusKñarbs;vaKWsmamaRtrbs;muxkat;³ søabrbs; W FMCagRTnug
cMENkÉsøabrbs; S tUcCagRTnug. elIsBIenH épÞxagkñúg nigépÞxageRkArbs;søabén W-shape man
lkçN³RsbKña EtépÞxagkñúgénsøabrbs; S-shape eTrEdleFVI[kMras;xagcugtUcCagkMras;enAEk,r
RTnug. kMNt;sMKalrbs; S-shape KW S18 × 70 Edl S bgðajBIRbePTrbs;rUbrag nigelxTaMg
BIrtYCakm<s; nigTm¶n;kñúgmYyÉktþaRbEvg erogKña. rUbragenHRtUv)aneKehAfa I-beam.
         EdkEkg (angle shape) GacmaneCIgesμI b¤eCIgminesμI. kMNt;sMKal;KMrUKW L6 × 6 × b¤   3
                                                                                                4
 L6 × 3 × 5 8 . elxTaMgbItYKW RbEvgeCIgTaMgBIrrbs;vaEdlvas;BIcugeTAEkgxageRkA nigkMras;rbs;va.
kñúgkrNIEdkEkgEdlmaneCIgminesμI eCIgEvgRtUv)ansresrmun. kMNt;sMKal;rbs;EdkEkgmin)an
R)ab;BITm¶n;eT.
          American Standard Channel b¤ C-shape mansøabBIr nigRTnugmYy EtmanG½kSsIuemRTIEt
mYy. kMNt;sMKal;KMrUrbs;vaKW C 9 × 20 . nimitþsBaØaenHKWRsedogKñanwg W- nig S-shape Edr Edl
manelxmYytYtMNag[km<s; nigmYytYeTottMNag[Tm¶n;kñúgmYyÉktþaRbEvg. b:uEnþsRmab; channel
km<s;manRbEvgCak;EsþgCag. épÞxagkñúgrbs;søabKWdUcKñanwg S-shape Edr. eKenAman
Miscellaneous Channel EdlCa]TahrN_ MC10 × 25 KWRsedogKñanwg American Standard
Channel Edr.
         Structural Tee RtUv)anpliteLIgedaykat; W-, M- b¤ S-shape Rtg;km<s;Bak;kNþal.
eBlxøHeKehArUbragenHfa split-tee. buBVbTénnimitþsBaØarbs;rUbragenHKW WT, MT b¤ ST GaRs½y
eTAelIrUbragedImrbs;vamuneBlkat;. ]TahrN_ WT18 × 115 man nominal depth 18in. nigmanTm¶n;
115lb / ft ehIyvaRtUv)ankat;ecjBI WT 36 × 230 . dUcKñasRmab; ST- nig MT-shape.
esckþIepþIm                                 13                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
        edaymin)anbgðajkúñgrUbTI 1>6 eKenAman hot-rolled shapes EdlmanlkçN³RsedogeTAnwg
W-shape EdrKW³ HP- nig M-shapes. eKeRbI HP shape sRmab;ssrRKwH EdlvamanépÞsøabRsbKña
nigmanTTwgesμInwgkm<s; ehIykMras;søabdUcKñanwgkMras;RTnug. GkSr M tMNag[ Miscellaneous
¬epSg²¦ EdlrUbragenHminRtUvKñanwgRbePTrUbragén W, HP b¤ S eT. TaMg M- nig HP-shape
RtUv)ansMKal;kñúgTRmg;dUcKñanwg W-shape Edr ]TahrN_ M 14 × 18 nig HP14 × 117 .
        rUbragEdlRtUv)aneKeRbICajwkjab;Edr RtUv)anbgðajenAkñúgrUbTI 1>7. Edkr)ar (bar) Gac
manmuxkat; mUl kaer nigctuekaNEkg. RbsinebITTwgrbs;muxkat;ctuekaNEkgmanRbEvgtUcCag
8in. ≈ 20cm eKcat;TukrUbragenHCaEdkr)ar (bar) ehIyvaRtUv)ansMKal;edayTTwgmunkMras; ( 8× 3 4 )
EtpÞúymkvijvaRtUv)ancat;TukCaEdkbnÞH (plate) ehIykMNt;sMKal;rbs;vaRtUv)annaMmuxedaykMras;
munTTwg ( 12 × 10 ). Edkr)ar (bar) nigEdkbnÞH (plate) RtUv)anpliteday hot-rolling.
         rUbTI 1>7 k¾bgðajBImuxkat;RbehagEdr EdlGacplitBIEdkbnÞH (plate) EdlRtUv)anBt;eTACa
rUbragEdlcg;)anehIypSartamefñr b¤eday hot-working edIm,IplitrUbragEdlKμanefñr. rUbragenH
RtUv)ankt;sMKal;eday HSS sRmab;muxkat;EdkRbehag. muxkat;RbehagrYmman TIbmUl nigTIbRCug
EdlmanrUbragkaer nigctuekaN.
         eKenAmanrUbragepSg²eTot b:uEnþeyIgelIkykEtrUbragEdleKniymeRbICaTUeTAmkbgðaj
b:ueNÑaH. kñúgkrNICaeRcIn rUbragbTdæanmYynwgbMeBjtRmUvkarsRmab;karsikSaKNna. Rbsinvamin
manrUbragbTdæanEdlRtUvnwgkarsikSaKNnaeT eKcaM)ac;eFVI built-up section dUcbgðajenAkñúgrUbTI
1>8. eBlxøH standard shape RtUv)anbEnßmeday cross-sectional element dUckrNIEdleKpSar
cover plate P¢ab;eTAnwgsøabmYy b¤søabTaMgBIrrbs; W-shape. kareFVI built-up section CaviFId¾man
T.Chhay                                    14                                     Introduction
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
RbsiT§PaBkñúgkarbegáInlT§PaBRTRTg;rbs; standard shape. eBlxøHeKRtUveRbI built-up shape
edaysarKμan standard rolled shape NaEdlmuxkat;rbs;vamanRkLaépÞ b¤m:Um:g;niclPaBFMlμm. enA
kñúgkrNIEbbenH eKeRbI plate girder EdlGacmanrUbragCa I-shaped section EdlmansøabBIr nig
RTnugmYy b¤muxkat;RbGb; EdlmansøabBIr nigRTnugBIr. eKGacpSarFatupSMbBa©ÚlKñaedayrcnaedIm,I
TTYl)annUvlkçN³Edlcg;)an. eKGacbegáIt built-up shape edayP¢ab; standard rolled shape BIr
b¤eRcInbBa©ÚlKña. bnSMénrUbragEdleRbICaTUeTAKWEdkEkgDubEdlRtUv)andak;xñgTl;xñg ehIyRtUv)an
P¢ab;tamcenøaHénRbEvgrbs;va.
        RbePTepSgeTotrbs;EdksRmab;eRKOgbgÁúMKW cold-formed steel. Structural steel RbePTenH
RtUv)anbegáIteLIgedaykarBt;snøwkbnÞHEdkesþIgedaymineRbIkMedA. muxkat;KMrURtUv)anbgðajenAkñúgrUb
TI 1>9. Cold-formed shape RtUv)aneRbIsRmab;RTTm¶n;Rsalb:ueNÑaH. Cold-working nwgbegáIn
yield point b:uEnþvanwgkat;bnßyPaBsVitrbs;Edk nigeRkamlkçxNÐCak;EsþgeKGaceRbIvakñúgkarsikSa
KNna (AISI, 1993). KuNsm,tþirbs;vaKWrUbragrbs;vagayRsYlkñúgkarbegáIt. edaysarmuxkat;
rbs;vaesþIg instability CaktþacMbgkñúgkarsikSaKNna cold-formed structure.
esckþIepþIm                                15                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
                         II. eKalKMnitkñúgkarsikSaKNnaeRKOgbgÁÁúMEdk
                          Concepts in Structural Steel Design
2>1> TsSnviC¢akñúgkarsikSaKNnamuxkat;                     Design Philosophies
         karsikSaKNnaGgát;eRKOgbgÁúMtMrUvnUvkareRCIserIsmuxkat;EdlmansuvtßiPaB nigmanlkçN³
esdækic© edIm,ITb;Tl;nwgkmøaMgEdlGnuvtþBIxageRkA. CaTUeTA lkçN³esdækic©mann½yfabrimaNEdk
Gb,brma. brimaNenHRtUvnwgmuxkat;EdlmanTm¶n;kñúgmYyÉktþaRbEvgRsalCageK ehIyRtUvnwgmux
kat;EdlmanRkLaépÞtUcCageKpgEdr. edIm,ITTYl)annUveKalbMNgenH visVkreRKOgbgÁúMk¾RtUvsMerc
eFVIy:agNaeGayvamanlkçN³suvtßiPaBpgEdr. eKmanviFIkñúgkarKNnabIsMxan;xus²KñaKW³
        !> sRmab; allowable stress design eKRtUveRCIserIsGgát;EdlmanlkçN³muxkat;dUcCa RkLa
           épÞ nigm:Um:g;niclPaBFMRKb;RKan;edIm,IkarBarkugRtaMgGtibrmakMueGayFMCagkugRtaMg
           GnuBaØat. kugRtaMgGnuBaØatKWsßitenAkñúgtMbn;eGLasÞicrbs;smÖar³ ehIyvamantémøtUcCag
           yield stress Fy ¬emIlrUbTI 1>4¦. témørbs;kugRtaMgGnuBaØatGacesμInwg 0.6 Fy . eKTTYl
           )ankugRtaMg GnuBaØatedayEck yield stress Fy b¤ ultimate tensile stress F CamYynwg
                                                                                   u
           emKuNsuvtßiPaB. eKGacehAviFIkñúgkarKNnaenHfa elastic design b¤ working stress
           design. Working stress CakugRtaMgEdl)anBIbnÞúkeFVIkar (working load or service
           load). Ggát;Edl)anKNnarYcehIy GacrgkugRtaMgmineGayFMCagkugRtaMgGnuBaØatenAeBl
           rgbnÞúkeFVIkar.
        @> Plastic design KWQrelIkarsnμt;lkçxNÐ)ak; (failure) CaglkçxNÐbnÞúkeFVIkar. Ggát;
            RtUv)aneRCIserIsedayeRbIlkçxNÐvinicä½yeGayeRKOgbgÁúM)ak;eRkambnÞúkEdlFMCagbnÞúkeFVI
            kar. kar)ak; (failure) k¾mann½yfavamanPaBdabFMelIslub. eKeRbIBakü plastic enATI
            enHeRBaH enAeBl)ak; Epñkrbs;Ggát;nwgrg strain FM EdlvamantémøFMRKb;RKan;edIm,I eGay
            Ggát;sßitenAkñúgtMbn;)aøsÞic ¬emIlrUbTI 1>3 b¦. enAeBlEdlmuxkat;TaMgmUlrbs;Ggát;
            køayeTACa)aøsÞicenATItaMgRKb;RKan; plastic hinge nwgekIteLIgenATItaMgenaH Edl
            begáIt)anCa collapse mechanism. edaysarbnÞúkCak;EsþgtUcCag failure load
            edaymanemKuNsuvtßiPaBEdleKsÁal;faCa emKuNbnÞúk (load factor). Ggát;EdlKNna
T.Chhay                                    16                  Concepts in Structural Steel Design
viTüasßanCatiBhubec©keTskm<úCa                                          Department of Civil Engineering
            tamviFIenH nwgmansuvtßiPaB eTaHbICakarKNnaQrelIGVIEdlekItmanenAeBl)ak;k¾eday.
            dMeNIrkarénkarsikSaKNnaenHRtUv)ansegçbdUcteTA³
                         KuN working load b¤ service load CamYynwgemKuNbnÞúkedIm,ITTYl)an
                         z
                         failure load.
                         kMNt;lkçN³muxkat;EdlcaM)ac;edIm,ITb;Tl; failure eRkamGMeBIénbnÞúkem
                         z
                         KuN. Ggát;EdlmanlkçN³EbbenHKWmanersIusþg;RKb;RKan; ehIyvanwgCit²
                         nwg)ak; enAeBlEdlGgát;rgbnÞúkemKuNEbbenH.
                         eRCIserIsrUbragmuxkat;EdlRsalCageKEdlmanlkçN³EbbenH.
                         z
            Ggát;EdlKNnaedayRTwsþI)aøsÞicnwgeTAdl;cMNuc)ak;eRkamGMeBIbnÞúkemKuN Etvamansuvtßi-
            PaBeRkamGMeBIbnÞúkeFVIkarCak;Esþg.
         #> Load and resistance factor design (LRFD) manlkçN³RsedogKñanwg plastic design
            Rtg;eKKitlkçxNÐeBl)ak;. eKGnuvtþemKuNbnÞúkeTAelIbnÞúkeFVIkar ehIyeKRtUveRCIserIs
            Ggát;EdlmanersIusþg;RKb;RKan;edIm,IkarBarbnÞúkemKuN. elIsBIenH ersIusþg;Edl)anBIRTwsþI
            RtUv)ankat;bnßyedaykarGnuvtþemKuNersIusþg;. lkçN³vinicä½yEdlRtUvbMeBjkñúgkareRCIs
            erIsGgát;enHKW³
                    bnÞúkemKuN (factored load) ≤ ersIusþg;emKuN (factored strength)        (2.1)
             CaTUeTA enAkñúgsmIkarenH bnÞúkemKuNCaplbUkénbnÞúkeFVIkarTaMgGs;EdlRtUv)anTb;Tl;
             edayGgát;eRKOgbgÁúM edayKuNnwgemKuNbnÞúkeTAtamRbePTbnÞúk. Ca]TahrN_ bnÞúkefr
             RtUv)anKuNedayemKuNbnÞúkEdlxusBIbnÞúkGefr. ersIusþg;emKuNCaersIusþg;RTwsþIEdl
             KuNCamYynwgemKuNersIusþg;. dUcenHeKGacsresrsmIkar 2.1 dUcxageRkam³
                    ∑   ¬bnÞúk × emKuNbnÞúk¦ ≤ ersIusþg; × emKuNersIusþg;                  (2.2)
             bnÞúkemKuNCa failure load EdlmantémøFMCagbnÞúkeFVIkarsrubCak;Esþg dUcenHCaTUeTAem
             KuNbnÞúkEtgEtFMCag 1.0. b:uEnþ ersIusþg;emKuNRtUv)ankat;bnßy dUcenHemKuNersIusþg;
eKalKMnitkñúgkarsikSaKNnaeRKOgbgÁúMEdk           17                                                T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                      NPIC
             EtgEttUcCag 1.0. bnÞúkemKuNCabnÞúkEdlnaMeGayeRKOgbgÁúM b¤Ggát;eTAdl;cMNucEdn
             kMNt;. kñúgn½ysuvtßiPaB sßanPaBkMNt;GacCa fracture, yielding b¤ buckling
             ehIyersIusþg;emKuN CaersIusþg;EdlmanRbeyaCn_rbs;Ggát;Edlkat;bnßyBIersIusþg;RTwsþI
             edayemKuNersIusþg;. sßanPaBkMNt;k¾GacCasßanPaBkMNt;énkareRbIR)as; dUcCaPaBdab
             GnuBaØatGtibrma.
2>2>      American Institute of Steel Construction Specification
         sRmab;karsikSaKNnamuxkat;Ggát;rbs;eRKOgbgÁúMGMBIEdk nigkartP¢ab;rbs;va specification
of the American Institute of Steel Construction Ca design specification Edlmansar³sMxan;.
vaRtUv)aneKsresr nigeFVIkarEkERbtamsm½ykaleday AISC committee EdlrYmmanvisVkreRKOg
bgÁúM GñksikSaRsavRCavBIsMNg;Edk plitkr nigGñksagsg;sMNg;Edk. Allowable stress design
CaviFIdMbUgEdlRtUv)aneKeRbIsRmab;sMNg;EdleFVIBIeRKOgbgÁúMEdktaMgBIkare)aHBum<pSayrbs; AISC
Specification elIkTImYy kñúgqñaM 1923. enAqñaM 1986 AISC )ane)aHpSay specification dMbUg
sRmab; load and resistance factor design sRmab;sMNg;GMBIEdk rYmCamYynwg Manual of Steel
Construction. eKalbMNgénÉksarTaMgBIrKWpþl;nUvCeRmIssRmab;karKNnatam allowable stress
design eGay)aneRcIndUc karKNnatam plastic design. kare)aHBum<elIkTIBIrrbs; Manual (AISC,
1994) rYmman AISC Specification 1993.
         Load and resistance factor design minEmnCaKMnitfμIeT. taMgBIqñaM 1974 vaRtUv)aneKeRbIenA
RbeTskaNada EdlenATIenaHeKehAviFIenHfa limit state design. ehIyvak¾CaeKalkarN_rbs;
European building code pgEdr. enAshrdæGaemric LRFD CaviFIénkarKNnaEdlRtUv)anGnuBaØat
sRmab;ebtugBRgwgedayEdkCaeRcInqñaMmkehIy ehIyvaCaviFIdMbUgEdlGnuBaØatenAkñúg American
Concrete Institute’s Building Code EdlvaRtUv)aneKsÁal;Ca Strength design (ACI, 1995).
Highway bridge design standard pþl;eGayTaMg allowable stress design (AASHTO, 1992) nig
load and resistance-factor design (AASHTO, 1994).
T.Chhay                                     18                   Concepts in Structural Steel Design
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
2>3> emKuNersIusþg; nigemKuNbnÞúkEdleRbIR)as;enAkñúg   AISC Specification
          Load and Resistance Factors Used in the AISC Specification
          smIkar 2.2 GacRtUv)aneKsresreGaykan;EtmanlkçN³suRkitEfmeTotdUcxageRkam³
          ∑γ Q  i   i   ≤ φRn                                                            (2.3)
Edl        = bnÞúk ¬kmøaMg b¤m:Um:g;¦
          Qi
        γ = emKuNbnÞúk
            i
        R = nominal resistance or strength
            n
        φ = emKuNersIusþg;
φR RtUv)aneKehAfa ersIusþg;KNna (design strength). GgÁxageqVgénsmIkar 2.3, ∑ γ Q KWCa
    n                                                                                i   i
plbUkéncMnYnbnÞúkKNna ¬bnÞúkemKuN¦ TaMgGs;EdlmanGMeBIelIeRKOgbgÁúM. emKuNbnÞúk γ GaRs½y
eTAnwgRbePTbnÞúk nigkarbnSMbnÞúk (load combination). bnÞúkemKuN RtUv)anykeTAeFVIkarsikSa
KNnasRmab;témøEdlFMCageKkñúgcMeNamsmIkarpSMbnÞúkTaMg ^ xageRkam. xageRkamCakarbnSMbnÞúuk
EdleGayeday “General Provision” enAkñúgCMBUk A
       1 .4 D                                                                    ¬A$-!¦
       1.2 D + 1.6 L + 0.5( L orSorR )
                                 r                                               ¬A$-@¦
       1.2 D + 1.6( L orSorR) + (0.5 Lor 0.8W )
                            r                                                    ¬A$-#¦
       1.2 D + 1.3W + 0.5 L + 0.5( L orSorR )
                                         r                                       ¬A$-$¦
       1 .2 D ± 1 .0 E + 0 .5 L + 0 .2 S                                         ¬A$-%¦
        0.9 D ± (1.3Wor1E )                                                      ¬A$-^¦
Edl D = bnÞúkefr (Dead load)
        L = bnÞúkGefr (Live load)
        L = bnÞúkdMbUlGefr (Roof live load)
            r
        S = bnÞúkRBwl (Snow load)
        R = bnÞúkePøóg b¤Twkkk (Rain or ice load)
        W = bnÞúkxül; (Wind load)
        E = bnÞúkrBa¢ÜydI (Earthquake load)
eKalKMnitkñúgkarsikSaKNnaeRKOgbgÁúMEdk       19                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                         NPIC
         eyIgeXIjfa smIkar A$-@/ γ sRmab;bnÞúkGefr L esμI 1.6 EtsRmab;smIkar A$-@ vij
γ = 0.5 . mUlehtuKWbnÞúkGefr RtUv)aneKepþatsMxan;sRmab;smIkar A$-@ ÉbnÞúkmYykñúgcMeNam
bnÞúkTaMgbI L / S b¤ R RtUv)aneKepþatsMxan;sRmab;smIkar A$-#.
               r
         ÉemKuNersIusþg; φ mantémøenAcenøaHBI 0.75 eTA 1.
]TahrN_ 2>1³ ssr ¬Ggát;rgkarsgát;¦ enACan;xagelIrbs;GKarrgbnÞúkdUcxageRkam³
          bnÞúkefr (Dead load):                  485kN
          bnÞúkGefrelIkRmal (Floor live load): 205kN
          bnÞúkGefrelIdMbUl (Roof live load): 84.5kN
          bnÞúkRBwl (Snow):                     89kN
     a.   kMNt;karbnSMbnÞúktam AISC Edllub nigtémøbnÞúkemKuNEdlRtUvKña
     b.   RbsinebIemKuNersIusþg; φ = 0.85 . etI nominal strength EdlRtUvkaresμIb:unμan?
dMeNaHRsay³
     a.   bnSMbnÞúkEdllubCabnSMbnÞúkEdlbegáItbnÞúkemKuNFMCageK. eyIgnwgBinitüsmIkarnImYy²
          EdlmanBak;B½n§nwgbnÞúkefr D / bnÞúkGefrEdl)anBI]bkrN_ smÖar³ nigmnusSEdlmanGMeBI
          elIkRmal L / bnÞúkGefrEdlmanGMeBIelIdMbUl Lr nigbnÞúkRBwl S .
          (A4-1):        1.4 D = 1.4(485) = 679kN
          (A4-2):        1.2 D + 1.6 L + 0.5( Lrb¤ S b¤ R) . eday S > Lr ehIy R = 0 dUcenHeyIg
                         caM)ac;sikSakarbnSMbnÞúkEtmþgKt; edayeRbI S
                         1.2 D + 1.6 L + 0.5S = 1.2(485) + 1.6(205) + 0.5(89 ) = 954.5kN
          (A4-3):                       b¤ S b¤ R) + (0.5L b¤ 0.8W )
                         1 .2 D + 1 .6 ( L r
                         sRmab;bnSMbnÞúkenH eyIgeRbI S CMnYseGay Lr ehIy R = W = 0
                         1.2 D + 1.6 S + 0.5 L = 1.2(485) + 1.6(89 ) + 0.5(205) = 826.9kN
          (A4-4):                                   b¤ S b¤ R) . smIkarenHRtUv)ankat;bnßymk
                         1.2 D + 1.3W + 0.5 L + 0.5( Lr
                         Rtwm 1.2D + 0.5L + 0.5S ehIytamkarGegÁt eyIgeXIjfasmIkarenHpþl;nUv
                         lT§pltUcCagbnSM (A4-2) nig (A4-3).
T.Chhay                                            20               Concepts in Structural Steel Design
viTüasßanCatiBhubec©keTskm<úCa                                         Department of Civil Engineering
         (A4-5):                                   . edaysar E = 0 dUcenHsmIkarenHRtUv)ankat;
                                 1 .2 D ± 1 .0 E + 0 .5 L + 0 .2 S
                      bnßymkRtwm 1.2D + 0.5L + 0.2S EdllT§plTTYl)anBIsmIkarenHtUcCag
                      lT§plEdlTTYl)anBIsmIkar (A4-4).
        (A4-6):        0.9 D ± (1.3W b¤ 1.0 E ) . smIkarenHmanemKuNbnÞúkefrtUcCagsmIkard¾éT
                      naMeGaylT§plrbs;smIkarenHtUcCaglT§plrbs;smIkard¾éT.
cemøIy³ bnSMbnÞúkEdllubKW (A4-2) ehIybnÞúkemKuNKW 954.5kN .
     b. RbsinebIeKCMnYsbnÞúkemKuNxagelIeTAkñúgsmIkar 2.3 eyIgTTYl)an
                    ∑ λi Qi ≤ φRn
                    954.5 ≤ 0.85Rn
                        Rn ≥ 1123kN
cemøIy³ nominal strength EdlRtUvkarKW 1123kN .
2>4> mUldæanRbU)ab‘ÍlIetrbs;             Load and Resistance Factors
          Probabilistic Basis of Load and Resistance Factors
       TaMgemKuNbnÞúk TaMgemKuNersIusþg;EdlkMNt;eday AISC KWQrelIeKalkarN_RbU)ab‘ÍlIet.
emKuNersIusþg;karBarPaBminCak;lak;énlkçN³rbs;smÖar³ RTwsþIénkarsikSaKNna nigkarsagsg;.
       Tinñn½yénkarBiesaFRtUv)anbgðajkñúgTMrg; histogram b¤ bar graph dUcbgðajenAkñúgrUbTI 2>1
EdlmanG½kSGab;sIustMNageGaytémørbs;sMNakKMrU b¤RBwtþikarN_ (event) nigG½kSGredaentMNag
eGaycMnYnsMNakKMrUEdlmantémøCak;lak; b¤PaBjwkjab; (frequency) énkarekIteLIgéntémøCak;
lak;. r)ar (bar) nImYy²GactMNageGaytémøsMNakKMrUmYy² b¤EdnéntémømYy. RbsinebIGredaen
KitCaPaKry RkaPicnwgtMNageGaykarEbgEck relative frequency. kñúgkrNIEbbenH plbUkrbs;
GredaennwgesμI 100% . RbsinebIG½kSGab;sIusCaRBwtþikarN_ ehIyeRbInUvsMNakKMrURKb;RKan; Gredaen
nImYy²GacsMEdgCaRbU)ab‘ÍlIetedaysresrCaPaKryéntémøsMNakKMrU b¤RBwtþikarN_EdlekItman.
Relative frequency k¾GacsresrCaTMrg;TsSPaKpgEdr EdlmantémøenAcenøaHBI 0 nig 1.0 . dUcenH
plbUkrbs;GredaennwgesμI 1.0 ehIyRbsinebIr)ar (bar) nImYy²manTTwgÉktþa dUcenHRkLaépÞsrub
rbs;düaRkamk¾nwgesμI 1.0 pgEdr. lT§plenHbBa¢ak;faRbU)ab‘ÍlIetEdlesμInwg 1.0 nwgnaMeGayRBwtþi-
karN_sßitenAkñúgEdnkMNt;rbs;düaRkam. elIsBIenH Rb)ab‘ÍlIeténtémøCak;lak;EdltUcCag Edlnwg
eKalKMnitkñúgkarsikSaKNnaeRKOgbgÁúMEdk                      21                                 T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                     NPIC
ekIteLIgnwgesμIRkLaépÞrbs;düaRkamEdlenAxageqVgrbs;témøenaH. RbU)ab‘ÍlIeténRBwtþkarN_Edl
mantémøsßitenAcenøaH a nig b enAkñúgrUbTI 2>1 esμInwgRkLaépÞrbs;düaRkamenAcenøaH a nig b .
      munnwgdMeNIrkarsikSaKNna eyIgRtUvsÁal;BIrUbmnþxøH²EdleRbIenAkñúgRbU)ab‘ÍlIet. mFümPaK
(mean) x énsMnMutémøsMNakKMrU b¤ population CatémømFümnBVnþEdl
                1 n
          x=      ∑ xi
                n i =1
Edl xi CatémøsMNakKMrU ehIy n CacMnYnrbs;témø. Median CatémøkNþalrbs; x ehIy mode
CatémøEdlekItmanjwkjab;CageK. Variance v CaxñatEdlvas;BIbERmbRmYlénTinñn½yTaMgGs;BI
mean ehIyRtUv)ankMNt;dUcxageRkam³
          v=
                1 n
                    (
                  ∑ xi − x
                n i =1
                             )2
Standard deviation s         Cab¤skaerén variance
          s=
                 1 n
                         (
                   ∑ xi − x
                 n i =1
                                  )2
dUcKñanwg variance Edr standard deviation CargVas;énbERmbRmYlTaMgmUl b:uEnþvamanxñat niglMdab;én
GaMgtg;sIuetCa data. Coefficient of variation V CaplEckrvag standard deviation elI mean.
                s
          V =
                x
T.Chhay                                         22              Concepts in Structural Steel Design
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
RbsinebIeKCMnYskarEbgEck frequency Cak;EsþgedayGnuKmn_Cab;tamRTwsþIEdlesÞIrEtesμIKñanwgTinñ-
n½y (data) enaHeKehAGnuKmn_enHCa probability density function. GnuKmn_EbbenHRtUv)an
bgðajenAkñúgrUbTI 2>2. GnuKmn_RbU)ab‘ÍlIetRtUv)anKNnaedayeGayRkLaépÞsrubEdlenABIeRkam
ExSekagesμIcMnYnÉktþa. sRmab;GnuKmn_ f (x)
            +∞
          ∫− ∞ f (x )dx = 1.0
Edlmann½yfaRbU)ab‘ÍlIeténtémøsMNakKMrU b¤RBwtþikarN_EdlnwgekIteLIgesμInwg 1.0 . RbU)ab‘ÍlIetén
RBWtþikarN_enAcenøaH a nig b enAkñúgrUbTI 2>2 esμInwgRkLaépÞeRkamExSekagcenøaH a nig b
          ∫a f (x )dx
            b
          enAeBlEdleKeRbI probability density function eKsnμt;eRbInimitþsBaØaxageRkam
                    μ = mean
                    σ = standard deviation
        eKalkarN_RbU)ab‘ÍlIetrbs;emKuNbnÞúk nigemKuNersIusþg;EdleRbIeday AISC RtUv)anbgðaj
enAkñúg ASCE structural journal (Ravindra and Galambos, 1978). \T§iBlbnÞúk Q nigersIusþg; R
CaGBaØat ehIyvaGaRs½yeTAnwgemKuNCaeRcIn. eK)a:n;sμan nigTTYl)anbnÞúkBIkarvas;eRKOgbgÁúMCak;
Esþg ehIyersIusþg;RtUv)anKNna nigkMNt;edaykarBiesaF. Q nig R RtUv)anbMEbkeGaydac;BIKña
eKalKMnitkñúgkarsikSaKNnaeRKOgbgÁúMEdk       23                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
ehIy GacbgðajCa frequency distribution histogram b¤bgðajCa theoretical probability density
function.
        RbsinebIeKsg;düaRkamén probability density sRmab;\T§iBlbnÞúk Q nigersIusþg; R enAelI
RkaPicEtmYy dUcenAkñúgrUbTI 2>3 tMbn;EdlRtUvKñanwg Q > R bgðajBI failure ehIy Q < R bgðajBI
survival. RbsinebIkarEbgEck Q nig R RtUv)andak;bBa©ÚlKñaeTAkñúgGnuKmn_EtmYy témøviC¢manén
 R − Q RtUvKñanwg survival. dUcKña RbsinebIeKeRbI probability density function R / Q ¬emKuN
suvtßiPaB¦ survival RtUv)ansMEdgedaytémø R / Q FMCag 1.0 . RbU)ab‘ÍlIetEdlRtUvKñanwg failure
CaRbU)ab‘ÍlIetEdl R / Q tUcCag 1.0 .
                 ⎡⎛ R ⎞ ⎤
          PF = P ⎢⎜⎜ ⎟⎟ < 1⎥
                 ⎣⎝ Q ⎠ ⎦
edaydak;elakarItenEBeTAelIGgÁsgxagénvismIkarxagelIeyIgTTYl)an
                 ⎡ ⎛R⎞         ⎤     ⎡ ⎛R⎞ ⎤
          PF = P ⎢ln⎜⎜ ⎟⎟ < ln1⎥ = P ⎢ln⎜⎜ ⎟⎟ < 0⎥
                 ⎣ ⎝Q⎠         ⎦     ⎣ ⎝Q⎠ ⎦
ExSekagEbgEck frequency én ln(R / Q ) RtUv)anbgðajenAkñúgrUbTI 2>4. eKGackMNt;TMrg;Edlman
lkçN³sþg;daénGBaØat ln(R / Q ) Ca
                  ⎛ R ⎞ ⎡ ⎛ R ⎞⎤
               ln⎜⎜ ⎟⎟ − ⎢ln⎜⎜ ⎟⎟⎥
                  ⎝ Q ⎠ ⎣ ⎝ Q ⎠⎦ m
          U=
                         σ ln (R / Q )
T.Chhay                                        24            Concepts in Structural Steel Design
viTüasßanCatiBhubec©keTskm<úCa                                             Department of Civil Engineering
          ⎡ ⎛ R ⎞⎤
Edl       ⎢ln⎜⎜ ⎟⎟⎥ =       témømFüm (mean value) én ⎛⎜⎜ QR ⎞⎟⎟
          ⎣ ⎝ Q ⎠⎦ m                                             ⎝   ⎠
          σ ln (R / Q ) = standard deviation   én ⎛⎜⎜ QR ⎞⎟⎟
                                                    ⎝        ⎠
eyIgGacsresrRbU)ab‘ÍlIetén failure Ca
                 ⎡ ⎛R⎞       ⎤    ⎛ ⎧⎪                 ⎡ ⎛ R ⎞⎤ ⎫⎪     ⎞
          PF = P ⎢ln⎜⎜ ⎟⎟ < 0⎥ = P⎜ ⎨Uσ ln ( R / Q ) + ⎢ln⎜⎜ ⎟⎟⎥ ⎬ < 0 ⎟
                 ⎣ ⎝Q⎠       ⎦    ⎜⎪                   ⎣ ⎝ Q ⎠⎦ m ⎪⎭   ⎟
                                  ⎝⎩                                   ⎠
                   ⎧      ⎡ ⎛ R ⎞⎤ ⎫            ⎧ ⎡ ⎛ R ⎞⎤ ⎫
                   ⎪      ⎢ln⎜⎜ ⎟⎟⎥ ⎪           ⎪ ⎢ln⎜⎜ ⎟⎟⎥ ⎪
                   ⎪      ⎣ ⎝ Q ⎠⎦ m ⎪          ⎪ ⎣ ⎝ Q ⎠⎦ m ⎪
               = P ⎨U < −                ⎬ = Fu ⎨−              ⎬
                   ⎪       σ ln (R / Q ) ⎪      ⎪ σ ln( R / Q ) ⎪
                   ⎪                     ⎪      ⎪               ⎪
                   ⎩                     ⎭      ⎩               ⎭
Edl Fu Ca cumulative distribution function én U b¤CaRbU)ab‘ÍlIetEdl U minFMCag argument
rbs;GnuKmn_. RbsinebIeyIgyk
                ⎡ ⎛ R ⎞⎤
                ⎢ln⎜⎜ ⎟⎟⎥
                ⎣ ⎝ Q ⎠⎦ m
          β=                                                                                  (2.4)
                 σ ln (R / Q )
          ⎡ ⎛ R ⎞⎤
enaH      ⎢ln⎜⎜ ⎟⎟⎥ = βσ ln ( R / Q )
          ⎣ ⎝ Q ⎠⎦ m
eKalKMnitkñúgkarsikSaKNnaeRKOgbgÁúMEdk                  25                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                     NPIC
eKGacbgðajGBaØat β CacMnYnén standard deviations BIeKalén mean value ln(R / Q ) . edIm,I
suvtßiPaB/ mean value RtUvEttUcCagsUnü ehIyCavi)ak β RtUv)aneKehAfa safety index b¤
reliability index. témøenHkan;EtFM kMritsuvtßiPaBkan;EtFM. enHmann½yfaRbU)ab‘ÍlIetén failure Edl
bgðajedayépÞqUtenAkñúgrUbTI 2>4 nigmankMNt;sMKal; PF nwgmantémøtUc. Reliability index
CaGnuKmn_én\T§iBlbnÞúk Q nigersIusþg; R . kareRbI reliability index dUcKñasRmab;RKb;RbePTGgát;
EdlrgRKb;RbePTbnÞúk dUcKñanwgkarpþl;eGayGgát;nUversIusþg;RKb;RbePTEdr. témøkMNt; (target
value) rbs; β EdlbgðajenAkñúgtarag 2>1 RtUv)aneRCIserIs nigeRbIenAkñúgkarKNnaemKuNbnÞúk
nigemKuNersIusþg;sRmab; AISC Specification EdlQrelIkaresñIeLIgeday Ravindra and
Galambos (1978) ehIyk¾)anbgðajfa
                Rm − 0.55βV R
           φ=      e                                                                  (2.5)
                Rn
Edl                      énersIusþg; R
           Rm = mean value
        Rn = nominal resistance b¤ersIusþg;tamRTwsþI
        VR = emKuNbERmbRmYlrbs; R
smIkar 2.5 CasmIkarsRmab;emKuNersIusþg; φ EdleGayenAkñúg                Commentary         to   the
Specification.
tarag 2>1 Edntémø (target value) rbs; β
                                                      lkçxNÐbnÞúk
    RbePTeRKOgbgÁúM
                                      b¤
                                D + (L S )             D+L+S                     D+L+E
            Ggát;                  3.0                    2.5                       1.75
            tMN                    4.5                    4.5                        4.5
2>5>      Manual of Steel Construction
              manBIrPaK EdlPaKTImYymancMNgeCIgfa “Structural Members, Specifications
           Manual
and Codes” man 7Epñk Edlerobrab;BIkarKNnaGgát; ehIyPaKTIBIrmancMNgeCIg “connections”
T.Chhay                                      26                 Concepts in Structural Steel Design
viTüasßanCatiBhubec©keTskm<úCa                                       Department of Civil Engineering
man 5Epñk EdlniyayBIkarKNnatMN. esovePAenHepþatCasMxan;eTAelIPaKTImYyEdlEckecjCa
7Epñk.
       Part1. Dimensions and Properties: EpñkenHmanB½t’manlMGitBI standard rolled-shapes,
       pipe nig structural tubing EdlrYmmanTMhMmuxkat; niglkçN³sMxan;²TaMgGs; dUcCaRkLaépÞ
       nigm:Um:g;niclPaB. EdkEdlmanerobrab;enAkñúg manual enHRtUv)anGnuBaØateday AISC
       Specification sRmab;eRbIR)as;enAkñúgsMNg;GKarEdlrYmmandUcxageRkam³
                    ASTM A36: Carbon structural steel
                    ASTM A529: High-strength, carbon-manganese structural steel
                    ASTM A572: High-strength, low-alloy structural steel
                    ASTM A242: Corrosion-resistant, high-strength, low-alloy structural steel
                    ASTM A588: Corrosion-resistant, high strength, low-alloy structural steel
                    ASTM A852: Quenched and temped low-alloy structural plate
                    ASTM A514: High-strength, quenched and tempered alloy structural steel plate
         Part2. Essentials of LRFD:      EpñkenHENnaMy:agsegçbBImUldæanrbs; load and resistance
         factor design rbs;eRKOgbgÁúMEdk nigman]TahrN_CaelxbgðajpgEdr.
         Part3. Column Design: EpñkenHmantaragCaeRcInsRmab;sRmYlldl;karKNnaTaMgGgát;
         rgkarsgát;tamG½kS nig beam-columns. taragPaKeRcInKWsRmab;EdkEdlman yield stress
         36ksi ≈ 250 MPa nig 50ksi ≈ 345MPa .
         Part4. Beam and Girder Design: EpñkenHk¾dUcEpñkTI 3EdrKWvaman design aid CaeRcInrYm
         mantarag nigRkaPic. Design aid PaKeRcInmanniyayBItMrUvkarrbs; AISC Specification
         b:uEnþ design aid xøHdUcCa Beam diagrams and Formula KWTak;Tgnwg structural analysis.
         kñúgEpñkenHk¾manerobrab;BIdMeNIrkarKNnaFñwm nig girder ehIyman]TahrN_bgðajBIkarsikSa
         KNnaeTotpg.
         Part5. Composite Design: EpñkenHerobrab;BIeRKOgbgÁúMsmas EdlCaTUeTACaFñwm b¤ssr.
         eRKOgbgÁúMsmaspSMeLIgedaysmÖar³BIrRbePTKW EdkeRKOgbgÁúM nigebtugGarem:. CaFmμta eK
         eRbIFñwmsmasenAeBlEdlRbB½n§FñwmRsbRTkMralxNÐebtugGarem:. enAkñúgkarGnuvtþ element
         EdlpSarP¢ab;eTAnwgsøabxagelIRtUv)anbgáb;enAkñúgebtugedIm,IP¢ab;smÖar³TaMgBIr. ssrsmas
eKalKMnitkñúgkarsikSaKNnaeRKOgbgÁúMEdk         27                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
         GacCaEdkeRKOgbgÁúMbgáb;enAkñúgebtugGarem: b¤EdkRbehagEdlbMeBjedayebtug. EpñkenH
         man design aid nig]TahrN_bgðajpgEdr.
         Part6. Specifications and Codes: EpñkenHman AISC Specification nig Commentary,
         specification sRmab;b‘ULúgersIusþg;x<s; (RCSC, 1994) nigÉksardéTeTot.
         Part7. Miscellaneous Data and Mathematical Tables: EpñkenHniyayBI wire, sheet
         steel niglkçN³epSg²rbs;Edk nigsmÖar³sMNg;déTeTot. ehIyk¾manrYmbBa©ÚlTaMgrUbmnþ
         KNitviTüa nigemKuNsRmab;bMElgxñat.
         PaKTIBIr ¬EdlpSMeday 5Epñk¦ mantaragsRmab;CYykñúgkarKNnakartP¢ab;edaykarpSar
nigedayb‘ULúgCamYynwgtaragEdlpþl;eGayy:aglMGitelI standard connection.
         AISC Specification RKan;EtCaEpñkd¾tUcmYyrbs; Manual. Bakü nigtémøefrCaeRcInEdleRbI
enAkñúgEpñkxøHrbs; Manual RtUv)anbgðajedIm,IsRmYldl;dMeNIrkarsikSaKNna ehIyvaminmansresr
enAkñúg specification eT.
T.Chhay                                  28                  Concepts in Structural Steel Design
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
                                             cMeNaT
cMNaM³ bnÞúksmμtikmμTaMgGs;CabnÞúkeFVIkar (service load).
@>#>!> ssrenACan;xagelIrbs;GKarrgbnÞúksgát;Edl)anBI³ bnÞúkefr = 137kN / bnÞúkGefr = 7.5kN /
bnÞúkGefrEdlmanGMeBIelIdMbUl = 85kN nigbnÞúkRBwl = 90kN .
k> kMNt;karbnSMbnÞúkEdlmanlkçN³lub nigbnÞúkemKuN.
x> RbsinebIemKuNersIusþg;esμInwg 0.85 . etI nominal strength tRmUvkarrbs;ssrmantémøb:unμan?
@>#>@> ssrrgbnÞúkEdl)anBI³ bnÞúkefr = 115kN / bnÞúkGefr = 67kN / bnÞúkGefrEdlmanGMeBIelI
dMbUl = 22kN / bnÞúkRBil = 35kN / bnÞúkePøóg = 22kN nigbnÞúkxül; 35kN . bnÞúkTaMgGs;CabnÞúk
sgát;elIkElgEtbnÞúkxül;EdlGacCabnÞúkTaj b¤bnÞúksgát;.
k> kMNt;karbnSMbnÞúkEdlmanlkçN³lub nigbnÞúkemKuN.
x> RbsinebIemKuNersIusþg;esμInwg 0.85 . etI nominal strength tRmUvkarrbs;ssrmantémøb:unμan?
@>#>#> bnÞúkenAelIFñwmdMbUlrYmmanbnÞúkGefr 2.9kN / m / bnÞúkGefrEdlmanGMeBIelIdMbUl 1.9kN / m
nigbnÞúkRBwl 2.0kN / m . kMNt;bnÞúkemKuNEdleKeRbIsRmab;sikSaKNnaFñwmenH. etIbnSMbnÞúkmYy
NaEdllub?
@>#>$> eKnwgsikSaKNnaFñwmsRmab;RbB½n§dMbUl nigRbB½n§kRmalsRmab;GKarkariyal½y. kMNt;bnSM
bnÞúkEdllub nigbnÞúkemKuNsRmab;krNIxageRkam³
k> dMbUl³ bnÞúkefr 1.4kN / m / bnÞúkefrEdlmanGMeBIelIdMbUl 1.0kN / m / bnÞúkRBil 1.0kN / m
                                 2                                 2                       2
nigbnÞúkTwkePøógEdl)anBIkm<s;Twk 10cm .
x> kRmal³ bnÞúkefr 3.0kN / m nigbnÞúkGefr 3.8kN / m
                                     2                  2
@>#>%> CaerOy² eKEtgsikSaKNnasMNg;GKarGMBIEdkCamYynwgRbB½n§BRgwgGgát;RTUg (diagonal
bracing system) edIm,ITb;Tl;nwgbnÞúkxag ¬kmøaMgtamTisedkEdlekItBIbnÞúkxül; nigbnÞúkrBa¢ÜydI¦.
kMNt;bnSMbnÞúk nigbnÞúkemKuNEdllubsRmab;bnÞúkEdl)anBI³ bnÞúkefr = 59kN / bnÞúkGefr = 31kN /
bnÞúkGefrEdlmanGMeBIelIdMbUl = 5.8kN / bnÞúkRBil = 5.8kN bnÞúkxül; = 670kN nigbnÞúkrBa¢ÜydI
= 717 kN .
cMeNaT                                       29                                         T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
                                    III. eRKOgbgÁúMrgkarTaj
                                     Tension Members
3>1> esckþIepþIm (Introduction)
        eRKOgbgÁúMrgkarTaj CaeRKOgbgÁúMsMNg;EdlrgkmøaMgTajtamG½kS. vaRtUv)aneKeRbIsRmab;
eRKOgbgÁúMeRcInRbePT rYmbBa©ÚlTaMgeRKOgbgÁúM truss ExSkabsRmab; suspension bridge nig cable-
stayed bridge, RbB½n§BRgwgGKar nigs<an ExSkabsRmab;RbB½n§dMbUlBüÜrpgEdr. sRmab;Ggát;rg
karTaj RkLaépÞmuxkat;CaGñkkMNt;lT§PaBTb;Tl;eTAnwgkmøaMgxageRkA. EdkEdlmanmuxkat;mUl
nig EdkEkghUtekþA (rolled angle shape) RtUv)aneKeRbICaTUeTA. eBlxøH muxkat; built-up BI
muxkat;hUtekþA (rolled shape) b¤muxkat;pSMKñaBImuxkat;hUtekþACamYynwgEdkbnÞH (plate) RtUv)aneK
eRbIR)as;kñúgkrNITb;Tl;CamYybnÞúkFM. muxkat; built-up PaKeRcInCa double-angle section ¬rUb
TI3>1¦ CamYynwgmuxkat;KMrUepSg²eTot. edaysarEtkareRbIR)as;muxkat;enHmanPaBTUlMTUlay
taraglkçN³énbnSMmuxkat;Ekg (combinations of angles) epSg²k¾RtUv)anbB©ÚaleTAkñúg AISC
Manual of steel Construction.
          Figure 3.1
          kugRtaMgenAkñúgGgát;rgkarTajtamG½kSKW
                P
          f =
                A
        RbsinebIRkLaépÞmuxkat;rbs;Ggát;rgkarTajERbRbYltamRbEvg enaHkugRtaMgnwgERbRbYltam
muxkat;Edr. CaFmμta eRKOgbgÁúMrgkarTajEdlP¢ab;edayb‘ULúg EtgEtmanRbehag. vtþmanrbs;Rb
T.Chhay                                      30                              Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
ehagEtgman\T§iBleTAelIkugRtaMg. enAkñúgkrNIenH eKecalmuxkat;Rbehag. RkLaépÞmuxkat;suT§
(net area b¤ net section) Camuxkat;suT§EdlminKitmuxkat;Rbehag ÉRkLaépÞeBj (gross area) Camux
kat;eBjEdlKitrYmTaMgmuxkat;Rbehag. CaerOy² Ggát;rgkarTajEtgP¢ab;edayb‘ULúgenAxagcug ¬rUb
TI3>2¦.
                                 Figure 3.2
        karsikSaKNnaeRKOgbgÁúMrgkarTaj KWCakareRCIserIsGgát;Edlmanmuxkat;RKb;RKan; edIm,ITb;
Tl;nwgkugRtaMgEdl)anBIbnÞúkemKuN. kñúgkrNIEdleKsÁal;muxkat;Ggát; eKGacKNnaersIusþg;KNna
(design strength) ehIyeKeFVIkareRbobeFobvaCamYybnÞúkemKuN. CaTUeTA karsikSaviPaK (analysis)
CadMeNIrkarKNnaviPaK ÉcMENkkarsikSaKNnamuxkat; (design) CadMeNIrkarKNnasarcuHsareLIg
ehIyRtUvkarkarsakl,g nigmankMhusecosminput.
3>2> ersIusþg;KNna (Design strength)
       eRKOgbgÁúMrgkarTajGacminCab;edaysßanPaBkMNt; (limit state) BIry:ag³
   - kMhUcRTg;RTayelIslb; (excessive deformation)³ edIm,IkarBarsßanPaBEbbenH bnÞúkenAelI
       muxkat;eBj (gross section) RtUvEtmantémøtUcRKb;RKan; EdlnaM[kugRtaMgenAelImuxkat;
       eBj (gross section) man témøtUcCagkugRtaMgyal (yield stress) F .y
          Pn < Fy Ag
eRKOgbgÁúMrgkarTaj                        31                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
          Edl              Pn = nominal strength in yielding
                           Fy = yield strength
                           Ag = gross section area
     - kardac; (fracture)³ edIm,IkarBarsßanPaBEbbenH kugRtaMgenAelImuxkat;suT§ (net section) RtUv
       EtmantémøtUcCagersuIsþg;dac; (tensile strength) F .     u
          Pn < Fu Ae
          Edl              Pn = nominal strength in yielding
                           Fu = tensile strength
                     RkLaépÞmuxkat;suT§RbsiT§PaB (effective net area). kñúgkrNIxøH A mantémø
                           Ae =                                                      e
     esμIRkLaépÞmuxkat;suT§ (net section) A EtkñúgkrNIxøHvamantémøtUcCag A .
                                                     n                       n
                eTaHbICa enAelImuxkat;suT§ (net section) ekItmanyal (yield) munk¾eday EtkMhUc
     RTg;RTayenAelIRbEvgéntMNmantémøtUcCagkMhUcRTg;RTayenAelIEpñkrgkarTajEdlenAsl;.
     mUlehtuKWsac;lUtsrub (total elongation) CaplKuNrvagRbEvgedIm nigsac;lUteFob (strain)
     ¬GnuKmn¾eTAnwgkugRtaMg¦. sßanPaBkMNt; (limit state) seRmc[muxkat;eBj (gross section)
     rgkugRtaMgyal (yield stress) KWedaysarEtsac;lUtsrubmantémøFMCag minEmneday
     sarkaryal (yielding) muneT.
                emKuNersIusþg; φ = 0.9 sRmab;karyal (yielding)
                                            t
                emKuNersIusþg; φ = 0.75 sRmab;kardac; (fracture)
                                            t
            BIsmIkar !># eyIgGacsresr
          ∑γ Q    i    i   ≤ φt Pn
          b¤ Pu       ≤ φt Pn
       Edl P CabnSMbnÞúkemKuNEdlmantémøFMCageK.
                       u
       edaysareKmansßanPaBkMNt; (limit state) cMnYnBIr dUcenHsßanPaBTaMgBIrRtUvbMeBjlkçxNÐ
xageRkam³
T.Chhay                                                  32                      Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                                 Department of Civil Engineering
          Pu ≤ 0.9 Fy Ag               sRmab;;muxkat;eBj (gross section)
          Pu ≤ 0.75 Fu Ae              sRmab;muxkat;suT§ (net section)
         témøtUcCageKkñúgcMeNamtémøTaMgBIrCaersIusþg;KNnarbs;Ggát;rgkarTaj.
                RkLaépÞBitR)akdEdldkecjBIRkLaépÞmuxkat;eBj (gross area) edaymanvtþman
RbehagKWGaRs½yeTAnwgdMeNIrkarplit. sRmab;karGnuvtþTUeTA rn§EdlecaHedaylkçN³bTdæan
drill or punch oversized holes eKRtUvbUkbEnßm 2mm eTAelIGgát;p©itrbs;b‘ULúg. sRmab; drill or
punch standard holes eKRtUvbUkbEnßm 4mm eTAelIGgát;p©itrbs;b‘ULúgEdleKeRbIR)as;. sRmab;
rn§RTEvg (slotted holes) eKRtUv)aneKbUkbEnßm 2mm eTAelIGgát;p©itrbs;b‘ULúg. xageRkamCatarag
bgðajBIGgát;p©itb‘ULúg nigGgát;p©itrn§.
                                       Nominal Hole Dimensions, mm
  Ggát;p©itb‘ULúg                                  xñatRbehag Hole Dimensions
 Bolt Diameter             Standard        Oversize           Short-Slot                  Long-Slot
                            (Dia.)          (Dia.)         (Width × Length)            (Width × Length)
        M16                   18             20                 18×22                      18 ×40
        M20                    22             24                22×26                        22×50
        M22                    24             28                24×30                        24×55
        M24                   27 [a]          30                27×32                        27×60
        M27                    30             35                30×37                        30×67
       M30                     33            38                 33×40                        33×75
      ≥ M36                   d+3           d+8            (d + 3)×(d + 10)              (d + 3)× 2.5d
          [a]Clearance provided allows the use of a 1-in. bolt if desirable. (         RtUvKña 25mm )
]TahrN_3>1³ r)arEdkm:ak A36 Edlmanmuxkat; 125 ×12.5mm RtUv)aneRbICaGgát;rgkarTaj.
                                                                           2
vaRtUv)antP¢ab;eTAnwg gusset plate CamYynwgb‘ULúg M16 cMnYn 4 RKab; ¬rUbTI3>3¦. edaysnμt;fa
effective net area A esμInwg net area cUrkMNt;ersIusþg;KNna (design strength).
                          e
eRKOgbgÁúMrgkarTaj                                    33                                                T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                        NPIC
              Figure 3.3
dMeNaHRsay³
       EdkEdlmanm:ak A36 man F = 250MPa nig F
                                      y                       u   = 400MPa
       sRmab; yielding én gross section
                   Ag = 125 × 12.5 = 1562.5mm 2
          ersIusþg; nominal
                   Pn = Fy Ag = 250 × 1562.5 = 390kN
          ersIusþg;KNna (design strength)
                   φt Pn = 0.9 × 390 = 351kN
          sRmab; fracture én net section
          An = Ag − Aholes
              = 1562.5 − 2 × (12.5 × 20) = 1062.5mm 2
          Ae = An = 1062.5mm 2    ¬sRmab;Et]TahrN_enHb:ueNÑaH¦
          ersIusþg; nominal
                   Pn = Fu Ae = 400 × 1062.5 = 425kN
          ersIusþg;KNna (design strength)
                   φt Pn = 0.75 × 425 = 348.75kN
          dUcenH ersIusþg;KNna (design strength) φ Pt   n   = 348.75kN       ¬témøtUcCagCacemøIy¦
        \T§iBlénkugRtaMgpþúM (stress concentration) minRtUv)aneKBicarNakñúgkrNIenHeT EtFatuBit
kugRtaMgenARtg;rn§mantémøRbEhlbIdgkugRtaMgmFümEdlekItmanenAelI net area ehIykugRtaMgenA
T.Chhay                                        34                                     Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                          Department of Civil Engineering
Rtg; fillet énmuxkat;hUtekþA mantémøFMCagkugRtaMgmFümelIsBIrdg. edaysarEtPaBsVit b¤PaB
hUtlYs (ductile) rbs;EdkEdlTItaMgEdlman overstress RtUv)anecalsRmab;karKNnaTUeTA.
eRkamlkçxNÐCak;Esþg EdkGac)at;bg;PaBsVitrbs;va ehIy stress concentration GaceFVI[r)ar
dac;Pøam². sßanPaBenHrYmman fatigue loading nigeRkamsItuNðPaBTabEmnETn.
                     Figure 3.4
]TahrN_3>2³ r)arrgkarTajmuxkat;EkgeTal L89 × 89 × 9.5 Rtv)anP¢ab;eTAnwg gusset plate
CamYynwgb‘ULúg M22 cMnYn 3 RKab; ¬rUbTI3>4¦. r)arEdkenH manm:ak A36 . bnÞúkefr DL = 155kN
nigbnÞúk LL = 67kN . viPaKmuxkat;enH edaysnμt; effective net area A esμIeTAnwg 85% rbs; net
                                                                           e
area .
dMeNaHRsay³
        bnSMbnÞúk (load combination)
          (A4-1): 1.4 DL = 1.4 × 155 = 217 kN
          (A4-2): 1.2 DL + 1.6 LL = 1.2 × 155 + 1.6 × 67 = 293.2kN > 217 kN
          ⇒ Pu = 293.2kN
          ersIusþg;KNna (design strength)
          gross section: Ag = 1610mm 2
                                   φt Pn = φt Fy Ag = 0.9 × 250 × 1610 = 362.25kN
          net section: An = 1610 − (9.5 × 26) = 1363mm 2
                                 Ae = 0.85 × 1363 = 1158.55mm 2
                                 φt Pn = φt F y u Ae = 0.75 × 400 × 1158.55 = 347.57 kN < 362.25kN
eRKOgbgÁúMrgkarTaj                               35                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
          eday P < φ P
                  u      t   n   (293.2kN < 347.57kN ) dUcenH r)armansuvtßiPaBedaybMeBjlkçxNÐ.
         enAkñúg]TahrN_xagelIenH eyIgeXIjfabnSMMbnÞúk (A4-2) RtUv)anykmkeFVIkarKNna. enA
eBlmanEtbnÞúkefr nigbnÞúkGefreFVIGMeBIelIeRKOgbgÁúM ehIybnÞúkefr tUcCagbnÞúkGefr *dg enaHeKeRbI
bnSMbnÞúk (A4-2) edIm,IeFVIkarKNna. sRmab;]TahrN_xagmux eyIgnwgmineFVIkarepÞógpÞat;bnSMbnÞúk
1.4 D (A4-1) eT edaysarEtvaminGacFMCagbnSMbnÞúk (A4-2)eT.
3>3> RkLaépÞmuxkat;suT§RbsiT§PaB (Effective net area)
        kñúgcMeNamktþaCaeRcInEdlman\T§iBleTAelIkareFVIkarrbs;r)arrgkarTaj rebobénkartP¢ab;
CaktþamYyEdlsMxan;CageK. tMNPaKeRcInEtgEteFVI[r)arcuHexSay karKNnanUv\T§iBlrbs;vaRtUv
)aneKehAfa Joint efficiency . ktþaenHCaGnuKmn_eTAnwgPaBsVitrbs;smÖar³ (ductility of material)
KMlatrbs;eRKOgP¢ab; (fastener spacing) kugRtaMgpþúMenARtg;Rbehag (stress concentra-tion) TRmg;
énkarplitrYmTaMg)atuPUtEdleKsÁal;faCa shear leg. ktþaTaMgenHnaM[mankarkat;bnßyRbsiT§PaB
rbs;r)ar b:uEnþ shear lag CaktþamYyEdlsMxan;CageK.
        Shear lag ekItmanenAeBlEdlmuxkat;r)arTaMgmUlminRtUv)antP¢ab; dUcCaenAeBlEdleCIg
mçagrbs;EdkEkgRtUv)anP¢ab;edaysarb‘ULúgeTAnwg gusset plate ¬rUbTI3>5¦. sar³sMxan;rbs;kart
P¢ab;edayEpñk eFVI[Epñkrbs;r)arEdltP©ab;rgbnÞúkFM (overload) ehIyEpñkEdlmintP¢ab;minrg
kugRtaMgeBjelj. karbnøayRbEvgtMbn;tP¢ab;CyY kat;bnßy\T§iBlenH. karRsavRCavEdleFVIeLIg
eday Munse nig Chesson (1963) )ansMNUmBr[Kit shear lag kñúgkarkat;bnßy net area.
edaysarEt shear lag man\T§iBleTAelIkartP¢ab;edayb‘ULúg nigkartP¢ab;edaykarpSar enaH effec-
tive net area RtUv)aneKGnuvtþcMeBaHtMNTaMgBIrRbePTenH.
        Effective net area sRmab;tMNb‘ULúg
          Ae = UAn
          Effective net area      sRmab;tMNpSar
          Ae = UAg
T.Chhay                                           36                              Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
                                 Figure 3.5
          U   CaemKuNkat;bnßyRbsiT§PaB (reduction factor)
                     x
          U = 1−       ≤ 0.9                                      (AISC Equation B3-2)
                     L
          x  CacmøayBITIRbCMuTm¶n;rbs;mxu kat;eTAbøg;énkartP¢ab;.
           L CaRbEvgénkartP¢ab;.
          RbsinebIr)artP¢ab;edaymanlkçN³sIuemRTI x RtUveRCIserIsyktémøtUcCageK ¬rUbTI3>6¦.
                            Figure 3.6
          CaRbEvgtP¢ab;tamTisedAbnÞúkeFVIGMeBI ¬rUbTI3>7¦. sRmab;tMNb‘ULúg L RtUv)aneKvas;BI
          L
cugmçagrbs;G½kSb‘ULúg eTAcugmçageTotrbs;G½kSb‘ULúg. sRmab;tMNpSar L RtUv)anvas;BIcugtMNmçag
eTAtMNmçag. RbsinebI kMNat;EdlpSarmanRbEvgtamTisedAkmøaMg RbEvgkMNat;EdlmanRbEvgEvg
CagRtUv)anykmkKNna.
eRKOgbgÁúMrgkarTaj                            37                                        T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
              Figure 3.7
         témømFüm Lx sRmab;kartP¢ab;edayb‘ULúgsRmab;Ggát;rgkarTajepSg² Commentary to
AISC B3 [témø U CMnYs[karKNna 1 − . témømFüm U sRmab;tMNb‘ULúgmanBIrRbePT³
                                              x
                                              L
sRmab;kartP¢ab;eday fastener BIrkñúgmYyCYrtamTisedAbnÞúkeFVIkar nigsRmab;karP¢ab;eday fastener
bIb¤ eRcInkñúgmYyCYr. eK[témø U bIepSgKña EdleKaeBtamlkçxNÐxageRkam³
         !> sRmab;EdkEdlmanmuxkat; W, M, S EdlmanpleFobTTwgelIkm<s;y:agtic                   2
                                                                                                 3
¬nigsRmab; muxkat; T Edlkat;ecjBImuxkat;TaMgbIxagelI¦ ehIyRtUv)anP¢ab;enAnwgsøabCamYynwg
fastener y:agticbIkúñgmYyCYrtamTisedAbnÞúkeFVIGMeBI
                   U = 0 .9
         @> sRmab;RKb;TRmg;muxkat;epSgeTot ¬rYmTaMgmuxkat; built-up¦ CamYynwg fastener y:agtic
bIkúñgmYyCYr
T.Chhay                                    38                                Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                      Department of Civil Engineering
                     U = 0.85
          #> sRmab;RKb;Ggát;TaMgGs; CamYynwg fastener y:agticBIrkúñgmYyCYr
                     U = 0.75
       rUbxageRkamnwgbgðajnUv beRmIbRmas;c,ab;TaMgenH ¬rUbTI3>8¦.
       eKk¾GaceRbIR)as;témø U mFümsRmab;tMNpSarEdr. ebIeTaHCamin)anbriyaykñúg Com-
mentary k¾eday EtvaCaectnarbs; ¬AISC, 1989b¦. c,ab;enHdUcKña EtelIkElgsRmab;karpþl;[
EdleqøIytbeTAnwg fastener BIrminRtUv)anGnuvtþ. témømFüm U sRmab;tMNpSarmandUcxageRkam³
       !> sRmab;EdkEdlmanmuxkat; W, M, S EdlmanpleFobTTwgelIkm<s;y:agtic ¬nig              2
                                                                                               3
sRmab;muxkat; T Edlkat;ecjBImuxkat;TaMgbIxagelI¦ ehIyRtUv)anP¢ab;enAnwgsøab
                     U = 0 .9
          @> sRmab;RKb;TRmg;muxkat;epSgeTot
                     U = 0.85
          krNIBiesssRmab;kartedaykarpSar
          AemantémøtUcCag A enAeBlEdlmuxkat;rbs;Ggát;xøHb:eu NÑaHminRtUv)antP¢ab;. sRmab;
                                 n
Ggát;rgkarTajdUcCa bnÞHEdk b¤r)ar ¬dUcbgðajkñúg]TahrN_3>1¦ effective net area RtUv)anyk
eBj dUckarKNna net area. EteTaHCay:agNa vamankrNIelIkElgsRmab;c,ab;enH³ sRmab;bnÞH
Edk b¤Edkr)arEdltP¢ab;edaykarpSartambeNþay (longitudinal weld) Epñkxagcugrbs;va ¬rUbTI
3>9¦ .
          Ae = UAn
          Edl        U =1        sRmab; l ≥ 2w
                     U = 0.87    sRmab; 1.5w ≤ l < 2w
                     U = 0.75    sRmab; w ≤ l < 1.5w
          l= RbEvgkarpSar > w
          w = cmøaycenøaHkarpSar ¬EdlGacykTTwgrbs; plate b¤ bar¦
eRKOgbgÁúMrgkarTaj                            39                                               T.Chhay
mhaviTüal½ysMNg;sIuvil                                                            NPIC
          AISC B3k¾[nUvkrNIBiessmYysRmab;Ggát;edaykarpSarEt transverse weld b:ueNÑaH
          A = RkLaépÞmuxkat;EdlpSar
           e
          Figure 3.8
T.Chhay                                   40                              Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                              Department of Civil Engineering
             Figure 3.9
      ¬rUbTI3>10¦ bgðajBIPaBxusKñarvagkarpSartambeNþay (longitudinal weld) nigkarpSar
tamTTwg (transverse weld). karEdlpSarEt transverse weld CakarxusFmμta EdleKmineRbIkñúg
plitkmμeT.
        Figure 3.10
]TahrN_TI3>3³ kMNt; effective net area sRmab;Ggát;rgkarTaj ¬rUbTI3>11¦.
dMeNaHRsay³ A = A − An      g    holes
          An = 3.72 × 10 −3 − (12.7 × 20) × 2 × 10 −6 = 3.212 × 10 −3 m 2
        eCIgEtmçagb:ueNÑaHrbs;mxu kat;RtUv)anP¢ab; dUcenH net area RtUvEtkat;bnßy. BItaraglkçN³
kñúgEpñkTI1 rbs; Manual cmøayBITIRbCMuTm¶n;eTAépÞxageRkAéneCIgrbs; L152 × 152 × 12.7 KW
          x = 4.25 × 10 −2 m
          RbEvgtP¢ab;KW L = 75 × 2 = 150mm
eRKOgbgÁúMrgkarTaj                               41                                                 T.Chhay
mhaviTüal½ysMNg;sIuvil                                                            NPIC
                Figure 3.11
                    42.5
          U = 1−         = 0.717 < 0.9
                    150
          Ae = UAn = 0.717 × 3.212 ⋅ 10 −3 = 2.3 ⋅ 10 −3 m 2
      eKGaceRbItémømFüm U BI Commentary . edaysarEtmuxkat;minEmn W, M, S b¤ GkSr T
ehIymanb‘ULúgeRcInCagBIrkñúgmYyCYrtamTisbnÞúkeFVIGMeBI U = 0.85
          Ae = 0.85 × 3.212 ⋅ 10 −3 = 2.73 ⋅ 10 −3 m 2
       témø U TaMgBIrGacTTYlyk)anTaMgBIr Ettémø U Edl)anBIkarKNnatam AISC Equation
B3-2 mantémøsuRkitCag. EteTaHCay:agNak¾eday k¾témømFüm U manRbeyaCn_sRmab;karKNna
dMbUg (preliminary design) enAeBlEdlmuxkat;BitR)akd nigB½t’manlMGitGMBIkarpSarminTan;RtUv
)andwgenaH.
]TahrN_TI3>4³ RbsinebIGgát;kñúg]TahrN_TI3>3 RtUv)anpSardUcbgðajkñúgrUbTI3>12 cUrkMNt;
effective net area
dMeNaHRsay³ dUckñúg]TahrN_TI3>3 manEtEpñkmuxkat;tP¢ab; nig reduced effective net area
RtUv)aneRbI. karP¢ab;RtUv)aneFIVeLIgCamYynwgkarpSartambeNþay nigtamTTwg dUcenHvaminEmnCa
krNIBiesssRmab;Ggát;pSareT.
       ⎛x⎞      ⎛ 42.5 ⎞
U = 1− ⎜ ⎟ = 1− ⎜      ⎟ = 0.7 < 0.9
       ⎝L⎠      ⎝ 140 ⎠
cemøIy³ A   e   = UAg = 0.7 × 3.72 ⋅ 10 −3 = 2.604 ⋅ 10 −3 m 2
T.Chhay                                            42                    Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
                          Figure 3.12
3>4> karteRmobtamEbbqøas; (Staggered fasteners)
          RbsinebIkartP¢ab;Ggát;eFIVeLIgCamYynwgb‘ULúg enaH net area nwgmantémøGtibrmakñúgkrNI
EdleRKOgP¢ab; (fastener) RtUv)andak;EtmYyCYr. eBlxøH edaysarEtKMlatRtUv)ankMNt; dUcCaTMhM
a enA kñúgrUbTI3>13 (a) caM)ac;eFVI[eKRtUvEteRbIeRKOgP¢ab;eRcInCagmYyCYr. RbsinebIdUcenH kar
kat;bnßyRkLaépÞmuxkat;RtUv)ankat;bnßy RbsinebIeRKOgP¢ab;RtUv)anteRmobtamEbbqøas; staggered
pattern dUcbgðaj. eBlxøH Staggered fasteners RtUv)aneKtRmUv[erobtamlkçN³FrNImaRtdUc
bgðajkñúgrUbTI13 (b). kñúgkrNIepSgeTot muxkat;xøHEdlkat;tamrn§nwgkat;tamrn§EdlmancMnYntic
CagRbsinebIeRKOgP¢ab;minRtUv)anteRmobtamEbbqøas;eTenaH.
          RbsinebIcMnYnén stagger mancMnYnticlμm enaHkarP¢ab;Gacdac;tamExSKnøg abcd dUckñúgrUbTI
3>13 (c). kñúgkrNIEbbenH eKminGacGnuvtþTMnak;TMng f = P A )aneT ehIykugRtaMgenAkñúgmuxkat;
tamExSeRTt bc KWCabnSMénkugRtaMgTaj nigkugRtaMgkmøaMgkat;. viFIsaRsþRbhak;RbEhl (approxi-
mate) CaeRcIn RtUv)aneKesñIeLIgedIm,IBnül;GMBIRbsiT§PaBrbs; staggered hole. elak Cochran
(1922) )anesñInUvkar eRbIR)as;RkLaépÞsuT§ (net area) EdlesμInwgplKuNrvagkRmas;bnÞH nig
TTwgsuT§ (net width). karKNnaRkLaépÞRtUv)aneFVIeLIgdUcteTA³ kMNt;ExSdac;EdlGacekIteLIg)an
edIm,IeFVIkarGegát nig[TTwgsuT§ (net width) esμInwgTTwgdk[
                     s2
          d'= d −                                                                    (2-1)
                     4g
sRmab;muxkat;dac;tam staggered hole b¤dk d sRmab;muxkat;dac;tam unstaggered hole. d Ca
Ggát;p©itRbehag s (pitch) CaRbEvgKMlatrvagrn§BIrCitKñatamTisedARsbnwgbnÞúk nig g (gage) Ca
eRKOgbgÁúMrgkarTaj                          43                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                               NPIC
RbEvgKMlatRbehagtamTTwg. AISC specification k¾eRbInUvviFIsaRsþdUcKñaenHEdr b:uEnþkñúgTRmg;xus
Kñabnþic. Epñk B2 tRmUv[TTwgsuT§RtUv)anKNnaedaydkplbUkGgát;p©itRbehagBITTwg ehIybUk
                                       2
bEnßmExSeRTt tamCYrmYy²Edlmantémø 4s g .
            Figure 3.13
                               s2
          wn = w g − ∑ d + ∑
                               4g
        enAeBlEdlkardac;GacekIteLIgtamTRmg;eRcIn eKRtUveFVIkarGegátRKb;lT§PaBénkardac;TaMg
Gs; ehIy (net width) EdlmantémøtUcCageKbMputRtUv)anykmkeRbI. cMNaMfa viFIsaRsþenHmin)an
pþl;nUvTRmg;nwgkardac;CamYyExSRsbeTAnwgTisedAbnÞúkeFVIGMeBIenaHeT.
]TahrN_TI3>5³ KNna net area EdltUcbMputsRmab;bnÞHEdlbgðajkñúgrUbTI3>14 . RbehagTaMg
Gs;sRmab;b‘ULúgGgát;p©it 25mm .
T.Chhay                                    44                                Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
        Figure 3.14
dMeNaHRsay³ Ggát;p©itRbehagRbsiT§PaB (effective hole diameter) KW 30mm
sRmab;ExSbnÞat; abcd
wn = 410 − 2(30) = 350mm
sRmab;ExSbnÞat; abcde
                          2(75) 2
wn = 410 − 3(30) +                = 341.6mm < 350mm
                          4(130)
cemøIy³ A    n   = twn = 20 × 341.6 = 6832mm 2
        edaysarEteRKOgP¢ab; (fastener) nImYy²Tb;Tl;kmøaMgesμI²Kña ¬karsnμt;EdleRbIenAkñúgkar
KNnatMNsamBaØ kñúgCMBUkTI 7¦ sñamExSdac;EdlmanlkçN³epSgKña GaceFVI[muxkat;Rtg;kEnøg
dac;rgkmøaMgepSgKña. ]TahrN_ ExS abcde kñúgrUbTI3>14 muxkat;rbs;Ggát;Rtg;kEnøgdac;rgkmøaMg
eBj 100% EdlExS ijfh eFVI[muxkat;rbs;Ggát;Rtg;kEnøgdac;Tb;Tl;Et 8 / 11 énkmøaMgEdl Gnuvtþ.
mUlehtuKW kmøaMg 3 / 11 EdlbBa¢ÚnBIGgát;RtUv)anTb;edayeRKOgP¢ab; munnwg ijfh TTYlbnÞúk.
        enAeBlEdl eRKOgP¢ab; (fastener) RtUv)anP¢ab;CaCYrenAelIeCIgTaMgBIrrbs;EdkEkg ehIykar
P¢ab;manlkçN³qøas; (staggered) KñaeTAvijTAmk enaHedIm,ITTYl)anRkLaépÞ net area dMbUgeKRtUv
BnøatEdkEkgedIm,ITTYl)anbnÞHEdksmmUl. bnÞHEdkenHRtUv)anviPaKdUcbnÞHEdkdéTeTotEdr.
karBnøatRtUv)aneFVIeLIgtamRTnugEdkEkgEdlpþl;[nUvTTwgEdkbnÞHesμIeTAnwgplbUkRbEvgeCIgrbs;
eRKOgbgÁúMrgkarTaj                               45                                     T.Chhay
mhaviTüal½ysMNg;sIuvil                                                              NPIC
vadknwgkRmas;EdkEkg. AISC B2 kMNt;faRbEvg g Edlkat;tamRTnugEkgrbs;EdkEkgRtUv)andk
edaykRmas;EdkEkg. dUcenH RbEvg g enAkñúgrUbTI3>15 EdlRtUv)anykeTAeRbIkñúgtY s 2 / 4 g nwgman
témøesμInwg 75 + 50 − 12 = 113mm .
  Figure 3.15
]TahrN_TI3>6³ cUrrk design tensile strength rbs;EdkEkgdUcbgðajkñúgrUbTI 3>16. Edk A36
RtUv)aneKykmkeRbIEdlmanRbehagsRmab;b‘ULúg 22mm.
dMeNaHRsay³ KNna net width
wg = 203 + 152 − 12.7 = 342.3mm
Ggát;p©itRbehagRbsiT§PaB effective hole diameter esμI 28mm
sRmab;ExSbnÞat; abdf w = 342.3 − (2 × 28) = 286.3mm
                         n
                                                   2
sRmab;ExSbnÞat; abceg w = 342.3 − (3 × 28) + 4(×3863) .5 = 263.98mm
                             n
  Figure 3.16
T.Chhay                                   46                                Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
        edaysarEt bnÞúk 1 / 10 RtUv)anepÞrBIGgát;edayeRKOgP¢ab;enARtg;cMNuc d enaHExSrdac;
potential failure line enHRtUvEtTb;nwgbnÞúkEt 9 / 10 . dUcenH net width 263.98mm RtUvEtKuNnwg
10 / 9 edIm,ITTYl)an net width EdlGaceRbobeFobCamYynwgExSbnÞat;EdlTb;nwgbnÞúkeBj 100% .
dUcenHExSbnÞat; abceg man w = 263.98 ×10 / 9 = 293.31mm
                                 n
sRmab;ExSbnÞat; abcdeg
g cd = 76 + 57 − 12.7 = 120.3mm
                         (38) 2   (38) 2   (38) 2
wn = 342.3 − (4 × 28) +         +        +        = 243.74mm
                        4 × 63.5 4 × 120 4 × 76
eday net width Edldac;tamExS abcdeg mantémøtUcCageK dUcenHkrNIenHRtUv)aneKykmk
KNna net area
          An = 12.7 × 243.74 = 3095.5mm 2
edaysarEteCIgTaMgBIrrbs;EdkEkgRtUv)anP¢ab; dUcenH
          Ae = An = 3095.5mm 2
ersIusþg;KNnaKW
          φt Pn = 0.75Fu Ae = 0.75 × 400 × 3095.5 = 928.65kN
          φt Pn = 0.5Fy An = 0.9 × 250 × 4390 = 987.75kN
cemøIy³ ersIusþg;KNnaKW 928.65kN
        cMNaMfa plKuNrvag gross width nwgkRmas;EdkEkgKWCa gross area krNIRtwmRtUvRbsinebI
eCIgrbs;EdkEkgmanragctuekaNEkg. mUlehtuKWfa eKGacTTYl)anragctuekaNEkgedaydképÞ
enARtg;rbt;Ekg nigbUkbEnßmépÞenARtg;cugEdkEkg.
        AISC Specification min)anpþl;karENnaMsRmab;karerobeRKOgP¢ab;tamEbbqøas;enAelI
rolled shape eRkABIEdkEkgeT. bnÞHEdksmmUlmanPaBsμúKsμajedaysarkRmas;Ggát;manPaBxus
Kña dUckrNIEdk channel nig wide flange . enAkñúgkrNIEbbenH eKesñI[eRbIRkLaépÞ ¬RbesIrCag
TTWg¦ nigdkGgát;p©itrn§ Edl[edaysmIkar (2-1).
        enAkñúg]TahrN_TI3>7 RKb;rn§RbehagTaMgGs;sßitenAEtmYyEpñkénmuxkat;.
eRKOgbgÁúMrgkarTaj                           47                                          T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                              NPIC
]TahrN_TI3>7³ kMNt;RkLaépÞmuxkat;suT§Gb,brma (smallest net area) sRmab;Edk American
Standard Channel dUcbgðajenAkñúgrUbTI3>17. RbehagsRmab;b‘ULúgEdlmanGgát;p©it 16mm.
dMeNaHRsay³ A       n    = Ag − ∑ t w × (d   b¤   d')
          d = 20mm
ExSbnÞat; abc
          An = Ag − t w d = 2460 − 11.1 × 20 = 2238mm 2
ExSbnÞat; abcd
          An = Ag − t w (d     sRmab;RbehagRtg; b) − t       w (d '   sRmab;RbehagRtg; c)
                                          ⎡      50 2 ⎤
              = 2460 − 11.1 × 22 − 11.1 × ⎢22 −        ⎥ = 2064.1mm
                                                                    2
                                          ⎣⎢    4 × 75 ⎦⎥
cemøIy³ RkLaépÞmuxkat;Gb,brma (smallest net area) KW 2064.1mm                  2
enAeBlEdlEpñkCaeRcInrbs;muxkat;manRbehag eKeRbIviFIsaRsþedaHRsayxusKñabnþic. eTaHbICa
EdkEdlmanrUbragepSgBIEdkEkgminGacBnøattamviFIEdlEdkEkgBnøatk¾eday k¾eKmanviFIsaRsþ
epSgeTotkñúgkarBnøatrUbragEdkTaMgenaHEdr. viFIsaRsþkñúgkarBnøatEdkTaMgenaHRtUv)anbgðajkñúgrUbTI
3>18 nigkñúg]TahrN_TI3>8.
T.Chhay                                                 48                                  Tension Members
viTüasßanCatiBhubec©keTskm<úCa                               Department of Civil Engineering
      Figure 3.18
]TahrN_TI3>8³ kMNt;ersIusþg;KNnarbs;Edk S-Shape dUcbgðajkñúgrUbTI3>19. RbehagKWsRmab;b‘U
LúgEdlmanGgát;p©it 20mm . eRbIEdk A36 .
          Figure 3.19
dMeNaHRsay³ KNnaRkLaépÞ net area
A = A − ∑ (t × Ggát;p©itRbehag )
  n       g
Ggát;p©itRbehagRbsiT§PaB = 24mm
sRmab;ExS ad
An = 9470 − 4 × 24 × 15.8 = 7953.2mm 2
                                                2
sRmab;ExS abcd RbEvg g sRmab;eRbIenAkñúgtY 4s g KW
eRKOgbgÁúMrgkarTaj                         49                                        T.Chhay
mhaviTüal½ysMNg;sIuvil                                                               NPIC
g       t    89       14
  + g1 − w =    + 70 − = 107.5mm
2        2    2        2
edayKitRbehagRtg; b nigRtg; c CaRbehagEdlerobqøas; eKTTYl)an
                                     ⎛         382 ⎞⎟
An = 9470 − 4 × 15.8 × 24 − 2 × 14 × ⎜ 24 −             = 7375.23mm 2
                                     ⎜                ⎟
                                            4 × 107.5 ⎠
                                     ⎝
kardac;tamExS abcd mantémøtUcCageK. edaysarRKb;EpñkTaMgGs;rbs;muxkat;RtUv)anP¢ab; dUcenH
Ae = An = 7375.23mm 2
sRmab; net section
φt Pn = 0.75Fu Ae = 0.75 × 400 × 7375.23 = 2212.57kN
φt Pn = 0.5Fy An = 0.9 × 250 × 9470 = 2130.75kN
cemøIy³ ersIusþg;KNnaKW 2130.75kN
3>5>      Block shear
         sRmab;rUbsNæanénkartP¢ab;xøH kMNat; b¤bøúkénsmÖar³enAxagcugénGgát;GacrEhk. ]Ta-
hrN_ kartP¢ab;rbs;Ggát;ragEkgeTalrgkarTaj dUcbgðajkñúgrUbTI3>20 gayrg)atuPUtEbbenH Edl
eK[eQμaHfa block shear ¬kardac;TaMgbøúk¦. sRmab;krNIEdl)anbgðajkñúgrUb épÞEdlqUtGac
dac;edaykmøaMgkat;TTwg (shear) tammuxkat;beNþay ab nigkmøaMgTaj (tension) tammuxkat;TTwg
bc. RbFanbT enHmin)anbgðajy:agc,as;kñúg AISC Chapter D (“Tension Members”) eT
b:uEnþkfaxNÐdMbUg )anENnaMeyIgeTAkan; Chapter J (“Connections, Joints, and Fasteners”),
Section J4.3 (“Block Shear Rupture Strength”).
         nitiviFIKWQrenAelIkarsnμt;fa muxkat;dac;mYyKWdac;eday fractures nigmYyeTotdac;eday
yielding. enHmann½yfa muxkat;EdlrgkugRtaMgTaj yield naM[muxkat;EdlrgkugRtaMgkmøaMgkat;
TTwg fracture b¤pÞúymkvij. muxkat;TaMgBIrenH naMmknUvPaBFn;srub ehIyersIusþg;rbs; block shear
KWCaplbUkénPaBFn;énmuxkat;TaMgBIr.
         PaBFn;Fmμta (nominal strength) enAkñúgGgát;rgkarTajKW Fu Ant sRmab; fracture nig
 Fy Agt sRmab; yield Edl Ant KWCa net area nig Agt KWCa gross area tambeNþaymuxkat;rgkar
Taj ¬ bc enAkñúgrUbTI3>20¦. edayykkugRtaMg yield sRmab;møaMgkat; nigkugRtaMg ultimate sRmab;
T.Chhay                                     50                               Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                       Department of Civil Engineering
               Figure 3.20
kmøaMgkat;esμI 60% énkugRtaMgkmøaMgTaj enaHersIusþg;dac;Fmμta (nominal fracture strength) sRmab;
kmøaMgkat;KW 0.6Fu Anv nigersIusþg; yield sRmab;kmøaMgkat;KW 0.6Fy Agv Edl Anv KWCa net area nig
Agv KWCa gross area tambeNþaymuxkat;rgkmøaMgkat; ¬ ab enAkñúgrUbTI20¦.
        eKGacmanTRmg;énkardac;Ca2rebob.
        sRmab;kmøaMgkat; yield nigkmøaMgTaj fracture ersIusþg;KNnaKW
          φRn = φ[0.6 Fy Agv + Fu Ant ]                                  (AISC Equation J4-3a)
          sRmab;kmøaMgTaj yield nigkmøaMgkat; fracture ersIusþg;KNnaKW
          φRn = φ[0.6 Fu Anv + Fy Agt ]                                  (AISC Equation J4-3a)
       sRmab;krNITaMgBIr φ = 0.75 . BIeRBaH sßanPaBkNt; (limit state) KW fracture smIkarEdl
lub KWsmIkarNaEdlmantY fracture FMCag.
     ]TahrN_TI3>9³ kMNt;ersIusþg; block shear rbs;Ggát;rgkarTajdUcbgðajenAkñúgrUbTI
3>21. rn§RbehagRtUv)aneRbIsRmab;Ggát;p©it 22mm nigEdkRbePT A36RtUv)aneRbI.
     dMeNaHRsay³
     RkLaépÞmuxkat;kmøaMgkat;KW
          Agv = 9.5 × 190 = 1805mm 2
eRKOgbgÁúMrgkarTaj                            51                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                             NPIC
     Figure 3.21
          edaysarEtman 2.5 Ggát;p©itrn§
          Anv = 9.5 × [190 − 2.5 × 28] = 1140mm 2
          RkLaépÞmuxkat;kmøaMgTaj
          Agt = 9.5 × 39 = 370.5mm 2
          Ant = 9.5 × [39 − 0.5 × 28] = 237.5mm 2
          edayeRbI AISC Equation J4-3a eKTTYl)an
          φRn = φ[0.6 Fy Agv + Fu Ant ]
                = 0.75 × [0.6(250 )(1805) + 400 × 237.5]
                = 0.75 × [270750 + 95000] = 274.3kN
          edayeRbI AISC Equation J4-3b eKTTYl)an
          φRn = φ[0.6 Fu Anv + Fy Agt ]
                = 0.75 × [0.6(400 )(1140 ) + 250 × 370.5]
                = 0.75 × [273600 + 92625] = 274.7kN
        smIkarTI 2 mantY fracture FM ¬tYEdlman F ¦ dUcenHsmIkarTI 2 lub.
                                                       u
cemøIy³ ersIusþg;KNnasRmab; block shearKW 274.7kN .
3>6> karKNnaGgát;rgkarTaj Design of tension members
       karKNnaGgát;rgkarTaj KWkarKNnark gross area nig net area RKb;RKan;sRmab;Ggát;Edl
rgkarTaj. RbsinebIGgát;enaHRtUv)anP¢ab;edaytMNb‘ULúg enaHeKRtUvkarnUvmuxkat;smRsbsRmab;Rk
T.Chhay                                         52                         Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                      Department of Civil Engineering
LaépÞEdl)an)at;bg;edaysarrn§tMN. sRmab;Ggát;Edlmanmuxkat;ctuekaNEkg karKNnaman
lkçN³RsYlCag. RbsinebImuxkat; rolled shape RtUv)aneRbImuxkat;EdlRtUvkat;bnßyminGacRtUv)an
BüakrN_TukCamun)an BIeRBaHkRmas;rbs;muxkat;enARtg;cMNucrn§minRtUv)andwg.
         karBicarNabnÞab;kñúgkarKNnaGgát;rgkarTajKW PaBrlas; (slenderness). RbsinebIGgát;
rbs;eRKagbgÁúMmanmuxkat;tUceFobeTAnwgRbEvgrbs;va enaHGgát;enaHmanlkçN³Rsav (slender). kar
KNnaEdlmanlkçN³suRkit KWpleFobrlas; (slenderness ration) RL Edl L CaRbEvgrbs;Ggát;
nig r Ca kaMniclPaB (radius of gyration) énRkLaépÞmuxkat;Gb,brma. kaMniclPaB (radius of
gyration) Gb,brma KWRtUvKñanwgG½kS minor principal énmuxkat;. témørbs; radius of gyration
RtUv)anerobCataragsRmab;muxkat; rolled shape TaMgGs;enAkñúgtaraglkçN³ (properties tables)
enAkñúgEpñkTI1 én Manual.
         sRmab;Ggát;rgkarsgát; slenderness mansar³sMxan;sRmab;ersIusþg; (strength) b:uEnþ slender-
ness minsUvCasMxan;sRmab;Ggát;rgkarTajb:unμaneT. eTaHCay:agNak¾eday enAkñúgsßanPaBxøH vaCa
karRbesIrsRmab;karkMNt;nUv slenderness sRmab;Ggát;rgkarTaj. RbsinebIbnÞúkcMG½kSenAkñúg Ggát;
rgkarTajRsav (slender tension member) ehIyrgbnÞúktamTTwg (transverse load) eTaHtUckþI
k¾rMjr½EdleKminR)afñacg;)an b¤PaBdabnwgekItmaneLIg. Ca]TahrN_ krNIenHGacekIteLIgsRmab;
EdkBRgwg (bracing rod) EdlmanlkçN³mintwgRbQmnwgkmøaMgxül;. sRmab;krNIenH AISC B7
)anesñInUv slenderness ratio GtibrmaesμInwg 300. témøenHRKan;EtCatémøesñI (commended value)
BIeRBaH slenderness minmanPaBsMxan;sRmab;Ggát;rgkarTajeT ehIytémøenHGacRtUv)anykFMCag
enHenAeBlEdlkal³eTs³BiessGnuBaØat[. EdntémøenHminRtUv)anGnuvtþeTAelIExSkabeT ehIy
specification k¾)anelIkElgcMeBaHEdksrésEdr.
         bBaðasMxan;kñúgkarKNnaRKb;muxkat;TaMgGs; rYmbBa©ÚlTaMgkarKNnaGgát;rgkarTaj KWkarrk
muxkat; EdlplbUkbnÞúkemKuNTaMgGs;mni RtUvelIsersIusþg;rbs;Ggát;. Edl
          ∑ γQ ≤ φRn
          sRmab;Ggát;rgkarTaj smIkarenHmanrag
eRKOgbgÁúMrgkarTaj                           53                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
          Pu ≤ φt Pn         b¤           φt Pn ≥ Pu
          Edl Pu KWCaplbUkbnÞúkemKuN. edIm,IKNna yielding
          0.9 Fy Ag ≥ Pu     b¤           Ag ≥
                                                     Pu
                                                   0.90 Fy
          edIm,IeCosvag fracture
          0.75Fu Ae ≥ Pu                  b¤         Ae ≥
                                                               Pu
                                                             0.75Fu
          Slenderness ratio       RtUv)anbMeBjRbsinebI
                L
          r≥
               300
          Edl r Ca radius of gyration Gb,brma nig L CaRbEvgGgát;.
]TahrN_TI3>10³ Ggát;rgkarTajEdlmanRbEvg 1750mm RtUvTb;nwgbnÞúkefreFVIkar (service dead
load) 80kN nigbnÞúkGefreFVIkar (service live load) 233kN . eRCIserIsGgát;Edlmanmux
kat;ctuekaNEkg. eRbIEdk A36 nigtMNRtUv)ansnμt;eRbIb‘ULúgEdlmanGgát;p©it 24mm mYyCYr.
dMeNaHRsay³
          Pu = 1.2 × 80 + 1.6 × 233 = 468.8kN
                                               468.8 ⋅ 103
          muxkat;caM)ac; A   g    =
                                        Pu
                                      0.9 Fy
                                             =
                                                0.9 × 250
                                                           = 2083.6mm 2
                                          .8 ⋅ 10                 3
          muxkat;caM)ac; A = 0.75P F = 468
                             e
                                          u
                                       0.75 × 400
                                                  = 1562.7mm          2
                                               u
          edaysarEt A = A sRmab;Ggát;enH gross area EdlRtUvKñanwg muxkat;caM)ac; net area
                         e            n
enHKW
          Ag = An + Ahole
               = 1562.7 + 28 × t
T.Chhay                                                      54              Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
          sakl,g t = 25mm
          Ag = 1562.7 + 28 × 25 = 2262.7mm 2
          edaysarEt 2262.7 > 2083.6 dUcenHmuxkat;caM)ac;KW 2262.7mm   2
                   Ag       2262.7
          wg =          =          = 90.5mm
                    t         25
          sakl,gmuxkat; 25 × 92
          epÞógpÞat; slenderness ratio
                 92 × 253
          I min =         = 119791.7mm 4
                    12
          A = 25 × 92 = 2300
          BI I = Ar eyIgTTYl)an
                        2
                I min    119791.7
          rmin =      =           = 7.22mm
                  A        2300
           L 1750
            =     = 242.4 < 300     (OK)
           r 7.22
          cemøIy³ eRbIEdkEdlmanmuxkat; 25 × 92 .
        Ggát;enAkñúg]TahrN_TI3>10 manTTwgtUcCag 20mm EdlRtUv)aneKcat;fñak;vaCaEdkr)ar
(bar) CaCagEdkbnÞH (plate). Edkr)arKYrRtUv)ankMNt;eday[TTwgrbs;vaERbRbYlmþg 5mm nig
kRmas;rbs;vaERbRbYlmþg 2mm ¬RbB½n§cMNat;fñak;Cak;lak;RtUv)anpþl;[kñúgEpñkTI1 én Manual
eRkamcMNgeCIg “Bars and Plates”.
        RbsinebIEdkEkgRtUv)aneRbICaGgát;rgkarTaj ehIykartP¢ab;RtUv)aneFVIeLIgedayeRbIb‘ULúg
enaHvacM)ac;RtUvmanépÞ ¬TMhM¦ RKb;RKan;sRmab;b‘ULúg. vaGacekItmanbBaðaenAeBlEdleKeRbIb‘ULúgBIr
CYrenAelIeCIgmYy. rn§RbehagRtUv)aneKecaHenATItaMgdUcbgðajenAkñúgrUbTI3>22 (a) sRmab;karplit
TUeTA eday)andkecjBIrUbTI 9-5 enAkñúgEpñkTI9 én Manual (VOL. II). cmøayKMlat Rbehag
tamTTwg gage g1 RtUv)aneKeRbIenAeBlEdleKmanb‘ULúgmYyCYr ehIy g 2 nig g3 RtUv)aneKeRbIenA
eBlEdleKmanb‘ULúgBIrCYr. rUbTI3>22 (b)bgðajfaeCIgEdkEkgRtUvmanRbEvgy:agxøIbMput 127mm
edIm,IGnuBaØat[eRbIb‘ULúgBIrCYr)an.
eRKOgbgÁúMrgkarTaj                            55                                         T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
  Figure 3.22
     KMlatRbehagtamTTWgsRmab;EdkEkg (mm)
     Leg 203 178 152 127 102              89     76   64    51    44    38     35   32   25
     g1 114 102 89 76 64                  51     44   35    26    25    22     22   19   16
     g2 76 64 57 51
     g3  76 76 64    44
                                                (b)
]TahrN_TI3>11³ KNnaGgát;rgkarTajEdlmanmuxkat;EdkEkgeCIgminesμIKña (unequal-leg angle)
RbEvg 4.6m Tb;nUv service dead load 155kN nig service live load 310kN . eRbIEdkRbePT
 A36 . kartRtUv)anbgðajenAkñúgrUbTI23.
  Figure 3.23
dMeNaHRsay³
bnÞúkemKuN (factored load) P
                           u   = 1.2 D + 1.6 L = 1.2(155) + 1.6(310) = 682kN
T.Chhay                                    56                                   Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                          Department of Civil Engineering
nigmuxkat;caM)ac;      Ag =
                                   Pu
                                       =
                                          682
                                  φt Fy 0.9(250)
                                                 = 3031.1mm 2
ehIymuxkat;caM)ac; A = φPF = 0.75682(400) = 2273.3mm
                              e
                                     u                              2
                                    t u
kaMniclPaB (radius of gyration) KYrmantémøy:agtUcbMput
      L   4600
r=      =      = 15.33mm
     300 300
edIm,IrknUvmuxkat;RsalbMputsRmab;bMeBjlkçxNÐTaMgenH eyIgrkEdk (unequal-leg angle) Edlman
RkLaépÞeBj (gross area) EdlGacTTYlyk)anmantémøtUcbMput rYcehIyepÞógpÞat; effective net
area. kaMniclPaB (radius of gyration) k¾GacRtUv)anepÞógpÞat;edaykarRtYtBinitüpgEdr. eday
sarkarteFVIeLIgedaymanb‘ULúgBIrCYr enaHeCIgEdlRtUv)aneFVIkartP¢ab;RtUvmanTTwgtUcbMput 127mm
¬emIlkñúgtaragKMlatRbehagtamTTWgsRmab;EdkEkg rUbTI3>22¦. eyIgcab;epþImBItaraglkçN³
sRmab;EdkEkgeTal (table of properties for single angle) enAkñúgEpñkTI1 én Manual nigerobnUv
muxkat;EdkRsalCageKtamlMdab;BItUceTAFM ¬minEmnlMdab;dUcKñaenAkñúgtarageT¦. muxkat;xageRkam
GacRtUv)anerob.
 L152 × 102 × 12.7 : A = 3060mm nig r = 22.1mm
                              g
                                              2
                                                   min
 L127 × 89 × 15.9 : A = 3180mm nig r = 20mm
                          g
                                          2
                                                  min
 L 203 × 102 × 11.1 : A = 3300mm nig r = 22.1mm
                              g
                                              2
                                                   min
 L178 × 102 × 12.7 : A = 3400mm nig r = 22.15mm
                              g
                                              2
                                                   min
¬cMNaMfa sRmab;EdkEkg G½kS X nig Y Edl)anbgðajenAkñúgtaragminEmnCaG½kSem (principal
axes)eT EtG½kS Z eTIbCaG½kSem (principle axis) r = r . EtsRmab;EdkEkgDub (double-angle
                                                              min   z
shape) G½kS X nig Y KWCaG½kSem.¦
sakl,g L152 × 102 × 12.7 . muxkat;enHman gross area EdlRtUvKñaBitR)akdeTAnwgRkLaépÞcaM)ac;
¬RbesIrCagmuxkat;bIeTot RkLaépÞrbs;vaRtUv)an[enAkñúgtarag¦.
          An = Ag − Aholes = 3060 − 2(24)(12.7 ) = 2450.4mm 2
edaysarRbEvgtminRtUv)andwg AISC Eq. B3-2 minGacRtUv)aneKeRbIedIm,IKNna shear lag factor
U . dUcenH eyIgeRbI U = 0.85 / témømFümEdl)anBI Commentary. ¬]TahrN_TI8 kñúgCMBUkTI 7
tMNsamBaØbgðajlMGitGMBItMN nigtémø U mFümGacRtUv)aneKeRbIedIm,ITTYl)annUvmuxkat;sakl,g
eRKOgbgÁúMrgkarTaj                                       57                                     T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
bnÞab; témø U BI AISC Eq. B3-2 GacRtUv)aneKKNna¦.
          Ae = UAn = 0.85 × 2450.4 = 2082.84mm 2 < 2273.3mm 2         ¬minl¥ N.G.¦
sakl,g L127 × 89 × 15.9
          An = 3180 − 2(24)(15.9) = 2416.8mm 2
          Ae = 0.85 × 2416.8 = 2054.28mm 2 < 2273.3mm 2    ¬minl¥ N.G.¦
eTaHbICamuxkat;enHman gross area FMCagmuxkat;munk¾eday Etvamin)anbegáIn net area eT. mUlehtu
KWRkLaépÞEdlRtUvdksRmab;rn§mantémøFM edaysarEtkRmas;eCIg.
sakl,g L203 × 102 × 11.1
          An = 3300 − 2(24)(11.1) = 2767.2mm 2
          Ae = 0.85 × 2767.2 = 2352.12mm 2 > 2273.3mm 2               (OK)
cemøIy³ muxkat;enHbMeBjRKb;lkçxNÐtRmUvkar dUcenHeRbI L203 × 102 × 11.1 ttameCIgEdlman
RbEvg 203mm .
          enAeBlEdlEdkrag (structural shape) b¤EdkbnÞHRtUv)aneRbIedIm,IpÁúMCa built-up shape vamin
RtwmEtRtUv)anpÁúMenAEtxagcugGgát;b:ueNÑaHeT b:uEnþvak¾RtUv)anpÁúMenAcenøaHtamRbEvgbeNþayrbs;vapg
Edr. eKminRtUvkarkarpÁúMEdlmanlkçN³Cab;rhUteT. karpÁúMEbbenHRtUv)aneKehAfa stitching ehIy
eRKOgP¢ab;rbs;vaRtUv)aneKehAfa stitch bolts. karGnuvtþTUeTAKWkMNt;TItaMg stitching Edl L / r sM
rab;EpñkpÁúMnImYy² minelIs L / r sRmab;muxkat; built-up. AISC D2 ENnaMfa Edkrag built-up Edl
EpñkpÁúMrbs;vaRtUv)anEckeday filler EdlRtUv)aneRbIsRmab;P¢ab;enAcenøaH filler enaH témøGtib,rma
 L / r sRmab;EpñkmYy²minRtUvelIs 300. Edkrag built-up EdlekIteLIgedayEdkbnÞH b¤edaykarpÁúM
rvagEdkbnÞH nigEdkragRtUv)aneBalenAkñúg AISC Section J3.5 of Chapter J (“Connections joints,
and Fasteners”). CaTUeTA KMlatrbs;eRKOgP¢ab; b¤karpSarminKYrelIs 24dg énkRmas;EpñkesþIgbMput
rbs;bnÞHEdk b¤ 300mm . RbsinebIGgát;CaEdk weathering EdlsßitenAkñúgbriyakasgayrgERcHsIu
enaHKMlatGtibrmaKW 24dg énkRmas; b¤ 175mm .
T.Chhay                                      58                                  Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
3>7> EdksrésEdlmaneFμj nigExSkab Threaded rods and Cables
         enAeBl slenderness minRtUv)anBicarNaEdksrés rod Edlmanmuxkat;mUl nigExSkab
(cable) RtUv)aneKeRbIR)as;CaTUeTAsRmab;Ggát;rgkarTaj. Edksrés nigExSkabxusKñaRtg; Edk
sréstan; EtExSkabekItBIExSlYskabCaeRcInv½NÐbBa©ÚlKñaehIymanrUbragdUcExSBYr. Edksrés nig
ExSkab RtUv)aneKeRbICaerOy²sRmab;RbB½n§dMbUlBüÜr k¾dUcCa hanger nig suspension member
sRmab;s<an. Edksrésk¾RtUv)aneRbIenAkñúgRbB½n§ bracing enAkñúgkrNIxøH vaRtUv)aneKeFVIeRbkugRtaMg
edIm,IkarBarvaBIPaBrlg; (slack) enAeBlEdlbnÞúkxageRkARtUv)andk. rUbTI3>24 bgðajBIviFItEdk
srés nigExSkabKMrU.
         enAeBlcugmçagrbs;EdksrésRtUv)aneFVI[maneFμj (thread) eBlenaH upset end RtUv)an
eRbI. EpñkEdlmaneFμjRtUv)ankat;ecjedIm,IBRgIkmuxkat;. enAkEnøgeFμj muxkat;EdkRtUv)ankat;
bnßy EtkareFVI upset end )anbegáInmuxkat;Edk[FM. tambTdæan upset end EdlmaneFμj CaTUeTA
man net area enARtg;kEnøgeFμj eRcInCagRtg;EpñkEdlKμaneFμj. eTaHCa upset end mantémøéføk¾
eday EteKk¾mincaM)ac;eRbIvaRKb;krNIeT.
         RkLaépÞmuxkat;RbsiT§PaB (effective cross-sectional area) enARtg;EpñkeFμjRtUv)aneK[
eQμaHfa stress area ehIyvaCaGnuKmn_eTAnwgGgát;p©it unthreaded nigcMnYneFμjkñúg 1inch . pleFob
rvag stress area nig nominal area ERbRbYl b:uEnþvamantémøtUcbMputRbEhl 0.75 . dUcenH ersIusþg;
rgkarTaj nominal rbs;Edk threaded GacRtUv)ansresrdUcxageRkam³
          Pn = As Fu
              = 0.75 Ab Fu
Edl       As = stress area
          Ab = nominal (unthreaded) area
        smIkarenHpþl; nominal strength EdlRtUv)anbgðajenAkñúgtarag Table J3.2 enAkñúg Section
J3.6 én AISC Specification. emKuNersIusþg; (resistance factor) enAkñúgkrNIenH φt = 0.75 .
RbsinebI upset end RtUv)aneKeRbI enaHlT§PaBrgkarTajenAGgát;eFμjEdlFMRtUvFMCag Fy KuNnwg
unthreaded body area (AISC Table J3.2, footnote c).
eRKOgbgÁúMrgkarTaj                         59                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                      NPIC
  Figure 3.24
    ]TahrN_TI3>12³ Edk threaded RtUv)aneKeRbICaGgát;sRmab;BRgwgEdlRtUvEtTb;Tl;nwg
service tensile load EdlbnÞúkefr 9kN nigbnÞúkGefr 26.5kN . etIGgát;p©itEdkTMhMb:uNÑaRtUv)aneRbI
RbsinebIeKeRbI A36?
    dMeNaHRsay³ bnÞúkemKuN (factored load)
   Pu = 1.2(9) + 1.6(26.5) = 53.2kN
     edaysar φ P ≥ P
                   t n       u
      φt (0.75Fu )Ag ≥ Pu
     muxkat;caM)ac; A    g   =
                                      Pu
                                            =
                                                  53.2
                                 φt (0.75)Fu 0.75(0.75)400
                                                           = 236.44mm 2
     BI A = πd4
                   2
           g
     Ggát;p©itcaM)ac; d = 4 × 236
                               π
                                 .44
                                     = 17.35mm
     cemøIy³ eRbIEdk threaded EdlmanGgát;p©it 18mm (A        g   = 254.47mm2   ).
         edIm,IkarBarkarxUcxatkñúgeBlsagsg; EdksrésminRtUvRsav b¤rlas; (slender) eBkeT.
eTaHbIminmankarTamTarBI specification k¾eday EtsRmab;karGnuvtþTUeTA Ggát;p©itGb,brmaEdlRtUv
eRbI RtUvmantémø 16mm .
T.Chhay                                           60                                Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
        ExSkabkñúgrUbragCa strands b¤ wire rope RtUv)aneKeRbIenAkñúgkarGnuvtþEdlTamTar high
strength EtPaBrwg (rigidity) minmanlkçN³sMxan;eT. bEnßmBIelIkareRbIR)as;vaenAkñúgRbB½n§s<anBüÜr
nigdMbUl vak¾RtUv)aneKeRbIenAkñúgeRKOgelIkdak;dUcCa hoist nig derrick EdleKeRbIvadUcCaExSeyag
sRmab;GKarx<s;² nigsRmab;BRgwgtambeNþayenAkñúgGKarEdleFVIBIEdk. PaBxusKñarvag strand nig
wire rope KWbgðajenAkñúgrUbTI3>25. Strand CakarrYmpSMKñaénsréslYsCaeRcInrMuv½NÐKña ehIy wire
rope CakarrYmpSMKñaén strand CaeRcInrMuv½NÐKña.
        kareRCIserIsExSkabEdlRtwmRtUvsRmab;bnÞúkEdl[CaTUeTAQrenAelIkarBicarNaGMBI ersIu
sþg; (strength) nigkMhUcRTg;RTay (deformation). bEnßmBIelIsac;lUteGLasÞicFmμta karlUtdMbUg
EdlbNþalmkBI seating b¤ shifting énsréslYsmYy² EdlCalT§plvaeFVI[ExSkabmankarlUt
Gcié®nþy_. sRmab;mUlehtuenH CaTUeTAExSkabRtUv)aneKTajBnøÚtmun (prestretched). Wire rope
nig strand RtUv)aneKpliteLIgBIEdkEdlmanesIusþg;x<s;CagEdksMNg;Fmμta ehIyminmanEcgenAkñúg
AISC Specification eT. ersIusþg;dac;rbs;ExSkabnImYy² k¾dUcCakarlMGitBIkarttMNr GacTTYl)an
BI manufacturer’s literature. Tinñn½ymanRbeyaCn_sRmab;RbePTenHmanenAkñúg Cable Roof
structures (Bethlehem Steel, 1968).
3>8> Ggát;rgkarTajenAkñúgdMbUl Tension members in roof trusses
        Ggát;rgkarTajCaeRcInEdlvisVkrKNna CaeRKOgbgÁúM trusses. enAeBleRKOgbgÁúM trusses
RtUv)aneRbIR)as;enAkñúgsMNg; CaTUeTAvamannaTIcbM gkñúgkarRTRbB½n§dMbUlEdleKRtUvkarElVgEvg. va
RtUv)aneKykmkeRbIenAeBlEdléfø nigTm¶n;Fñwmmantémøx<s;. ¬eRKOgbgÁúM trusses RtUv)anKitCaFñwm
CeRmA (deep beam) EdlykecjnUvEpñénRTnugy:ageRcIn¦. dMbUl trusses RtUv)aneRbICaerOy²enAkñúg
eRKOgbgÁúMrgkarTaj                         61                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
sMNg;shRKas eTaHbICasMNg;RbePTenHRtUvkareRKagrwg (rigid frame) k¾eday. dMbUl trusses KMrU
EdlRTeday load-bearing wall RtUv)anbgðajenAkñúgrUbTI 3>26. sMNg;RbePTenH CaTUeTA cugmçag
rbs; trusses EdlP¢ab;eTAnwgCBa¢aMgRtUv)aneKKitCaTRm pinned nigTRmmçageTotRtUv)aneKKitfaCa
TRm roller. dUcenH trusses GacRtUv)aneKviPaKCaeRKOgbgÁúMsþaTickMNt;. CBa¢aMgEdlCaTMrGaceFVIBI
ebtugBRgwgedayEdk bøúkebtug \dæ b¤bnSMénsmÖar³TaMgenH.
          CaFmμta dMbUl trusses EtmanKMlatesμIKñatambeNþayGKar nigcgP¢ab;KñaeTAvijeTAmkeday
sarFñwmbeNþayEdleKehAfa édrENg (purlin) nigedayEdkExVg (X-bracing). tYnaTIcMbgrbs;éd
rENgKWbBa¢ÚnbnÞúkeTAGgát;xagelI (top chord) rbs; trusses b:uEnþvak¾GaccUlrYmedayEpñkxøHkñúgkar
BRgwgRbB½n§. CaTUeTAEdkBRgwg (bracing) RtUv)andak;enAkñúgbøg;énGgát;xagelI nigGgát;xageRkam
b:uEnþvamincaM)ac;enARKb;ElVg (bay) TaMgGs;eT edaysarkmøaMgxag (lateral forces) GacRtUv)anbBa¢ÚnBI
ElVgEdlTb;mYyeTAElVgEdlTb;mYyeTot edaysarédrENg.
          vaCakarRbesIrbMputEdlédrENgRtUv)andak;enAelItMNrbs; trusses. dUenH trusses Gac
RtUv)anKitCaeRKOgbgÁúMtMNsnøak; (pin-connected structure) EdlRTbnÞúkEtRtg;tMN. EteBlxøH
kRmaldMbUlminGaclatsn§WgelIcmøayrvagtMN dUcenHeKRtUvkarédrENgkNþal (intermediate
purlin).       enAkñμúgkrNIEbbenHGgát;xagelInwgrgm:Um:g;Bt;FM k¾dUcCakmøaMgsgát;tamG½kS (axial
compression) ehIy vaRtUv)aneKKNnaedayKitCa Fñwm-ssr (beam-column) EdlmanBnül;kñúg
CMBUkTI6.
          Sag rod CaGgát;rgkarTajEdlRtUv)aneRbIedIm,Ipþl;TRmxagsRmab;édrENg. bnÞúkPaKeRcIn
EdlGnuvtþmkelIédrENgmanTisQr dUcenHvanwgmanbgÁúMkmøaMgRsbeTAnwgmMuCMraldMbUlEdlnwgeFVI
[édrENgekagenAkñúgTisedAenaH ¬rUbTI 3>27¦. Sag rod GacRtUv)andak;enAcMNuckNþal b¤
cMNucmYyPaKbI b¤GacjwkenAtambeNþayédrENg GaRs½yeTAnwgcMnYnTRmEdlRtUvkar. KMlatrbs;
sag rod CaGnuKmn_eTAnwgKMlat trusses, mMuCMralrbs;Ggát;xagelI/ ersuIsþg;rbs;édrENgTb;nwg
karBt;RbePTenH ¬rUbragPaKeRcInrbs;EdkEdleRbICaédrENgmanlkçN³exSayNas;sRmab;karBt;
tamTisenH¦ nigcMnYnTRmEdlpþl;edaydMbUl. RbsinebIeKeRbI bnÞHEdk CaTUeTAvaRtUv)aneKP¢ab;y:ag
rwgCamYyédrENg dUcenHeKmincaM)ac;RtUvkar sag rod eT. EteBlxøH EtTm¶n;pÞal;rbs;édrENgKWva
RKb;RKan;kñúgkarbgábBaðaenH dUcenHeKcaM)ac;dak; sag rod edIm,IRT kñúgGMLúgeBlsagsg;muneBldak;
T.Chhay                                      62                                  Tension Members
viTüasßanCatiBhubec©keTskm<úCa        Department of Civil Engineering
kRmaldMbUl.
eRKOgbgÁúMrgkarTaj               63                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
       RbsinebIeKeRbI sag rod eKcaM)ac;KNnavaedIm,IRTbgÁMúbnÞúkdMbUlEdlRsbeTAnwgdMbUl. Ggát;
nImYy²cenøaHédrENgRtUv)ansnμt;[RTGVI²TaMgGs;BIxageRkamva dUcenHGgát;xagelIRtUv)anKNna
sRmab;bnÞúkenAelIépÞdMbUlEdlmanGMeBIelIGgát;enaH BIcugdMbUldl;kMBUldMbUldUcbgðajenAkñúg rUbTI
3> 28. eTaHbICakmøaMgenAkñúgGgát;nImYy²xusKñak¾eday EtCakarGnuvtþTUeTAeKeRbITMhMEtmYysRmab;
RKb;Ggát; sag rod enaH. kareRbIR)as;nUvmuxkat;dUcKñasRmYldl;kargarsagsg; ÉbrimaNEdkelIs
minCaFMb:unμaneT.
          rUbTI 3>29 a bgðajBIkarcgP¢ab;édrENgenARtg;RBMdMbUl. Tie rod cenøaHédrENgxagRtUvTb;
nwgbnÞúkBIRKb; sag rod TaMgGs;EdlenAsgçagsøabdMbUl. kmøaMgTajenAkñúgGgát;edkmYyCabgÁúMkmøaMg
rbs;Ggát; sag rod EdlenAxagelI. düaRkamGgÁesrI (free-body diagram) rbs;édrENgkMBUl
RtUv)anbgðajenAkñúgrUbTI 3>29 b .
]TahrN_TI3>13³ Fink trusses EdlmanKMlat 6m KitBIG½kSeTAG½kS ehIyRTédrENg
W 150 × 0.18 dUcbgðajenAkñúgrUbTI 3>30 a. édrENgRtUv)anRTeday sag rod enAcMNuckNþal.
edayeRbIEdk A36 KNna sag rod nig tie rod enAédrENgkMBUlsRmab;bnÞúk service load dUcxag
T.Chhay                                     64                               Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
eRkam³
          kRmaldMbUlEdk (metal deck)³ 0.1kN / m   2
          Built-up roof: 0.25kN / m 2
          RBwl³ 0.85kN / m elIbøg;edk
                                 2
          Tm¶n;édrENg³ 0.18kN kñúgmYyEm:RtRbEvg
dMeNaHRsay³
KNnabnÞúk³
       TTwgrgbnÞúksRmab; sag rod nImYy² = 6m / 2 = 3m
       RkLaépÞrgbnÞúksRmab;kRmaldMbUl nig Built-up roof = 3 ×14 = 42m    2
       bnÞúkefr ¬kRmaldMbUl nig Built-up roof¦ = (0.1 + 0.25) × 42 = 14.7kN
       Tm¶n;édrENgsrub = 0.18 × 3 × 9 = 4.86kN
       bnÞúkefrsrub = 14.7 + 4.86 = 19.56kN
       épÞrgbnÞúkRBwl = 3 ×13.6 = 40.8m 2
       bnÞúkRBwlsrub = 34.68kN
eRKOgbgÁúMrgkarTaj                          65                                          T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                       NPIC
RtYtBinitübnSMbnÞúk³
         (A4-2)³ 1.2 D + 0.5S = 1.2 × 19.56 + 0.5 × 34.68 = 40.8kN
         (A4-3)³ 1.2 D + 1.6 S = 1.2 × 19.56 + 1.6 × 34.68 = 79kN
         bnSMbnÞúk A4-3 lub. ¬tamkarGegát A4-1, A4-4 nig A4-5 nwgminmantémøFMeT¦.
sRmab;bgÁMúkmøaMgRsbeTAnwgépÞdMbUl ¬rUbTI 3>30 b¦
                   3.6
          T = 79       = 20.3kN
                   14
        muxkat;EdkEdlRtUvkar A = φ (0.T75F ) = 0.7520(0..375⋅10× 400) = 90.2mm
                                                               3
                                                                                 2
                                     g
                                         t    u
cemøIy eRbIEdk threaded rod Ggát;p©it 16mm ¬ A = 201mm ¦
                                                  g
                                                           2
        Edk tie rod EdlP¢ab;édrENgenARBMdMbUl ¬rUbTI 3>30 c¦
                      14
          P = 20.3        = 20.9kN
                     13.6
        muxkat;EdkEdlRtUvkar A = φ (0.T75F ) = 0.7520(0..375⋅10× 400) = 90.2mm
                                                               3
                                                                                 2
                                     g
                                         t    u
cemøIy eRbIEdk threaded rod Ggát;p©it 16mm ¬ A = 201mm ¦
                                                  g
                                                           2
        sRmab;ragFrNImaRtrbs; truss nigkardak;bnÞúk Ggát;xageRkam (bottom chord) nwgrgkug
RtaMgTaj ehIyGgát;xagelI (top chord) nwgrgkugRtaMgsgát;. Ggát;RTnugxøHrgkugRtaMgTaj nigxøH
eTotrgkugRtaMgsgát;. enAeBleKbBa¢Úl\T§iBlxül;kñúgkarviPaK Tisxül;epSgKñaRtUv)aneKykmk
BicarNa eBlenaHkmøaMgenAkñúgGgát;RTnug (web member) xøHGacnwgERbRbYlcenøaHkugRtaMgsgát;
nigkugRtaMgTaj. kñúgkrNIEbbenH Ggát;EdlrgGMeBIRtUv)anKNnaeday[mannaTICaGgát;rgkarsgát;
pg nigrgkarTajpg.
        sRmab; truss Edlcab;b‘ULúg (bolted truss) muxkat;EdkEkgDub (double-angle section)
RtUv)aneRbICajwkjab;sRmab;Ggát;xagelI (top chord) nigGgát;RTnug (web member) . karKNnaenH
sRmYldl;karP¢ab;Ggát;EdlCYbKñaenARtg;dMNedayGnuBaØatnUvkareRbIR)as;bnÞHEdkeTal (single
gusset plate) dUcbgðajenAkñúgrUbTI 3>31. enAeBlGgát;xagelIrbs;eRKOgbgÁúM truss EdlpSareRbI
Edkmuxkat;GkSret EdkRTnugEdlmanmuxkat;EdkEkgGacpSarP¢ab;CamYyeCIg (stem) rbs;Edkmux
kat;GkSret. RbsinebI kmøaMgenAkñúgGgát;RTnug (web member) mantémøtUc eKGaceRbIEdkEkgeTal
T.Chhay                                      66                                      Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
(single angle)  ebIeTaHbIkareFVIkarEbbenaH)ankat;bnßybøg;sIuemRTIBI truss ehIybNþal[Ggát;RTnug
rgbnÞúkcakp©itk¾eday. CaTUeTAGgát;xagelI nigGgát;xageRkam (chord member) CaGgát;Cab; ehIy
eKGackat;vaCakMNat;²RbsinebIcaM)ac;.
        CakarBitEdlfa chord member CaGgát;Cab; ehIytMNRtUv)ancab;b‘ULúg b¤pSarEdleKmin
Gacsnμt;fa truss CaeRKOgbgÁúMtMN pin-connected )aneT. PaBrwgrbs;tMNBitCanaMmknUvm:Um:g;Bt;enA
kñúgGgát; b:uEnþCaTUeTAvamantémøtUc ehIyRtUv)anBicarNavaCakmøaMgrg (secondary effect) dUcenH
kñúgkarGnuvtþTUeTAeK)anecalva. EtkarBt;EdlbNþaledaysarbnÞúkxageRkAEdlGnuvtþedaypÞal;
eTAelIGgát;cenøaHtMN RtUvEtykmkKitBicarNadac;xat. eyIgKitkrNIenHenAkñúgemeronTI 6.
        ExSeFVIkar (working line) énGgát;rbs;eRKOgbgÁúM truss TaMgGs;RtUvkat;KñaRtg;tMNnImYy².
sRmab; truss EdlP¢ab;edayb‘ULúg CYrrbs;b‘ULúg (bolt line) Ca working line ehIysRmab; truss pSar
G½kSTIRbCMuTm¶n;rbs;TwkbnSarCa working line. karsnμt;kñúgdMeNIrkarviPaK truss RbEvgGgát;RtUv)an
vas;BIcMNuceFVIkar (working point) eTA working point.
]TahrN_TI3>14³ eRCIserIsmuxkat;GkSretsRmab;Ggát;xageRkam (bottom chord) rbs;eRKOgbgÁúM
dMbUl Warren truss dUcbgðajenAkñúgrUbTI 3>32 a. Truss RtUv)anpSar nigmanKMlatcmøay 6m .
snμt;fakarP¢ab;rbs;Ggát;xageRkamRtUv)aneFVIeLIgdaykarpSarbuitkaMtambeNþay (longitudinal fillet
weld) enAnwgsøabRbEvg 230mm . edayeRbIEdk A36 CamYynwgTinñn½ybnÞúkxageRkam ¬xül;minRtUv
)anBicarNaenAkñúg]TahrN_enHeT¦.
        édrENg (purlin)³ M 200 × 0.097
        RBwl³ 0.95kN / m elIbøg;edk
                                 2
eRKOgbgÁúMrgkarTaj                         67                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                        NPIC
          kRmaldMbUlEdk (metal deck): 0.1kN / m   2
          dMbUl³ 0.2kN / m
                         2
          kRmalGIusULg;³ 0.15kN / m2
dMeNaHRsay³
KNnabnÞúk³
       RBwl = 0.95 × 6 × 12 = 68.4kN
T.Chhay                                    68         Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
      bnÞúkefr                              kRmaldMbUlEdk   0.1kN / m 2
¬elIkElgédrENg¦ =                           dMbUl           0.2kN / m 2
                                            kRmalGIusULg;   0.15kN / m 2
                                            srub            0.45kN / m 2
       bnÞúkefrsrub = 0.45 × 6 × 12 = 32.4kN
       Tm¶n;édrENgsrub = 0.097 × 6 × 12 = 7kN
snμt;faTm¶n; truss esμI 10% énbnÞúkepSg²
          0.1(68.4 + 32.4 + 7 ) = 10.78kN
bnÞúkenAelItMNxagkñúgKW
             32.4 10.78
          D=      +       + 0.097 × 6 = 6kN
               8      8
             68.4
          S=      = 8.55kN
              8
enAelItMNxageRkA RkLaépÞrgbnÞúkKWesμInwgBak;kNþalRkLaépÞrgbnÞúkrbs;tMNxagkñúg. bnÞúkenAelI
tMNxageRkAKW
             32.4 10.78
          D=      +       + 0.097 × 6 = 3.28kN
             2×8 2×8
             68.4
          S=      = 4.3kN
             2×8
karbnSMbnÞúk A4-3 nwgTTYl)antémøFMCageK³
          Pu = 1.2 D + 1.6S
enAelItMNxagkñúg P = 1.2 × 6 + 1.6 × 8.55 = 20.88kN
                                 u
enAelItMNxageRkA P = 1.2 × 3.28 + 1.6 × 4.3 = 10.82kN
                                 u
Truss EdlrgbnÞúkRtUv)anbgðajenAkñúg rUbTI 3>32 b.
        Ggát;xageRkamRtUv)anKNnaedaykMNt;kmøaMgkñúgGgát;nImYy²rbs;Ggát;xageRkam nigeFVIkar
eRCIserIsmuxkat;smrmüedIm,ITb;nwgkmøaMgEdlFMCageK. enAkñúg]TahrN_enH kmøaMgenAkñúgGgát; IJ
mantémøFMCageK. GgÁesrI (free body) enAxageqVgmuxkat; a-a RtUv)anbgðajenAkñúg rUbTI 3>32 c.
eRKOgbgÁúMrgkarTaj                              69                                       T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                 NPIC
          ∑ M E = 83.9(6) − 10.82(6) − 20.88(4.5 + 3.0 + 1.5) − 1.2 FIJ = 0
          FIJ = 208.8kN
sRmab;muxkat;eBj (gross section)
                                         .8 ⋅ 10       3
       muxkat;EdlRtUvkar A = 0.F9F = 208
                              g
                                      IJ
                                      0.9 × 250
                                                 = 928mm          2
                                           y
sRmab; net section
                                      208.8 ⋅ 10       3
       muxkat;EdlRtUvkar A = 0.75
                              e
                                F
                                  F
                                    = IJ
                                      0.75 × 400
                                                  = 696mm         2
                                           u
sakl,g WT125 × 0.09
          Ag = 1140mm 2 > 928mm 2
kartP¢ab;eFVIeLIgedaykarpSartambeNþay ehIyGgát;minEmnCaEdkbnÞH b¤Edksrés dUcenHkartP¢ab;
enHminsßitenAkñúgkrNIBiessNamYysRmab;Ggát;EdlpSarEdlrg shear leg.
                 ⎛x⎞       ⎛ 34.5 ⎞
          U =1− ⎜ ⎟ =1− ⎜         ⎟ = 0.85 < 0.9
                 ⎝L⎠       ⎝ 230 ⎠
          Ae = UAg = 0.85 × 1140 = 969mm 2 > 696mm 2            (OK)
RbsinebIGgát;xageRkamRtUv)anBRgwgenA panel point
          L 1500
           =     = 75.4 < 300              (OK)
          r 19.9
cemøIy eRbIEdk WT125 × 0.09
3>9> Ggát;EdltPa¢b;edayknøas; (Pin-Connection Members)
        enAeBlGgát;RtUv)antP¢ab;edayknøas; rn§RbehagRtUv)aneFVIeLIgenAcugTaMgsgçagrbs;Ggát;
nigEpñkEdlvaRtUvP¢ab; ehIyknøas;RtUv)ans‘ktamrn§enaH. kareFVIEbbenHedIm,IkMu[Ggát;rgm:Um:g;Bt;.
Ggát;rgkarTajEdltP©ab;tamTRmg;EbbenHRbQmnwgkar)ak;eRcInRbePT EdlRtUv)anerobrab;enAkñúg
AISC D3 nigRtUv)anBnül;dUcxageRkam.
        Eyebar CaRbePTBiessrbs;Ggát;EdlP¢ab;edayknøas; (pin-connected member) EdlenA
xagcugrbs;vamanrn§knøas; dUcbgðajkñúgrUbTI 3>33. ersIusþg;KNnaKWQrelIersIusþg;yalrbs;mux
kat;eBj. k,ÜnlMGitsRmab;KNnaTMhM eyebar manenAkñúg AISC D3 EtminRtUv)anykmkerobrab;enA
T.Chhay                                           70                          Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                                  Department of Civil Engineering
TIenHeT. Eyebar RtUv)aneRbIy:agTUlMTUlayenAeBlmun vaCaGgát;rgkarTajEdleRbIenAkñúg truss
s<an b¤enAkñúgs<anBüÜr. vaminRtUv)aneKeRbIeT naeBlbc©úb,nñ.
        Ggát;EdltP¢ab;edayknøas;KYrRtUv)anKNnasRmab;sßanPaBkMNt;dUcxageRkam ¬rUbTI 3>34¦
        !> kugRtaMgTajenAelI net effective area ¬rUbTI 3>34 a ¦
                     φt = 0.75       /         Pn = 2tbeff Fu                     (ASIC Equation D3.1)
          @> kugRtaMgkmøaMgkat;enAelI net effective area ¬rUbTI 3>34 b¦
                     φsf = 0.75          /     Pn = 0.6 Asf Fu                    (ASIC Equation D3.21)
          #> kugRtaMg      bearing           . tRmUvkarenHmanenAkñúg   chapter J (“Connections, Joints and
fastener”)    ¬rUbTI 3>34 c¦
                     φ = 0.75        /         Pn = 1.8Fy Apb                     (ASIC Equation J8-1)
          $> kugRtaMgTajenAelI gross area
                     φ = 0.9     /             Pn = Fy Ag                         (ASIC Equation D1-1)
          Edl        t=  kRmas;rbs;EpñkEdltP¢ab;
                     beff = 2t + 16 ≤ b    ¬KitCa mm ¦
                     b = cmøayBIépÞxagrbs;rn§knøas;eTAépÞxagrbs;Ggát; EdlEkgeTAnwgTisrbs;kmøaMg
                     Asf = 2t (a + d / 2)
                     a=  cm¶ayBIépÞxagrbs;rn§knøas;eTAépÞxagrbs;Ggát; EdlRsbeTAnwgTisrbs;kmøaMg
                     d = Ggát;p©itknøas;
                     A pb = projected bearing area = dt
          tRmUvkarbEnßmsRmab;karkMNt;TMhMrbs;knøas; nigGgát;manbkRsayenAkñúg AISC D3.
eRKOgbgÁúMrgkarTaj                                           71                                         T.Chhay
mhaviTüal½ysMNg;sIuvil                NPIC
T.Chhay                  72   Tension Members
viTüasßanCatiBhubec©keTskm<úCa                                      Department of Civil Engineering
                                  IV.   eRKOgbgÁúMrgkarsgát;
                                   Compression Members
4>1> esckþIepþIm (introduction)
         eRKOgbgÁúMrgkarsgát; CaeRKOgbgÁúMsMNg;EdlrgEtkmøaMgsgát;tamG½kS. bnÞúkEdlGnuvtþtam
G½kSbeNþaykat;tamTIRbCMuTm¶n;rbs;muxkat;Ggát; ehIykugRtaMg (stress) GacesμInwg f a = P A Edl
 f a RtUv)anKitfamantMélesμIKñaelImuxkat;TaMgmUl. b:uEnþCak;EsþgeKminEdlTTYl)ansßanPaBl¥Ebb
enHeT eKminGaceCosputBIkmøaMgcakp©itxøH)aneLIy. CalT§pleKnwgTTYl)ankarBt; b:uEnþvaGac
RtUv)aneKKitkmøaMgrg (secondary load) nigGacRtUv)anecalRbsinebIlkçxNÐénkardak;bnÞúkesÞIrEt
dUcKñanwgRTwsþI. karBt;minGacRtUvecaleT RbsinebIvaCam:Um:g;Bt;Edl)anBIkarKNna. eyIgnwgKit
sßanPaBenHenAkñúgCMBUkTI6.
         CaTUeTA Ggát;rgkarsgát;EdlekItmanenAkñúgGKar nigs<anKW ssr ¬CaGgát;bBaÄrEdlman
tYnaTIcMbgKWRTnUvbnÞúkbBaÄr¦. Ggát;rgkarsgát;k¾RtUv)aneRbIenAkñúgeRKOgbgÁúM truss nigCaeRKOgbgÁúMén
RbBn§½BRgwgpgEdr. Ggát;rgkarsgát;EdlmanRbEvgxøIminRtUv)aneKcat;cMNat;fñak;Ca column eT Etva
RtUv)aneKehAfa strut.
4>2> RTwsþIssr (Column Theory)
      edayBicarNaGgát;rgkarsgát;Evg ehIyRsavdUcbgðajenAkñúgrUbTI 4>1 a . RbsinebIbnÞúktam
G½kS P RtUv)andak;yWt² enAeBlmYybnÞúkenaHnwgmantémøRKb;RKan;edIm,IeFVI[Ggát;KμansßirPaBehIy
eRKOgbgÁúMrgkarsgát;                         73                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                 NPIC
ragrbs;Ggát;nwgekagdUcbgðajedayExSdac;. bnÞúkEdleFVI[Ggát;ekagRtUv)aneKehAfa critical
buckling load. RbsinebI Ggát;manRbEvgxøI ehIyFat;dUcbgðajenAkñúgrUbTI 4>2 b enaHeKRtUv karbnÞúk
EdlmantémøFMCagmunedIm,IeFVI[Ggát;enaHsßitkñúgsßanPaBKμansißrPaB. RbsinebIGgát;enaH kan;EtxøI
kar)ak;nwgekIteLIgeday compressive yielding Cageday buckling. munnwg)ak; kugRtaMgsgát; P A
nwgrayesμIenAelImuxkat;RKb;cMNucTaMgGs;énbeNþayRbEvgrbs;ssr eTaHCa)ak;eday yielding b¤
k¾)ak;eday buckling. bnÞúkEdleFVI[ buckling ekItman CaGnuKmn_eTAnwg slendernesss ehIy
sRmab;Ggát;EdlRsavxøaMg bnÞúkenHnwgmantémøtUcNas;.
         RbsinebIGgát;manlkçN³RsavxøaMg EdlkugRtaMgmunnwg buckling EdltUcCagEdnsmamaRt
(proportional limit) ¬EdlGgát;sßitenAkñúglkçN³eGLasÞic¦ critical buckling load RtUv)an[dUc
xageRkam³
                 π 2 EI
          Pcr = 2
                   L
                                                                                   ¬$>!¦
Edl E Cam:UDuleGLasÞic (modulus of elasticity), I Cam:Um:g;niclPaBénRkLaépÞmuxkat; (moment
of inertia of the cross-sectional are) EdleFobnwgG½kSemEdltUc (minor principal axis), L CaRb
Evgrbs;Ggát;cenøaHTRm. edIm,I[smIkar ¬$>!¦ mann½y luHRtaEtGgát;sßitkñúgsßanPaBeGLasÞic
ehIycugrbs;vaGacviledayesrI EtminRtUvrMkileTAxageT. cugTRmenHbMeBjlkçxNÐedayTRmsnøak;
(hinge) b¤ pinned dUcbgðajkñúgrUbTI 4>2 . TMnak;TMngd¾KYr[cab;GarmμN_enHRtUv)anrkeXIjdMbUgbMput
edayGñkR)aCJKNitviTüaCnCatisVIseQμaH Leonhard Euler Edle)aHBum<enAkñúgqñaM 1759. bnÞúkeRKaH
fñak; (critical load) enH enAeBlxøHRtUv)aneKehAfa Euler load b¤ Euler buckling load . smIkarTI
$>! RtUv)aneKbgðajedIm,IeFVI[eCOedaykarBiesaFy:ageRcIn. karsMraybBa¢ak;rbs;smIkarenH RtUv)an
[edIm,IbgðajBIPaBsMxan;rbs;lkçxNÐcugTRm.
T.Chhay                                    74                             Compression members
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
        edIm,IgayRsYlkñúgkarbkRsay Ggát;RtUv)andak;[edkelIG½kS x dUcEdl[kñúgrUbTI 4>3.
TRm roller Edldak;enATIenHedIm,ITb;Ggát;min[cl½teTAelI b¤cuHeRkam. bnÞúksgát;tamG½kS
RtUv)anGnuvtþ ehIyekIneLIgsnSwm². bnÞúkxagbeNþaHGasnñRtUv)andak;edIm,IeFVI[Ggát;dabdUcrUb
ragEdlbgðajedayExSdac; ehIyGgát;nwgRtLb;eTArkrUbragedImvijenAeBlEdlbnÞúkbeNþaHGsnñ
enaHRtUv)aneKdkecjRbsinebIbnÞúktamG½kSmantémøtUcCag critical buckling load . Critical
buckling load, Pcr RtUv)ankMNt;CabnÞúkEdlmantémøFMRKb;RKan;edIm,IrkSarUbragdabrbs;Ggát;enA
eBlEdlbnÞúkxagbeNþaHGasnñRtUv)aneKdakecj.
          smIkarDIepr:g;Esül (differential equation) sRmab;rUbragdabrbs;Ggát;eGLasÞicEdlrgkar
Bt;KW³
          d2y
           dx   2
                    =−
                         M
                         IE
                                                                                     ¬$>@¦
Edl x Cacm¶ayrbs;cMNucEdlsßitenAelIG½kSbeNþayrbs;Ggát;/ y CaPaBdabrbs;Ggát;enARtg;
cMNucenaH/ nig M Cam:Um:g;Bt;enARtg;cMNucenaH. E nig I RtUv)anbgðajBIxagelI b:uEnþm:Um:g;niclPaB
 I enATIenHKWeFobnwgG½kSénkarBt;. smIkarenHRtUv)anTajeday Jacob Bernoulli ehIyRtUv)an
bMEbkeday Euler EdleRbIR)as;vasRmab;bBaðaekagrbs;ssr. BI rUbTI 4>3 eyIgeXIjfaenAeBl
EdlGgát;ekagedaysarbnÞúktamG½kS Pcr enAcm¶ay x BITRmxageqVgeyIgmanPaBdab y ehIy
m:Um:g;Bt;enARtg;cMNucenaHKW Pcr y . enaHsmIkar $>@ GacsresrdUcxageRkam³
                    Pcr
          y"+           y=0
                    EI
Edl RBIm KWCaDIepr:g;Esültam x . smIkarenHCa second order, linear, ordinary differential
equation CamYynwgemKuNefr ehIymandMeNaHRsay
eRKOgbgÁúMrgkarsgát;                        75                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                       NPIC
          y = A cos(cx) + B sin(cx)
Edl c = PEIcr
ehIy A nig B Catémøefr. témøefrTaMgenH RtUv)ankMNt;edayGnuvtþnUvlkçxNÐRBMEdndUcxageRkam³
Rtg; x = 0 / y = 0 ³ 0 = A cos(0) + B sin(0) enaH A = 0
Rtg; x = L / y = 0 ³ 0 = B sin(cL)
lkçxNÐcugeRkayenHtRmUv[ sin(cL) = 0 RbsinebI B ≠ 0 ¬cemøIyminsMxan; EdlRtUvKñanwg P = 0 ¦.
sRmab; sin(cL) = 0 /
          cL = 0, π , 2π , 3π , ... = nπ ,    n = 0, 1, 2, 3, ...
BI c =    Pcr
          EI
eyIgTTYl)an cL = ⎛⎜⎜             ⎞
                                                                    ehIy Pcr = n πL2 EI
                                                                                 2 2
                           Pcr                Pcr 2
                                 ⎟ L = nπ ,      L = n 2π 2
                                 ⎟
                         ⎝ EI    ⎠            EI
témøCaeRcInrbs; n RtUvKñanwgrUbragekag (buckling mode) epSg². n = 1 bgðajnUvrUbragekagTImYy
(first mode). n = 2 KWrUbragekagTIBIr (second mode).l. témø n = 0 CakrNIKμanbnÞúk EdlCa
krNIminsMxan;. rUbragénkarekagTaMgenHRtUv)anbgðajenAkñúgrUbTI 4>4. témø n minGacFMCagmYy
elIkElgEtGgát;rgkarsgát;RtUv)anTb;BIkardabenARtg;cMNucEdleFVI[kMeNagbt;Ebn.
dUcenHdMeNaHRsayrbs;smIkarDIepr:g;EsülKW
T.Chhay                                             76                           Compression members
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
                    ⎛ nπx ⎞
          y = B sin ⎜     ⎟
                    ⎝ L ⎠
ehIyemKuN B CatémøminkMNt;. lT§plenHRtUv)aneRbICacemøIy linear kñúgsmIkarDIepr:g;EsültM
Nag)atuPUt nonlinear.
       sRmab;krNIFmμtarbs;Ggát;rgkarsgát;EdkKμanTRmenAcenøaHcugsgçagrbs;va n = 1 enaH
smIkar Euler RtUv)ansresrCa
             π 2 EI
       Pcr = 2
               L
                                                                              ¬$>#¦
vamanlkçN³gayRsYlCagkñúgkarsresrsmIkar $># kñúgTRmg;dUcxageRkam
                  π 2 EI       π 2 EAr 2       π 2 EA
          Pcr =            =               =
                    L2            L2           (L / r )2
Edl A CaRkLaépÞmuxkat; nig r CakaMniclPaB (radius of gyration) EdleFobnwgG½kSEdlekag.
pleFob L / r Ca slenderness ratio. Ggát;EdlmanlkçN³kan;EtRsav témø slenderness ration
kan;EtFM.
       RbsinebI critical load RtUv)anEckedayRkLaépÞmuxkat; enaHeKnwgTTYl)an critical
buckling stress dUcxageRkam³
                     π 2E
              P
        Fcr = cr =                                                          ¬$>$¦
               A          2
                           (L / r )
sRmab;kugRtaMgrgkarsgát; karekagnwgekIteLIgtamG½kSEdlRtUvKñanwg r . karekagnwgekIteLIg
Pøam² enAeBlEdlbnÞúkEdlGnuvtþmkelIGgát;esμInwgbnÞúkEdl[kñúgsmIkar $># ehIyssrnwgKμanesßr
PaBeFobG½kSem (principal axis) EdleFVI[ slenderness ratio mantémøFMCageK. CaTUeTAvaCa
G½kSEdlmanm:Um:g;niclPaBtUcCageK ¬eyIgnwgBinitükrNIenHenAeBleRkay¦. dUcenHm:Um:g;niclPaB
Gb,brma nigkaMniclPaBGb,brmaRtUv)aneRbIenAkñúgsmIkar $># nig $>$.
]TahrN_4>1³ ssrEdlmanmuxkat W 300 × 0.73 RtUv)aneRbIedIm,IRTbnÞúksgát;tamG½kS 645kN .
ssrenHmanRbEvg 6m nigmanTRm pinned enAcugsgçag. edaymikKitBIemKuNbnÞúk nigemKuN
ersIusþg; cUreFVIkarGegátBIesßrPaBrbs;Ggát;enH. ¬eKminRtUvkardwgBIm:akrbs;EdkeT edaysar critical
buckling load CaGnuKmn_énm:UDuleGLasÞic minEmn yield stress b¤ ultimate tensile strength¦.
eRKOgbgÁúMrgkarsgát;                                       77                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                             NPIC
dMeNaHRsay³ sRmab; W 300 × 0.73
       témøGb,brmarbs; r = r = 49.8mm
                                 y
       témøGtibrmarbs; Lr = 6000
                            49.8
                                 = 120.5
                                 π 2 EA       π 2 × 200 ⋅ 103 × 9.48 ⋅ 103
                         Pcr =            =                                  ⋅ 10 − 3 = 1288.7kN
                                 (L r )
                                      2
                                                          120.5   2
cemøIy³ edaysarbnÞúkGnuvtþKW 645kN tUcCag P enaHssrrkSasßirPaBehIymanemKuNsuvtßiPaB
                                                     cr
RbqaMgnwg bucklingesμInwg 1288.7 / 645 = 2.0 .
        eRkaymkeK)anrkeXIjfa smIkarrbs; Euler minGaceRbICamYyGgát;rgkarsgát;EdlFat; xøI
nigminRsav. mUlehtuKWfa slenderness ratio tUcrbs;Ggát;bNþal[man buckling stress FM
¬BIsmIkar $>$¦. RbsinebI buckling stress FMCag proportional limit rbs;smÖar³ enaHTMnak;TMng
rvag stress nig strain nwgminmanlkçN³Ca linear eT ehIym:UDuleGLasÞic E nwgminGacyk
mkeRbI)aneT. ¬kñúg]TahrN_ 4>1 buckling stress KW Pcr / A = 1288.7 / 9.48 = 136MPa EdltUc
Cag proportional limit sRmab;RKb;eRKOgbgÁúMEdkTaMgGs;. enAkñúgqñaM 1889 Friedrich
Engesser )anesñIeLIgdMbUgkñúgkareRbIR)as; tangent modulus Et enAkñúgsmIkar $>#. sRmab;smÖar³
EdlmanExSekag stress-strain dUckñúgrUbTI 4>5/ E ElgCatémøefrsRmab;kugRtaMgEdlFMCag
proportional limit Fpl . Tangent modulus Et RtUv)ankMNt;Ca slope énbnÞat;b:HeTAnwgExSekag
stress-strain sRmab;témørbs; f EdlsßitenAcenøaH Fpl nig Fy . RbsinebI buckling stress Pcr / A
sßitenAkñúgtMbn;enH vaRtUv)anbgðajdUcxageRkam³
               π 2 Et I
         Pcr =
                  L2
                                                                                 ¬$>%¦
smIkar $>% dUcKñanwgsmIkar Euler RKan;EtCMnYs E eday Et .
        ExSekag stress-strain EdlbgðajenAkñúgrUbTI 4>5 manlkçN³xusKñaBIrUbEdl)anbgðajBImun
sRmab; ductile steel ¬enAkñúgrUbTI 1>3 nig1>4¦ edaysarEtvamantMbn; nonlinear . ExSekag
enHCaRbePTénkarBiesaFkarsgát;rbs;Edk W-shape RbEvgxøI EdleKehAfa stub column.
Nonlinearity CalT§pldMbUgénvtþmanrbs; residual stress enAkñúg W-shape. enAeBlEdlEdk hot-
rolled shape Tuk[RtCak; muxkat;TaMgmUlrbs;EdkminRtUv)anRtCak;edayGRtadUcKñaeT. ]TahrN_
T.Chhay                                         78                                   Compression members
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
enAcugsøabrbs;EdkRtCak;elOnCagkEnøgCYbKñarvagsøab nigRTnug. karRtCak;minRBmKñaEbbenH
begáIt[
mankugRtaMgenACab;kñúgEdkrhUt. ktþaepSgeTotdUcCakarpSar nigkarBt;RtCak;edIm,IbegáIt Fñwmekag
GacCaktþabNþal[man residual stress b:uEnþdMeNIrkareFVI[RtCak;CaktþacMbg.
         cMNaMfa Et mantémøtUcCag E ehIysRmab; L / r EdlmantémødUcKñaRtUvKña eKnwgTTYl)an
critical load Pcr tUc. edaysarEtPaBERbRbYlrbs; Et karkMNt;témø Pcr enAkñúg inelastic range
edayeRbIsmIkarTI $>% BitCamankarBi)ak. CaTUeTA trial-and-error approach RtUv)aneRbICamYynwg
ExSekag stress-strain dUcbgðajkñúgrUbTI 4>5 edIm,IkMNt; Et sRmab;témøsakl,grbs;témø Pcr .
sRmab;mUlehtuenH design specification CaeRcIn rYmTaMg AISC Specification manrUbmnþEdl)an
BIkarBiesaF (empirical formulas) sRmab; inelastic column.
         sRmab;RKb;smÖar³TaMgGs; critical buckling stress RtUv)ansg;CadüaRkamCaGnuKmn_eTAnwg
slenderness dUcbgðajenAkñúgrUbTI 4>6 . ExSekag tangent modulus b:HeTAnwgExSekag Euler Rtg;
cMNucEdlRtUvKñanwg proportional limit rbs;smÖar³. bnSMExSekagenH RtUv)aneKehAfa column
strength curve EdlBN’naBIesßrPaBrbs;RKb;ssrTaMgGs;. eRkABI Fy , E nig Et EdlCalkçN³
rbs;smÖar³ ersIusþg;CaGnuKmn_nwg slenderness ratio.
eRKOgbgÁúMrgkarsgát;                      79                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
        RbEvgRbsiT§PaB (effective Length)
        TaMgsmIkar Euler nigsmIkar tangent modulusQrelIkarsnμt;dUcxageRkam³
                !> ssrmanlkçN³Rtg;l¥
                @> bnÞúkGnuvtþtamG½kS KμancMNakp©it
                #> ssrmanTRm pinned enAcugsgçag
        lkçxNÐBIrdMbUgmann½yfa Kμanm:Um:g;Bt;enAkñúgGgát;mugeBlekag (buckling). dUc)anerobrab;
BIxagedIm m:Um:g;écdnüxøHnwgekItman b:uEnþvaRtUv)anecalkñúgkrNICaeRcIn. tRmUvkarsRmab;TRm
pinned CakarkMNt;mYyEdlBi)ak Edlkarpþl;[RtUv)aneFVIsRmab;lkçxNÐTRmepSg²eTot. lkçxNÐ
TRm pinned tRmUv[Tb;Ggát;BIkarrMkilxag b:uEnþminTb;nwgkarvilCMuvijTRmeT. CakarBit karbegáIttMN
pinned EdlKμankkitKWminGaceFVIeTA)anl¥enaHeT dUcenHlkçxNÐTRmenHRKan;EtmanlkçN³Rbhak;
RbEhlb:ueNÑaH. Cak;EsþgssrTaMgGs;RtUvEtxUcRTg;RTaytamG½kSedayesrI.
        lkçxNÐcugepSgeTotGacRtUv)anBnül;enAkñúgsmIkarTI $>#. CaTUeTA m:Um:g;Bt;GacCaGnuKmn_
én x EdlCalT§plenAkñúg nonhomogeneous differential equation. vamanlkçxNÐRBMEdnxusBI
smIkaredIm EtviFIsaRsþKNnadUcKñaTaMgRsug. smIkarEdlCacemøIysRmab; Pcr manTRmg;dUcKña.
]TahrN_ edayBicarNaGgát;rgkarsgát;EdlmanTRmmYyCa pinned nigmYyeTotCa fixed Tb;nwg
karvil nigkarrMkil dUcbgðajenAkñúgrUbTI 4>7 . smIkar Euler sRmab;krNIenH EdlRtUv)anbkRsay
tamrebobdUcsmIkar $># eKTTYl)an
T.Chhay                                    80                            Compression members
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
                  2.05π 2 EI
          Pcr =
                      L2
                  2.05π 2 EA            π 2 EA
b¤        Pcr =
                    (L / r)2
                                 =
                                     (0.70 L / r ) 2
        dUcenHGgát;rgkarsgát;enHmanlT§PaBRTbnÞúkesμInwgGgát;EdlmanTRm pinned sgçagEdr Et
RbEvgrbs;vaRtUv)anKitRtwm 70% bueNÑaH. eKnwgTTYl)ansmIkarkñúgTRmg;RsedogKñaenHsRmab;
ssrEdlmanlkçxNÐTRmepSg².
        Column-buckling problem GacRtUv)anbegáItCarUbmnþkñúgTRmgCa forth-order differential
equation CMnYs[smIkar $>@. kareFVIEbbenHedIm,IgayRsYlkñúgkaredaHRsayCamYylkçxNÐRBMEdn
eRkABITRm pinned . edIm,IPaBgayRsYl smIkarsRmab; critical buckling load nwgRtUv)ansresrkñúg
TRmg;dUcxageRkam³
               π 2 EA                      π 2 Et A
        Pcr =                 b¤    P    =                               ¬$>^ a/ $>^ b¦
                  (KL / r )                            (KL / r )
                      2               cr           2
Edl KL CaRbEvgRbsiT§PaB (effective length) nig K CaemKuNRbEvgRbsiT§PaB (effective length
factor). emKuNRbEvgRbsiT§PaBsRmab;Ggát;rgkarsgát; fixed-pinned KW 0.70 . sRmab;cugsgçag
manTRm fixed Tb;nwgkarvil nigrMkil enaH K = 0.50 . témørbs; K sRmab;krNITaMgenH nigkrNI
epSgeTotmanenAkñúgtarag C_C2.1 enAkúñg Commentary to the AISC Specification. enAkñúg
taragenaH eK[témørbs; K cMnYnBIr³ mYyCatémøtamRTwsþI nigmYyeTotCatémøsRmab;karKNna
eRKOgbgÁúMrgkarsgát;                                   81                                  T.Chhay
mhaviTüal½ysMNg;sIuvil                                                              NPIC
(recommended design value)       EdlRtUv)anykmkeRbIenAeBlEdleKmanlkçxNÐTRmesÞIrl¥\tex©aH.
dUcenH luHRtaEtTRm fixed KWbgáb;\tex©aHeTIbtémøKNnaEdlmanlkçN³snSMsMécCagRtUv)anykmk
eRbI. EtcMNaMfa témøtamRTwsþI nigtémøsRmab;karKNnamantémødUcKñasRmab;lkçxNÐ (d)nig (f)
enAkñúg Commentary Table C-C2.1. mUlehtuKWfaPaBEdlminGaceFVI)anrbs;TRmsnøak;Kμankkit
Edll¥\tex©aH b¤rbs;TRm pinned )anbegáIt[mankarTb;nwgkarvil nigeFVI[témø K fycuH. dUcenH
kareRbItémøtamRTwsþIkñúg krNITaMgBIrKWmantémøtUc.
        kareRbIRbEvgRbsiT§PaB KL CMnYs[RbEvg L min)aneFVI[mankarpøas;bþÚrTMnak;TMng Edl)an
erobrab;knøgmkeT. ExSekagersIusþg;ssr (column strength curve) Edl)anbgðajenAkñúg rUbTI 4>6
minmankarpøas;bþÚreT ebIRKan;EteFVIkarpøas;bþÚreQμaHG½kSGab;sIusmk KL enaH. Critical buckling
stress EdlRtUvKñanwgRbEvgEdl[ eTaHCaRbEvgBitR)akd b¤RbEvgRbsiT§PaBk¾eday k¾eQμaHrbs;vaelI
G½kSGredaenenArkSadEdl.
4>3> tRmUvkarrbs; AISC                 (AISC Requirements)
       tRmUvkarCamUldæansRmab;Ggát;rgkarsgát;RtUv)anerobrab;enAkñúg Chapter E of the AISC
Specification. TMnak;TMngrvagbnÞúk nigersIusþg; ¬smIkar @>#¦ manTRmg;
          Pu ≤ φc Pn
Edl       Pu =   plbUkbnÞúkemKuN
          Pn = nominal compressive strength = Ag Fcr
          Fcr = critical buckling stress
             emKuNersIusþg;sRmab;Ggát;rgkarsgát; = 0.85
          φc =
CMnYs[kareRbIsmIkar critical buckling stress Fcr CaGnuKmn_én     slenderness ration KL / r
specification eRbInUv slenderness parameter
                  KL     Fy
          λc =                                                   (AISC Equation E2-4)
                  rπ     E
vaCa)a:ra:Em:RtKμanxñat ebIeTaHCasmIkarmanlkçN³smÖar³cUlrYmk¾eday. sRmab;ssreGLasÞic
(elastic column) smIkar $>$ GacRtUv)ansresrCa
                    π 2E              1
          Fcr =                   =         Fy
                  (LK / r )   2
                                      λc2
T.Chhay                                          82                    Compression members
viTüasßanCatiBhubec©keTskm<úCa                                        Department of Civil Engineering
edIm,IKitbBa¢ÚlnUv\T§iBlrbs;PaBminRtg;dMbUg   (initial crookedness)   smIkarxagelIRtUv)ankat;bnßy
dUcxageRkam
                  0.877
          Fcr =             Fy
                      λ2c
sRmab; inelastic column EdleRbI tangent modulus equation ¬smIkar $>^ b¦ RtUv)anCMnYseday
                  (
          Fcr = 0.658λc Fy
                            2
                                )
Edl)anKitpgEdrnUv initial crookedness. dUcenHdMeNaHRsayedaypÞal;GacTTYl)an edayeCos
vagnUv trial-and error approach EdlmanCab;CamYynwgkareRbIR)as; tangent modulus equation.
RbsinebIeKyk λc = 1.5 CaRBMEdnrvagssreGLasÞic nigssrminEmneGLasÞic enaH AISC equation
sRmab; critical buckling stressGacRtUv)ansegçbdUcxageRkam³
        sRmab; λc ≤ 1.5
                  (
          Fcr = 0.658λc Fy
                            2
                                )                                       (AISC Equation E2-2)
          sRmab; λc > 1.5
                  0.877
          Fcr =             Fy                                          (AISC Equation E2-3)
                      λc2
tRmUvkarTaMgenHRtUv)anbgðajCalkçN³RkaPicenAkñúgrUbTI 4>8.
         AISC Equation E2-2        nig E2-3 RtUv)ansegçbBIsmIkarcMnYn 5 Edlman λc 5 lMdab;
(Galambos, 1988). smIkarTaMgenHQrelIkarBiesaF nigRTwsþIEdlKitbBa¢ÚlnUv residual stress nig
initial out-of straightness esμInwg L / 1500 / Edl L CaRbEvgGgát;.
eRKOgbgÁúMrgkarsgát;                          83                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                          NPIC
            esñInUvpleFobPaBrlas;Gtibrma (maximum slenderness ration) KL / r esμInwg
          AISC
200 sRmab;Ggát;rgkarsgát;. eTaHbICamankarkMNt;EtmYyk¾eday EtenAkñúgkarGnuvtþn_eKGacyk
pleFobkMNt;FMCagenH edaysarssrEdlmanlkçN³RsavCag nigmanersIusþg;tUc ehIyvanwgmin
manlkçN³esdækic©.
]TahrN_4>2³ kMNt;ersIusþg;sgát;KNnarbs; W 360 ×1.08 EdlmanRbEvg 6m nigmanTRm pinned.
eRbIEdk A36 .
dMeNaHRsay³ Slenderness ratio³
                                   1.0(6000)
       témøGtibrmarbs; KLr = KL
                              r
                                 =
                                       63
                                             = 95.24 < 200               (OK)
                                             y
                                        KL       Fy       95.24     250
                                 λc =                 =                   = 1.072
                                        rπ       E            π    200000
          sRmab; λ   c   < 1.5
          Fcr = (0.658)λc Fy = (0.658)1.072 (250 ) = 154.5MPa
                            2                             2
          Pn = Ag Fcr = 14100 × 154.5 × 10 −3 = 2177kN
          φc Pn = 0.85 × 2177 = 1850kN
cemøIy³ ersIusþg;sgát;KNna (design compressive strength) = 1850kN .
        enAkñúg]TahrN_ 4>2/ eday ry < rx enaHvanwgmanersIusþg;FMCagtamTis x . EdkTIbRCugmux
kat;kaer: Camuxkat;EdlmanRbsiT§PaBCageKsRmab;Ggát;rgkarsgát; edaysar ry = rx enaHersIusþg;
rbs;vanwgesμIKñaTaMgBIrTis. eBlxøHEdkTIbmUlRbehagk¾RtUv)aneRbICaGgát;egkarsgát;sRmab;mUl
ehtudUcKña.
        rUbragénkar)ak;Edl)anBicarNayUrmkehIyKWsMedAeTAelIkarekagedaykarBt; (flexural
buckling) dUcGgát;rgkarBt; enAeBlEdlvaKμanesßrPaB. sRmab;muxkat;xøH Ggát;nwg)ak;edayrmYl
(twisting) KWekagedayrmYl (torsional buckling) b¤edaybnSMén twisting nig bending (flexural-
torsional buckling). eyIgnwgBicarNavaenAkñúgEpñkTI 4>6.
T.Chhay                                                       84                    Compression members
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
sißrPaBedaytMbn; Local Stability
        ersIusþg;EdlRtUvKñanwg buckling mode minGacnwgekIteLIg)aneT RbsinebIEpñkrbs;muxkat;
manlkçN³esþIgeBkEdlnwgekItman local buckling. GesßrPaBRbePTenHKWCakarekagedaytMbn; b¤
wrinkle enAtMbn;epSg²Kña. RbsinebIvaekIteLIg muxkat;KμanRbsiT§PaBeBj)anyUr hIyGgát;nwg)ak;.
muxkat;rUbragGkSr I nig H Edlmansøab b¤RTnugesþIgnwggayrg)atuPUtenH ehIyeKKYrEteCogvagkñúg
kareRbIR)as;va. RbsinebImindUecñaHeT ersIusþg;sgát;Edl[eday AISC Equation E2-2 nig E2-3
RtUvEtkat;bnßy. karvas;EvgnUvPaBgayrgnUv)atuPUtenHKWKNnapleFobTTwgelIkRmas; (width-
thickness ratio) rbs;Epñkénmuxkat;nImYy². EpñkBIrRbePTRtUv)anBicarNa ³ unstiffened element
EdlRCugmYytambeNþayTisedAbnÞúkminRtUv)an support, nig stiffened element EdlRCugTaMg
sgçagrbs;vaRtUv)an support.
        témøkMNt;rbs; width-thickness ratio RtUv)an[enAkñúg AISC B5, “Local Buckling” Edl
rUbragrbs;muxkat;RtUv)ancat;cMNat;fñak;Ca compact, noncompact b¤ slender GaRs½yeTAtamtémø
rbs;pleFob. sRmab;Epñkrgkarsgát;esμI dUcCaGgát;rgkmøaMgsgát;tamG½kS ersIusþg;RtUv)ankat;bnßy
RbsinebIrUbragman slender element. Width-thickness ratio RtUv)an[eQμaHsMKal;CaTU eTAfa λ .
GaRs½yeTAnwgEpñkrbs;muxkat; λ GacCapleFob b / t b¤ h / tw EdlnwgRtUv)anbgðajenA TIenH.
RbsinebI λ FMCagtémøkMNt; λr rUbragKW slender ehIyeKrkviFIedIm,IkarBar local buckling.
¬sRmab;rUbrag compact nig uncompact nwgRtUvykmkniyaykñúgCMBUkTI5¦ sRmab;rUbragGkSr I nig
H søabrbs;vaRtUv)ancat;TukCa unstiffened element ehIyTTwgrbs;søabGacRtUv)anKitEtBak;
kNþal.
edayeRbI AISC notation eyIg)an³
                b bf / 2 bf
          λ=      =     =
                t   tf    2t f
Edl b f nig t f CaTTwg nigkRmas;rbs;søab. lImItx<s;KW
                  250
          λr =
                   fy
RTnugrbs;rUbragGkSr I nig H Ca stiffened element ehIy stiffened width KWCacm¶aycenøaH root
rbs;søab. Width-thickness parameter KW
eRKOgbgÁúMrgkarsgát;                      85                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
                h
          λ=
               tw
Edl h Cacm¶aycenøaH root rbs;søab ehIy tw CaTTwgsøab. lImItx<s;bMputKW
                 665
          λr =
                  fy
témørbs;pleFob b f / 2t f nig h / tw RtUv)anerobcMdak;enAkñúg dimension and properties tables in
Part 1 of the manual.
         Stiffened element nig unstiffened element rbs;rUbragmuxkat;CaeRcInRtUv)anbgðajenAkñúg
rUbTI 4>9. EdnkMNt; λr Edl)anmkBI AISC B5 RtUv)an[sRmab;krNInImYy².
T.Chhay                                     86                             Compression members
viTüasßanCatiBhubec©keTskm<úCa                                                   Department of Civil Engineering
]TahrN_ 4>3³ Gegát;ssrenAkñúg]TahrN_ 4>2 sRmab; local buckling.
dMeNaHRsay³ sRmab; W 360 × 1.08 / b = 256mm / t = 19.9mm / nig
                                                   f                    f
           bf           256
                  =            = 6.43
          2t f        2 × 19.9
témøén b    f   / 2t f   k¾RtUv)andak;enAkñúg properties table.
           250
                 = 15.8 > 6.43 (OK)
            250
           h
          tw
              = 25.3             ¬BI
                             properties table          ¦
           665     665
                =        = 42 > 25.3     (OK)
             fy     250
cemøIy³ Local instability minmanbBaða.
         eKk¾GnuBaØat[eRbIrUbragmuxkat;EdlminbMeBjtRmUvkar width-thickness ration pgEdr k¾
b:uEnþGgát;EbbenaHminRtUv)anGnuBaØat[RTbnÞúkF¶n;²dUcrUbragmuxkat;EdlbMeBjlkçxNÐeT. müa:gvij
eTot design strength k¾GacRtUv)ankat;bnßyedaysarEt local buckling. dMeNIrkarTUeTAkñúgkar
GegátmandUcxageRkam.
     - RbsinebI            width-thickness ration λ    eyagtam  FMCag       λr         Appendix B of the
       Specification nigKNnaemKuNkat;bnßy (reduction factor) Q .
                                   Fy
     - KNna λc dUcFmμta³ λc = KL
                               rπ E
     - RbsinebI Qλc ≤ 1.5 / Fcr = Q⎛⎜ 0.658Qλc2 ⎞⎟Fy                               (AISC Eq. A-B5-15)
                                               ⎝                ⎠
     - RbsinebI Qλc > 1.5 / Fcr = ⎡⎢ 0.877 ⎤
                                           ⎥ Fy                                    (AISC Eq. A-B5-16)
                                             ⎢⎣ λc ⎥⎦
                                        2
     -    Design strength   KW φc Pn = 0.85 Ag Fcr
        kñúgkrNICaeRcIneKGacrk rolled shape EdlbMeBjtRmUvkar width-thickness ratio dUcenHeK
mincaM)ac;eFVInUvdMeNIrénkarKNnaenHeT. enAkñúgesovePAenH eyIgBicarNaEtGgát;rgkarsgát;Edlman
λ < λr bu:eNÑaH.
eRKOgbgÁúMrgkarsgát;                                       87                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                      NPIC
taragsRmab;Ggát;rgkarsgát; Tables for Compression Members
        Manual mantaragEdlmanRbeyaCn_CaeRcInsRmab;karviPaK nigkarKNna. sRmab;Ggát;rg
karsgát;Edl strength rbs;valubeday flexural buckling ¬RbePTEdl)anBicarNaknøgmk¦/ tarag
3-36, 3-50 nig 4 enAkñúg Numerical Value section rbs; Specification nig column load table
enAkñúg part 3 rbs; Manual, “Column Design,” manRbeyaCn_CageK. tarag 3-36 [nUvtémø
φc Fcr CaGnuKmn_én KL / r sRmab; Fy = 36ksi = 250 MPa . tarag 3-50 sRmab; F = 50ksi     y
= 350 MPa nig tarag 4 [ φc Fcr / Fy CaGnuKmn_én λc . ¬RKb; Manual table TaMgGs;sRmab;
 Fy = 50ksi = 350 MPa xusBItaragsRmab; Fy = 36ksi = 250 MPa edaykarpat;BN’RbepH¦.
Column load table [ design strength rbs;rUbragEdleRCIserIssRmab;témøRbEvgRbsiT§PaB
(effective length) CaeRcIn. tarag 3-36 nig 3-50 bBa©b;edaylImItx<s;bMput KL / r = 200 ehIy
column load table rYm bBa©Últémø KL EdlRtUvKñanwg KL / r = 200 . kareRbIR)as;nUvtarag
nImYy²RtUv)anbgðajenA kñúg]TahrN_xageRkam.
]TahrN_ 4>4³ KNna design strength rbs;Ggát;rgkarsgát;rbs; W14 × 74 EdlmanRbEvg 20 ft
nigmanTRm pinned renAcugsgçag edayeRbI ¬!¦ Table 3-36 ¬@¦ Table 4 nig ¬#¦ column load
table . eRbIEdk A36 .
dMeNaHRsay³
Slenderness ratio:
                                 1.0(20 × 12 )
          témøGtibrma KLr = KL
                            r
                               =
                                     2.48
                                               = 96.77 < 200           (OK)
                                       y
                 KL      Fy       96.77     36
          λc =                =                  = 1.085
                 rπ      E         π       29000
¬!¦ sRmab; Fy = 36ksi / eyIgeRbI Table 3-36 .
témørbs; φc Fcr RtUv)an[sRmab;témø KL / r Kt;/ sRmab;témø KL / r TsSPaK eyIgGaceFVIkarrMkil
ex,óseLIg (rounded up) b¤eFVI linear interpolation. enAkñúgesovePAenHeyIgnwgeRbI linear
interpolation sRmab;RKb;taragTaMgGs;elIkElgEtmankarbgðajR)ab;. sRmab; KL / r = 96.77
          φc Fcr = 18.69ksi
          φc Pn = φc Ag Fcr = Ag (φc Fcr ) = 21.8(18.69 ) = 407 kips
T.Chhay                                            88                         Compression members
viTüasßanCatiBhubec©keTskm<úCa                                               Department of Civil Engineering
¬@¦ BI Table 4 sRmab; λc = 1.085 eyIg)an
               Fcr
          φc       = 0.519
               Fy
                        ⎛              ⎞
          φc Pn = Ag ⎜ φc
                                 Fcr   ⎟ Fy = 21.8(0.519 )(36 ) = 407 kips
                        ⎜        Fy    ⎟
                        ⎝              ⎠
¬#¦ Column load table in Part 3 of the Manual [ design strength sRmab;muxkat;rUbrag W, HP,
pipe, tube, double-angle, WT nig single-angle. témøenAkñúgtaragsRmab;rUbragsIuemRTI (W, HP,
pipe nig tube)RtUv)anKNnaedayeRbI radius of gyrationsRmab;rUbragnImYy². sRmab;]TahrN_
enH k = 1.0 dUcenH
          KL = 1.0(20 ) = 20 ft
sRmab; W 14 × 74 / Edk A36 nig KL = 20 ft eyIgTTYl)an
       φc Pn = 407 kips .
       témøEdl)anBI Table 3-36, 3-50 nig 4 KWQrelI flexural buckling nig AISC Equation E2-
2 nig E2-3. dUcenH local stability RtUv)ansnμt; ehIy width-thickness ratio nwgminFMCagtémø
kMNt;eLIy. Design strength enAkñúg column load table )anKitbBa¢ÚlenAkarkat;bnßycaM)ac;
enAeBlEdl width-thickness ratio FMCagtémøkMNt;.
4>4> karKNnamuxkat;             (Design)
         kareRCIserIsnUv rolled shape EdlmanlkçN³esdækic© edIm,ITb;nwgbnÞúksgát;Edl[man
lkçN³samBaØCamYynwgkareRbIR)as; column load tables. emIltaragCamYynwg effective length
ehIyrMkiltamTisedk rhUtdl;eyIgrkeXIjnUv design strength EdleyIgcg;)an ¬b¤mantémøFMCag
bnþicbnþÜc¦. kñúgkrNIxøH eyIgRtUvbnþrkrhUtdl;eyIgGacrk)anrUbragEdlmanTm¶n;RsalCageK. CaTU
eTArUbrag (W, WT, etc) RtUv)aneKeFVIkarsMercmuneK. CaerOy² TMhM nigrUbragrbs;muxkat;
RtUv)andwgmun edaytRmUvkarsßabtükmμ nigtRmUvkardéTeTot. dUcEdl)anbgðajBIxagedIm RKb;témø
EdlmanenAkñúgtaragRtUvKñanwg slenderness ratio tUcCagb¤esμInwg 200 . rUbragGt;sIuemRTI
(structural tees and the single and double-angles) RtUvkarnUvkarBicarNaBiessEdlnwgmanbk
eRKOgbgÁúMrgkarsgát;                                    89                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                               NPIC
RsayenAkñúgEpñk 4>6.
]TahrN_ 4>5³ Ggát;rgkarsgát;RTnUv service dead load 165kips = 734kN nig service live load
535kips = 2380kN . Ggát;enHmanRbEvg 26 ft = 7925mm ehIymanTRm pinned sgçag. eRbIEdk
A36 nigerIsrUbrag W 14 .
dMeNaHRsay³ KNnabnÞúkemKuN (factored load)³
        Pu = 1.2 × 165 + 1.6 × 535 = 1054kips b¤ 4689kN
dUcenH required design strength φc Pn = 1054kips
BI column load table sRmab; KL = 26 ft / W 14 × 176 man design strength φc Pn = 1150kips
cemøIy³ eRbI W 14 × 176 .
]TahrN_ 4>6³ eRCIserIsrUbrag W EdlmanTm¶n;RsalCageKbMputEdlGacRTbnÞúksgát;emKuN
Pu = 190kips = 845kN . RbEvgRbsiT§PaBKW 24 ft = 7315m . eRbIEdk ASTM A572 Grade 50.
dMeNaHRsay³ viFId¾smrmüenATIenHKWdMbUgeyIgerIsrUbragEdlRsalCageKenAkñúg nominal size nI
mYy² ehIybnÞab;mkeTIberIsrUbragEdlRsalCageKelIrUbragTaMgGs;. CeRmIsmandUcxageRkam³
        W 4 / W 5 nig W 6 ³ KμanrUbragNamYyenAkñúgtaragEdlGacyk)an
        W8 ³                   W 8 × 58 / φc Pn = 194kips
        W 10 ³                 W 10 × 49 / φc Pn = 239kips
        W 12 ³                 W 12 × 53 / φc Pn = 247 kips
        W 14 ³                 W 14 × 61 / φc Pn = 276kips
cMNaMfa load capacity minsmamaRtnwgTm¶n;eT ¬b¤RkLaépÞmuxkat;eT¦. eTaHbICa W 8 × 58 man
design strength tUcCageKkñúgcMeNamCeRmIsTaMgbYn EtvamanTm¶n;F¶n;CageKbnÞab; W 14 × 61 .
cemøIy³ eRbI W 10 × 49 .
         sRmab;rUbragEdlKμanenAkñúg column load table, eKRtUveRbI trial-and-error approach.
dMeNIrkarTUeTAKWsnμt;rUbrag bnÞab;mkKNna design strength rbs;va. RbsinebIersIusþg;tUceBk
¬KμansuvtßiPaB¦ b¤FMeBk ¬KμanlkçN³esd©kic©¦ eKRtUveFVIkarsakl,gepSgeTot. viFIsaRsþkñúgkareFVI
trial selection mandUcxageRkam³
T.Chhay                                   90                             Compression members
viTüasßanCatiBhubec©keTskm<úCa                                             Department of Civil Engineering
         !> snμt;témøsRmab; critical buckling stress Fcr . karBinitü AISC equation E2-2 nig E2-
            3 bgðajfatémø Fcr GtibrmatamRTwsþICa yield stress Fy .
         @> BItRmUvkarKW φc Pn ≥ Pu / yk
             φc Ag Fcr ≥ Pu      enaH Ag ≥ φ PFu
                                             c cr
         #> eRCIserIsrUbragEdlRtUvKñanwgRkLaépÞcaM)ac;.
         $> KNna Fcr nig φc Pn sRmab;rUbragsakl,g.
         %> eFVIkarEktRmUveLIgvijRbsinebIcaM)ac;. RbsinebI design strength mantémøEk,rtémøRtUvkar
            TMhMEdlmanenAkñúgtaragbnÞab;GacRtUv)ansakl,g. RbsinebImindUecñaHeT eFVIkarKNna
            eLIgvijTaMgRsug. eRbItémø Fcr EdlrkeXIjsRmab;témøsakl,gCatémøsRmab;CMhan
            TI !>.
         ^> RtYtBinitü local stability ¬RtYtBinitü width-thickness ration). EktRmUveLIgvijRbsin
            ebIcaM)ac;.
]TahrN_ 4>7³ eRCIserIsrUbrag W 460 rbs;Edk A36 EdlGacRTbnÞúkemKuN                        (factored load)
4688kN . RbEvgRbsiT§PaBKW 7925mm .
dMeNaHRsay³ sakl,g Fcr = 165.5kN ¬BIrPaKbIén Fy ¦³
                                   Pu    4688 ⋅103
          Required Ag =                =            = 33.325 ⋅10 − 3 m 2
                                 φc Fcr 0.85 ×165.5
          sakl,g       W 460 × 2.8
          Ag = 36.39 ⋅ 10 −3 m 2 > 33.325 ⋅ 10 −3 m 2
           KL 7925
              =     = 111.8 < 200 (OK)
          rmin 70.9
                 KL Fy 111.8  250
          λc =        =             = 1.258 < 1.5
                 rπ E    π   200000
eRbI AISC Equation E2-2
                ⎛       2⎞
          Fcr = ⎜ 0.658λc ⎟ Fy = (0.658)(1.258) (250) = 128.9 MPa
                                               2
                ⎝         ⎠
          φc Pn = 0.85 Ag Fcr = 0.85 × 36.39 ⋅10 −3 ×128.9 ⋅103 = 3987 kN < 4688kN            (N.G)
eRKOgbgÁúMrgkarsgát;                                91                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                          NPIC
sakl,g       Fcr = 128.9MPa       ¬témøEdleTIbnwg)anBIkarKNnasRmab; W 460 × 2.8 ¦
                                Pu    4688 ⋅10 3
          Required Ag =             =            = 42.787 ⋅10 − 3 m 2
                              φc Fcr 0.85 ×128.9
          sakl,g         W 460 × 3.41
          Ag = 44.39 ⋅10 −3 m 2 > 42.787 ⋅10 −3 m 2
           KL 7925
              =     = 109.5 < 200 (OK)
          rmin 72.4
                 KL Fy 109.5  250
          λc =        =             = 1.232 < 1.5
                 rπ E    π   200000
eRbI AISC Equation E2-2
                ⎛       2⎞
          Fcr = ⎜ 0.658λc ⎟ Fy = (0.658)(1.232 ) (250 ) = 132.45MPa
                                                2
                ⎝         ⎠
          φc Pn = 0.85 Ag Fcr = 0.85 × 44.39 ⋅10 −3 ×132.45 ⋅103 = 4997.5kN > 4688kN (O.K)
edaysarrUbragenHminmanenAkñúg           column load table   dUcenHeKRtUvkarRtYtBinitü   width-thickness
ration
          bf                250
                 = 2 .8 <        = 15.8     (O.K)
          2t f               250
           h          665
             = 13.8 <      = 42.2           (O.K)
          tw           250
cemøIy³ eRbIEdk W 460 × 3.41
        RbsinebIeKeRbI table 3-36 b¤ table 3-50 témøsakl,grbs; φc Fcr manlkçN³gayRsYlkñúg
kareRbIenAkñúgsmIkar
                                Pu
          Required Ag =
                              φc Fcr
4>5> esckþIbEnßmsRmab;RbEvgRbsiT§PaB (More on Effective Length)
        enAkñúgEpñk 4>2 “column theory” )anENnaMBIRbEvgRbsiT§PaB. RKb;gGát;rgkarsgát;TaMg
RtUv)anKitCaTRm pinned edayminKitBIlkçxNÐcugTRmBitR)akd EdlnegeFVI[RbEvgRbsiT§PaB KL
mantémøxusBIRbEvgBitR)akd. CamYynwgkarEkERbenH load capacity rbs;Ggát;rgkarsgát;Ca
GnuKmn_Etnwg slenderness parameter λc . enAeBlEdleKsÁal;lkçN³rbs;smÖar³ vaCaGnuKmn_eTA
T.Chhay                                          92                               Compression members
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
nwg slenderness ration           KL   .
         RbsinebIGgát;rgkarsgát;manTRmepSgKñaenAelIG½kSemrbs;va enaHvanwgmanRbEvgRbsiT§PaB
epSgKñaenAelIG½kSTaMgBIr. enAkñúgrUbTI 4>10 W -shape RtUv)aneRbICassr ehIyenAEpñkxagelIva
RtUv)anBRgwgedayGgát;edkenAelITisTaMgBIrEdlEkgKña. Ggát;TaMgenHkarBarkarrMkilrbs;ssrRKb;
TisedA EtkarlMGitrbs;ssrminRtUv)anbgðajEdlGnuBaØat[karviltictYcekItman. eRkamlkç-
xNÐenH Ggát;GacnwgRtUv)anKitCaTRm pinned enAEpñkxagelI. sRmab;mUlehtudUcKña tMNedIm,I
RTTRmenAxageRkamk¾GacKitCatMN pinned Edr. CaTUeTA eKBi)aknwgTTYl lkçxNÐ rigid b¤ fixed
Nas; luHRtaEteKdak;lkçxNÐBiess. tMNFmμta CaTUeTAxiteTArktMN hinge b¤ pinned . enARtg;
Bak;kNþalkm<s;ssrRtUv)anBRgwgEttamTismYy. tMNkarBarEtkarrMkil EtvaminTb;karvileT. kar
BRgwgenHkarBarkarrMkiltamG½kSexSayrbs;muxkat; b:uEnþmin)anTb;karrMkilTisxøaMgeT. dUc)anbgðaj
enAkñúgrUbTI 4>10 RbsinebIGgát;ekagtamG½kSxøaMg RbEvgRbsiT§PaBrbs;vaKW 7.9m b:uEnþkarekagtam
TisexSayGacekagkñúgrUbrag second buckling mode RtUvKñanwgRbEvgRbsiT§PaB 3.95m . eday
eRKOgbgÁúMrgkarsgát;                      93                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
sarersIusþg;rbs;vaRcassmamaRteTAnwgkaerén slenderness ratio ssrnwgekagkñúgTisedA Edlman
slenderness ration FMCageK dUcenHeKRtUveRbobeFob K x L / rx CamYynwg K y L / ry . enAkñúgrUbTI
4>10 pleFob 7900 / rx RtUv)aneRbobeFobCamYynwg 3950 / ry ¬Edl rx nig ry KitCa mm ¦ ehIy
pleFobEdlmantémøFMCageKRtUv)aneRbIsRmab;kMNt; nominal axial compressive strength Pn .
]TahrN_4>8³ Edk W 300 × 0.95 manRbEvg 7.2m RtUv)anRTedayTRm pinned sgçag
ehIyTb;tamTis exSayRtg;cMNucmYyPaKbI dUcbgðajkñúgrUbTI 4>11. eRbIEdk A36 kMNt; design
compressive strength .
dMeNaHRsay³
          K x L 7200
               =       = 53.7
           rx    134.1
          K y L 2400
               =       = 31.3
           ry     76.7
          K x L / rx   mantémøFMCag dUcenHvamanlkçN³lub. BI table 3-36 CamYynwg KL / r = 53.7
          φc Fcr = 26.29ksi = 26.29 × 6.895 = 181.3MPa
          φc Pn = Ag (φc Fcr ) = 12.32 ⋅ 103 × 181.3 ⋅ 10 −3 = 2233.6kN
cemøIy³ Design strength = 2233.6kN
T.Chhay                                         94                          Compression members
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
          Design strengthEdl[enAkñúg column load table KWQrelIRbEvgRbsiT§PaBtamG½kS y .
dMeNIrkarsRmab;eRbIR)as;taragenHCamYynwg K x L GaceFVIeTA)anedaydwgBIedImehtuEdleKTTYl)an
témøenAkñúgtaragenH. edaycab;epþImCamYynwgtémø KL eKnwgTTYl)an φc Pn edaydMeNIrkarRsedog
KñanwgdMeNIrkarxageRkam³
- KL RtUv)anEckeday ry edIm,ITTYl)an KL / ry .
- KNna slenderness parameter λc = rKLπ FEy
                                           y
- KNna Fcr
- KNna design strength φc Pn = 0.85 Ag Fcr
dUcenHersIusþg;Edl)anerobCataragKWQrelItémørbs;     KL   EdlesμInwg   K yL   . RbsinebIlT§PaBRT
RTg;eFobnwgTisedA x eKGaceRbItaragedayCMnYs
                   KxL
          KL =
                  rx / ry
enaHbnÞúkEdlenAkñúgtaragnwgQrelI
           KL K x L /( rx / ry ) K x L
              =                 =
           ry        ry           rx
          pleFob rrx RtUv)an[enAkñúg column load table sRmab;rUbragnImYy².
                        y
]TahrN_ 4>9³ Ggát;rgkarsgát;dUcbgðajenAkñúgrUbTI 4>12 manTRm pinned sgçagehIyenA
RtUv)anTb;tamTisenABak;kNþalkm<s;ssr. Service load KW 400Kips EdlbnÞúkefr nigbnÞúkGefr
mantémøesμIKña. eRCIserIs W-Shape EdlmanTm¶n;RsalCageK.
dMeNaHRsay³ Factored load = Pu = 1.2 × 200 + 1.6 × 200 = 560kips
edaysnμt;faTisedAexSaylub ehIyBinitüemIlkñúg column load table CamYynwg KL = 9 feet .
cab;epþImCamYynwgrUbragtUcCageK dMbUgeyIgrk)anrUbrag W 10 × 77 CamYynwg design strength
632kips .
RtYtBinitüG½kSxøaMg
           KxL     18
                 =     = 10.40 ft > 9 ft
          rx / ry 1.73
eRKOgbgÁúMrgkarsgát;                           95                                         T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
          KxLmanlkçN³lubsRmab;rUbragenH
emIltaragCamYy KL = 10.4 feet . W 10 × 77 enAEtCarUbragRsalCageKsRmab;           W 10   CamYynwg
design strength 612kips ¬eRkayeBleFVI interpolation¦.
       bnþGegátelI W 12 × 72 ³
           KxL     18
                 =     = 10.3 ft > 9 ft
          rx / ry 1.75
          KxL enAEtlub ehIyman design strength 592kips .
kMNt;rUbragEdkRsalCageKsRmab; W 14 . rUbragEdlRsalCageKKW        W 14 × 74   EtvaF¶n;CagrUbrag
Edl)anrkBIelIkmun.
cemøIy³ eRbIEdk W 12 × 72
        RKb;eBlTaMgGs;EdlGaceFVIeTA)an GñkKNnaKYrEtbEnßmTRmsRmab;TisedAexSayrbs;ssr.
RbsinebImindUcenaHeT Ggát;nwgKμanRbsiT§PaB³ vamanersIusþg;FMEtmYyTis. enAeBl K x L mantémø
xusKñaBI K y L enaH K y L nwglub elIkElgEt rx / ry tUcCag K x L / K y L . enAeBlpleFobTaMgBIr
esμIKña ssrnwgmanersIusþg;esμIKñakñúgTisedATaMgBIr. sRmab; W-shape enAkñúg column load table
rx / ry sßitenAcenøaH 1.6 nig 1.8 elIkElgsRmab;rUbragEdlRsalCagxøH.
]TahrN_ 4>10³ ssrEdlbgðajenAkñúgrUbTI 4>13 RTnUv factored axial load         840 Kips   . eRbIEdk
A36 ehIyeRCIserIs W-Shape.
T.Chhay                                   96                             Compression members
viTüasßanCatiBhubec©keTskm<úCa                                 Department of Civil Engineering
dMeNaHRsay³ K x L = 20 ft nigtémøGtibrmarbs; K y L = 8 ft
RbEvgRbsiT§PaB K x L manlkçN³lubenAeBlEdl
           KxL
                  > K yL
          rx / ry
b¤k¾enAeBlEdl
                               ⎛r     ⎞
           KxL
          rx / ry
                  > K yL KxL > ⎜ x
                               ⎜ ry
                                      (
                                      ⎟ K yL
                                      ⎟
                                               )
                               ⎝      ⎠
kñúgkrNIenH
           K x L 20
           kyL
                =
                  8
                    = 2.5       b¤ k x L = 2.5K y L
edaysar K x L mantémøFMCag K y L q¶ay enaH K x L RbEhlCanwglub. mUlehtuKWfatémø
rx / ry EdlmanenAkñúgtaragPaKeRcInmantémøtUcCag 2.5 dUcenH k x L = 2.5 K y L TMngCanwgFMCag
(rx / ry )K y L . sakl,g rx / ry = 1.7 ³
           K x L 20
                 =    = 11.76 > K y L
          rx / ry 1.7
rMkillT§pl[eTACa KL = 12 ft ehIyBinitüemIlenAkñúg column load table. sakl,g W 10 ×112
¬ φc Pn = 865kips ¦³
        témøBitR)akd rK/xrL = 120.74 = 11.5 ft < 12 ft
                       x y
        φc Pn > 840kips EdlRtUvkar
¬edayeFVI interpolation φc Pn = 876kips RtYtBinitü W 12 ×106
           KxL     20
                 =     = 11.4 ft
          rx / ry 1.76
sRmab; KL = 12 ft
          φc Pn = 853kips > 840 ft        (OK)
GegátrUbrag W 14 . sRmab; rx / ry = 1.7 ¬pleFobRbEhlsRmab;RKb;krNIEdlGacekItman¦
           K x L 20
                 =    = 11.76 ft > K y L = 8 ft
          rx / ry 1.7
sRmab; KL = 12 ft / W 14 ×109 EdlmanlT§PaBRTRTg; 905kips CarUbragEdlRsalCagsRmab;
eRKOgbgÁúMrgkarsgát;                               97                                  T.Chhay
mhaviTüal½ysMNg;sIuvil                                                        NPIC
W 14  . RbEvg 12 ft CatémøEdlmanlkçN³snSMsMécénRbEvgRbsiT§PaBBitR)akd rUbragenHKWRKb;
RKan;.
cemøIy³ eRbI W 12 ×106 ¬RsalCageKkñúgcMeNambIrUbragEdl)ansikSa¦
T.Chhay                                98                         Compression members
viTüasßanCatiBhubec©keTskm<úCa                                 Department of Civil Engineering
          sRmab;ssrdac;edayELk           (isolated   column)  EdlminEmnCaEpñkrbs;eRKagCab;
(continuous frame), Table C-C2.1 enAkñúg Commentary to the specification manlkçN³RKb;
RKan;CaTUeTA. EtsRmab;eRKagrwg (rigid frame) enAkñúgrUbTI 4>14. ssrenAkñúgeRKagenHminman
lkçN³ÉkraCü EtvaCaEpñkrbs;rcnasm<n§½Cab;. elIkElgsRmab;ssrEdlenACan;eRkamssrRtUv)an
Tb;enAcugsgçagrbs;va edayFñwmnwgssrdéTeTot. eRKagenHk¾Ca unbraced frame mann½yfaeRKag
GacmanbMlas;TItamTisedk ehIyssrTaMgGs;rgnUv sidesway. RbsinebIeKeRbI Table C-C2.1
sRmab;eRKagenH ssrCan;eRkameKmanlkçxNÐRbhak;RbEhlnwglkçxNÐ (f) ehIytémørbs; K = 0
GacRtUv)aneRbI. sRmab;ssrEdldUcssr AB témørbs; K = 1.2 EdlRtUvKñanwglkçxNÐ (c) Gac
RtUv)aneRCIserIs. EtdMeNIrkarEdlsmRsbCaghñwg KWKitGMBIkRmiténkarTb;Edlpþl;[edaytMN
rbs;Ggát;.
        karTb;nwgkarvilEdlpþl;[edayFñwm b¤rtenAxagcugssrCaGnuKmn_eTAnwg rotational
stiffness rbs;Ggát;EdlRbsBVKñaenARtg;cMNucenaH. Rotational stiffness rbs;Ggát;CasmamaRteTA
nwg EI / L / Edl I Ca moment of inertia rbs;muxkat;eFobnwgG½kSénkarBt;. Gaylord nig
Stallmeyer (1992) )anbgðajfaemKuNRbEvgRbsiT§PaB K GaRs½ynwgpleFobrbs; column
stiffness elI girder stiffness enAxagcugrbs;Ggát;nImYy² EdlGacsMEdgCa
        G=
              ∑ Ec I c / Lc = ∑ I c / Lc                                        ¬$>&¦
              ∑E I /L  g g     ∑I /L
                                 g   g   g
Edl       ∑ Ec I c / Lc = plbUk stiffness rbs;ssrTaMgGs;EdlenAcugrbs;ssrEdlBicarNa
          ∑ E g I g / Lg = plbUk stiffness rbs;rtTaMgGs;EdlenAcugrbs;ssrEdlBicarNa
          Ec = E g = E =m:UDuleGLasÞicrbs;eRKOgbgÁúMEdk
         RbsinebIssrEdlRsavxøaMg (very slender column) RtUv)anP¢ab;eTAnwgrtEdlmanmuxkat;FM
enaHrtnwgkarBarkarvilrbs;ssry:agmanRbsiT§PaB. cugrbs;ssrmanlkçN³ approximately
fixed enaH K nwgmantémøtUc. lkçxNÐenHRtUvKñanwgtémøtUcbMputrbs; G Edl[edaysmikar $>&.
b:uEnþ cugrbs;ssrmaM (stiff column) EdlP¢ab;eTAnwg flexible beam Gacnwgpþl;karvileday
esrIdl;ssr EdlRtUvKñanwglkçxNÐTRm pinned Edl[témø G nig K FM.
         TMnak;TMngrvag G nig K RtUv)andak;enAkñúg Jackson-Mooreland Alignment Chart
(Johnston, 1976) EdlRtUv)anpliteLIgvijenAkñúg Figure C-C2.2 enAkñúg Commentary . edIm,I
eRKOgbgÁúMrgkarsgát;                           99                                      T.Chhay
mhaviTüal½ysMNg;sIuvil                                                             NPIC
TTYl)antémø K BIr nomogram mYykñúgcMeNamTaMgBIr dMbUgKNnatémø G enAcugnImYy²rbs;ssr
eday[mYyCa G A nigmYyeTotCa GB . P¢ab; G A nig GB edaybnÞat;Rtg; ehIyGantémø K
enAelIbnÞat;kNþal. emKuNRbsiT§PaBEdlTTYl)anCatémøEdleFobTAnwgG½kSénkarBt; EdlCaG½kS
EkgeTAnwgbøg;rbs;eRKag. karviPaKdac;edayELkGaceFVIeLIgsRmab;karekagEdleFobnwgG½kSmYy
eTot. CaFmμta beam-to-column connection enAkñúgTisedAenHnwgminbBa¢Únm:Um:g; ¬ sidesway
RtUv)ankarBareday bracing ¦ ehIy K GacnwgykesμI 1.0 .
]TahrN_ 4>11³ eRKagrwgEdlbgðajenAkñúgrUbTI 4>15 CaeRKag unbraced frame . Ggát;nImYy²
RtUv)andak;eday[RTnugrbs;vasßitenAkñúgbøg;rbs;eRKag. kMNt;emKuNRbEvgRbsiT§PaB K x
sRmab;ssr AB nig BC .
dMeNaHRsay³ ssr AB ³
sRmab;tMN A
          G=
               ∑ I c / Lc = 347 / 3.6 + 445 / 3.6 = 220 = 0.95
               ∑ I g / Lg 560 / 6 + 762 / 5.5 231.9
sRmab;tMN B
          G=
               ∑ I c / Lc = 445 / 3.6 + 445 / 4.6 = 220.3 = 0.95
               ∑ I g / Lg 560 / 6 + 762 / 5.5 231.9
BI alignment chart sRmab; sidesway uninhibited CamYynwg G A = 0.95 nig GB = 0.95 / K = 1.3
T.Chhay                                        100                     Compression members
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
sRmab;ssr AB .
      ssr BC
sRmab;tMN B KNnadUcmun
          G = 0.95
sRmab;tMN C Rtg;TRm pinned . sßanPaBrbs;vamanlkçN³dUceTAnwgssrEdlmaMxøaMgP¢ab;eTAnwg
infinity flexible girder Edlrtman stiffness esμIsUnü. dUcenHpleFobPaBrwgRkajrbs;ssr
(column stiffness) elIPaBrwgRkajrbs;rt (girder stiffness) mantémøesμIGnnþsRmab;snøak;Kμan
kkiteBjelj (perfectly frictionless hinge).
lkçxNÐcugenHGaceFVIeTA)ansRmab;karsμanenAkñúgkarGnuvtþ dUcenH eyIgGacyk G = 10 sRmab;
tMNenH.
BI alignment chart CamYynwg G A = 0.95 nig GB = 10 / K = 1.85 sRmab;ssr BC .
        dUcEdl)anKUsbgðajenAkñúg]TahrN_4>11 sRmab;TRm pinned G KYrRtUv)anykesμInwg
10.0 sRmab; TRm fixed G KYrRtUv)anykesμInwg 1.0 . lkçxNÐTRm fixed RtUvKñanwgrtEdlrwgmaMxøaMg
(infinitely stiff girder) nig flexible column EdlRtUvKñanwgtémøtamRTwsþI G = 0 . kñúgkareRbIR)as;
alignment chart enAkñúg Commentary )anENnaM[eRbI G = 1.0 edaysarEteKBi)annwgTTYl)anTRm
fixed eBjelj.
        Unbraced frame manlT§PaBTb;nUvkmøaMgxagedaysartMNEdlTb;nwgm:Um:g;rbs;va. Ca
erOy²eRKagbEnßmedayRbB½n§BRgwgtamrUbragepSg² eRKagEbbenHRtUv)aneKehAfa braced frame.
karTb;kmøaMgxagbEnßmGaceFVIeLIgkñúgTRmg;Ca diagonal bracing dUcbgðajenAkñúgrUbTI 4>16 b¤ rigid
shear wall. kñúgkrNIepSgeTot ssrRtUv)anTb;eday panel b¤ bay sRmab;km<s;TaMgmUlrbs;eRKag.
TRmenHbegáItCa cantilever structure EdlTb;nwgbMlas;TItamTisedk ehIyk¾pþl;nUvTRmtamTisedk
sRmab;ElVgdéTeTot. GaRs½yeTAnwgTMhMrbs;eRKOgbgÁúM ElVgeRcInCagmYyGacRtUv)anBRgwg. ssr
EdlCaGgát;rbs; braced frame RtUv)ankarBarBI sidesway nigmankarTb;karvilenAxagcugrbs;vaxøH.
dUcenH vaCaRbePTGgát;sßitenAkúñgcenøaHkrNI (a) nig (d) enAkñúg Table C-C2.1 rbs; Commentary
ehIy K sßitenAcenøaH 0.5 nig 1.0 . dUcenH 1.0 CatémøEdltUcsRmab;Ggát; én braced frame
ehIyCatémøEdl AISC C2.1 ENnaM[eRbI elIkElgEtmankarviPaKNamYyeFVIeLIg. karviPaKGaceFVI
eRKOgbgÁúMrgkarsgát;                       101                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                              NPIC
        eTA)anedayeRbI alignment chart sRmab; braced frame . kareRbI nomogram nwgpþl;lT§-
plCa effective length factor EdltUcCag 1.0 bnþicbnþÜc ehIyeKnwgTTYl)ankarsnSMsMécxøH .               *
        CamYynwg design aid xøH eKeRbI alignment chart kñúglkçxNÐEdleKbegáItvaeLIg. lkçxNÐ
TaMgenHmanenAkñúg Section C2 of the Commentary to the Specification ehIyminRtUv)anerobrab;
enATIenHeT. RKb;lkçxNÐTaMgGs;nwgRtUv)anbMeBjesÞIrEtTaMgGs;CaTUeTA RbsinebIdUcenaHeT PaBxus
KñaenaHCaEpñkmYyKYr[RbugRbytñ½. lkçxNÐmYyEdlminRtUv)anbMeBjCaTUeTAenaH KWtRmUvkarEdlfa
RKb;karRbRBwtþeTArbs;Ggát;sßitkñúglkçN³eGLasÞic. RbsinebI slenderness parameter λc tUcCag
1.5 ssrnwgekageday inelastic ehIyemKuNRbEvgRbsiT§PaBEdlTTYl)anBI alignment chart nwg
mantémøtUcEmnETn. ssrPaKeRcInsßitenAkñúgRkumenH. dMeNIrkargayRsYlkñúgkarkMNt; K sRmab;
inelastic column GnuBaØat[eRbI alignment chart (Yura, 1971 and Dique, 1973). edIm,IbkRsay
*
  RbsinebIeRKagRtUv)anBRgwgTb;nwg sidesway tMN beam-to-column minRtUvkar moment resisting ehIyRbBn§½BRgwgGac
RtUv)anKNnaedIm,ITb;nUvRKb; sidesway tendency . b:uEnþRbsinebItMNminEmnCa moment resisting vanwgminmanPaBCab;
rvagssr nigrt ehIyeKminGaceRbI alignment chart . sRmab; braced frame RbePTenH K x KYrRtUvykesμInwg 1.0 .
T.Chhay                                          102                                 Compression members
viTüasßanCatiBhubec©keTskm<úCa                                       Department of Civil Engineering
dMeNIrkarenH eyIgcab;epþImCamYynwg critical buckling load sRmab; inelastic column Edl[eday
smIkar $>^ b. edayEckvanwgRkLaépÞmuxkat;eKTTYl)an buckling stress³
                     π 2 Et
          Fcr =
                   (KL / r )2
                  rbs;ssrenAkñúgkrNIenHCasmamaRtnwg Et I c / Lc ehIytémøEdlsmRsb
Rotational stiffness
rbs; G sRmab;eRbIenAkñúg alignment chart KW
          Ginelastic =
                             ∑ Et I c / Lc = Et G
                                                 elastic
                             ∑ EI g / Lg E
eday Et tUcCag E enaH Ginelastic nwgtUcCag Gelastic ehIy effective length factor K nwgRtUv)an
kat;bnßy CalT§pleKTTYl)ankarKNnamYyEdlmanlkçN³esdækic©Cag. edIm,IkMNt; Et / E Edl
eK[eQμaHfa emKuNkat;bnßyPaBrwgRkaj (stiffness reduction factor SRF)/ BicarNaTMnak;TMng
xageRkamsRmab;ssrEdlmanTRmcug pinned ³
        Fcr (inelastic) π 2 Et / (L / r )2 Et
                       =                  =                                       ¬$>*¦
         F   cr ( elastic)
                          2
                                  π E / (L / r )
                                        2   E
AISC   eRbItémøRbhak;RbEhlsRmab;Epñk inelastic én column strength curve dUcenHsmIkar $>*
CatémøRbhak;RbEhlenAeBlEdl AISC Equation E2-2 nig E2-3 RtUv)aneRbIsRmab; Fcr . Rbsin
ebI eyIg[
               P    P /φ
          Fcr = cr ≈ u c
                A     A
enAeBlEdl Fcr (inelastic) / Fcr (elastic) CaGnuKmn_én Pu /(φc A) . ]TahrN_ sRmab;
 Pu / (φc A) = 180 MPa nig F y = 250 MPa
          Fcr (inelastic) ≈ 180 MPa = 0.658λc F y = 0.658λc (250 )
                                                    2           2
          λ2c = 0.785
                              0.877           0.877
          Fcr (elastic) =              Fy =         250 = 279.3MPa
                                 λ2c          0.785
dUcenHemKuNkat;bnßyPaBrwgRkajKW
                    Fcr (inelastic)         180
          SRF =                        =         = 0.644
                       Fcr (elastic)       279.3
eRKOgbgÁúMrgkarsgát;                                    103                                  T.Chhay
mhaviTüal½ysMNg;sIuvil                                                              NPIC
edaysar φc efr enaH SRF k¾CaGnuKmn_én Pu / A . témørbs; SRF EdlCaGnuKmn_én Pu / A
RtUv)an[enAkúñg Table 3-1 in Part 3 of the Manual.
]TahrN_ 4>12³ rUb 4>17 bgðajBI rigid unbraced frame. Ggát;TaMgGs;RtUv)andak;edayeFVIy:ag
Na[karBt; eFobnwgG½kSxøaMg. TRmxagRtUv)andak;enAtMNnImYy²edaytMNFmμtaEdlBRgwgkñúgTis
edAEkgeTAnwg eRKag. kMNt;emKuNRbEvgRbsiT§PaBedayeFobnwgG½kSnImYy²sRmab;Ggát; AB .
bnÞúktamG½kSemKuNenAelIGgát;enHKW 180kips ehIyeKeRbIEdk A36 .
dMeNaHRsay³ KNnaemKuNeGLasÞicrbs; G
       sRmab;tMN A /
          ∑ (I c / Lc ) =     170 / 12
                                             =
                                               14.17
                                                     = 1.52
          ∑ (I g / Lg ) 88.6 / 20 + 88.6 / 18 9.35
          sRmab;tMN B
          ∑ (I c / Lc ) = 2(170 / 12) = 28.3 = 1.35
          ∑ (I g / Lg ) 190 / 20 + 190 / 18 21.0
BI alignment chart sRmab; unbraced frames, K x = 1.43 / edayQrelI elastic behavior dUcenH
                 KxL     Fy       1.43(12 )(12 )  36
          λc =                =                        = 0.5512
                 rxπ     E          4.19 ⋅ π     29000
edaysar λc tUcCag 1.5 enaHeKRtUveRbIemKuN K inelastic Edl[
          Pu 180
            =     = 18.5ksi
           A 9.71
BI Table 3-1in Part 3 of the Manual emKuNkat;bnßyPaBrwgRkaj SRF = 0.83
       sRmab;tMN A
          Ginelastic = SRF × Gelastic = 0.83 × 1.52 = 1.26
          sRmab;tMN B
          Ginelastic = SRF × Gelastic = 0.83 × 1.35 = 1.12
cemøIy³ BI alignment chart K x = 1.37 . edaysarlkçxNÐTRmFmμtasRmab;eRKag enaH K y esμInwg
1.
T.Chhay                                          104                    Compression members
viTüasßanCatiBhubec©keTskm<úCa                                            Department of Civil Engineering
RbsinebIcugssrCaTRm              fixed (G=1.0)   b¤ pinned (G=10.0) témørbs; G minRtUv)anKuNnwg SRF
eT.
4>6>karekagedayrmYl nigedayBt;-rmYl (Torsional and Flexural-Torsional Buckling)
          enAeBlEdlGgát;rgkarsgát;edaybnÞúkcMG½kS køayCaKμansßirPaB¬minEmn locally unstable¦
vaGacekagkñúgrUbragmYykñúgcMeNamrUbragbI dUcbgðajenAkñúgrUbTI 4>18.
  !> karekagedaykarBt; (flexural buckling) eyIg)anBicarNakarekagRbePTenHtaMgBImunrhUtmk
     dl;eBlenH. vaCaPaBdabEdlekIteLIgedaykarBt; (bending or flexure) CMuvijG½kSEdlRtUv
     nwgpleFobPaBrwgRkaj (slenderness ratio) FMCageK ¬rUbTI 4>18 a¦. CaTUeTAvaCa minor
     principle axis EdlmankaMniclPaB (radius of gyration) tUcCageK. Ggát;rgkarsgát;Edlman
     muxkat;RKb;rUbragGac)ak;tamTRmg;enH.
  @> karekagedayrmYl (torsional buckling) kar)ak; (failure) edayRbePTenHKWbNþaledaykarmYl
     (twisting) tamG½kSbeNþayrbs;Ggát;. vaGacekIteLIgEtCamYynwgGgát;EdlmanlkçN³Rsav
     xøaMg ehIymanmuxkat;sIuemRTIDub (double symmetrical cross section) ¬rUbTI 4>18 b¦.
     Standard hot-rolled shapes mingaynwgrgnUvkarekagedayrmYlenHNas; b:uEnþGgát; built-up BI
eRKOgbgÁúMrgkarsgát;                                 105                                          T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
    bnÞHesþIggayeRKaH nigKYreFVIkarGegát. rUbragExVgbgðajnUvPaBgayrgeRKaHBiesssRmab;RbePT
    énkarekagenH. rUbragenHGac)anmkBIkarpÁúMBIbnÞHdUcbgðajenAkñúgrUb b¤ built-up BImMubYnTl;xñgKña.
 #> karekagedaykarBt;-rmYl (flexural-torsional buckling) kar)ak;RbePTenHbegáIteLIgedaybnSM
    énkarekagedaykarBt; nigkarekagedayrmYl. Ggát;ekag nigrmYlkñúgeBlEtmYy¬rUbTI4>18 c¦.
    karekagRbePTenHGacekIteLIgEtCamYymuxkat;EdlmanrUbragminsIuemRTI TaMgrUbragEdlman
    G½kSsIuemRTImYyTis dUcCa channel, structural tee, double-angle shape nig equal-leg sigle
    angles nigrUbragEdlKμanG½kSsIuemRTI dUcCa unequal-leg single angle.
       AISC Specification tRmUvnUvkarviPaKBI torsional b¤ flexural-torsional buckling enAeBl
smrmü. Section E3 of the Specification erobrab;BIGgát; double angle nig tee-shaped ehIy
Appendix E3 pþl;nUvviFITUeTAEdlGaceRbIsRmab;RKb;rUbragminsIuemRTI.
       dMbUgeyIgerobrab;BIviFIEdlmanenAkñúg Appendix E3. vaQrenAelIkareRbIR)as; slenderness
parameter λe CMnYs[ λc . eyIgTTYl λe dUcxageRkam. BI Euler buckling stress/
T.Chhay                                     106                             Compression members
viTüasßanCatiBhubec©keTskm<úCa                                        Department of Civil Engineering
                    π 2E
          Fe =
                 (KL / r )2
Slenderness ratio      GacsresrCa
           KL   π 2E
              =
            r    Fe
RbsinebI Fe RtUv)ankMNt;Ca elastic buckling stress EdlRtUvnwgrUbragénkar)ak;Edllub eTaHeday
flexural, torsional b¤ flexural-torsional enaH slenderness ratio EdlRtUvKñaKW
          ⎛ KL ⎞   π 2E
          ⎜    ⎟ =
          ⎝ r ⎠e    Fe
ehIy slenderness parameter EdlRtUvKñaKW
                 (KL / r )e      Fy       Fy ( KL / r ) e2       Fy
          λe =                        =                      =
                       π         E            π 2E               Fe
dMeNIrkarKNnamandUcxageRkam³
  !> kNt; Fe sRmab; torsional elastic buckling b¤ flexural-torsional elastic buckling BIsmIkar
     Edl[enAkñúg Appendix E3.
  @> KNna effective slenderness parameter, λe .
  #> KNna critical stress Fcr BIsmIkarFmμta (AISC Equations E2-2 and E2-3) b:uEnþeRbI λe CMnYs
     [ λc . bnÞab;mk design strength KW
          φc Pn = φc Ag Fcr
          Edl φc = 0.85 dUcKñasRmab; flexural buckling.
          smIkarsRmab; Fe Edl[enAkñúg AISC Appendix E3KWQrelI well-established theory
Edlmankñúg Theory of Elastic Stabality (Timoshenko and Gere, 1961). elIkElgsRmab;kar
pøas;bþÚrxøHenAkñúg notation vamansmIkardUcKñaenAkñúgesovePAenaH edayKμankarsRmYl. sRmab;
doubly symmetrical shapes (torsional buckling)/
               ⎡ π 2 EC w        ⎤ 1
          Fe = ⎢            + GJ ⎥                                      (AISC Equation A-E3-5)
               ⎢⎣ (K z L )2      ⎥⎦ I x + I y
sRmab; singly symmetrical shape (flexural-torsional buckling)/
eRKOgbgÁúMrgkarsgát;                                    107                                   T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                         NPIC
               Fey + Fez      ⎛                         ⎞
                              ⎜          4 Fey Fez H    ⎟
          Fe =                     −   −
                                             (      )
                              ⎜⎜ 1   1                  ⎟⎟                   (AISC Equation A-E3-6)
                  2H                     Fey + Fez 2
                               ⎝                         ⎠
sRmab;rUbragEdlKμanG½kSsIuemRTI (flexural-torsional buckling)/
          (Fe − Fex )(Fe − Fey )(Fe − Fez ) − Fe2 ( Fe − Fey )(xo / r o )2
                                                                             (AISC Equation A-E3-7)
          − Fe2 (Fe           (
                      − Fex ) yo / r o   )
                                         2
                                             =0
smIkarcugeRkayCasmIkardWeRkTI3 dUcenHrbs; Fe KWtUcNas;. CasMNagl¥ PaBcaM)ac;kñúgkaredaH
RsaysmIkarenHKWticbMput edaysareKkMreRbIrUbragminsIuemRTICaGgát;rgkarsgát;Nas;. GgÁEdl
min)ankMNt;BImunEdleRbIenAkñúgsmIkarTaMgbIenHRtUv)ankMNt;dUcteTA³
          C w = warping constant
          Kz =  emKuNRbEvgRbsiT§PaBsRmab;karekagedayrmYl EdlQrelIbrimaNénkarTb;cug
          RbqaMgnwgkarrmYltamG½kSbeNþay.
          G = shear modulus
          J = torsional constant         ¬esμIeTAnwg polar moment of inertia sRmab;Etmuxkat;mUl¦
                      π 2E
          Fex =                                                              (AISC Equation A-E3-10)
                  (K x L / rx )2
                      π 2E
          Fey =
                  (K y L / ry )2
                                                                             (AISC Equation A-E3-11)
          Edl y CaG½kSsIuemRTIsRmab; singly symmetric shapes.
                ⎡ π 2 EC w        ⎤ 1
          Fez = ⎢            + GJ ⎥                                          (AISC Equation A-E3-12)
                ⎢⎣ (K z L )2      ⎥⎦ Ar o2
                   ⎛ x2 + y2 ⎞
          H = 1− ⎜ o         o ⎟                                             (AISC Equation A-E3-9)
                   ⎜      2    ⎟
                   ⎝ ro ⎠
        Edl xo nig yo CakUGredaenén shear center rbs;muxkat;edayeFobnwgTIRbCMuTm¶n;. Shear
center CacMNucenAelImuxkat;EdlbnÞúkeFVI[Ggát;ekagedayminrmYl. Shear center RtUv)anniyay
lMGitenAkñúgCMBUk 5.
           2                  Ix + I y
          r o = xo2 + yo2 +                                                  (AISC Equation A-E3-8)
                                   A
        eKGacrktémøefrEdleRbIenAkñúgsmIkarTaMgbIsRmab; Fe enAkñúgtarag torsion properties nig
flexural-torsional properties enAkñúg part 1 of the Manual . sRmab; W, M, S nig HP shapes,
T.Chhay                                             108                            Compression members
viTüasßanCatiBhubec©keTskm<úCa                                      Department of Civil Engineering
J  nig Cw RtUv)an[. eK[témø J / Cw / r o nig H RtUv)an[sRmab; channel, single angle nig
structural tee. taragsRmab; double angle [témø r o nig H ¬ J nig C w esμInwgBIrdgén
témøEdl[sRmab; single angle¦.
        dUc)anbgðajBIxagelI eKkRmnwgviPaKkarekagedayrmYlsRmab;muxkat;sIuemRTIDub. dUcKña
eKkRm eRbIrUbragKμanG½kSsIuemRTICaGgát;rgkarsgát; ehIyeKkMrnwgviPaK flexural-tensional buckling
én Ggát;RbePTenHEdr RbsinebIman eKcaM)ac;RtUvEtviPaKva. sRmab;ehtuplTaMgenH eyIgkMNt;kar
BicarNaelIrUbrag flexural-torsional buckling CamYynwgG½kSsIuemRTImYy. elIsBIenH double angle
EdlCa built-up shape CaRbePTrUbragEdleKniymeRbIeRcIn.
        sRmab; singly symmetrical shape, flexural-torsional buckling stress Fe TTYl)anBI
AISC Equation A-E3-6. enAkñúgsmIkarenH y RtUv)ankMNt;CaG½kSsIuemRTI ¬edayminKitBITisedA
rbs;Ggát;¦ehIy flexural-torsional buckling RtUv)anKitEttamG½kSmYyenH ¬flexural buckling
tamTisenHnwgminekItman¦. G½kS x RbQmEtnwg flexural buckling. dUcenH sRmab; singly
symmetrical shape eKGacmanersIusþg;BIrKW flexural-torsional buckling tamG½kS y ¬G½kSsIuemRTI¦
b¤ flexural buckling eFobG½kS x . edIm,IkMNt;mYyNamanlkçN³lub KNnaersIusþg;EdlRtUvnwg
G½kSnImYy² ehIyeRbItémøNaEdltUcCag.
]TahrN_ 4>13³ KNna design compressive strength rbs; WT13.5 × 80.5 . RbEvgRbsiT§PaB
tamG½kS x KW 25 feet 6inches RbEvgRbsiT§PaBtamG½kS y KW 20 feet ehIyRbEvgRbsiT§PaBtam
G½kS z KW 20 feet . eRbIEdk A36 .
dMeNaHRsay³ KNna design compressive strength sRmab;G½kS x ³
           K x L 25.5(12)
                =         = 77.27
            rx    3.96
                 KL      Fy          77.27    36
          λc =                   =                 = 0.8666 < 1.5
                 rπ       E           π      29000
          eRbI AISC Equation E2-2
          Fcr = (0.658)λc F y = (0.658)0.8666 (36) = 26.29ksi
                                 2                   2
          φc Pn = φc Ag Fcr = 0.85(23.7 )(26.29 ) = 530kips
eRKOgbgÁúMrgkarsgát;                                  109                                   T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                        NPIC
KNna flexural-torsional buckling strength CMuvijG½kS y
                      π 2E             π 2 (29000 )
          Fey =                    =                  = 52.17 ksi
                  (K y L / ry )2        (74.07) 2
                ⎡ π 2 EC w        ⎤ 1
          Fez = ⎢            + GJ ⎥
                ⎣⎢ (K z L )
                           2            2
                                  ⎦⎥ Ar o
                 ⎡ π 2 (29000 )(42.7 )              ⎤
                                       + 11200(7.31)⎥
                                                            1
              =⎢                                                    = 107.7 ksi
                 ⎣⎢ (20 × 12 )                      ⎦⎥ 23.7(5.67 )
                                2                                 2
          Fey + Fez = 52.17 + 107.7 = 159.9ksi
               Fey + Fez ⎡          4 Fey Fez H ⎤
          Fe =            ⎢1 − 1 −               ⎥
                  2H      ⎢
                          ⎣
                                           (
                                    Fey + Fex 2 ⎥
                                                 ⎦
                                                        )
                 159.9 ⎡           4(52.17 )(107.7 )(0.813) ⎤
              =           ⎢1 − 1 −                          ⎥ = 45.81ksi
                2(0.813) ⎢⎣                (159.9)2         ⎥⎦
                Fy          36
          λe =       =         = 0.8865
                 Fe     45.81
edaysartémøenHtUcCag 1.5 eRbI AISC Equation E2-2 CamYynwg λe CMnYs[ λc ³
                ⎛        2 ⎞
          Fcr = ⎜ 0.658λe ⎟ F y = (0.658)(0.8865) (36) = 25.91ksi
                                                 2
                ⎝          ⎠
          φc Pn = φc Ag Fcr = 0.85(23.7 )(25.91) = 522kips      (controls)
cemøIy³ Design strength = 522kips
        cMNaMfa enAeBlEdl Fcr nig Fe RtUv)anKNna karKNnasRmab; flexural buckling CMuvij
G½kS x nig flexural-torsional buckling CMuvijG½kS y manlkçN³dUcKña. dUcenHbnÞab;BI Fcr nig Fe
RtUv)anKNna TaMg λc nig λe GacRtUv)anKNna ehIytémøEdltUcCagRtUv)aneRbIedIm,IKNna
strength . kareFVIEbbenHedIm,Ikat;bnßykarcaM)ac;kñúgkarKNna strength sRmab;G½kSTaMgBIr.
        dMeNIrkarviPaK flexural-torsional buckling elI double-angle nig tee Edl[enAkñúg AISC
Section E3 CakarEksRmYldMeNIrkarviPaKEdl[enAkñúg AISC Appendix E3. vak¾mankarEkERb
kMNt;cMNaMxøHdUcCa³ BI Fe eTACa Fcrft / Fey eTACa Fcry nig Fez eTACa Fcrz . kugRtaMg Fcry
RtUv)anrkBI AISC E2 nigQrelI flexural buckling eFobG½kS y .
        edIm,ITTYl)an Fcrz eyIgGacecalG½kSTImYyrbs; AISC Equation A-E3-12 enaH
T.Chhay                                                 110                       Compression members
viTüasßanCatiBhubec©keTskm<úCa                                                     Department of Civil Engineering
                    GJ
          Fcrz =
                        2
                    Ar o
      karlubecalenHGacGnuBaØat)an BIeRBaHsRmab; double-angle nig tee GgÁTImYymantémøtUc
Gacecal)anebIeFobnwgGgÁTIBIr.
      Flexural buckling stress Fcry RtUv)anKNnaCamYynwgsmIkarFmμtarbs; AISC Chapter E
edayeRbI KL / r EdlRtUvKñanwgG½kS y ¬G½kSsIuemRTI¦.
      bnÞab;mkeTot nominal strength GacRtUv)anKNnadUcxageRkam
          Pn = Ag Fcrft
                ⎛ Fcry + Fcrz        ⎞⎡         4 Fcry Fcrz H       ⎤
Edl    Fcrft = ⎜⎜                    ⎟ ⎢1 − 1 −                     ⎥
                                                  (             )
                                     ⎟⎢                                              (AISC Equation E3-1)
                ⎝     2H             ⎠⎣         Fcry + Fcrz 2       ⎥
                                                                    ⎦
       RKb;GgÁTaMgGs;Edl)anmkBI Appendix E3 rkSadEdl. dMeNIrkarenH RtUv)aneRbIsRmab;Et
double-angle nig tee eRBaHvapþl;nUvcemøIysuRkitCagkareRbIdMeNIrkarEdl[enAkñúg Appendix E3.
]TahrN_ 4>14³ KNna design strength rbs;rUbragenAkñúg]TahrN_TI 4>13 edayeRbIsmIkarrbs;
AISC Equation E3.
dMeNaHRsay³ BI]TahrN_ 4>13 flexural buckling strength sRmab;G½kS x KW 530kips ehIy
K y L / ry = 74.07 . BI AISC E2-4, slenderness parameter KW
                 KL      Fy          74.07      36
          λc =                   =                   = 0.8307 < 1.5
                 rπ         E         π        29000
BI AISC Equation E2-2,
                       ⎛       2             ⎞              (0.8307 )2 (36) = 26.97ksi
          Fcr = Fcry = ⎜ 0.658λc             ⎟ F y = (0.658)
                       ⎝                     ⎠
BI AISC E3,
                    GJ          11200(7.31)
          Fcrz =            =                    = 107.5ksi
                    Ar o
                        2
                                 23.7(5.67 )2
          Fcry + Fcrz = 26.97 + 107.5 = 134.5ksi
                   ⎛ Fcry + Fcrz       ⎞⎡         4 Fcry Fcrz H         ⎤
          Fcrft = ⎜⎜                   ⎟ ⎢1 − 1 −                       ⎥
                   ⎝     2H            ⎟⎢
                                       ⎠⎣             (
                                                  Fcry + Fcrz 2     )   ⎥
                                                                        ⎦
eRKOgbgÁúMrgkarsgát;                                      111                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
                    134.5 ⎡          4(26.97 )(107.5)(0.813) ⎤
                 =          ⎢1 − 1 −                         ⎥ = 25.48ksi
                   2(0.813) ⎢                (        )2
                                                             ⎥⎦
                            ⎣                 134 . 5
          φc Pn = φc Ag Fcrft = 0.85(23.7 )(25.48) = 513         (Control)
cemøIy³ Design strength = 513kips
        lT§plenAkñúg]TahrN_ 4>13 nig 4>14 bgðajBIkMhuskñúgkareRbIR)as; Appendix E3
sRmab; rUbragenHmanlkçN³minsnSMsMéc. viFIsaRsþEdleRbIenAkñúg]TahrN_ 4>14 EdlQrelI
AISC Specification E3 EtgEtRtUv)aneRbIsRmab; double angle nig tee. b:uEnþkñúgkarGnuvtþ ersIusþg;
rbs; double angle nig tee PaKeRcInGacrk)anenAkñúg column load table. taragTaMgenaH KWQrelI
viFIsaRsþEdlesñIeLIgeday AISC E3 ehIyk¾GaceRbIedIm,IepÞógpÞal;lT§plrbs;]TahrN_ 4>14.
taragpþl;nUvtémø design strength BI EdlmYyCa flexural buckling eFobG½kS x nigmYyeTotCa
flexural-torsional buckling eFobG½kS y .
        taragTaMgenaHk¾pþl;pgEdrsRmab;Ggát;rgkarsgát; single-angle. Design strength Edl
[edayminQrelIRTwsþI flexural-torsional buckling RtUv)an[enAkñúg specification dac;edayELk
sRmab; single-angle member enAkñúg Part 6 of the Manual, Specification and Codes.
4>7>      Built-up Member
        RbsinebIeKsÁal;lkçN³muxkat; (cross-sectional properties)rbs;Ggát;rgkarsgát; built-up
karviPaKrbs;vamanlkçN³RsedogKñasRmab;Ggát;rgkarsgát;epSgeTot RbsinebIEpñkpÁúMrbs;muxkat;t
P¢ab;)anl¥. AISC E4 mankarlMGitCaeRcInEdlTak;TgeTAnwgkartP¢ab;enH CamYynwgtRmUvkardac;
edayELksRmab;Ggát;EdlpÁúMeday rolled shape mYy b¤eRcIn nigGgát;EdlpÁúMeday plate b¤bnSMén
plate nig Edkrag (shape). munnwgBicarNaBIbBaðatP¢ab; eyIgnwgrMlwkBIkarKNnalkçN³muxkat;rbs;
rUbrag built-up.
        Design strength rbs;Ggát;rgkarsgát; built-up CaGnuKmn_eTAnwg slenderness parameter
λc . dUcenHeKRtUvkMNt;G½kSem nigkaMniclPaBEdlRtUvKñanwgG½kSTaMgenaH. sRmab;muxkat;
homogenous G½kSemRtYtsIunwgG½kSTIRbCMuTm¶n;. viFIsaRsþkñúgkarKNnaRtUv)anbgðajenAkñúg]TahrN_
4>15. EpñkpÁúMrbs;muxkat;RtUv)ansnμt;fatP¢ab;)anl¥.
T.Chhay                                       112                            Compression members
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
]TahrN_ 4>15³ ssrEdlbgðajenAkñúgrUbTI 4>19 RtUv)anplitedaykarpSarEdkbnÞH 4"× 38 " BIelI
søabrbs;Edk W 18× 35 . EdkpÁúMTaMgBIrCaEdk A36 . RbEvgRbsiT§PaBeFobG½kSTaMgBIrKW 15 feet .
edaysnμt;EdkpÁúMTaMgBIrRtUv)antP¢ab;edayeFVIy:agNa[Ggát;manRbsiT§PaBeBj ehIyKNna design
strength edayQrelI flexural buckling.
 dMeNaHRsay³ CamYynwgkarbEnßmEdkBIelI rUbragmanlkçN³minsIuemRTIbnþic b:uEnþ\T§iBl flexural-
torsionalRtUv)anecal.
       G½kSsIuemRTIbBaÄrCaG½kSemmYyEdleKminRtUvkarKNna. eKnwgrkG½kSemedkedayeRbI
principle of moment³ plbUkm:Um:g;RkLaépÞrbs;FatupSMnImYy²eFobnwgG½kSNamYy ¬enAkñúg]Ta-
hrN_enH G½kSedksßitenAEpñkxagelIrbs; plateRtUv)aneRbI¦ RtUvEtesμInwgm:Um:g;RkLaépÞsrub.
eyIgeRbItarag 4>1 edIm,IsRmYldl;karKNna.
          tarag 4>1
          Component             A                        y                        Ay
          Plate                 1.500                    0.1875                   0.2812
          W                     10.3                     9.225                    95.02
          ∑                     11.8                                              95.30
          y=∑
                Ay   95.30
                   =       = 8.076in
               ∑ A 11.8
       CamYynwgTItaMgrbs;G½kSTIRbCMuTm¶n;edkEdl)anKNnaxagelI eyIgGacKNnam:Um:g;niclPaB
eFobnwgG½kSenHedayeRbI parallel-axis theorem³
          I = I + Ad 2
Edl       I=  m:Um:g;niclPaBeFobG½kSTIRbCMuTm¶n;rbs;RkLaépÞpSM
          A = RkLaépÞrbs;EpñkpSM
          I = m:Um:g;niclPaBeFobG½kSRsbeTAnwgG½kSTIRbCMuTm¶n;rbs;RkLaépÞpSM
eRKOgbgÁúMrgkarsgát;                        113                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
           cm¶ayEkgrvagG½kSBIr
          d=
      karcUlrYmBIRkLaépÞpSMnImYy²RtUv)anKNna nigRtUv)anbUkedIm,ITTYl)anm:Um:g;niclaPaBrbs;
composite area. tarag 4>2 CataragEdlbEnßmBIelItarag 4>1 edayrYmbBa©ÚlkarKNnaenH.
sRmab;G½kSQr
       y = (3 8)(4)3 + 15.3 = 17.30in 4
            1
           12
                                                         ¬ controle¦
                  Iy         17.30
          ry =           =         = 1.211in
                   A          11.8
tarag 4>2
Component           A             y            Ay         I         d            I + Ad 2
Plate               1.500         0.1875       0.2812     0.01758   7.889        93.37`
W                   10.3          9.225        95.02      510       1.149        523.6
∑                   11.8                       95.30                             617.0= I x
               KL Fy 15(12)               36
          λc =            =                       = 1.667 > 1.5
               rπ E 1.211π 29000
                ⎡ 0.877 ⎤      ⎡ 0.877 ⎤
          Fcr = ⎢       ⎥ Fy = ⎢             ⎥ (36) = 11.36ksi
                ⎢⎣ λ2c ⎥⎦      ⎢⎣ (1.667 )2 ⎥⎦
          φc Pn = φc Ag Fcr = 0.85(11.8)(11.36 ) = 114kips
cemøIy³ Design strength = 114kips .
tRmUvkarkartP¢ab;sRmab; Built-up Members EdlpSMeLIgeday Rolled Shapes
        rUbrag built-up EdleKniymCageKKWrUbragEdlpÁúMeLIgeday rolled shap EdleK[eQμaH fa
double-angle shape. Ggát;RbePTenHnwgRtUv)aneRbIedIm,IbgðajBItRmUvkarsRmab;Ggát; built-up Rb
ePTenH. rUbTI 4>20 bgðajGgát;rgkarsgát;rbs; truss EdlP¢ab;eTAnwg gusset plate enAxagcugnImYy
²rbs;va. edIm,IrkSa back-to-back seperation rbs; angle tambeNþayRbEvg fillers nig spacers
EdlmankRmas;esμInwg gusset plate RtUv)andak;enA angles edayKMlatesμI²Kña. KMlatRtUvEtmantémø
tUcRKb;RKan;edIm,IeFVI[ built-up member enHeFVIkarCalkçN³EtmYy. RbsinebIGgát;ekageFobG½kS x
¬flexural buckling¦ eRKOgP¢ab; (connector) minrgnUvbnÞúkKNnaNamYyeT ehIybBaðaénkartP¢ab;
KWsamBaØedayrkSaTItaMgrbs;Ggát;TaMgBIr. edImI,Fanafa built-up member eFVIkarCalkçN³EtmYy
T.Chhay                                             114                     Compression members
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
AISCtRmUvfa stiffness rbs;FatupSMnImYy²minRtUvFMCagbIPaKbYnén stiffness rbs; built-up
member eT.
          a 3 KL
            ≤
          ri 4 r
Edl       a=  KMlatrbs;eRKOgP¢ab;
          ri = kaMniclPaBGb,brmarbs;FatupÁúM
          KL / r = maximum slenderness ratio    rbs; built-up member
         RbsinebIGgátekageFobG½kSsIuemeRTI ¬EdlvargnUv flexural-torsional buckling eFobG½kS
 y ¦ eRKOgP¢ab;rgnUvkmøaMgkat;. lkçxNÐenHGacRtUv)anemIleXIjedayBicarNa planks BIrEdleRbICa
Fñwm RtUv)anbgðajenAkñúgrUbTI 4>21. RbsinebI plank minRtUv)anP¢ab; vanwgrGiltamépÞb:H enAeBl
EdlvargbnÞúk ehIyvanwgeFVIkarCaFñwmBIrdac;edayELkBIKña. enAeBlEdlvaRtUv)anP¢ab;edayb‘ULúg
¬b¤eRKOgP¢ab;epSgeTotdUcCa EdkeKal¦ plank TaMgBIrnwgeFVIkarEtmYy ehIyersIusþg;Tb;nwgkarrGil
nwgbegáItCakmøaMgkat;enAkñúgb‘ULúg. kareFVIkarEbbenHekItmanenAkñúg double-angle shape enAeBl
karekageFobnwgG½kS y . RbsinebIFñwm plank RtUv)andak;eday[karekagekItmaneFobnwgG½kSepSg
eTot ¬G½kS b ¦ enaH plank TaMgBIrnwgekagkñúglkçN³dUcKña ehIyKμankarrGil nigKμankmøaMgkat;.
kareFVIkarenHmanlkçN³RsedogKñanwgkarekageFobG½kS x rbs; double-angle shape . enAeBlEdl
eRKOgP¢ab;rgnUvkmøaMgkat; eKRtUvkar modified slenderness ratio EdlmantémøFMCagtémøBitR)akd.
eRKOgbgÁúMrgkarsgát;                           115                                         T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                 NPIC
                BicarNaeRKOgP¢ab;BIrRbePT³ ¬!¦ snug-tight bolt nig ¬@¦ pSar b¤ fully tightned
          ASIC E4
bolt . karbriyaylMGitBIkartP¢ab;manenAkñúgCMBUkTI7. Column load table sRmab; double-angle
KWQrelIkarpSar b¤ fully tightened bolt. sRmab;krNIenH³
                          2                                  2
          ⎛ KL ⎞   ⎛ KL ⎞            α2 ⎛ a             ⎞
                                          (   )
          ⎜    ⎟ = ⎜    ⎟   + 0.82         ⎜⎜           ⎟⎟           (AISC Equation E4-2)
          ⎝ r ⎠m   ⎝ r ⎠o          1 + α 2 ⎝ rib         ⎠
Edl       (KL / r )o = original unmodified slenderness ratio
          (KL / r )m = modified slenderness ratio
          rib =   kaMniclPaBrbs;FatupSMeFobG½kSRsbeTAG½kSénkarekagrbs;Ggát;
                                    h
          α = separation ratio =
                                   2rib
          h=  cm¶ayrvagTIRbCMuTm¶n;rbs;FatupSM ¬EkgeTAnwgG½kSénkarekagrbs;Ggát;¦
          enAeBlEdleRKOgP¢ab;Ca snug-tight bolts
                         2                2
          ⎛ KL ⎞   ⎛ KL ⎞ ⎛⎜ a ⎞⎟
          ⎜    ⎟ = ⎜    ⎟ +⎜ ⎟                                       (AISC Equation E4-1)
          ⎝ r ⎠m   ⎝ r ⎠ o ⎝ rib ⎠
          Column load tablesRmab; double-angle shape bgðajBIcMnYneRKOgP¢ab;caM)ac;sRmab;
flexural-torsional buckling strength Edl[tamG½kS y . cMnYneRKOgP¢ab;sRmab; flexural buckling
strength tamG½kS x RtUv)ankMNt;tamPaBcaM)ac;Edlfa slenderness rbs; angle mYyminRtUvFMCagbI
PaKbYnén slenderness rbs; double-angle shape TaMgmUleT.
]TahrN_ 4>16³ KNna design strengthrbs;Ggát;rgkarsgát;EdlbgðajenAkñúgrUbTI 4>22. Edl
rag angle BI 5 × 3 × 12 RtUv)andak;eday[eCIgEvgTl;xñgKña ehIyXøatBIKña 38 inch . RbEvg
RbsiT§PaB KL = 16 feet nigman fully tightened intermediate connectors cMnYn 3 . eRbIEdk A36 .
T.Chhay                                           116                      Compression members
viTüasßanCatiBhubec©keTskm<úCa                                                   Department of Civil Engineering
dMeNaHRsay³
KNna flexural buckling strength sRmab;G½kS x
           KL 16(12)
              =      = 120.8
           rx   1.59
                 KL      Fy          120.8      36
          λc =                   =                   = 1.355 < 1.5
                 rπ       E           π        29000
                    eRbI AISC Equation E2-2
          Fcr = (0.658)λc Fy = (0.658)(1.355) (36) = 16.69ksi
                                 2                       2
          φc Pn = φc Ag Fcr = 0.85(7.5)(16.69) = 106kips
sRmab;G½kS y
           KL 16(12
              =      = 153.6
           ry   1.25
edIm,IkMNt; flexuaral-torsional buckling strength sRmab;G½kS y eRbI modified slenderness ratio
edayQrelIKMlatrbs;eRKOgP¢ab;. KMlatrbs;eRKOgP¢ab;KW
               16(12)
          a=          = 48in
                 4
bnÞab;mk           a a
                      = =
                             48
                   ri rz 0.648
                                = 74.07 < 0.75(153.6 ) = 115.2 (OK)
                    rib = ry = 0.829in
                    h = 2(0.75) + = 1.875in
                                   3
                                   8
                           h      1.875
                    α=        =         = 1.131
                         2rib 2(0.829)
BI AISC Equation E4-2, modified slenderness ration KW
                                    2                                2
                    ⎛ KL ⎞   ⎛ KL ⎞          α2 ⎛ a ⎞
                    ⎜    ⎟ = ⎜
                    ⎝ r ⎠m
                                  ⎟ + 0.82
                             ⎝ r ⎠o
                                                   ⎜⎜ ⎟⎟
                                                        (
                                           1 + α 2 ⎝ rib ⎠     )
                                      (153.6)2 + 0.82 (1.131) 2 ⎛⎜ 48 ⎞⎟
                                                               2             2
                                 =
                                                     [1 + (1.313) ]⎝ 0.829 ⎠     = 158.5
témøenHRtUv)aneRbICMnYs[ KL / ry sRmab;KNna Fcry
                            KL        Fy       158.5    36
                    λc =                   =                 = 1.778 > 1.5
                            rπ         E        π      29000
eRKOgbgÁúMrgkarsgát;                                     117                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                        NPIC
eRbI AISC Equation E2-3
                          ⎡ 0.877 ⎤        ⎡ 0.877 ⎤
                   Fcry = ⎢        ⎥ Fy = ⎢             ⎥ (36 ) = 9.987ksi
                          ⎣⎢ λc ⎦⎥         ⎣⎢ (1.778) ⎦⎥
                               2                      2
                            GJ 11200(2 × 0.322)
                   Fcrz =        =                       = 151.4ksi
                              2
                           Ar o       7 .5( 2  .52 )2
                   Fcry + Fcrz = 9.987 + 151.4 = 161.4ksi
                            ⎛ Fcry + Fcrz   ⎞⎡         4 Fcry Fcrz H    ⎤
                   Fcrft = ⎜⎜               ⎟ ⎢1 − 1 −                  ⎥
                            ⎝     2H        ⎟⎢
                                            ⎠⎣        (Fcry + Fcrz 2)   ⎥
                                                                        ⎦
                            161.4 ⎡           4(9.987 )(151.4 )(0.645) ⎤
                         =           ⎢1 − 1 −                          ⎥ = 9.748ksi
                           2(0.645) ⎢                  (        )2
                                                                       ⎥⎦
                                     ⎣                  161 . 4
                   φc Pn = φc Ag Fcrft = 0.85(7.50 )(9.748) = 62.1kips            (control)
cMNaMfa lT§plenAkñúg]TahrN_enHmantémøRsedogKñanwgtémøEdl[enAkñúg column load table
cemøIy³ Design strength KW 62kips
]TahrN_ 4>17³ KNnaGgát;rgkarsgát;EbEvg 14 feet edIm,IRTbnÞúkemKuN 50kips . eRbIEdkrUbrag
double angle EdlmaneCIgxøITl;xñgKña nigmanKMlatBIKña 3 8 inch . Ggát;RtUv)anTl;BRgwgenARtg;
Bak;kNþalRbEvgedIm,ITb;nwgkarekageFobG½kS x ¬G½kSEdlRsbeTAnwgeCIgEvg¦. kMNt;cMnYneRKOg
P¢ab;enAkNþalEdlRtUvkar ¬EdkEdlBRgwgenABak;kNþalRbEvgRtUv)anpþl;eRKOgP¢ab;mYy¦. eRbIEdk
 A36 .
dMeNaHRsay³ BI column load table eRCiserIs 2L3 12 × 3 × 14 EdlmanTm¶n; 10.8lb / ft .
smtßPaBrbs;muxkat;enHKW 51kips edayQrelIkarekageFobG½kS y CamYynwgRbEvgRbsiT§PaB
14 feet . ¬ersIusþg;EdlRtUvKñanwg flexural buckling eFobG½kS x KW 60kips EdlQrelIRbEvg
RbsiT§PaB 7 feet ¦.
        karekageFobG½kS y eFVI[eRKOgP¢ab;rgkmøaMgkat; dUcenHcMnYneRKOgP¢ab;RKb;RKan; RtUv)andak;
edIm,ITb;Tl;nwgkmøaMgenH. taragbgðajfa vaRtUvkareRKOgP¢ab;cMnYn 3 .
cemøIy³ eRbI 2L3 12 × 3 × 14 CamYynwgeRKOgP¢ab;cMnYn 3 sRmab;RbEvg 14 feet .
T.Chhay                                            118                          Compression members
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
tRmUvkarcaM)ac;énkartP¢ab;sRmab; built-up member EdlpSMeLIgeday plate b¤ both plate
CamYynwg shapes
         enAeBlEdl built-up member EdlpSMeLIgeday rolled shapes BIr b¤eRcInedaymanKMlat
dac;BIKña plate RtUv)aneRbIedIm,ItP¢ab; shape. AISC E4 mankarlMGitCaeRcInGMBItRmUvkarcaM)ac;
sRmab;kartP¢ab; nigTMhMrbs; plate . tRmUvkarcaM)ac;énkartP¢ab;RtUv)an[bEnßmsRmab; built-up
compression member d¾éTeTotEdlpSMeLIgeday plate b¤ plate CamYynwg shape .
eRKOgbgÁúMrgkarsgát;                      119                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                               NPIC
                                          V.    Fñwm
                                          Beams
5>1> esckþIepþIm (Introduction)
         FñwmCaGgát;rbs;eRKOgbgÁúMEdlRTbnÞúkTTwg dUcenHehIy)aneFVI[vargnUvkarBt; (flexural or
bending). RbsinebImanvtþmanbnÞúktamG½kSkñúgbrimaNmYyFMKYrsm vanwgRtUv)aneKehAvafa beam-
column ¬EdlnwgRtUvbkRsayenAkñúgCMBUkTI6¦. enAkñúgGgát;eRKOgbgÁúMxøHEdlmanvtþman axial load
kñúgtémøtictYc Et\T§iBld¾sþÜcesþIgenHRtUv)aneKecalenAkñúgkarGnuvtþCaeRcIn ehIyeK)ancat;TukvaCa
beam. CaTUeTAFñwmRtUv)aneKdak;kñúgTisedk nigrgnUvbnÞúkbBaÄr EtvamincaM)ac;EtkñúgkrNIEbbenHeT.
Ggát;eRKOgbgÁúMEdlRtUv)aneKcat;TukCa beam RbsinebIvargnUvbnÞúky:agNaEdleFVI[vaekag(bending).
       rUbragmuxkat; (cross-sectional shape)EdlRtUv)aneKeRbICaTUeTArYmman W-, S- nig M-shapes.
eBlxøH chanel shape k¾RtUv)aneRbIdUcCaFñwmEdlpSMeLIgBIEdkbnÞH kñúgTRmg; I-, H- b¤ box shape.
Doubly symmetric shape dUcCa standard rolled W-, M- nig S-shape CarUbragEdlman
RbsiT§PaBCaeK.
        CaTUeTA rUbragEdl)anBIkarpSMrbs;EdkbnÞHRtUv)aneKKitCa plate girder b:uEnþ AISC Speci-
fication EbgEck beam BI plate girder edayQrelIpleFobTTwgelIkRmas; (width-thickness ratio)
rbs;RTnug. rUbTI 5>1 bgðajTaMg hot-rolled shape nig built-up shapeCamYynwgTMhMEdlRtUv
eRbIsRmab; width-thickness ratios. Rbsin
         t
          h 2555
            ≤
                F
                       ¬xñat IS¦
                                      t
                                       h
                                         ≤
                                           970
                                            F
                                                    ¬xñat US¦
           w         y                w         y
Ggát;eRKOgbgÁúMRtUv)aneKcat;TukCa beam edayminKitfavaCa rolled shape b¤Ca built-up. EpñkenH
RtUv)anerobrab;enAkñúg chapter F of the Specification, “Beams and Other Flexural Members”
ehIyvak¾CaRbFanbTEdlRtUvykmkniyayenAkñúgCMBUkenH. RbsinebI
T.Chhay                                   120                                         Beams
viTüasßanCatiBhubec©keTskm<úCa                                         Department of Civil Engineering
           h 2555
          tw
             >
               Fy
                                 ¬xñat IS¦     h
                                              tw
                                                 ≤
                                                   970
                                                    Fy
                                                           ¬xñat US¦
enaHGgát;eRKOgbgÁúMRtUv)aneKcat;TukCa plate girder nwgRtUv)anerobrab;enAkñúg Chapter G of the
specification, “Plate Girders”. enAkñúgesovePAenHeyIgnwgniyayBI plate girder kñúgCMBUkTI 10.
edaysarEt slenderness rbs;RTnug plate girder RtUvkarBicarNaBiessenABIelI nigBIeRkamEdl
caM)ac;sRmab;Fñwm.
        RKb; standard hot-rolled shape EdlGacrk)anenAkñúg Manual KWsßitenAkñúgRbePT beams.
Built-up shape PaKeRcInRtUv)ancat;cMNat;fñak;Ca plate girder b:uEnþ built-up shape xøHRtUv)ancat;
TukCaFñwmedaykarkMNt;rbs; AISC.
        sRmab; beams/ TMnak;TMngeKalrvag\T§iBlbnÞúk (load effects) nig strength KW
           M u ≤ φb M n
Edl       Mu =  bnSMénm:Um:g;emKuNEdlFMCageK
          φb = emKuNersIusþg;sRmab;Fñwm = 0.9
          M n = nominal moment strength
Design strength, φb M n           enAeBlxøHRtUv)aneKehAfa design moment.
5>2> kugRtaMgBt; nigm:Um:g;)øasÞic    (Bending Stress and the Plastic Moment)
        edIm,IGackMNt; nominal design strength M n dMbUgeyIgRtUvBinitüemIlkarRbRBwtþeTA
(behavior) rbs;Fñwmtamry³énkardak;bnÞúkRKb;lkçxNÐ taMgBIbnÞúktUcrhUtdl;bnÞúkEdlGaceFVIeday
Fñwm)ak;. BicarNaFñwmEdlbgðajenAkñúgrUbTI 5>2 a EdlRtUv)andak;edayeFVIy:agNa[vaekageFobnwg
G½kSem ¬G½kS x − x sRmab; I- nig H-shape¦. sRmab; linear elastic material nigkMhUcRTg;RTaytUc
karBRgaykugRtaMgBt;RtUv)anbgðajenAkñúg rUbTI 5>2 b CamYynwgkugRtaMgEdlRtUv)ansnμt;faBRgay
esμItamTTwgrbs;Fñwm. ¬kmøaMgkat;RtUv)anBicarNaedayELkenAkñúgEpñkTI 5>7¦. BI elementary
mechanics of materials/ kugRtaMgRtg;cMNucNamYyGackMNt;)anBI flexural formula³
         fb =
               My
               Ix
                                                                          ¬%>!¦
Edl M CamU:m:g;Bt;enAelImuxkat;EdlBicarNa/ y Cacm¶ayEkgBIbøg;NWt ¬neutral plane) eTAcMNuc
Edlcg;dwg nig I x Cam:Um:g;niclPaBénmuxkat;EdleFobnwgG½kSNWt. sRmab; homogeneous
Fñwm                                              121                                          T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
material   G½kSNWtRtYtsIuKñanwgG½kSTIRbCMuTm¶n;. smIkar %>! KWQrenAelIkarsnμt;fa karBRgay strain
manlkçN³CabnÞat;BIelIdl;eRkam Edlmüa:geToteyIgGacsnμt;fa muxkat;Edlrab (plane) munrgkar
Bt;enArkSarabdEdleRkaykarBt;. el;IsBIenH muxkat;FñwmRtUvEtmanG½kSsIuemRTIbBaÄr ehIybnÞúkRtUv
EtsßitenAkñúgbøg;EdlmanG½kSsIemRTIenaH. FñwmEdlminbMeBjtamklçxNÐTaMgenH RtUv)anBicarNaenA
kñúgEpñkTI 5>13. kugRtaMgGtibrmanwgekItenAsrésEpñkxageRkAbMput Edl y mantémøGtibrma.
dUcenH vamantémøGtibrmaBIrKW kugRtaMgsgát;GtibrmarnAsrésEpñkxagelIbMput nigkugRtaMgTaj
GtibrmaenAsrésEpñkxageRkambMput. RbsinebIG½kSNWtCaG½kSsIuemRTIkugRtaMgTaMg BIrenHnwgmantémø
esμIKña.
         sRmab;kugRtaMgGtibrma smIkar %>! GacsresrkñúgTRmg;
         f max =
                  Mc
                     =
                         M
                  Ix Ix / c Sx
                              =
                                M
                                                                             ¬%>@¦
Edl c CacMNayEdkBIG½kSNWteTAsrésrEpñkxageRkAbMput ehIy S x Cam:UDulmuxkat;eGLasÞicénmux
kat; (elastic section modulus) . sRmab;RKb;rUbragmuxkat; section modulus mantémøefr. sRmab;
mux kat;minsIuemRTI S x nwgmantémøBIr³ mYysRmab;srésEpñkxagelIbMput nigmYyeTotsRmab;srés
EpñkxageRkambMput. témørbs; S x sRmab; standard rolled shape RtUv)andak;kñúg dimension and
properties table enAkñúg Manual.
T.Chhay                                    122                                          Beams
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
          smIkar %>! nig %>@ mantémøeTA)ankñúgkrNIbnÞúktUclμmEdlsmÖar³enAEtsßitenAkñúg linear
elastic range. sRmab;eRKOgbgÁúMEdk vamann½yfakugRtaMg f max minRtUvFMCag f y ehIymann½yfa
m:Um:g;minRtUvFMCag
          M y = Fy S x
Edl M y Cam:Um:g;Bt;EdleFVI[FñwmeTAdl;cMNuc yielding.
        enAkñúgrUbTI 5>3 FñwmTRmsamBaØCamYynwgbnÞúkcMcMNcu enAkNþalElVgRtUv)anbgðajnUvkardak;
bnÞúktamdMNak;kalCabnþbnÞab;. enAeBl yielding cab;epþIm karBRgaykugRtaMgenAelImuxkat;Elg
Fñwm                                      123                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
manlkçN³CabnÞat; ehIy yielding nwgrIkralBIsrésEpñkxageRkAeTAG½kSNWt. kñúgeBlCamYyKña
tMbn;Edlrg yield nwglatsn§wgtambeNþayFñwmBIG½kSkNþalrbs;FñwmEdlm:Um:g;Bt;mantémøesμInwg
 M y enATItaMgCaeRcIn. tMbn;Edlrg yield enHRtUv)angðajedayépÞBN’exμAenAkñúgrUbTI 5>3 c nig d.
enAkñúgrUbTI 5>2 b yielding eTIbnwgcab;epþIm. enAkñúgrUbTI 5>2 c yielding )anrIkralcUleTAkñúgRTnug
ehIyenAkñúgrUbTI 5>2 b muxkat;TaMgmUl)an yield. eKRtUvkarm:Um:g;bEnßmkñúgtémøCamFüm vaesμIRb
Ehl 12% én yield moment edIm,InaMFñwmBIdMNak;kal (b) eTAdMNak;kal (d) sRmab; W-shape .
enAeBleKeTAdl;dMNak;kal (d) RbsinebIenAEtbEnßmbnÞúkeTotFñwmnwg)ak; enAeBlEdlFatuTaMgGs;
rbs;muxkat;)aneTAdl; yield plateau rbs; stress-strain curve ehIy unrestrict plastic flow nwg
ekIteLIg. Plastic hing RtUv)aneLIgRtg;G½kSrbs;Fñwm ehIysnøak;enHCamYynwgsnøak;BitR)akdenA
xagcugrbs;FñwmbegáIt)anCa unstable machanism . kñúgeBl plastic collapse, mechanism motion
RtUv)anbgðajenAkñúgrUbTI 5>4. Structural analysis EdlQrelIkarBicarNa collapse mechanism
RtUv)aneKehAfa plastic analysis. karENnaMBI plastic analysis nig design RtUv)anerobrab;enAkñúg
Appendix A kñugesovePAenH.
        lT§PaBm:Um:g;)aøsÞic EdlCam:Um:g;EdlRtUvkaredIm,IbegáItsnøak;)aøsÞic GacRtUv)anKNnay:ag
gayRsYlBIkarBicarNakarBRgaykugRtaMgRtUvKña. enAkñúgrUbTI 5>5 ers‘ultg;kugRtaMgsgát; nigkug
RtaMgTajRtUv)anbgðaj Edl Ac CaRkLaépÞmuxkat;Edlrgkarsgát; nig At CaRkLaépÞmuxkat;Edl
rgkarTaj. RkLaépÞTaMgenHCaRkLaépÞEdlenABIxagelI nigBIxageRkamG½kSNWt)aøsÞic (plastic
neutral axis) EdlmincaM)ac;dUcKñanwgG½kSNWteGLasÞc i . BIsßanPaBlMnwgrbs;kmøaMg eyIg)an
          C =T
          Ac F y = At F y
          Ac = At
T.Chhay                                     124                                           Beams
viTüasßanCatiBhubec©keTskm<úCa                                        Department of Civil Engineering
dUcenHG½kSNWt)aøsÞicEckmuxkat;CaBIcMENkesμIKña. sRmab;rUbragEdlsIemRTIeFobnwgG½kSénkarBt;
G½kSNWteGLasÞic nigG½kSNWt)aøsÞicKWdUcKña. m:Um:g;)aøsÞic M p Ca resisting couple EdlbegáIteLIg
edaykmøaMgBIresμIKña nigmanTisedApÞúyKña b¤
                                             ⎛ A⎞
          M p = Fy ( Ac )a = Fy ( At )a = Fy ⎜ ⎟a = Fy Z
                                             ⎝2⎠
Edl       A=  RkLaépÞmuxkat;srub
          a = cm¶ayrvagG½kSNWtrbs;RkLaépÞBak;kNþalTaMgBIr
              ⎛ A⎞
          Z = ⎜ ⎟a = m:UDulmuxkat;)aøsÞic (plastic section modulus)
              ⎝2⎠
]TahrN_ 5>1³ CamYynwg built-up shape EdlbgðajenAkñúgrUbTI 5>6 cUrkMNt; ¬k¦ elastic section
modulus S nig yielding moment M y nig ¬x¦ plastic section modulus Z nig plastic moment
M p . karekageFobnwgG½kS x ehIyEdkEdleRbIKW A572 Grade 50 .
dMeNaHRsay³
¬k¦ edaysarvamanlkçN³sIuemRTI enaH elastic neutral axis ¬G½kS x ¦ sßitenABak;kNþalmuxkat;
     ¬TItaMgrbs;TIRbCMuTm¶n;¦. m:Um:g;niclPaBrbs;muxkat;GacRtUvkMNt;)anedayeRbIRTwsþIbTG½kS
     Rsb (parallel axis theorem) ehIylT§plénkarKNnaRtUv)ansegçbenAkñúgtarag 5>1.
       tarag 5>1
Fñwm                                          125                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                        NPIC
           Component            I                A              d                I + Ad 2
           Flange                     260417            5000           162.5          132291667
           Flange                     260417            5000           162.5          132291667
           Web                      28125000               -               -           28125000
           Sum                                                                        292.71×106
          Elastic section modulus   KW
               I 292.71 ⋅10 6 292.71 ⋅10 6
          S=    =                =         = 1.67 ⋅10 6 mm 3
               c 25 + (300 / 2 )   175
          Yield moment   KW
          M y = Fy S = 345 × 1.67 = 576.15kN .m
cemøIy³ S = 1.67 ⋅106 mm3 nig M y = 576.15kN .m
¬x¦ edaysarrUbragenHmanlkçN³sIuemRTIeFobnwgG½kS x / enaHG½kSenHEckmuxkat;CaBIrcMEnkesμIKña
      ehIyG½kSenHk¾Ca plastic neutral axis Edr. TIRbCMuTm¶n;rbs;épÞBak;kNþalxagelIRtUv)an
      kMNt;edayeRbI principle of moment. Kitm:Um:;g;eFobG½kSNWténmuxkat;TaMgmUl ¬rUbTI 5>6¦
      ehIykarKNnaRtUv)anerobCatarag 5>2.
          tarag 5>2
           Component            A                y               Ay
           Flange                        5000           162.5            812500
           Web                           1875             75             140625
           Sum                           6875                            953125
          y=
               ∑ Ay = 953125 = 138.64mm
               ∑A      6875
          rUbTI 5>7 bgðajfaédXñas;m:Um:g;rbs;m:Umg: ;KUrEdlekItmanenAxagkñúgKW
          a = 2 y = 2(138.64) = 277.28mm
T.Chhay                                          126                                           Beams
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
       ehIy plastic section modulus KW
            ⎛ A⎞
        Z = ⎜ ⎟a = 6875 × 277.28 = 1.906 ⋅10 6 mm 3
            ⎝2⎠
       Plastic moment            KW
        M p = F y Z = 345 × 1.906 = 657.6kN .m
cemøIy³ Z = 1.906 ⋅106 mm3 nig                 M p = 657.6kN .m
]TahrN_ 5>2³ KNna plastic moment, M p sRmab; W 10 × 60 rbs;Edk A36 .
dMeNaHRsay³ BI dimensions and properties tables enAkñúg Part1 of the Manual
          A = 17.6in 2
          A 17.6
            =       = 8.8in
          2     2
       TIRbCMuTm¶n;sRmab;RkLaépÞBak;kNþalGacrk)anBIkñúgtaragsRmab; WT-shapes EdlRtUv)an
kat;ecjBI W-shapes. rUbragEdlRtUvKñarbs;vaKW WT 5 × 30 ehIycm¶ayBIépÞxageRkAbMputrbs;søab
eTATIRbCMuTm¶n;KW 0.884in dUcbgðajenAkñúgrUbTI 5>8.
          a = d − 2(0.884 ) = 10.22 − 2(0.884 ) = 8.452in
              ⎛ A⎞
          Z = ⎜ ⎟a = 8.8(8.452) = 74.38in 3
              ⎝2⎠
lT§plEdlTTYl)anenHmantémøRbhak;RbEhlnwgtémøEdl[enAkñúg            dimensions and properties
tables ¬PaBxusKñabNþalmkBIkarKitcMnYnxÞg;eRkayex,ós¦
cemøIy³ M p = Fy Z = 36(74.38) = 2678in. − kips = 223 ft − kips
5>3> lMnwg                       (Stability)
Fñwm                                                   127                                T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
     RbsinebIFñwmGacrkSalMnwgrbs;va)anrhUtdl;vasßitkñúglkçxNÐ)aøsÞiceBjelj enaH       nominal
moment strength RtUv)aneKKitfamantémøesμInwg plastic moment capacity Edl
          Mn = M p
pÞúymkvij M n < M p .
      dUckrNIssrEdr PaBKμanlMnwgGacmann½yCalkçN³srub b¤Gacmann½yCalkçN³edaytMbn;.
karekagrbs;Ggát;RtUv)anbgðajenAkñúgrUbTI 5>9 a. enAeBlFñwmekag tMbn;rgkarsgát; ¬EpñkxagelI
G½kSNWt¦ manlkçN³ nigkareFVIkarRsedognwgssr ehIyvanwg buckle RbsinebIEpñkrbs;muxkat;man
lkçN³RsavRKb;RKan;. EtvamindUcssr edaysartMbn;rgkarsgát;rb;muxkat;RtUv)anTb;edayEpñkEdl
rgkarTaj ehIyPaBdabmkxageRkA (flexural buckling) RtUv)anbegáIteLIgeday twisting (torsion).
karbegáItnUvPaBKμanlMnwgenHRtUv)aneKehAfa lateral-torsional buckling (LTB). eKGacbgáar
Lateral-torsional buckling )aneday lateral bracing tMbn;rgkarsgát; CaBiesssøabEdlrgkar
sgát;CamYynwgcenøaHRKb;RKan;. karBRgwgenHRtUv)anbgðajlkçN³nimitþsBaØaenAkñúgrUbTI 5>9 b. dUcGVI
EdleyIg)aneXIj moment strength GaRs½yeTAnwgRbEvgEpñkEdlmin)anBRgwgEdlCacm¶ayrvag
cMNucénTRmxag (lateral support) .
        eTaHbICaFñwmGacTTYlm:Um:g;RKb;RKan;edIm,IeFVI[vaeTAdl;lkçxNÐ)aøsÞiceBjelj       vak¾RtUv
GaRs½yfaetIva)anrkSa cross-sectional integrity b¤Gt;. vanwg)at;bg; integrity RbsinebIEpñkrgkar
sgát;NamYyrbs;muxkat; buckle. RbePT buckling GacCa compression flange buckling Edl
eKehAfa flange local buckling (FLB) b¤ buckling énEpñkrgkarsgát;rbs;RTnug EdleKehAfa web
local buckle (WLB). dUcEdl)anerobrab;enAkñúgCMBUk 4 RbePT local buckling epSgeTotekIteLIg
edayGaRs½ynwg width-thickness ratio rbs;Epñkrgkarsgát;rbs;muxkat;.
T.Chhay                                   128                                          Beams
viTüasßanCatiBhubec©keTskm<úCa                                           Department of Civil Engineering
             rUbTI 5>10 bgðajBI\T§iBlrbs; local and lateral-torsional buckling. FñwmR)aMdac;eday
ELkRtUv)anbgðajenAkñúgRkaPicénbnÞúk-PaBdab. ExSekagTI ! CaExSekagbnÞúk-PaBdabrbs;FñwmEdl
KμanlMnwg ¬edayviFINak¾eday¦ ehIy)at;bg;lT§PaBRTbnÞúkrbs;vamuneBlvaeTAdl; first yield ¬rUbTI
5>3 b¦. ExSekag @ nig # RtUvKñanwgFñwmEdlGacRTbnÞúkedayqøgkat; first yield bu:Enþmin)anyUrRKb;
RKan;edIm,IbegáItsnøak;)aøsÞic nigTTYl)an plastic collapse. RbsinebIvaGaceTAdl; plastic collapse
enaHExSekagbnÞúk-PaBdabnwgmanlkçN³dUcExSekag $ b¤ %. ExSekag $ sRmab;krNIm:Um:g;esμIenA
eBjRbEvgFñwmTaMgmUl ehIyExSekag % sRmab;FñwmEdlrgm:Um:g;ERbRbYl (moment gradient) .
eKGacTTYl)ankarKNnaRbkbedaysuvtßiPaBCamYynwgFñwmEdlRtUvKñanwgExSekagNamYyénExSekag
TaMgenH b:uEnþExSekag ! nig @ bgðajBIkareRbIsmÖar³edayKμanlkμN³RbsiT§PaB.
5>4> cMNat;fñak;rbs;rUbrag             (Classification of Shapes)
          AISC cat;cMNat;fñak;rUbragmuxkat;Ca compact, noncompact b¤ slender GaRs½ynwgtémø
rbs; width-thickness ratios. sRmab; I- nig H-shapes pleFobsRmab;søab (unstiffened element)
KW b f / 2t f ehIypleFobsRmab;RTnug (stiffened element) KW h / t w . eKGacrk)an karcat;cMNat;
fñak;rbs;muxkat;enAkñúg Section B5 of the specification, “Local Buckling” in Table B5.1. vanwg
RtUv)ansegçbdUcxageRkam. edayyk
          λ = width-thickness ratio
          λ p = upper limit for compact category
          λr = upper limit for noncompact category
enaH RbsinebI       λ ≤ λp       ehIysøabP¢ab;eTAnwgRTnugCab;Kμandac; enaHrUbragmanlkçN³ compact.
Fñwm                                               129                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
     RbsinebI λ p < λ ≤ λr enaHrUbragmanlkçN³ uncompact.
     RbsinebI λ > λr enaHrUbragmanlkçN³ slender.
cMNat;fñak;RtUvQrelI width-thickness ratio rbs;muxkat;EdlmantémøFMCag. ]TahrN_ RbsinebI
RTnugCa compact ehIysøabCa noncompact enaHrUbragRtUv)ancat;cMNat;fñak;Ca noncompact .
tarag 5>3 RtUv)andkRsg;ecjBI AISC Table B5.1 nigman width-thickness ratio sRmab;muxkat;
hot-rolled I- nig H-shape.
tarag 5>3 Width-thickness parameters*
                                                        λp                      λr
          Element                    λ
                                                  IS         US         IS            US
                                    bf           170         65        370            141
          Flange
                                    2t f           Fy         Fy      Fy − 69        F y − 10
                                     h           1680        640       2550           970
           Web
                                    tw             Fy         Fy        Fy             Fy
*   sRmab; hot-rolled I- nig H-shape rgkarBt;
5>5>      Bending Strength of Compact Shapes
        FñwmGac)ak;edayvaTTYlm:Um:g; M p ehIyvakøayCa)aøsÞiceBjelj b¤k¾vaGac)ak;eday
                 !> lateral-torsional buckling (LTB), eday elastically b¤ inelastically
                 @> flange local buckling (FLB), eday elastically b¤ inelastically
                 #> web local buckling (WLB), eday elastically b¤ inelastically
        RbsinebIkugRtaMgBt;Gtibrma (maximum bending stress) tUcCagEdnsmamaRt
(proportional limit) enAeBlEdl buckling ekIteLIg failure enHRtUv)aneKehAfa elastic. RbsinebI
minGBa©wgenH vaCa inelastic. ¬sUmemIlkarbkRsayEdlTak;TgenAkñúgEpñk 4>2 rbs;emeronTI 4 .¦
        edIm,IgayRsYl CadMbUgeyIgcat;cMNat;fñak;FñwmCa compact, noncompact b¤ slender. kar
erobrab;enAkñúgEpñkenHGnuvtþcMeBaHFñwmBIrRbePT³ ¬!¦ hot-rolled I-nig H-shape ekageFobG½kSxøaMg
ehIyEdlbnÞúkenAkñúgbøg;énG½kSexSay ehIy ¬2¦ channels ekageFobG½kSxøaMg ehIybnÞúkdak;tam
shear center b¤k¾RtUv)anTb;RbqaMgnwgkarrmYl. ¬ Shear center CacMNucenAelImuxkat; EdltamcMNuc
enHbnÞúkTTwgRtUv)ankat;tam RbsinebIFñwmekagedayKμankarrmYl.¦ vanwgekItmancMeBaH I-nig H-
T.Chhay                                         130                                    Beams
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
Shapes  . eKminBicarNaGMBI Hybrid beam ¬Edlsøab nigRTnugrbs;vamanersIusþg;epSgKña¦eT ehIy
smIkar AISC xøHnwgRtUv)anEkERbbnþicbnþÜcedIm,IeqøIytbeTAnwgkarkMNt;enH edayeKCMnYs Fyf nig
 F yw EdlCa yield strength rbs;søab nigRTnugeday F y .
        eyIgcab;epþImCamYynwg compact shape EdlRtUv)ankMNt;CarUbragEdlRTnugrbs;vaRtUv)an
P¢ab;eTAsøabCab;\tdac; ehIyEdlbMeBjnUvtRmUvkar width-thickness ratio xageRkamsRmab;søab nig
RTnug³
         bf                                          bf
         2t
             ≤
                170
                 F
                      nig t
                           h 1680
                             ≤
                               F
                                     ¬xñatCa IS ¦
                                                     2t
                                                         ≤
                                                            65
                                                            F
                                                                 nig t
                                                                      h
                                                                        ≤
                                                                          640
                                                                           F
                                                                              ¬xñatCa IS ¦
              f         y        w   y                 f       y        w        y
     sRmab;RKb; standard hot-rolled shape Edl)anrayeQμaHenAkñúg Manual )aneKarBlkçxNÐxag
elI dUcenHeKRtUvkarBinitüEtpleFobsøabb:ueNÑaH. rUbragPaKeRcInk¾bMeBjtRmUvkarrbs;søabEdr
dUcenH vaRtUv)ancat;cMNat;fñak;Ca compact. RbsinebIFñwmCa compact ehIymanTRmxagCab; b¤
unbraced length xøI enaH nominal moment strength, M n Ca plastic moment capacity eBjrbs;
rUbrag M p . sRmab;Ggát;EdlminmanTRmxagRKb;RKan; moment resistance RtUv)ankMNt;eday
lateral-torsional buckling strength EdlmanlkçN³Ca elastic b¤ inelastic .
         RbePTTImYy (laterally supported compact beam) CakrNIEdlFmμta nigsamBaØCageK.
AISC F1.1 [ nominal strength Ca
          Mn = M p                                                   (AISC Equation F1.1)
Edl       M p = F y Z ≤ 1 .5 M y
        témøkMNt;eday 1.5M y sRmab; M p KWedIm,IkarBarbnÞúkEdleFVIkarelIslb;
nigRtUv)anbMeBj enAeBlEdl
         Fy Z ≤ 1.5Fy S     b¤ ZS ≤ 1.5
sRmab; I- nig H-shape ekageFobG½kSxøaMg enaH Z / S EtgEttUcCag 1.5 Canic©. ¬b:uEnþsRmab; I- nig
H-shape ekageFobG½kSexSay enaH Z / S nwgminEdltUcCag 1.5 eT.¦
]TahrN_ 5>3³ FñwmEdlbgðajenAkñúgrUbTI 5>11 CaEdl A36 EdlmanrUbrag W16 × 31 . vaRTkM
ralxNÐebtugGarem:Edlpþl;nUv continuous lateral support dl;søabrgkarsgát;. Service dead
Fñwm                                      131                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                     NPIC
load KW 450lb / ft . bnÞúkenHRtUv)andak;BIelIFñwm vaminRtUv)anKItbBa©ÚlbnÞúkpÞal;rbs;FñwmeT. Service
live load KW 550lb / ft . etIFñwmenHman moment strength RKb;RKan;b¤eT?
dMeNaHRsay³ Service dead load srub edayrYmbBa©ÚlTaMgTm¶n;rbs;FñwmKW
          wD = 450 + 31 = 481lb / ft
sRmab;FñwmTRmsamBaØrgbnÞúkBRgayesμI m:Um:g;Bt;GtibrmaekItmanenAkNþalElVgesμInwg
                 1
          M max = wL2
                 8
Edl w CabnÞúkEdlmanxñatkmøaMgelIÉktþaRbEvg ehIy L CaRbEvgElVg. enaH
               1      0.481× 30 2
          M D = wL2 =             = 54.11 ft − kips
               8          8
                  0.55 × 30 2
          ML =                = 61.88 ft − kips
                      8
edaysar dead load tUcCag live load min)an 8 dg enaHbnSMbnÞúk A4-2 nwgmantémøFMCageK³
          M u = 1.2 M D + 1.6 M L = 1.2 × 54.11 + 1.6 × 61.88 = 164 ft − kips
müa:gvijeTot bnÞúkGacRtUv)anKitemKuNmun
          wu = 1.2 wD + 1.6 wL = 1.2 × 0.431 + 1.6 × 0.550 = 1.457kips / ft
               1        1.457 × 30 2
          M u = wu L2 =              = 164 ft − kips
               8             8
RtYtBinitü compactness ³
         bf
         2t
             = 6.3    ¬BI Part 1 of the Manual ¦
             f
           65
           Fy
              =
                65
                 36
                    = 10.8 > 6.3       dUcenH søabCa compact .
           h
          tw
             <
               640
                Fy
                          ¬sRmab;RKb;rUbragenAkñúg Manual ¦
dUcenH W 16 × 31 Ca compact sRmab;Edk A36 .
edaysarFñwmCa compact ehIymanTRmxag
          M n = M p = Fy Z x = 36(54.0 ) = 1944in − kips = 162 ft − kips
T.Chhay                                           132                                       Beams
viTüasßanCatiBhubec©keTskm<úCa                                         Department of Civil Engineering
RtYtBinitüsRmab;                 M p ≤ 1.5M y   ³
          Zx     54
              =       = 1.15 < 1.5        (OK)
          S x 47.2
          φb M n = 0.90(162 ) = 146 ft − kips < 164 ft − kips   (NG)
cemøIy³ Design moment tUcCagm:Um:g;emKuN dUcenH W 16 × 31 minRKb;RKan;.
        eTaHbICakarRtYtBinitüsRmab; M p ≤ 1.5M y RtUv)aneFVIenAkñúg]TahrN_xagelI b:uEnþvamin
caM)ac;sRmab; I- nig H-shape ekageFobG½kSxøaMg ehIyvaminRtUv)aneFVIdEdl²enAkñúgesobePAenHeT.
          Strength momentrbs; compact shape CaGnuKmn_nwg unbraced length, Lb EdlRtUv)ankM
Nt;Cacm¶ayrvagcMNucénTRmxag b¤karBRgwg. enAkñúgesovePAenH bgðajcMNucénTRmxageday “X”
dUcbgðajenAkñúgrUbTI 5>12. TMnak;TMngrvag nominal strength M n nig unbraced length RtUv)an
bgðajenAkñúgrUbTI 5>13 . RbsinebI unbraced length minFMCag L p FñwmRtUv)anBicarNamanTRm
xageBj ehIy M n = M p . RbsinebI Lb FMCag L p b:uEnþtUcCag b¤esμI)a:ra:Em:Rt Lr enaHersIusþg;nwg
QrelI inelastic LTB . RbsinebI Lb FMCag Lr enaHersIusþg;nwgQrelI elastic LTB .
Fñwm                                                133                                        T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                         NPIC
            eKGacrksmIkarsRmab;         theorical elastic lateral-torsional buckling strength   enAkñúg
Theory of Elastic Stability (Timoshenko and              Gere, 1961) nigCamYykarpøas;bþÚrnimitþsBaØaxøH
smIkarenHmanragdUcxageRkam³
                                        2
                  π                 ⎛ πE ⎞
          Mn =           EI y GJ + ⎜⎜ ⎟⎟ I y C w                                   ¬%>#¦
                  Lb                ⎝ Lb ⎠
Edl       Lb = unbraced length
          G = shear modulus = 77225 MPa        b¤ = 11200ksi sRmab;eRKOgbgÁúMEdk
          J = torsional constant
          C w = warping constant ( mm 6 )
RbsinebIm:Um:g;enAeBlEdl lateral-torsional buckling ekIteLIgFMCagm:Um:g;EdlRtUvKñanwg first yield
enaH strength QrenAelI inelastic behavior. m:Um:g;EdlRtUvKñanwg first yield KW
          M r = FL S x                                                     (AISC Equation F1-7)
Edl FL CatémøEdltUcCageKkñúgcMeNam ( Fyf − Fr ) nig Fyw . enAkñúgsmIkarenH yield stress enA
kñúgsøabRtUv)ankat;bnßyeday Fr kugRtaMgEdlenAsl; (residual stress) . sRmab; nonhybrid
member, F yf = F ym = Fy ehIy FL EtgEtesμInwg F y − Fr . teTAmuxeTotenAkñúgCMBUkenH eyIg
CMnYs FL eday Fy − Fr . Ca]TahrN_ eyIgsresr AISC Equation E1-7 Ca
                 (
          M r = F y − Fr S x)                                              (AISC Equation F1-7)
T.Chhay                                            134                                          Beams
viTüasßanCatiBhubec©keTskm<úCa                                                     Department of Civil Engineering
EdlkugRtaMgEdlenAsl; Fr = 10ksi = 69MPa sRmab; rolled-shapes nig Fr = 16.5ksi = 114MPa
sRmab; welded built-up shapes. dUcbgðajenAkñúgrUbTI 5>13 RBMEdnrvag elastic behavior nig
inelastic behavior KW unbraced length Lr Edltémørbs; Lr RtUv)anTTYlBIsmIkar %># enAeBl
Edl M n RtUv)andak;[esμI M r . eKTTYl)ansmIkarxageRkam³
          Lr =
                    ry X 1
                 (Fy − Fr )                        (
                                  1 + 1 + X 2 F y − Fr 2      )                      (AISC Equation F1-6)
Edl
         π      EGJA
 X1 =
         Sx      2
                        2
                                                                             (AISC Equation F1-8 and F1-9)
      4C w ⎛ S x ⎞
 X2 =      ⎜     ⎟
       I y ⎝ GJ ⎠
dUckrNIssrEdr inelastic behavior rbs;FñwmmanlkçN³sμúKsμajCag elastic behavior CaTUeTAeK
eRcIneRbIrUbmnþEdl)anmkBIkarBiesaF (empirical formulas). CamYynwgkarEktRmUvd¾tictYc AISC
)an[eRbIsmIkarxageRkam³
                                 ⎛ Lb − L p ⎞
         M n = M p − (M p − M r )⎜          ⎟                                   ¬%>$¦
                                 ⎜L −L ⎟
                                             ⎝ r        p⎠
                  790ry                                       300ry
Edl       Lp =
                     Fy
                                 ¬xñat IS¦             Lp =
                                                                  Fy
                                                                       ¬xñat US¦     (AISC Equation F1-4)
Nominal bending strength   rbs; compact beam RtUv)anbgðajedaysmIkar %># nig %>$ rgnUv
upper limit M p sRmab; inelastic beam RbsinebIm:Um;g;EdlGnuvtþBRgayesμIelI unbraced length
 Lb . RbsinebIdUcenaHeT vaman moment gradient ehIysmIkar %># nig %>$ RtUv)anEksRmYl
edayemKuN Cb . emKuNenHRtUv)an[eday AISC F1.2 kñúgTRmg;
                            12.5M max
          Cb =                                                                       (AISC Equation F1-3)
                  2.5M max + 3M A + 4 M B + 3M C
Edl     M max =témødac;xatrbs;m:Um:g;GtibrmaenAkñúg unbraced length (including the end points)
      M A = témødac;xatrbs;m:Um:g;enAcMNucmYyPaKbYnén unbraced length
      M B = témødac;xatrbs;m:Um:g;enAcMNucBak;kNþalén unbraced length
      M C = témødac;xatrbs;m:Um:g;enAcMNucbIPaKbYnén unbraced length
enAeBlm:Um:g;Bt;BRgayesμI témø Cb esμInwg
Fñwm                                                      135                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                       NPIC
                        12.5M
          Cb =                        = 1.0
                 2.5M + 3M + 4 M + 3M
]TahrN_ 5>4³ kMNt; Cb sRmab;FñwmTRmsamBaØRTbnÞúkBRgayesμICamYyEtnwgkarTb;xagenAxagcug
b:ueNÑaH.
dMeNaHRsay³ edaysarlkçN³suIemRTI m:Um:g;GtibrmasßitenAkNþalElVg dUcenH
                       1
          M max = M B = wL2
                       8
dUcKña edaysarlkçN³sIuemRTI m:Um:g;enAcMNucmYyPaKbIesμIm:Um:g;enAcMNucbIPaKbYn. BIrUbTI 5>14
                      wL ⎛ L ⎞ wL ⎛ L ⎞ wL 2 wL2         3
          M A = MC =      ⎜ ⎟−      ⎜ ⎟=       −     = wL2
                       2 ⎝4⎠ 4 ⎝8⎠          8    32     32
                         12.5M max                             12.5(1 / 8)
          Cb =                                =                                             = 1.14
               2.5M max + 3M A + 4 M B + 3M C 2.5(1 / 8) + 3(3 / 32) + 4(1 / 8) + 3(3 / 32)
cemøIy³ Cb = 1.14
            rUbTI 5>15 bgðajBItémørbs; Cb sRmab;krNIFmμtaCaeRcInénkardak;bnÞúk nigTRmxag.
        sRmab; unbraced cantilever beams, AISC kMNt;témø Cb = 1.0 . témø 1.0 CatémøtUc
¬edayminKitBIrrUbragrbs;Fñwm nigkardak;bnÞúk¦ b:uEnþkñúgkrNIxøHvaCatémøEdltUcEmnETn. karkMNt;
TaMgGs;én nominal moment strength sRmab; compact shapes GacRtUv)ansegçbdUcxageRkam³
        sRmab; Lb ≤ L p /
                    M n = M p ≤ 1 .5 M y                                 (AISC Equation F1-1)
T.Chhay                                        136                                            Beams
viTüasßanCatiBhubec©keTskm<úCa                                                        Department of Civil Engineering
            sRmab; L p < Lb ≤ Lr /
                             ⎡                            ⎛            ⎞⎤
                                            (
                    M n = Cb ⎢ M p − M p − M r            )⎜⎜ LLb −− LL p ⎟⎟⎥ ≤ M p     (AISC Equation F1-2)
                             ⎢⎣                           ⎝ r        p ⎠⎥⎦
            sRmab; L p > Lr /
                    M n = M cr ≤ M p                                                    (AISC Equation F1-12)
                                                  2
                        π                   ⎛ πE ⎞
Edl      M cr = Cb               EI y GJ + ⎜⎜    ⎟⎟ I y C w                             (AISC Equation F1-13)
                       Lb                   ⎝ Lb ⎠
                 C S X 2        X 12 X 2
                = b x 1    1+
                   Lb / ry    2 Lb / ry 2    (        )
       témøefr X1 nig X 2 RtUv)ankMNt;BImun ehIyRtUv)anrayCataragenAkñúg dimensions and
properties tables in the Manual.
Fñwm                                                      137                                                 T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
      \T§iBlrbs; Cb eTAelI nominal strength RtUv)anbgðajenAkñúgrUbTI5>16. eTaHbICa strength
smamaRtedaypÞal;eTAnwg Cb k¾eday EtRkaPicenH)anbgðajy:agc,as;BIsar³sMxan;rbs; upper limit
M p edayminKitBIsar³sMxan;rbs;smIkarEdlRtUveRbIsRmab; M n .
]TahrN_ 5>4³ kMNt; design strength φb M n sRmab; W14 × 68 rbs;Edk A242 Edl³
k> TRmxagCab;
x> unbraced length = 20 ft / Cb = 1.0
K> unbraced length = 20 ft / Cb = 1.75
dMeNaHRsay³
k> BI Part 1 of the Manual /W 14 × 68 KWsßitenAkñúg shape group 2 /dUcenHvaGacman yield stress
   F y = 50ksi / kMNt;faetIrUbragenHCa compact, noncompact b¤ slender.
          bf               65
                 = 7.0 <
          2t f              50
   rUbragenHKW compact dUcenH
          M n = M p = Fy Z x = 50(115) = 5750in. − kips = 479.2 ft − kips
cemøIy³ φb M n = 0.9(479.2) = 431 ft − kips
x> Lb = 20 ft nig Cb = 1.0 . KNna L p nig Lr ³
T.Chhay                                      138                                       Beams
viTüasßanCatiBhubec©keTskm<úCa                                               Department of Civil Engineering
                   300ry          300 × 2.46
           Lp =               =              = 104.4in. = 8.7 ft
                        Fy            50
   BI torsion properties tables in Part 1 of the Manual,
        J = 3.02in 4 nig C w = 5380in 6
   eTaHbICa X1 nig X 2 RtUv)anerobCataragenAkñúg dimensions and properties table in part 1 of
the Manual eyIgnwgKNnavaenATIenHsRmab;bgðaj
                    π        EGJA    π 29000(11200)(3.02)(20)
           X1 =                   =                           = 3021ksi
                   Sx         2     103         2
                                      2                             2
                  C ⎛S ⎞      ⎛ 5380 ⎞⎛    103      ⎞               −2
           X 2 = 4 w ⎜ x ⎟ = 4⎜      ⎟⎜             ⎟ = 0.001649ksi
                  I y ⎝ GJ ⎠  ⎝ 121 ⎠⎝ 11200 × 3.02 ⎠
                        ry X 1
           Lr =                       1 + 1 + X 2 ( F y − Fr ) 2
                   ( F y − Fr )
                   2.46(3021)
               =              1 + 1 + 0.001649(50 − 10 )2 = 316.8in = 26.40 ft
                    (50 − 10)
       edaysar L p < Lb < Lr strength QrelI inelastic LTB nig
                    (
           M r = F y − Fr S x =   )       (50 − 10)(103) = 343.3 ft − kips
                                      12
                    ⎡                   ⎛ Lb − L p ⎞⎤
                                      (
           M n = Cb ⎢ M p − M p − M r ⎜           )⎟⎥
                                        ⎜ Lr − L p ⎟⎥
                    ⎢⎣                  ⎝          ⎠⎦
                        ⎡                       ⎛ 20 − 8.7 ⎞⎤
                  = 1.0 ⎢479.2 − (479.2 − 343.3)⎜            ⎟⎥
                        ⎣                       ⎝ 26.4 − 8.7 ⎠⎦
cemøIy³ φb M n = 0.90(392.4) = 353 ft − kips
K> Lb = 20 ft nig Cb = 1.75 . Design strength sRmab; Cb = 1.75 KWesμInwg               1.75   dgén Design
   strength sRmab; Cb = 1.0 . dUcenH
           M n = 1.75(392.4 ) = 686.7 ft − kips > M p = 479.2 ft − kips
       Nominal strength          minGacFMCag M p / dUcenHeRbI nominal strength M n = 479.2 ft − kips
cemøIy³ φb M n = 0.90(479.2) = 431 ft − kips
                                                                   mantaragmanRbeyaCn_
Part 4 of the Manual of Steel Construction, “Beam and Girder Design,”
CaeRcInsRmab;viPaK nigKNnaFñwm. Ca]TahrN_ Load Factor Design Selection Table raynUvrUbrag
Fñwm                                                      139                                        T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
EdleRbICaTUeTAsRmab;Fñwm EdlRtUv)anerobCalMdab;én Z x . edaysar M p = Fy Z x rUbragk¾RtUv)an
erobCalMdab;én design moment φb M p . témøefrdéTeTotEdlmanRbeyaCn_k¾RtUv)anerobCatarag
EdlrYmman L p nig Lr ¬EdlCaEpñkmYyEdlKYr[FujRTan;kñúgkarKNna¦.
Plastic Analysis
        enAkñúgkrNICaeRcIn m:Um:g;emKuNGtibrma M u nwgRtUv)anTTYlBI elastic structural analysis
edayeRbIbnÞúkemKuN. eRkamlkçxNÐc,as;las; ersIusþg;EdlcaM)ac; (required strength) sRmab;rcna
sm½<n§EdlminGackMNt;edaysþaTic (statically inderteminate structure) RtUv)anrkedayeRbI plastic
analysis. AISC GnuBaØat[eRbI plastic analysis RbsinebIrUbrag compact nigRbsinebI
          Lb ≤ L pd
                 24800 + 15200(M 1 / M 2 )
Edl       L pd =
                           Fy
                                           ry         ¬xñat SI ¦    (AISC Equation F1-17)
          M1 =m:Um:g;EdltUcCageKkñúgcMeNamm:Um:g;cugTaMgBIrsRmab; unbraced segment
         M 2 = m:Um:g;EdlFMCageKkñúgcMeNamm:Um:g;cugTaMgBIrsRmab; unbraced segment
        pleFob M1 / M 2 viC¢manenAeBlEdlm:Um:g;begáIt reverse curvature enAkñúg unbraced
segment. enAeBlenH Lb Ca unbraced length EdlenACab;nwgsnøak;)aøsÞicEdlCaEpñkmYyén failure
mechanism. b:uEnþRbsinebIeKeRbI plastic analysis, nominal moment strength M n EdlenACab;nwg
snøak;cugeRkayEdlminenAEk,rsnøak;)aøsÞicRtUv)anKNnatamviFIdUcKñasRmab;FñwmEdlviPaKedayviFIeG
LasÞic ehIyvaRtUvEttUcCag M p .
5>6>      Bending Strength of Noncompact Shapes
       dUckarkt;cMNaMBImun standard W-, M-, nig S-shapes PaKeRcInCa compact sRmab; F =  y
250 MPa nig F y = 350 MPa . cMnYntictYcb:ueNÑaHCa noncompact edaysar width-thickness ratio
rbs;søab b:uEnþKμanrUbragmYyNaCa slender eT. edaysarmUlehtuTaMgenH AISC Specification edaH
Rsay noncompact nig slender flexural member enAkñúg]bsm<n§½ (Appendix F). enAkñúgesovePA
enH eyIgnwgBicarNa slender flexural member enAkñúgCMBUkTI10.
T.Chhay                                         140                                     Beams
viTüasßanCatiBhubec©keTskm<úCa                                            Department of Civil Engineering
        CaTUeTA FñwmGac)ak;eday lateral-torsional buckling, flange local buckling b¤ web local
buckling. RKb;RbePTénkar)ak;GacsßitenAkñúgEdneGLasÞic b¤ inelastic range. RTnugrbs;RKb;
rolled shapes enAkñúg Manual Ca compact dUcenH noncompact shapes CaRbFanbTsRmab;Etsßan
PaBkMNt; (limit states) én lateral-torsional buckling nig flange local buckling. ersIusþg;EdlRtUv
nwgsßanPaBkMNt;TaMgBIrRtUv)anKNna ehIyeKyktémøEdltUcCageK. BI AISC Appendix F CamYy
                 bf
          λ=
                2t f
RbsinebI λ p < λ ≤ λr / enaHsøabCa noncompact ehIy buckling Ca inelastic eyIgnwgTTYl)an
                              ⎛ λ − λp ⎞
                            (
          Mn = M p − M p − Mr ⎜         )⎟
                              ⎜ λr − λ p ⎟
                                                                              (AISC Equation A-F1-3)
                              ⎝          ⎠
Edl       λp =
               170
                Fy
                             IS   ¬sRmab; ¦
                                     λp =
                                           65
                                           Fy
                                                               ¬sRmab; US ¦
          λr =
                        370
                       F y − Fr
                                       ¬sRmab; IS ¦     λr =
                                                                141
                                                               F y − Fr
                                                                              ¬sRmab; US ¦
                   (
          M r = Fy − Fr S x       )
            kugRtaMgEdlenAesssl; = 69MPa = 10ksi sRmab; rolled shapes ¬GgÁenHRtUv)an
          Fr =
kMNt;sRmab; nonhybrid beam¦
]TahrN_ 5>6³ FñwmTRmsamBaØmYymanRbEvg 40 feet RtUv)anTb;xagenAxagcugrbs;va ehIyvargnUv
service load dUcxageRkam³
        Dead load = 400lb / ft ¬edayrYmbBa©ÚlTaMgTm¶n;Fñwm¦
          Live load = 1000lb / ft
RbsinebIeKeRbI AISC A572 Grade 50 etI W14 × 90 RKb;RKan;b¤Gt;?
dMeNaHRsay³ bnÞúkemKuN nigm:Um:g;emKuNKW
          wu = 1.2 wD + 1.6 wL = 1.2(0.40) + 1.6(1.00) = 2.08kips / ft
               1        2.08(40 )2
          M u = wu L2 =            = 416.0 ft − kips
               8            8
kMNt;lkçN³rUbragmuxkat; ¬faetICa compact, noncompact b¤ slender¦³
Fñwm                                              141                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                          NPIC
                 bf
          λ=           = 10.2
               2t f
                      65   65
          λp =           =     = 9.19
                      Fy    50
                       141       141
          λr =                =         = 22.3
                      Fy − Fr   50 − 10
eday λ p < λ < λr dUcenHrUbragenHKW noncompact. RtYtBinitülT§PaBRTRTg;edayQrelIsßanPaB
kMNt;rbs; flange local buckling³
                         50(157 )
          M p = Fy Z x =          = 654.2 ft − kips
                            12
          Mr      (               )
               = Fy − Fr S x = (50 − 10 )
                                          143
                                          12
                                              = 476.7 ft − kips
                                  ⎛ λ − λp ⎞
          Mn                  (
               = M p − M p − Mr ⎜         )
                                  ⎜ λr − λ p ⎟
                                              ⎟ = 652.4 − (654.2 − 476.7 )⎛⎜ 10.2 − 9.19 ⎞⎟ = 640.5 ft − kips
                                  ⎝           ⎠                            ⎝ 22.3 − 9.19 ⎠
Design strength        EdlQrenAelI FLBdUcenH
          φb M n = 0.9(640.5) = 576 ft − kips
RtYtBinitülT§PaBRTRTg;EdlQrelIsßanPaBkMNt;rbs; lateral-torsional buckling. BI Load
Factor Design Selection Table³
          L p = 15 ft             nig    Lr = 38.4 ft
          Lb = 40 ft > Lr
dUcenHvanwg)ak;edayeGLasÞic LTB.
BI Part 1 of the Manual/
          I y = 362in 4
          J = 4.06in 4
          C w = 16000in 6
sRmab;FñwmTRmsamBaØRTbnÞúkBRgayesμICamYynwgTRmxagenAxagcugsgçag
          Cb = 1.14
AISC Equation F1-13               [
                                                 2
                         π                   ⎛ πE ⎞
          M n = Cb                EI y GJ + ⎜⎜ ⎟⎟ I y C w ≤ M p
                         Lb                  ⎝ Lb ⎠
T.Chhay                                                 142                                      Beams
viTüasßanCatiBhubec©keTskm<úCa                                         Department of Civil Engineering
                       ⎡                                                   2             ⎤
                           π                                 ⎛ π × 29000 ⎞
                = 1.14 ⎢        29000(362 )(11200 )(4.06 ) + ⎜           ⎟ (362 )(16000 )⎥
                       ⎢ 40(12)                              ⎝ 40 × 12 ⎠                 ⎥
                       ⎣                                                                 ⎦
                = 1.14(5412 ) = 6180in. − kips = 515.0 ft − kips
          M p = 654.2 ft − kips > 515.0 ft − kips
edaysar 515.0 < 640.5 dUcenH LTB lub ehIy
          φb M n = (0.90)515.0 = 464 ft − kips > M u = 416 ft − kips             (OK)   /
cemøIy³ eday M u < φb M n enaHFñwmman moment strength RKb;RKan;.
       lkçN³kMNt;rbs; noncompact shapes RtUv)ansRmYleday Load Factor Design Selection
Table. Noncompact shapes RtUv)ankMNt;sMKal;eday footnote farUbragCa noncompact sRmab;
F y = 250 MPa = 36ksi b¤ F y = 350 MPa = 50ksi . Noncompact shapes k¾RtUv)anerobcMenAkñúg
taragedaylkçN³xusEbøkKñadUcxageRkam³
        !> sRmab; noncompact shapes témøEdlmanenAkñúgtaragrbs; φb M p CatémøBitR)akd
           rbs; design strength EdlQrelI flange local buckling. enAkñúg]TahrN_TI 5>6
           eyIg)an KNnatémøenHesμInwg 576 ft − kips b:uEnþtémøRtwmRtUvenAkñúgtarag φb M p KW
                0.90(654.2 ) = 589 ft − kips
            @> témø L p enAkñúgtaragCatémørbs; unbraced length Edl nominal strength EdlQr elI
               inelastic lateral torsional buckling esμInwg nominal strength EdlQrelI flange local
               buckling dUcenH nominal strength sRmab; unbraced length GtibrmaGacRtUv)an
               KitCaersIusþg;EdlQrelI web local buckling. ¬rMlwkfa L p sRmab; compact shapes
               Ca unbraced length GtibrmaEdl nominal strength GacRtUv)anKitesμInwg plastic
               moment¦. sRmab;rUbragenAkñúg]TahrN_5>6 karKNna nominal strength EdlQrelI
               FLB eTAersIusþg;EdlQrelI inelastic LTB (AISC Equation F1-2) CamYynwg
               Cb = 1.0 ³
                                             ⎛ Lb − L p ⎞
                   M n = M p − (M p − M r )⎜            ⎟                              ¬%>%¦
                                             ⎜L −L ⎟
                                               ⎝ r     p   ⎠
Fñwm                                             143                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
              témørbs; M r nig Lr RtUv)anTTYlBI]TahrN_ 5>6 ehIynwgminRtUv)anpøas;bþÚr. b:uEnþ
              témørbs; L p RtUvEt)anKNnaBI AISC Equation F1-4³
                          300ry        300(3.70)
                   Lp =            =             = 157.0in. = 13.08 ft.
                            Fy             50
              CMnYstémøxagelIkñúgsmIkar %>% eyIgTTYl)an
                                                   ⎛ L − 13.08 ⎞
                   640.5 = 654.2 − (654.2 − 476.7 )⎜ b            ⎟
                                                   ⎝ 38.4 − 13.08 ⎠
                   Lb = 15.0 ft.
              enHCatémøbBa©ÚlkñúgtaragCa L p sRmab; W = 14 × 90 CamYynwg Fy = 50ksi . cMNaMfa
                          300ry
                   Lp =
                            Fy
              GaceRbIsRmab; noncompact shapes. RbsinebIeFVIEbbenH lT§plEdlTTYl)anenAkñúg
              smIkarsRmab; inelastic LTB EdlRtUv)aneRbIenAeBl Lb minmantémøFMRKb;RKan; enaH
              ersIusþg;EdlQrelI FLB nwglub.
5>7>      Summary of Moment Strength
        viFIsaRsþkñúgkarKNna nominal moment strength sRmab; I- nig H-shaped sections Edl
ekageFobnwgG½kS x nwgRtUv)ansegçbenATIenH. GgÁTaMgGs;EdlmanenAkñúgsmIkarxageRkamRtUv)an
kMNt;rYcehIyBImun ehIyelxsmIkarrbs; AISC minRtUv)anbgðajenATIenHeT.
karsegçbenHsRmab;Et compact shapes nig noncompact shapes Etb:ueNÑaH ¬minmansRmab;
slender shapes eT¦.
        !> kMNt;faetIrUbrag compact b¤Gt;
        @> RbsinebIrUbrag compact, RtYtBinitüsRmab; lateral-torsional buckling dUcxageRkam³
                RbsinebI Lb ≤ L p vaminEmn LTB ehIy M n = M p
                RbsinebI L p < Lb ≤ Lr / vaman inelastic LTB ehIy
                                    ⎡                     ⎛              ⎞⎤
                                              (
                           M n = Cb ⎢ M p M p − M r       )⎜⎜ LLb −− LL p ⎟⎟⎥ ≤ M p
                                    ⎣⎢                    ⎝ r        p   ⎠⎦⎥
                  RbsinebI Lb > br / vaman elastic LTB ehIy
T.Chhay                                             144                                  Beams
viTüasßanCatiBhubec©keTskm<úCa                                                          Department of Civil Engineering
                                                                     2
                                            π                   ⎛ πE ⎞
                                 M n = Cb            EI y GJ + ⎜⎜ ⎟⎟ I y C w ≤ M p
                                            Lb                  ⎝ Lb ⎠
          #> RbsinebIrUbrag noncompact edaysarsøab/ RTnug b¤TaMgBIr enaH nominal strength nwgCa
             témøtUcCageKénersIusþg;EdlRtUvKñanwg flange local buckling, web local buckling nig
             lateral-torsional buckling.
                  k> Flange local buckling³
                           RbsinebI λ ≤ λ p vaminman FLB.
                           RbsinebI λ p < λ ≤ λr søabCa noncompact, ehIy
                                                     ⎛ λ − λp             ⎞
                                                 (
                                 Mn = M p − M p − Mr ⎜
                                                     ⎜ λr − λ p
                                                                 )        ⎟≤Mp
                                                                          ⎟
                                                     ⎝                    ⎠
                    x> Web local buckling³
                          RbsinebI λ ≤ λ p vaminman WLB.
                          RbsinebI λ p < λ ≤ λr RTnugCa noncompact, ehIy
                                                     ⎛ λ − λp             ⎞
                                                 (
                                 Mn = M p − M p − Mr ⎜
                                                     ⎜ λr − λ p
                                                                 )        ⎟≤Mp
                                                                          ⎟
                                                     ⎝                    ⎠
                    K> Lateral-torsional buckling³
                           RbsinebI Lb ≤ L p vaminman LTB.
                           RbsinebI L p < Lb ≤ Lr / vaman inelastic LTB ehIy
                                                 ⎡                       ⎛              ⎞⎤
                                                             (
                                        M n = Cb ⎢ M p M p − M r         )⎜⎜ LLb −− LL p ⎟⎟⎥ ≤ M p
                                                 ⎢⎣                      ⎝ r        p   ⎠⎥⎦
                                 RbsinebI Lb > br / vaman elastic LTB ehIy
                                                                             2
                                                      π               ⎛ πE ⎞
                                       M n = Cb            EI y GJ + ⎜⎜ ⎟⎟ I y C w ≤ M p
                                                      Lb              ⎝ Lb ⎠
5>8> ersIusþg;kmøaMgkat;TTwg (Shear Strength)
       ersIusþg;kmøaMgkat;rbs;FñwmRtUvEtRKb;RKan;edIm,IbMeBjTMnak;TMng
          Vu ≤ φvVn
Fñwm                                                       145                                                  T.Chhay
mhaviTüal½ysMNg;sIuvil                                                               NPIC
Edl       Vu =kmøaMgkat;TTwgGtibrmaEdll)anBIkarbnSMbnÞúkemKuNFMCageK
        φv = emKuNersIusþg;sRmab;kmøaMgkat;TTwg = 0.9
        Vn = nominal shear strength/
        BicarNaFñwmsamBaØenAkñúgrUbTI 5>17. enAcm¶ay x BITRmxageqVgnigsßitenAelIG½kSNWtrbs;
muxkat; sßanPaBrbs;kugRtaMgRtUv)anbgðajenAkñúgrUbTI 5>17 d . edaysarFatuenHsßitenAelIG½kS
NWt vaminrgnUvkugRtaMgBt;eT. BI elementary mechanics of materials/ kugRtaMgkmøaMgkat;TTwg
(shearing stess) KW
         fv =
              VQ
               Ib
                                                                                   ¬%>^¦
Edl       fv = kugRtaMgkmøaMgkat;TTwgbBaÄr nigedkenARtg;cMNucEdleyIgBicarNa
          V = kmøaMgkat;TTwgbBaÄrenARtg;muxkat;EdlBicarNa
          Q = m:Um:g;RkLaépÞTImYyeFobG½kSNWt rvagcMNucEdlBicarNanwgEpñkxagelIb¤EpñkxageRkam
              rbs;muxkat;
T.Chhay                                    146                                       Beams
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
           m:Um:g;niclPaBeFobnwgG½kSNWt
          I=
       b = TTwgrbs;muxkat;enAcMNucEdlBicarNa
       smIkar %>^ KWQrelIkarsnμt;fakugRtaMgmantémøefreBjelITTwg b dUcenHvapþl;témøsuRkit
sRmab;Et b mantémøtUc. sRmab;muxkat;ctuekaNEkgEdlmankm<s; d nigTTwg b témølMeGog
sRmab; d / b = 2 KWRbEhl 3% . sRmab; d / b = 1 témølMeGogKW 12% nigsRmab; d / b = 1/ 4
témølMeGogKW 100% (Higdon, Ohlsen, and Stiles, 1960). sRmab;mUlehtuenH smIkar %>^ min
GacGnuvtþ)ansRmab;søabrbs; W-shape dUcKñasRmab;RTnugrbs;va.
         rUbTI 5>18 bgðajBIkarBRgaykugRtaMgkmøaMgkat;sRmab; W-shape. ExSdac;CakugRtaMgmFüm
V / Aw  EdlBRgayenAkñúgRTnug ehIytémøenHminxusKñaBIkugRtaMgGtibrmaenAkñúgRTnugeRcIneT. eyIg
eXIjc,as;ehIyfa RTnugnwg yield y:agyUrmunnwgsøabcab;epþIm yield. edaysarbBaðaenH yielding
rbs;RTnugsMEdgnUvsßanPaBlImItkMNt;mYy. edayyk shear yield stress esμInwg 60% én tensile
yield stress eyIgGacsresrsmIkarsRmab;kugRtaMgenAkñúgRTnugenAeBl)ak;Ca
                V
           f v = n = 0.60 Fy
                Aw
Edl Aw = RkLaépÞmuxkat;rbs;RTnug. dUcenH nominal strength EdlRtUvKñanwgsßanPaBkMNt;enHKW
          Vn = 0.6 Fy Aw
ehIyvaGacCa nominal strength in shear RbsinebIRTnugminman shear buckling. RbsinebIvaekIt
eLIgvanwgGaRs½ynwgpleFob width-thickness ratio h / t w rbs;RTnug. pleFob h / t w rbs;RTnug
EdlRsavxøaMgmantémøFMNas; enaHRTnugGacnwg buckle in shear eday inelastic b¤ elastic. TMnak;TM
ngrvag shear strength nig width-thickness ration manlkçN³RsedogKñanwgTMnak;TMngrvag flexural
Fñwm                                      147                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
strength nig width-thickness ratio ¬sRmab; FLB b¤ WLB¦ nigrvag flexural strength nig
unbraced length ¬sRmab; LTB¦. TMnak;TMngRtUvbgðajenAkñúgrUbTI 5>19 nigRtUv)an[enAkñúg AISC
F2.2 dUcxageRkam³
        sRmab; h / t w < 418 / Fy ¬sRmab; US¦/ h / t w < 1100 / Fy ¬sRmab; IS¦
RTnugmanesßrPaB
          Vn = 0.6 Fy Aw                                           (AISC Equation F2-1)
      sRmab; 418 / Fy < h / t w ≤ 523 / Fy ¬sRmab; US¦/ 1100 / Fy ≤ h / t w < 1375 /      Fy
¬sRmab; IS¦ enaH inelastic web buckling GacnwgekIteLIg
                      418 / Fy                               1100 / Fy
      Vn = 0.6 Fy Aw
                         h/t
                                 ¬sRmab; US¦ Vn = 0.6 F y Aw
                                                                h/t
                                                                       ¬sRmab; IS¦
                               w                                    w
                                                                   (AISC Equation F2-1)
        sRmab; 523 / Fy < h / t w ≤ 260 ¬sRmab; US¦/ 1375 / Fy ≤ h / t w < 260 ¬sRmab; IS¦
enaH sßanPaBkMNt;KW elastic web buckling
        Vn =
             132000 Aw
                        ¬sRmab;   US¦ Vn =
                                           910 Aw
                                                         ¬sRmab; IS¦ (AISC Equation
                  (h / t w )
                     2
                                           (h / t w )
                                                 2
F2-1)
Edl        Aw =RkLaépÞmuxkat;rbs;RTnug = dt w KitCa ¬ mm 2 ¦
         d = km<s;srubrbs;Fñwm
        Vn = nominal strength ¬KitCa KN ¦
        RbsinebI h / t w > 260 enaHeKRtUvkar web stiffener ehIyvaRtUv)anbriyayenAkñúg Appendix
F2 ¬b¤ Appendix G sRmab; plate girder ¦.
        AISC Equation F2-3 KWQrelI elastic stability theory, ehIy Equation F2-2 CasmIkar
Edl)anBIkarBiesaFsRmab;tMbn; inelastic Edlpþl;nUvkarpøas;bþÚrrvagsßanPaBkMNt; web yielding
nig elastic web buckling.
        kmøaMgkat;CabBaðaEdlkRmekItmansRmab; rolled steel beams karGnuvtþTUeTAKWbnÞab;BIKNna
FñwmsRmab; flexural ehIyeyIgnwgRtYtBinitümuxkat;EdlTTYl)ansRmab;kmøaMgkat;TTwg.
T.Chhay                                   148                                          Beams
viTüasßanCatiBhubec©keTskm<úCa                                              Department of Civil Engineering
]TahrN_ 5>7³ RtYtBinitüFñwmenAkñúg]TahrN_ 5>6 sRmab;kmøaMgkat;TTwg.
dMeNaHRsay³ BI]TahrN_ 5>6/ wu = 2.080kips / ft nig L = 40 ft . Edk W 14 × 90 CamYynwg
 F y = 50ksi RtUv)aneRbI. sRmab;FñwmTRmsamBaØRTbnÞúkBRgayesμI kmøaMgkat;GtibrmaekItmanenA
elITRm ehIyesμInwgkmøaMgRbtikmμ
              w L 2.080(40)
          Vu = u =          = 41.6kips
               2      2
BI dimensions and properties tables in Part 1 of the Manual, web width-thickness ratio rbs;
W 14 × 90 KW
           h
             = 25.9
          tw
           418    418
               =      = 59.11
            Fy     50
edaysar h / t w < 418 /          Fy   enaHersIusþg;RtUv)anRKb;RKgeday shear yielding rbs;RTnug
          Vn = 0.6 F y Aw = 0.6 F y (dt w ) = 0.6(50 )(14.02 )(0.44 ) = 185.1kips
          φvVn = 0.90(185.1) = 167kips > 41.6kips                    (OK)
cemøIy³ Shear design strength FMCagkmøaMgkat;emKuN dUcenHFñwmmanlkçN³RKb;RKan;.
Fñwm                                                149                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
      témø φvVn EdlRtUv)anerobCataragenAkñúg factored uniform load table enAkñúg part 4 of
the Manual dUcnHkarKNnarbs;vaminmanRbeyaCn_sRmab; standard hot-rolled shapes.
,
Block Shear
          Block shear   Edl)anBicarNasRmab;tMNenAkñúgGgát;rgkarTaj k¾GacekItmanenAkñúgRbePT
xøH rbs;tMNenAkñúgFñwmEdr. edIm,IsRmYlkñúgkartP¢ab;BIFñwmmYyeTAFñwmmYyeTot eday[nIv:UsøabxagelI
esμIKña enaHRbEvgd¾xøIrbs;søabxagelIrbs;FñwmmYyRtUvEtkat;ecj b¤ coped. RbsinebI coped beam
RtUv)antP¢ab;edayb‘ULúgdUckñúgrUbTI 5>20 kMNt; ABC cg;rEhkecj. bnÞúkEdlGnuvtþenAkñúgkrNI
enHnwgCaRbtikmμbBaÄrrbs;Fñwm dUcenHkmøaMgkat;nwgekItenAtamExS AB ehIynwgekItmankmøaMgTaj
tam BC . dUcenH block shear strength nwgCatémøEdlkMNt;rbs;Rbtikmμ.
          eyIg)anerobrab;BIkarKNna block shear strength enAkñúgCMBUkTI3rYcehIy b:uEnþeyIgnwgrMlwk
vaeLIgvijenATIenH. kar)ak;GacekIteLIgedaybnSMén shear yielding nig tendion fracture b¤eday
shear fracture nig tension yielding. AISC J4.3, “Block Shear Rupture Strength,” [smIkar
BIrsRmab; block shear design strength³
          φRn = φ [0.6 Fy Agv + Fu Ant ]                              (AISC Equation J4.3a)
                   [
          φRn = φ 0.6 Fu Anv + Fy Agt   ]                             (AISC Equation J4.3b)
Edl       φ = 0.75
          Agv = gross area rgkmøaMgkat; ¬enAkñúgrUbTI 5>20 RbEvg AB KuNnwgkRmas;RTnug¦
          Anv = net area rgkmøaMgkat;
          Agt = gross area rgkmøaMgTaj ¬enAkñúgrUbTI 5>20 RbEvg BC KuNnwgkRmas;RTnug¦
          Ant = net area rgkmøaMgTaj
          smIkarEdlmanlT§plFMCagKWCasmIkarEdlmantY fracture FMCag.
T.Chhay                                     150                                           Beams
viTüasßanCatiBhubec©keTskm<úCa                                       Department of Civil Engineering
]TahrN_ 5>8³ kMNt;RbtikmμemKuNGtibrma EdlQrelI block shearEdlGacRTFñwmdUcbgðajkñúg
rUbTI 5>21.
dMeNaHRsay³ Ggát;p©itRbehagRbsiT§PaBKW 3 / 4 + 1/ 8 = 7 / 8in. .
gross nig net shear areas KW
          Agv = (2 + 3 + 3 + 3)t w = 11(0.300) = 3.300in.2
                ⎛          7⎞
          Anv = ⎜11 − 3.5 × ⎟(0.300) = 2.381in.2
                ⎝          8⎠
gross   nig net tension areas KW
          Agt = 1.25t w = 1.25(0.300) = 0.375in.2
                ⎛            7⎞
          Ant = ⎜1.25 − 0.5 × ⎟(0.300) = 0.2438in.2
                ⎝            8⎠
AISC Equation J4.3a          [
                     [                ]
          φRn = φ 0.6 Fy Agv + Fu Ant = 0.75[0.6(36 )(3.3) + 58(0.2438)] = 64.1kips
AISC Equation J4.3b          [
                     [                ]
          φRn = φ 0.6 Fu Anv + Fy Agt = 0.75[0.6(58)(2.381) + 36(0.3750 )] = 72.3kips
tY fracture enAkñúg AISC Equation J4.3b mantémøFMCag ¬Edl 82.86>14.14¦ dUcenHsmIkarenH
mantémøFMCag.
cemøIy³ RbtikmμemKuNGtibrmaEdlQrelI block shear=72.3kips.
Fñwm                                           151                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                 NPIC
5>9> PaBdab (Deflection)
        bEnßmBIelIsuvtßiPaB eRKOgbgÁúMRtUvEt serviceable . eRKOgbgÁúMEdlman serviceable CaeRKOg
bgÁúMEdleFVIkar)anl¥ minbNþal[GñkEdleRbIR)as;vamanGarmμN_favaKμansuvtßiPaB. sRmab;Fñwm edIm,I
TTYl)an serviceable eKRtUvkMNt;bMlas;TIbBaÄr b¤PaBdab. PaBdabFMCaTUeTAekItmancMeBaH flexible
beam EdlGacmanbBaðaCamYynwgrMjr½. PaBdabGacbgábBaðaeTAdl;Ggát;déTeTotEdlP¢ab; eTAnwgva
edaybNþal[mankMhUcRTg;RTaytUc. elIsBIenH GñkeRbIR)as;sMNg;nwgeXIjPaB GviC¢manedaysar
PaBdabFM ehIyeFVIkarsnidæanxusfasMNg;KμansuvtßiPaB.
        sRmab;krNITUeTArbs;FñwmTRmsamBaØEdlRTbnÞúkBRgayesμIdUckúrñ UbTI 5>22 PaBdabbBaÄr
GtibrmaKW³
                5 wL4
          Δ=
               384 EI
       eKGacrk)anrUbmnþPaBdabsRmab;FñwmeRcInRbePT niglkçxNÐdak;bnÞúkenAkñúg Part 4, “Beam
and Girder Design,”of the Manual. sRmab;sßanPaBminFmμtaeKGaceRbI standard analytical
method dUcCa method of virtual work CaedIm. PaBdabCa serviceability limit state minEmnCa
sßanPaBkMNt;sRmab;ersIusþg;eT dUcenHCaTUeTAPaBdabRtUv)ankMNt;CamYy service loads.
       karkMNt;d¾smrmüsRmab;PaBdabGtibrmaGaRs½yeTAnwgtYnaTIrbs;Fñwm nwgkarRbmaNBIPaB
xUcxatEdlekItBIPaBdab. AISC Specification pþl;nUvkarENnaMtictYcEdlmanEcgenAkñúg Chapter
L, “Serviceability Design Consideration,” faeKRtUvEtRtYtBinitüPaBdab. eKGacrk)ankarkMNt;
d¾smrmüsRmab;PaBdabBI governing building code. témøxageRkamCaPaBdabGnuBaØatGtibrma
srub ¬service dead load bUknwg service live load¦.
T.Chhay                                   152                                          Beams
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
                                     L
          Plastered construction:
                                    360
                                           L
          Unplastered floor construction:
                                          240
                                          L
          Unplastered roof construction:
                                         180
Edl L CaRbEvgElVg.
        eBlxøHeKcaM)ac;eRbIkarkMNt;PaBdabCatémøelx CagkareRbIPaBdabCatémøRbPaK. eBlxøH
karkMNt;RtUv)anKitcMeBaHPaBdabEdlbNþalEtBI live load, edaysarCaerOy² dead load
deflection RtUv)ankarBarkñúgeBlsagsg;.
]TahrN_ 5>9³ RtYtBinitüPaBdab;rbs;FñwmEdlbgðajenAkñúg rUbTI 5>23. PaBdabGtibrmasrub
GnuBaØatKW 240
            L
               .
dMeNaHRsay³ PaBdabGtibrmasrubGnuBaØat = 240
                                          L
                                              =
                                                9100
                                                 240
                                                        = 38mm
Total service load = 7.3 + 8 = 15.3kN / m
                                  5 wL4      5 × 15.3 × 9100 4
Maximum total deflection =              =                          = 32.2mm < 38mm (OK)
                                 384 EI   384 × 2 ⋅105 × 212 ⋅10 6
cemøIy³ FñwmbMeBjlkçxNÐPaBdab
Fñwm                                          153                                         T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
          Ponding CaPaBdabmYyEdlb:HBal;dl;suvtßiPaBrbs;eRKOgbgÁúM. vaeRKaHfñak;bMputsRmab;
RbB½n§kRmalxNÐrabesμIGaceFVI[TwkePøógdk;. RbsinebIRbB½n§bgðÚrTwksÞHkñúgGMLúgeBlePøógTm¶n;rbs;
Twk Edldk;elIkRmaleFVI[kRmaldab EdlvabegáIt)anCaGagsRmab;sþúkTwkkan;EteRcIn.
RbsinebIkrNI enHekIteLIg\tQb;Qr enaHeRKOgbgÁúMGacnwg)ak;. AISC specificationtRmUvfaRbB½n§
dMbUlRtUvEtmanPaBrwgRkajRKb;RKan;edIm,IkarBar ponding, elIsBIenH vaerobrab;BIkarkMNt;m:Um:g;
niclPaB nig)a:ra:Em:RtdéTeTotenAkñúg Section K2, “Ponding”.
5>10> karKNnamuxkat; (Design)
        karKNnamuxkat;FñwmtRmUvkareRCIserIsrUbragmuxkat;EdlmanersIusþg;RKb;RKan; nigbMeBj
tRmUvkar serviceability. enAeBleyIgKitBIersIusþg; flexure EtgEtmaneRKaHfñak;CagkmøaMgkat; dUc
enHkarGnuvtþTUeTAKWeKKNnamuxkat;sRmab; flexure rYcehIyRtYtBinitükmøaMgkat;tameRkay. viFI
saRsþkñúg karKNnamuxkat;RtUv)anerobrab;xageRkam³
        !> kMNt;m:Um:g;emKuN/ M u . vadUcKñanwg required design strength, φb M n . Tm¶n;rbs;Fñwm
           CaEpñkrbs; desd load b:uEnþvaminRtUv)andwgenARtg;cMNucenH. eKGacsnμt;témøenH b¤k¾eK
           ecalvasin bnÞab;mkeKnwgRtYtBinitüvaeLIgvijeRkayeBleKeRCIseIsrUbragehIy.
        @> eRCIserIsrUbragEdlbMeBjnUvtRmUvkarersIusþg;enH. eKGacGnuvtþtamviFImYykñúgcMeNamviFI
           BIrxageRkam³
                k> eRkayeBlsnμt;rUbragEdk KNna design strength rYcehIyeRbobeFobvaCamYy
                    nwgm:Um:g;emKuN. epÞogpÞat;eLIgvijRbsinebIcaM)ac;. eKGaceRCIserIsrUbragsnμt;
                    y:aggayRsYlEtenAkñúgsßanPaBkMNt;mYycMnYn ¬]TahrN_ 5>10¦.
                x> eRbI beam design charts in Part 4 of the Manual. eKcUlcitþviFIenH ehIyva
                    RtUv)anBnül;enAkñúg]TahrN_ 5>10 xageRkam.
        #> RtYtBinitü shear strength.
        $> RtYtBinitüPaBdab.
T.Chhay                                     154                                           Beams
viTüasßanCatiBhubec©keTskm<úCa                                          Department of Civil Engineering
]TahrN_ 5>10³ eRCIserIs standardhot-rolled shape of A36 sRmab;FñwmEdlbgðajenAkñúg rUbTI
5>24. FñwmenHmanTRmxagCab; ehIyRtUv)anRT uniform service live load 5kips / ft . PaBdab
GtibrmaGnuBaØatsRmab;bnÞúkGefrKW L / 360 .
dMeNaHRsay³ snμt;Tm¶n;FñwmesμI 100lb / ft .
          wu = 1.2 wD + 1.6 wL = 1.2(0.10 ) + 1.6(5.00 ) = 8.120kips / ft
               1        8.12(30)2
          M u = wu L2 =           = 913.5 ft − kips = requiredφb M n
               8            8
snμt;farUbrag compact. sRmab;rUbrag compact ehIymanTRmxagCab;
          M n = M p = Z x Fy
BI φb M n ≥ M u /
          φb F y Z x ≥ M u
                   Mu    913.5(12)
          Zx ≥         =           = 338.3in.3
                  φb Fy 0.90(36)
CaFmμta Load Factor Design Selection Table erob rolled shapes EdlRtUv)aneRbICaFñwmeday
témø plastic section modulus fycuH. elIsBIenH RtUv)andak;CaRkumedayrUbragenAxagelIeKenAkñúg
Rkum ¬GkSrRkas;¦ rUbragEdlRsalCageKEdlman section modulus RKb;RKan;edIm,IbMeBj section
modulus EdlfycuHenAkñúgRkum. kñúg]TahrN_enH rUbragEdlmantémøEk,rnwg section modulus
requirement KW W 27 × 114 CamYynwg Z x = 343in.3 b:uEnþrUbragEdlRsalCageKKW W 30 × 108 Ca
mYynwg Z x = 343in.3 . edaysar section modulusminsmamaRtedaypÞal;nwgRkLaépÞ karEdlman
section modulus FMCamYynwgRkLaépÞtUc dUcenHTm¶n;k¾GacRsaleTAtamRkLaépÞ.
        sakl,g W 30 ×108 . rUbrag compact dUcEdl)ansnμt; ¬noncompact shapesRtUv)ankM
Nt;cMNaMenAkñúgtarag¦ dUcenH M n = M p dUcEdl)ansnμt;.
Fñwm                                           155                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
        Tm¶n;rbs;vaF¶n;Cagkarsnμt;bnþic dUcenHeKRtUvKNna required strength eLIgvij eTaHbICa
W 30 × 108 manlT§PaBRTRTg;FMCaglT§PaBRTRTg;tRmUvkaredayrUbragsnμt;k¾eday EtvaPaKeRcIn
EtgEtmanlT§PaBRTRTg;FMCaglT§PaBRTRTg;tRmUvkaredayrUbragsnμt;.
          wu = 1.2(1.08) + 1.6(5.00 ) = 8.130kips / ft
                  8.130(30 )2
          Mu =                = 914.6 ft − kips
                      8
BI Load Factor Design Selection Table,
          φb M p = φb M n = 934 ft − kips > 914.6 ft − kips       (OK)
CMnYs[kareRCIserIsrUbragEdlQrelI required section modulus, eKGaceRbI design strength
φb M p edaysarvasmamaRtedaypÞal;nwg Z x ehIyvak¾RtUv)anrayenAkñúgtarag. bnÞab;mkeTot
epÞógpÞat;kmøaMgkat;
              w L 8.13(30 )
          Vu = u =          = 122kips
               2     2
BI factored uniform load tables /
          φvVn = 316kips > 122kips                                (OK)
cugeRkaybMput epÞógpÞat;PaBdab. PaBdabGtibrmaGnuBaØatsRmab;bnÞúkGefrKW L / 360
           L    30 × 12
              =         = 1in.
          360    360
               5 wL L4       5 (5.00 / 12 )(30 × 12 )4
          Δ=             =                             = 0.703in. < 1in.   (OK)
              384 EI x      384   29000(4470 )
cemøIy³ eRbI   W 30 × 108   .
dff
Beam Design Charts
          eKmanRkaPic nigtaragCaeRcInsRmab;visVkrEdlGnuvtþ ehIyRkaPic nigtaragCMnYyTaMgenHCYy
sRmYly:ageRcIndl;dMeNIrkarKNnamuxkat;. vaRtUv)aneKeRbIy:agTUlMTUlayenAkñúg design office
b:uEnþvisVkrRtUvEteRbIvaedayRbytñ½. enAkñúgesovePAenHmin)anENnaMnUvRkaPic nigtaragTaMgGs;enaH
lMGitGs;eT b:uEnþRkaPic nigtaragxøHmansar³sMxan;kñúgkarENnaM CaBiessKW ExSekag design moment
versus unbraced length Edl[enAkñúg Part 4 of the Manual.
T.Chhay                                           156                                  Beams
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
      ExSekagenHRtUv)anbgðajenAkñúgrUbTI 5>25 EdlbgðajBIRkaPic design moment φb M n Ca
GnuKmn_én unbraced length Lb sRmab; particular compact shape. eKGacsg;RkaPicEbbenH
sRmab;muxkat;epSg²CamYynwgtémøCak;lak;én Fy nig Cb edayeRbIsmIkarsmRsbsRmab;
moment strength.
          Manual chartrYmmanRKYsarénExSekagsRmab; rolled shapes CaeRcIn. ExSekagTaMgenHRtUv
)anbegáIteLIgCamYy Cb = 1.0 . sRmab;ExSekagepSgeTotrbs; Cb KuN design moment Edl)an
BItarageday Cb . RtUvcaMfa φb M n minGacFMCag φb M p ¬b¤ sRmab; noncompact shapes φb M n
QrelI local buckling¦. beRmIbRmas;rbs;RkaPicRtUv)anbgðajbgðajenAkñúgrUbTI 5>26 Edl ExS
ekagEbbenHBIrRtUv)anbgðaj. cMNucNak¾edayenAelIRkaPicenH dUcCacMNucCYbKñaénExSdac;BIrbgðaj
BI design moment nig unbraced length. RbsinebIm:Um:g;Ca required moment capacity enaH ExS
ekagEdlenABI elIcMNucenaHRtUvKñanwgFñwmEdlman moment capacity FMCag. ExSekagEdlenAxag
sþaMKW sRmab;FñwmEdl man required moment capacity Cak;lak; eTaHbIsRmab; unbraced length
FMCag k¾eday. dUcenH enA kñúgkarKNnamuxkat; RbsinebIeyIgdak; unbraced length nig required
design strength cUleTAkñúgRkaPic ExSekagenABIelI nigenABIsþaMcMNucenaH RtUvKñanwgFñwmEdlGacTTYl
yk)an. RbsinebIeKKitTaMg ExSekagdac;² enaHExSekagsRmab;rUbragRsalCagsßitenABIelI nigBIxag
sþaMExS ekagdac;². cMNucenAelI ExSekagEdlRtUvnwg L p RtUv)anbgðajeday solid circle ehIy Lr
Fñwm                                       157                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                 NPIC
RtUv)anbgðajeday open circle. eKmanExSekagBIrRbePT mYysRmab; Fy = 36ksi = 250MPa nig
mYyeTotsRmab; Fy = 50ksi = 350 MPa .
         kñúg]TahrN_ 5>10 required design strength ¬EdlrYmbBa©ÚlTaMgTm¶n;Fñwmsnμt;¦ KW 913.5
 ft − kips ehIyvaman continuous lateral support. sRmab;TRmxagCab; eKGacyk Lb = 0 .
         BIRkaPic Fy = 36ksi ExSekagRkas;TImYyenABIelI 913.5 ft − kips KW W 30 ×108 EdldUcKña
nwgkareRCIserIs enAkñúg]TahrN_ 5>10. eTaHbICa Lb = 0 minRtUv)anbgðajenAkñúgRkaPicBiessk¾
eday k¾témøtUcbMputrbs; Lb EdlbgðajKWtUcCag L p sRmab;RKb;rUbragenAelITMB½renaH.
ExSekagFñwmEdlbgðajenAkñúgrUbTI 5>25 KWsRmab; compact shape dUcenHtémørbs; φb M n
sRmab;témøtUcEdlRKb;RKan;rbs; Lb KW φb M p . dUcEdl)anerobrab;enAkñúgEpñk 5>6 RbsinebIrUb
ragCa noncompact témøGtibrma φb M n nwgQrelI flange local buckling. vaCakarBitEdl
maximum unbraced length sRmab; φb M n xagelInwgxusKñaBItémø L p EdlTTYlCamYynwg AISC
Equation F1-4. The moment strength rbs; noncompact shape RtUv)anbgðajCalkçN³RkaPic
enAkñúgrUbTI 5>27 Edl maximum design strength RtUv)ankMNt;sMKal;eday φb M 'n ehIy
maximum unbraced length EdlRtUvnwg φb M ' n xagelIRtUv)ansMKal;eday L' p .
         eTaHbICaRkaPicsRmab; compact nig noncompact shapes manlkçN³RsedogKñak¾eday k¾
φb M n nig Lb RtUv)aneRbIsRmab; compact shapes Et φb M 'n nig L' p RtUv)aneRbIsRmab;
noncompact shapes.
T.Chhay                                   158                                          Beams
viTüasßanCatiBhubec©keTskm<úCa                                Department of Civil Engineering
]TahrN_ 5>11³ FñwmEdlbgðajenAkñúg rUbTI 5>28 RtUvRTbnÞúkcMcMNucGefrBIrEdlmYy²mantémø
20kips Rtg;cMNucmYyPaKbYn. PaBdabGtibrmaminRtUvFMCag L / 240 . Lateral support RtUv)an
pþl;[enAcugrbs;Fñwm. eRbIEdk A572 Grade50 nigeRCIserIs rolled shape.
Fñwm                                    159                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                       NPIC
dMeNaHRsay³ RbsinebIeKecalTm¶n;rbs;Fñwm enaHkMNat;FñwmcenøaHbnÞúkcMcMNucrgnUvm:Um:g;efr.
          M A = M B = M C = M max
          ehIy Cb = 1.0
      eTaHRbsinCaeKKitTm¶n;pÞal;rbs;Fñwmk¾eday k¾vaGacRtUv)anecaledayeFobnwgbnÞúkcMcMNuc
ehIy Cb k¾enAEtmantémøesμI 1.0 EdlGnuBaØat[eKGaceRbIRkaPicedayKμankarEkERb.
      edayminKitBITm¶n;FñwmbeNþaHGasnñ eyIgTTYl)an
                   M u = 6(1.6 × 20 ) = 192 ft − kips
          BIRkaPic CamYynwg Lb = 24 ft sakl,g W 15× 53 ³
                   φb M n = 219 ft − kips > 192 ft − kips                        (OK)
          \LÚveyIgKitBITm¶n;Fñwm
                   M u = 192 +
                                   1
                                     (1.2 × 0.053)(24)2 = 197 ft − kips < 219 ft − kips   (OK)
                                   8
          kmøaMgkat;TTwgKW
                                     1.2(0.053)(24 )
                   Vu = 1.6(20 ) +                   = 32.8kips
                                            2
          BI factored uniform load tables/
                   φvVn = 112kips > 32.8kips         (OK)
          PaBdabGtibrmaGnuBaØatKW
                    L    24(12 )
                       =         = 1.2in.
                   240    240
      BI Beam Diagrams nig Formulas section in Part 4 of the Manual/ PaBdabGtibrma
¬enAkNþalElVg¦ sRmab;bnÞúkBIresμIKñaEdlRtUv)andak;sIuemRTIKñaKW
                   Δ=
                          Pa
                         24 EI
                               (
                               3L2 − 4a 2 . )
          Edl      P=  GaMgtg;sIuetbnÞúkcMcMNuc
                   a. =cm¶ayBITRmeTAbnÞúk
                   L = RbEvgElVg
                   Δ=
                         20(6 × 12 )
                           24 EI
                                     [                        ]
                                     3(24 × 12 )2 − 4(6 × 12 )2 =
                                                                  13.69 × 10 6
                                                                      EI
          sRmab;Tm¶n;pÞal;rbs;Fñwm PaBdabGtibrmak¾sßitenAkNþalElVgEdr dUcenH
T.Chhay                                            160                                       Beams
viTüasßanCatiBhubec©keTskm<úCa                                          Department of Civil Engineering
                           5 wL4    5 (0.053 / 12 )(24 × 12 )4 0.04 × 10 6
                    Δ=           =                            =
                          384 EI   384          EI                 EI
          PaBdabsrub
                          13.69 × 10 6 0.04 × 10 6 13.73 × 10 6
                    Δ=                +           =             = 1.114in. < 1.2in.        (OK)
                              EI           EI       29000(425)
cemøIy³ eRbI W 12 × 53 .
       eTaHbICaRkaPicQrelI Cb = 1.0 k¾eday b:uEnþeKk¾GaceRbIvay:agRsYledIm,IKNnamuxkat;enA
eBlEdl Cb minesIμnwg 1.0 edayEck required design strength eday Cb munnwgdak;vaeTAkñúgRka
Pic. ]TahrN_ 5>12 nwgbgðajBIbec©keTsenH.
]TahrN_ 5>12³ eRbIEdk A36 ehIyeRCIserIs rolled shapes sRmab;FñwmenAkñúg rUbTI 5>29. bnÞúkcM
cMNucCa service live load ehIybnÞúkBRgayesμIKW 30% CabnÞúkefr nig 70% CabnÞúkGefr.
Lateral bracing RtUv)anpþl;[enAcug nigkNþalElVg. vaminmankarkMNt;sRmab;PaBdabeT.
dMeNaHRsay³ edaysnμt;Tm¶n;FñwmesμI 100lb / ft. enaH
          wD = 0.30(3) + 0.10 = 1kips / ft.
          wL = 1.2(1.0 ) + 1.6(0.7 × 3) = 4.560kips / ft.
          Pu = 1.6(9 ) = 14.4kips
         bnÞúkemKuN nigRbtikmμRtUv)anbgðajenAkñúgrUbTI 5>30.
         m:Um:g;EdlcaM)ac;sRmab;KNna Cb ³ m:Um:g;Bt;enAcm¶ay x BIcugxageqVgKW
                                ⎛ x⎞
         M = 61.92 x − 4.590 x⎜ ⎟ = 61.92 x − 2.280 x 2
                                ⎝2⎠
                                                              ¬sRmab; x ≤ 12 ft ¦
Fñwm                                             161                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
          sRmab; x = 3 ft / M A = 61.92(3) − 2.280(3)2 = 165.2 ft − kips
          sRmab; x = 6 ft / M B = 61.92(6) − 2.280(6)2 = 289.4 ft − kips
          sRmab; x = 9 ft / M C = 61.92(9) − 2.280(9)2 = 372.6 ft − kips
          sRmab; x = 12 ft / M max = M u = 61.92(12) − 2.280(12)2 = 414.7 ft − kips
                           12.5M max
          Cb =
                2.5M max + 3M A + 4 M B + 3M C
                                12.5(414.7 )
              =                                               = 1.36
                2.5 414.7 + 3 165.2 ) + 4(289.4 ) + 3(372.6 )
                   (     )    (
          bBa©ÚleTAkñúgRkaPicCamYynwg unbraced length Lb = 12 ft nigm:m:gU ;Bt;KW
          M u 414.7
             =      = 305 ft − kips
          Cb   1.36
          sakl,g W 21× 62 ³
                 φb M n = 343 ft − kips      ¬sRmab; Cb = 1 ¦
          edaysar Cb = 1.36 design strength BitR)akdKW
                 φb M n = 1.36(343) = 466 ft − kips
        b:uEnþ design strength minRtUvelIs φb M p EdlesμIRtwmEt 389 ft − kips ¬TTYl)anBIRka
Pic¦ dUcenH design strength BitR)akdRtUvEtesμInwg
                   φb M n = 389 ft − kips < M u = 414.7 ft − kips               (N.G.)
        sRmab;rUbragsakl,gbnÞab; eyIgRtUvrMkileLIgelIeTArkExSekagCab;Rkas;bnÞab;enAelIRkaPic
eyIgTTYl)an W 21× 68 . sRmab; Lb = 12 ft design strength Edl)anBIRkaPicKW
385 ft − kips sRmab; Cb = 1.0 . ersIusþg;sRmab; Cb = 1.36 KW
          φb M n = 1.36(385) = 524 ft − kips > φb M p = 432 ft − kips
          dUcenH φb M n = φb M p = 432 ft − kips > M u = 414.7 ft − kips        (OK)
          Tm¶n;FñwmKW 68lb / ft EdltUcCagTm¶n;snμt; 100lb / ft .                (OK)
          kmøaMgkat;TTwgKW
          Vu = 61.92kips
          ¬lT§plBitR)akdnwgtUcCagenHbnþic edaysarTm¶n;pÞal;rbs;FñwmtUcCagbnÞúksnμt;¦
          BI factored uniform load table
          φvVn = 177kips > 61.92kips              (OK)
T.Chhay                                        162                                       Beams
viTüasßanCatiBhubec©keTskm<úCa                                 Department of Civil Engineering
cemøIy³ eRbI W 21× 68
        RbsinebItRmUvkarPaBdabRKb;RKgelIkarKNnamuxkat; eKRtUvkMNt;m:Um:g;niclPaBcaM)ac;Gb,-
brma ehIyeKRtUvrkrUbragRsalCageKEdlRtUvnwgtémøenH. kargarenHRtUv)ansRmYly:ageRcIneday
sar moment of inertia selection table in part 4 of the Manual. ]TahrN_ 5>13 nwgbgðajBIkar
eRbIR)as;taragenH ehIynwgBnül;pgEdrBIviFIsaRsþkñúgkarKNnamuxkat;FñwmenAkñúgRbB½n§kRmalxNÐ.
]TahrN_ 5>13³ EpñkénRbB½n§eRKagkRmalRtUv)anbgðajenAkñúg rUbTI 5>31. kRmalebtugBRgwg
edayEdkmankRmas; 4in. RtUv)anRTeday floor beams EdlmanKMlatBIKña 7 ft. . Floor beams
RtUv)anRT eday girders EdlRtUv)anbnþedayssr. ¬eBlxøH floor beamsRtUv)aneKehAfa filler
beams¦. bEnßmBIelITm¶n;rbs;rcnasm½<n§ bnÁÞúkrYmmanbnÞúkGefrBRgayesμI 80 psf nig movable
partitions EdlRtUv)anKitCabnÞúkBRgayesμI 20 psf elIépÞkRmal . PaBdabsrubGtibrmaminRtUv
elIsBI 1/ 360 énRbEvgElVg. eRbIEdk A36 nigKNnamuxkat;rbs; floor beams. snμt;fa kRmal
pþl;nUv continuous lateral support rbs; floor beams.
Fñwm                                     163                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                               NPIC
dMeNaHRsay³
eRbIebtugGarem:Tm¶n;FmμtaEdlmanTm¶n; 150lb / ft 3 sRmab;KNnabnÞúkefr. Tm¶n;GacRtUv)anKitCa
bnÞúk kñúgmYyÉktþaépÞedayKuNTm¶n;maDnwgkRmas;kRmalxNÐ.
          Tm¶n;kRmalxNÐ = 150⎛⎜⎝ 124 ⎞⎟⎠ = 50 psf
snμt;faFñwmnImYy²RTnUvTTwgrgbnÞúk (tributary width) 7 ft. rbs;kRmalxNÐ.
          kRmalxNг 50(7) = 350lb / ft
          Partition³ 20(7 )      = 140lb / ft
          Tm¶n;Fñwm³             = 40lb / ft ¬)a:n;sμan¦
          srub³                  = 530lb / ft ¬ service dead load¦
eTaHbI partition Gaccl½t)an b:uEnþ national model building codes KitvaCabnÞúkefr (BOCA,
1996; ICBO, 1997;nig SBCC, 1997). eyIgk¾KitvaCabnÞúkGefrEdrenATIenH.
bnÞúkGefr³ 80(7) = 560lb / ft
ehIybnÞúkemKuNsrubKW
          wu = 1.2wD + 1.6wL = 1.2(0.53) + 1.6(0.56) = 1.532kips / ft
kartP¢ab;kRmal-Fñwmpþl;nUv   no moment restraint   ehIyFñwmRtUv)anKitCaFñwmEdlRTedayTRmsamBaØ.
               1        1.532(30 )2
          M u = wu L2 =             = 172.4 ft − kips
               8            8
T.Chhay                                      164                                      Beams
viTüasßanCatiBhubec©keTskm<úCa                                            Department of Civil Engineering
BI beam design chart CamYynwg Lb = 0 sakl,g W 18 × 35 ³
          φb M u = 179.5 ft − kips > 172.4 ft − kips         (OK)
kmøaMgkat;TTwgKW
                 1532(30 )
          Vu ≈             = 22.98kips
                    2
BI factored uniform load tables
          φvVn = 103kips > 22.98kips                         (OK)
PaBdabGtibrmaGnuBaØatKW
           L    30(12 )
              =         = 1in.
          360    360
                 5 wL4    5 (0.35 + 0.14 + 0.035 + 0.56)(30)4 (12 )3
          Δ=           =                                             = 1.3in. > 1in.         (N.G.)
                384 EI   384              29000(510 )
edayedaHRsaysmIkarPaBdabsRmab; required moment of inertia TTYl)an
                            5wL4 384        5(1.085)(30 )4 (12 )3
          I required =                    =                       = 682in.4
                          384 EΔ required      384(29000)(1)
Moment of Inertia Selection Table  RtUv)anerobcMeLIgkñúgviFIdUcKñanwg Load Factor Design
Selection Table dUcenHkareRCIserIsrUbragEdlRsalCageKCamYynwgm:Um:g;niclPaBRKb;RKan;man
lkçN³samBaØ. BI I x Table sakl,g W 21× 44 ³
          I x = 843in.4 > 682in.4                            (OK)
          φb M n = 257.5 ft − kips > 172.4 ft − kips         (OK)
Tm¶n;rbs;rUbragenHFMCagkarsnμt;dMbUgbnþic b:uEnþTm¶n;EdlbEnßmenHminGaceRbobeFobnwg moment
capacity d¾FMenaH)aneT.
          φvVn = 141kips > 22.98kips                         (OK)
cemøIy³ eRbI W 21× 44 .
5>11> rn§RbehagenAkñúgFñwm (Holes in Beam)
        RbsinebIkartP¢ab;FñwmRtUv)aneFVIeLIgCamYyb‘ULúg søab b¤RTnugrbs;FñwmRtUv)anecaHRbehag
b¤xYg. elIsBIenH eBlxøHRTnugFñwmRtUv)anecaHrn§F²M edIm,Irt;eRKOgbrikçaepSg²dUcCa bMBugExSePøIg
GKÁisnI bMBugxül;CaedIm. eKcUlcitþecaHrn§enAelIRTnugFñwmRtg;kEnøgNaEdlmankmøaMgkat;TTwgtUc
Fñwm                                              165                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                      NPIC
ehIyrn§RbehagRtUv)anecaHenAelIsøabRtg;kEnøgNaEdlmanm:Um:g;tUc. b:uEnþeKminGaceFVIEbbenH)an
rhUteT dUcenHeKRtUvKitBI\T§iBlrbs;rn§Rbehag.
         sRmab;rn§RbehagtUc dUcsRmab;b‘ULúg \T§iBlrbs;vanwgtUc CaBiesssRmab; flexure eday
mUlehtuBIr. TI1KW karkat;bnßymuxkat;tUc. TI2KW muxkat;EdlenAEk,rmin)ankat;bnßy ehIykar
pøas;bþÚrmuxkat;énPaBminCab;tUcFMCag “weak link”.
         dUcenH AISC B10 GnuBaØat[ecalnUv\T§iBlrbslrn§RbehagenAeBlEdl
          0.75 Fu A fn ≥ 0.9 Fy A fg                                        (AISC Equation B10-1)
Edl       A fg = gross flange are
          A fn = net flange are
RbsinebIeKminCYbnUvlkçxNÐenHeT flexural properties RtUvEtQrelIRkLaépÞsøabrgkarTajRbsiT§
PaB
                   5   Fu
          A fe =          A fn                                              (AISC Equation B10-3)
                   6   Fy
]TahrN_ 5>14³ KNna elastic section modulus EdlRtUv)ankat;bnßy S x sRmab;muxkat;Edl
bgðajenAkñúgrUbTI 5>32. eKeRbIEdk A36 nigRbehagsRmab;b‘ULúgGgát;p©it 1in. .
dMeNaHRsay³ A fg = b f t f = 7.635(0.81) = 6.184in 2
Ggát;p©itRbehagRbsiT§PaBKW
                1 1
          dh =1+ =1 in.
                8 8
net flange area        KW
           A fn = A fg − ∑ d h t f = 6.184 − 2(1.125)(0.810 ) = 4.362in.2
T.Chhay                                       166                                            Beams
viTüasßanCatiBhubec©keTskm<úCa                                        Department of Civil Engineering
BI AISC Equation B10-1
          0.75Fu A fn = 0.75(58)(4.362 ) = 189.7kips
nig 0.9Fy A fg = 0.9(36)(6.184) = 200.4kips
edaysar 0.75Fu A fn < 0.9Fy A fg eyIgRtUvEtKitrn§Rbehag. edayeRbI AISC Equation B10-3
[RkLaépÞsøabRbsiT§PaB
                   5 Fu       5 ⎛ 58 ⎞
          A fg =        A fn = ⎜ ⎟4.362 = 5.856in.2
                   6 Fy       6 ⎝ 36 ⎠
RkLaépÞsøabenHRtUvKñanwgkarkat;bnßyeday 6.184 − 5.856 = 0.328in.2 . G½kSNWteGLasÞicsßitenA
cm¶ay y BIkMBUlrbs;muxkat;
                20.8(18.47 / 2 ) − 0.328(18.47 − 0.405)
          y=                                            = 9.094in.
                             20.8 − 0.328
m:Um:g;niclPaBEdlRtUv)ankat;bnßyKW
          I x . = 1170 + 20.8(9.094 − 9.235)2 − 0.328(9.094 − 18.06 )2 = 1144in.4
Sx     sRmab;søabxagelIKW
              I    1144
          Sx = x =      = 126in.3
               y 9.094
Sx     sRmab;søabxageRkamKW
                   Ix       1144
          Sx =         =              = 122in.3
                  d − y 18.47 − 9.094
cemøIy³ The reduced elastic section modulus sRmab;EpñkxagelIKW 126in.3 nigsRmab;Epñkxag
eRkamKW 122in.3 .
       FñwmEdlmanrn§RbehagFMenAelIRTnug RtUvkarkarKNnaBiessEdlminmanerobrab;enAkñúgesov
ePAenHeT. Design of Steel and Composite Beam with Web Openings KWCakarENnaMd¾manRb
eyaCn_sRmab;RbFanbTenH (Darwin, 1990).
5>12>     Open-Web Steel Joists
                             CaRbePT truss EdlplitrYcCaeRscdUcbgðajenAkñúgrUbTI 5>33.
          Open-web steel joists
Open-web steel joists xøHEdlmanTMhMtUc eRbIr)arEdkmUlCab;sRmab;eFVICaGgát;RTnug (web
Fñwm                                            167                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
member)    ehIyvaRtUv)aneKehA bar joists. vaRtUv)aneKeRbIenAkñúgkRmal nigRbB½n§dMbUlsRmab;
eRKOgbgÁúMCaeRcIn. sRmab;RbEvgElVgEdl[dUcKña open-web steel joists manTm¶n;RsalCag rolled
shapes ehIyGvtþmanrbs;RTnugtan;GnuBaØat[eKrt;RbB½n§brikçary:agRsYl. GaRs½yeTAnwgRbEvg
ElVg open-web steel joist manlkçN³esdækic©Cag rolled shapes eTaHbICavaKñaeKalkarN_ENnaM
sRmab;karkMNt;vak¾eday.
         eKGacrk open-web steel joists CamYynwgkm<s;sþg;dar niglT§PaBRTbnÞúkBIeragcRkCaeRcIn.
Open-web steel joist xøHRtUv)anKNnaedIm,IeFVIkarCa floor b¤ roof joists ehIy open-web steel
joists xøHeTotRtUv)anKNnaedIm,IeFVIkarCa girder EdlRTRbtikmμEdlRbmUlpþúMBI joists. AISC
Specification min)anerobrab;BI open-web steel joists eT Etsßabn½mYyepSgeTotEdleKehAfa Steel
Joist Institute (SJI) manBiBN’naBIva. ral;kareRbIR)as; steel joists rYmTaMgkarKNna nigkarplit
RtUv)ane)aHBum<pSayenAkñúg Standard Specifications, Load Tables, nig Weight Table for Steel
Joists and Joist Girders (SJI, 1994).
         eKGaceRCIserIs open-web steel joists CamYynwg the aid of the standard load tables (SJI,
1994) ehIytaragmYyenAkñúgcMeNamenaHRtUv)anbgðajenAkñúgrUbTI 5>34 . CamYynwgkarpSMKñarvag
ElVg nig joist eKnwgTTYl)antémøbnÞúkmYyKUr. elxxagelICa total service load capacity KitCa
pounds kñúgmYy foot ehIyelxenAxageRkamCa service live load kñúgmYy foot EdlnwgbegáItPaBdab
esμInwg 1/ 360 énRbEvgElVg. ¬eTaHbICabnÞúkenAkñúgtaragCa service load capacities k¾eday k¾eK
GaceRbItaragenHy:aggayRsYlCamYynwgviFI LRFD EdleyIgnwgbgðajenATIenH¦. elxdMbUgénelx
sMKal;Cakm<s;rbs; open-web steel joist EdlKitCa in. . taragk¾[pgEdr nUvTm¶n;Rbhak;RbEhl
EdlKitCa pound kñúgmYy foot énRbEvg.
         eKGacrk open-web steel joists EdlRtUv)anKNnaedIm,ImannaTICa floor or roof joist ¬Edl
pÞúyBImannaTICa girder¦ Ca open-web steel joist (K-series, both standard and KCS), longspan
steel joists (LH-series), nig deep longspan steel joist (DLH-series). enAeBleyIgrMkilesrIeLIg
kan;Etx<s; eyIgnwgTTYl)anRbEvgElVg niglT§PaBRTbnÞúkkan;EtFM. Ca]TahrN_ 8K1 manRbEvg
ElVg 8 ft. niglT§PaBRTbnÞúk 550lb / ft. b:uEnþ 72DLH19 GacRTbnÞúk)an 497lb / ft. elIRbEvg 144 ft. .
T.Chhay                                     168                                           Beams
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
        edayelIkElg KCS joists, open-web steel joists TaMgGs;RtUv)anKNnaCa trusses EdlRT
edayTRmsamBaØ CamYynwgbnÞúkBRgayesμIenAelI top chord. kardak;bnÞúkenHeFVI[ top chord rgnUv
bending k¾dUc axial compression dUcenH top chord RtUv)anKNnaCa beam-column ¬emIlCMBUk 6¦.
edIm,IFananUvsißrPaBrbs; top chord eKRtUvP¢ab; the floor or roof deck kñúgviFIEbbNaedIm,IeFVI[ man
continuous lateral support.
Fñwm                                       169                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                           NPIC
        TaMg top nig bottom chord members rbs; K-series joists RtUv)anplitedayEdkEdlman
yield stress 50ksi . lT§PaBRTbnÞúkrbs; K-series joists RtUv)anepÞógpÞat;edaykarBiesaF ehIy
emKuNsuvtßiPaBGb,brmaRtUv)anbgðaj[eXIjesμInwg 1.65 .
        viFIsaRsþd¾samBaØsRmab;eRbIR)as; standard load tables CamYynwg LRFD RtUv)anENnaMeday
SJI (1994) ehIyRtUv)anbgðajenATIenH kñúgTRmg;EkERbbnþicbnþÜc. BicarNa TMnak;TMngeKal LRFD
smIkar @>#³
           ∑ γ i Qi ≤ φRn
vaRtUv)ansresrsRmab;bnÞúkBRgayesμIkñúgTRmg;Ca
           wu ≤ φwn                                                            ¬%>&¦
Edl wu CabnÞúkBRgayesμIemKuN nig wn Ca nominal uniform load strength of the joist. Rbsin
ebIeyIgeRbIpleFobmFümén nominal strength elI allowable strength esμInwg 1.65 eyIgGac        *
sresr nominal strength eday
           wn = 1.65wsji
Edl wsji Ca allowable strength (allowable load) Edl[enAkñúg standard load tables.
Design strength KW
                         (      )
           φwn = 0.9 1.65wsji = 1.485wsji ≈ 3 2 wsji
\LÚveyIgGacsresrsmIkar %>& Ca
           wu ≤ 3 2 wsji
sRmab;eKalbMNgénkarKNna eyIgGacsresrTMnak;TMngenHCa
           required wsji = 2 3 wu
]TahrN_ 5>15³ eRbI load table Edl[enAkñúg rUbTI 5>34 eRCIserIs open-web steel joist sRmab;
RbB½n§kRmal nigbnÞúkxageRkam.
           Joist spacing = 3 ft
           Span length = 20 ft
bnÞúkKW³ kRmalxNÐkRmas; 3in.
*
    cMNaMfaemKuNsuvtßiPaBsRmab; K-series joists RtUv)ankMNt;edaykarBesaFEdleFVIeLIgedayplitkr.
T.Chhay                                            170                                           Beams
viTüasßanCatiBhubec©keTskm<úCa                                          Department of Civil Engineering
       bnÞúkefrepSgeTot = 20 psf
       bnÞúkGefr = 50 psf
dMeNaHRsay³ sRmab;bnÞúkefr
       kRmalxNг 50⎛⎜⎝ 123 ⎞⎟⎠ = 37.5 psf
       bnÞúkefrepSgeTot = 20 psf
       Tm¶n;rbs; joist = 3 psf ¬]bma¦
       srub                   = 60.5 psf
          wD = 60.5(3) = 181.5lb / ft
sRmab;bnÞúkGefr 50 psf
          wL = 50(3) = 150lb / ft
bnÞúkemKuNKW
          wu = 1.2 wD + 1.6 wL = 1.2(181.5) + 1.6(150 ) = 457.8lb' ft
bMElgbnÞúkenHeTACa required service load³
                                   wu = (457.8) = 305lb / ft
                                 2     2
          required wsji =
                                 3     3
rUbTI 5>34 bgðajfa joist xageRkambMeBjnUvtRmUvkarénbnÞúkxagelI³ 12K 5 Tm¶n;RbEhl
7.1lb / ft / 14 K 3 Tm¶n;RbEhl 6lb / ft nig 16 K 2 Tm¶n;RbEhl 5.5lb / ft . edayminman
karkMNt;sRmab;km<s; dUcenHeyIgerIsnUv joist NaEdlRsalCageK.
cemøIy³ eRbI 16K 2 .
5>13> bnÞHRTFñwm nigbnÞH)atssr (Beam Bearing Plates and Column Base Plate)
        viFIKNnabnÞHRTssrmanlkçN³RsedogKñanwgviFIKNnabnÞHRTFñwm ehIyedaysarmUlehtu
enH eyIgnwgBicarNavaCamYyKña. elIsBI karkMNt;kRmas;rbs;bnÞH)atssrtRmUv[mankarBicarNa
BI flexure dUcenHvaRtUv)anelIkykmkerobrab;enATIenH EdlminEmnenAkñúgCMBUk 4. kñúgkrNITaMgBIr
tYnaTIrbs;bnÞHEdkKWEbgEckbnÞúkEdlRbmUlpþúM (concentrated load) eTAsmÖar³EdlRTva.
        bnÞHRTFñwmmanBIrRbePTKW³ mYysRmab;bBa¢ÚnRbtikmμrbs;FñwmeTATRm dUcCaCBa¢aMgebtug nig
mYyeTotsRmab;bBa¢ÚnbnÞúkeTAsøabxagelIrbs;Fñwm. dMbUg BicarNaTRmFñwmEdlbgðajenAkñúgrUbTI
Fñwm                                               171                                          T.Chhay
mhaviTüal½ysMNg;sIuvil                                                               NPIC
5>35 . eTaHbICaFñwmCaeRcInRtUv)antP¢ab;eTAssrb¤eTAFñwmepSgeTotk¾eday EtRbePTénTRmEdl
bgðajenATIenH RtUv)aneRbICaerOy² CaBiessenARtg; bridge abutments. karKNnaBIbnÞHRTrYmman
bICMhan³
        !> kMNt;TMhM N EdleKGackarBar web yielding nig web crippling.
        @> kMNt;TMhM B EdlRkLaépÞ B × N manTMhMRKb;RKan;edIm,IkarBarsmÖar³EdlRT ¬CaTUeTAKW
ebtug¦ BIkarEbk.
        #> kMNt;kRmas; t EdlbnÞHRTman bending strength RKb;RKan;.
        karBN’naBI Web yielding and web crippling manenAkñúg Chapter K of AISC Specifica-
tion, “Strength Design Consideration”. ÉcMENk bearing strength rbs;ebtugRtUv)anniyayenA
kñúg Chapter J, “Connections, Joints, and Fasteners”.
Web Yielding
          Web yielding KWCakarpÞúHEbkedaykarsgát; (compressive crushing) rbs;RTnugFñwmEdl
bNþalBIkarGnuvtþn_kmøaMgsgát;edaypÞal;eTAsøabEdlenABIxagelI b¤BIxageRkamRTnug. kmøaMgenH
GacCakmøaMgRbtikmμBITRménRbePTdUcbgðajkñúg rUbTI 5>35 b¤vaGacCabnÞúkEdlbBa¢ÚneTAsøabeday
ssr b¤FñwmepSgeTot. Yielding ekIteLIgenAeBlEdlkugRtaMgsgát;enAelImuxkat;edktamry³RTnug
xiteTArkcMNuc yield. enAeBlbnÞúkRtUv)anbBa¢Úntamry³bnÞHEdk web yielding RtUv)ansnμt;faekIt
manenAEk,rmuxkat;EdlmanTTwg t w . enAkñúg rolled shape muxkat;enARtg;cugénBitekag (toe of the
fillet) Edlmancm¶ay k BIépÞxageRkArbs;søab ¬TMhMenHRtUv)anerobCatarag enAkñúg dimensions and
properties tables in the Manual). RbsinebIbnÞúkRtUv)ansnμt;faEbgEckxøÜnvaeday slope 1 : 2.5
T.Chhay                                   172                                         Beams
viTüasßanCatiBhubec©keTskm<úCa                                                     Department of Civil Engineering
dUcbgðajenAkñúg rUbTI 5>36 RkLaépÞenARtg;TRmrgnUv yielding KW (2.5k + N )t w . edayKuN
RkLaépÞenHnwg yield stress [ nominal strength sRmab; web yielding enARtg;TRm³
          Rn = (2.5k + N )F y t w                                                    (AISC Equation K1-3)
The bearing length N              enARtg;TRmmikKYrtUcCag k . enARtg;bnÞúkxagkñúg beNþayrbs;muxkat;rgnUv
yielding   KW
          2(2.5k ) + N = 5k + N
The nominal strength              KW
          Rn = (5k + N )F y t w                                                      (AISC Equation K1-2)
The design strength              KW φRn , Edl φ = 1.0
Web Cripplimg
                      Ca buckling rbs;RTnugEdlbNþalBIkmøaMgsgát;EdlbBa¢Úntamry³søab.
          Web crippling
sRmab;bnÞúkxagkñúg nominal strength sRmab; web crippling KW³
                            ⎡                        1.5 ⎤
                             ⎛N            ⎞⎛⎜ t w ⎞⎟      ⎥ Fy t f
          Rn = 135t w2 ⎢1 + 3⎜             ⎟                                         (AISC Equation K1-4)
                       ⎢               ⎝ d ⎠⎜⎝ t f ⎟⎠      ⎥ tw
                            ⎣⎢                             ⎦⎥
sRmab;bnÞúkenARtg; b¤Ek,rTRm ¬minFMCagBak;kNþalkm<s;FñwmBIcug¦ nominal strength KW³
                        ⎡                          1.5 ⎤
                            ⎛N          ⎞⎛⎜ t w ⎞⎟      ⎥ Fy t f
          Rn = 68t w2 ⎢1 + 3⎜
                      ⎢
                                        ⎟
                                    ⎝ d ⎠⎜⎝ t f ⎟⎠      ⎥ tw
                                                                      sRmab;   N
                                                                               d
                                                                                 ≤ 2 (AISC Equation K1-5a)
                    ⎣⎢                                  ⎦⎥
                     ⎡                       1.5 ⎤
                   2⎢ ⎛ N          ⎞⎛⎜ t w ⎞⎟ ⎥ F y t f
b¤        Rn = 68t w 1 + ⎜ 4 − 0.2 ⎟
                     ⎢ ⎝ d         ⎠⎜⎝ t f ⎟⎠ ⎥ t w
                                                                      sRmab;   N
                                                                               d
                                                                                 > 2 (AISC Equation K1-5b)
                     ⎢⎣                          ⎥⎦
emKuNersIusþg;sRmab;sßanPaBkMNt;enHKW φ = 0.75
Fñwm                                                            173                                        T.Chhay
mhaviTüal½ysMNg;sIuvil                                                               NPIC
Concrete Bearing Strength
       smÖar³EdleRbIsRmab;RTFñwmGacCa ebtug \dæ b¤smÖar³epSg²eTot b:uEnþCaTUeTAvaCaebtug.
smÖar³enHRtUvEtTb;nwg bearing load EdlGnuvtþedaybnÞHEdk. The nominal bearing strength
EdlbBa¢ak;enAkñúg AISC J9 dUcKñaenAkñúg American Concrete Institute’s Building Code (ACI,
1995). RbsinebI plate RKbeBjelIépÞrbs;TRm enaH nominal strength KW
          Pp = 0.85 f 'c A1                                        (AISC Equation J9-1)
RbsinebI plate minRKbeBjelIépÞrbs;TRmeT enaH nominal strength KW
          Pp = 0.85 f 'c A1 A2 / A1                                (AISC Equation J9-2)
Edl            ersIusþg;rgkarsgát; 28éf¶rbs;ebtug
          f 'c =
         A1 = bearing area R
         A2 = full area rbs;TRm
        RbsinebI A2 mincMCamYy A1 enaH A2 KYrmantémøFMCag A1 EdlvamanragFrNImaRtRsedog
Kñanwg A1 dUcbgðajenAkñúgrUbTI 5>37. AISC tRmUv[
            A2 / A1 ≤ 2
          The design bearing strength   KW φc Pp Edl φc = 0.60 .
m
T.Chhay                                       174                                    Beams
viTüasßanCatiBhubec©keTskm<úCa                                 Department of Civil Engineering
Plate Thickness
        enAeBlEdlbeNþay nigTTwgrbs;bnÞHTRmRtUv)ankMNt;ehIy bearing pressure mFüm
RtUv)anKitCabnÞúkBRgayesμIeTAelI)atén plate EdlRtUv)ansnμt;RTedayTTwg 2k EdlenAkNþalFñwm
nigbeNþay N dUcbgðajenAkñúgrUbTI 5>38. bnÞab;mkeTotbnÞHRtUv)anBicarNafaekageFobG½kSRsb
eTAnwgElVgFñwm. dUcenH bnÞHRtUv)anKitCa cantilever EdlmanRbEvgElVg n = (B − 2k )/ 2 nigTTwg
 N . edIm,IgayRsYl TTwg 1in. RtUv)anBicarNa CamYynwgbnÞúkBRgayesμIKitCa lb / in. EdlesμInwg
bearing pressure EdlKitCa lb / in.2 .
          BIrUbTI 5>38 m:Um:g;GtibrmaenAkñúgbnÞHKW
                             Ru     n R n2
                    Mu =        × n× = u
                             BN     2 2 BN
       Edl Ru / BN Ca bearing pressure mFümrvagbnÞH nigebtug. sRmab;muxkat;ctuekaNEkg
EdlekageFobG½kSexSay (minor axis) enaH nominal moment strength M u esμInwg plastic moment
capacity M p . dUcbgðajenAkñúgrUbTI 5>39 plastic moment sRmab;muxkat;ctuekaNEkg
EdlmanTMhMTTwgmYyÉktþa nigkRmas; t KW
                   ⎛ t ⎞⎛ t ⎞    t2
          M p = Fy ⎜1× ⎟⎜ ⎟ = Fy
                   ⎝ 2 ⎠⎝ 2 ⎠     4
Fñwm                                            175                                    T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
          edaysar φb M n RtUvEttUcCag M u
          φb M n ≥ M u
                     t 2 Ru n 2
          0 .9 F y      ≥
                      4   2 BN
                  2 Ru n 2                          2.222 Ru n 2
          t≥
                 0.9 BNF y
                                    b¤       t≥
                                                       BNF y
                                                                                   ¬%>* / %>(¦
]TahrN_ 5>16³ KNna bearing plate edIm,IEbgEckRbtikmμrbs; W 21× 68 CamYynwgRbEvgElVg
15 ft. 10in. KitBIG½kSeTAG½kSrbs;TRm. Service load srub EdlKitbBa©ÚlTaMgTm¶n;FñwmKW 9kips / ft
EdlmanbnÞúkefr nigbnÞúkGefresμIKña. FñwmRtUv)anRTenABIelICBa¢aMgebtugGarem:Edlman
 f 'c = 3500 psi . TaMgbnÞHEdk nigFñwmCaEdk A36 .
dMeNaHRsay³ bnÞúkemKuNKW
          wu = 1.2 wD + 1.6 wL = 1.2(4.5) + 1.6(4.5) = 12.6kips / ft.
ehIyRbtikmμKW
              w L 12.6(15.83)
          Ru = u =            = 99.73kips
               2       2
kMNt;RbEvgrbs; bearing N EdlcaM)ac;edIm,IkarBar web yielding. BI AISC Equation K1-3,
design strength sRmab;sßanPaBkMNt;enHKW
           Rn = (2.5k + N )Fy t w
sRmab; φRn ≥ Ru /
          1[2.5(1.438) + N ](36 )(0.430 ) ≥ 99.73
          N ≥ 2.85in.
eRbI AISC Equation K1-5edIm,IkMNt;témørbs; N EdlcaM)ac;edIm,IkarBar web crippling. snμt;
 N / d ≥ 0.2 nigsakl,gTRmg;TIBIrrbs;smIkar. sRmab; φRn ≥ Ru /
                 ⎡                        1.5 ⎤
                2⎢ ⎛ N          ⎞⎛⎜ t w ⎞⎟ ⎥      Fy t f
          φ 68t w 1 + ⎜ 4 − 0.2 ⎟                          ≥ Ru
                 ⎢ ⎝ d          ⎠⎜⎝ t f ⎟⎠ ⎥       tw
                     ⎣⎢                      ⎦⎥
                          ⎡ ⎛ 4N            ⎞⎛ 0.43 ⎞ ⎤ 36(0.685)
                                                      1.5
          0.75(68)(0.43)2 ⎢1 + ⎜      − 0.2 ⎟⎜       ⎟ ⎥          ≥ 99.73
                          ⎢⎣ ⎝ 21.13        ⎠⎝ 0.685 ⎠ ⎥⎦ 0.43
          N ≥ 5.27in.            (controls)
T.Chhay                                             176                                 Beams
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
RtYtBinitükarsnμt;
           N 5.268
            =      = 0.25 > 0.2               (OK)
           d 21.13
sakl,g N = 6in. . kMNt;TMhM B BI bearing strength. karsnμt;EdlmansuvtßiPaBKWRkLaépÞeBj
TaMgGs;rbs;TRmRtUv)aneRbI.
            φc (0.85) f 'c A1 ≥ Ru
          0.6(0.85)(3.5)A1 ≥ 99.73
                             A1 ≥ 55.87in 2
témøGb,brmarbs;TMhM B KW
            A 55.87
          B= 1 =    = 9.31in.
             N   6
TTwgsøabrbs; W 21× 68 KW 8.270in. EdleFVI[bnÞHEdkFMCagsøabbnþic EdleKcg;)an. sakl,g
B = 10in. .
kMNt;kRmas;bnÞHEdkEdlcaM)ac;
                B − 2k 10 − 2(1.438)
          n=          =              = 3.562in.
                  2          2
BIsmIkar ¬%>(¦
             2.222 Ru n 2   2.222(99.73)(3.562)2
          t=              =                      = 1.14in.
                BNF y            10(6)(36 )
cemøIy³ eRbI PL1 14 × 6 ×10 .
       RbsinebIFñwmminRtUv)anBRgwgxagenARtg;cMNucrgbnÞúk ¬kñúgviFIEbbNaedIm,IkarBarbMlas;TIxag
rvagsøabrgkmøaMgsgát; nigsøabrgkmøaMgTaj¦ eTenaH Specification tRmUv[Gegát sidesway web
buckling (AISC K1.5). enAeBlbnÞúkGnuvtþeTAelIsøabTaMgBIr eKRtUvRtYtBinitü compression
buckling (AISC K1.6).
Fñwm                                                 177                                 T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                 NPIC
Column Base Plate
       dUcKñanwgkarKNna beam bearing plateEdr karKNna column base plate tRmUv[mankar
BicarNaBI bearing pressure eTAelIsmÖar³EdlRT nig bending rbs;bnÞHEdk. PaBxusKñad¾FMbMputKW
bending enAkñúg beam bearing plate KWmYyTis b:uEnþ column base plate rgnUv bending BIrTis.
elIsBIenHeTot web crippling nig web yielding minEmnCabBaðaenAkñúgkarKNna column base plate
eT.
          Column base plateGacRtUv)ancat;cMNat;fñak;CabnÞHFM b¤bnÞHtUc EdlbnÞHtUcmanTMhMRbhak;
RbEhlTMhMssr. elIsBIenH bnÞHtUceFVIkarxusKña enAeBlvargbnÞúkRsal nigeBlvargbnÞúkF¶n;.
       kRmas;rbs;bnÞHFMRtUv)ankMNt;BIkarBicarNaén bending rbs;EpñkénbnÞHEdllyecjBI
ssr. Bending RtUv)ansnμt;faekItmaneFobnwgG½kSenAkm<s;Bak;kNþalrbs;bnÞHEk,rRCugrbs;søab
ssr. G½kSBIrRsbeTAnwgRTnugmancm¶ayBIKña 0.80b f nigG½kSBIreTotRsbeTAnwgsøabmanKMlatBIKña
0.95d . kñúgcMeNamceRmok cantilever 1in. BIrEdlsMKal;eday m nig n dUcenAkñúgrUbTI 5>40 témø
EdlFMCag eKRtUv)aneRbICMnYs[ n enAkñúgsmIikar %>* edIm,IKNnakRmas;bnÞH b¤
       t ≥l
                  2 Pu
               0.9 BNF
                                                                                   ¬%>!0¦
                         y
T.Chhay                                   178                                          Beams
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
Edl l CatémøFMCageKkñúgcMeNam m nig n . viFIenHsMedAdUceTAnwg cantilever method.
         bnÞH)attUcEdlRTTm¶n;RsalRtUv)anKNnaedayeRbI Murray-Stockwell method (Murray,
1983). enAkñúgviFIenH EpñkénbnÞúkssrEdlGnuvtþenAkñúgRBMEdnrbs;muxkat;ssr ¬BIelIRkLaépÞ
b f d ¦ RtUv)ansnμt;faEbgEckesμIenAelIRkLaépÞ H-shaped dUcbgðajkñúg rUbTI 5>41. dUcenH
bearing pressure KWRbmUlpþúMenAEk,rExSRBMrbs;ssr. kRmas;bnÞHRtUv)ankMNt;BI flexural analysis
rbs;ceRmok cantilever énTTwgÉktþa nigénRbEvg c . viFIenHpþl;lT§plCasmIkar
         t≥c
                   2 Po
                0.9 A F
                                                                                  ¬%>!!¦
                         H       y
Edl            P
          Po = u × b f d
              BN
              = bnÞúkenAkñúgRkLaépÞ b f d
             = bnÞúkenAelIRklaépÞ H-shape
          AH = RklaépÞ H-shape
          c = TMhMEdlcaM)ac;edIm,I[kugRtaMg o esμIeTAnwg design bearing stress rbs;smÖar³EdlRT.
                                            P
                                           A
                                           H
       cMNaMfasmIkar %>!! manTRmg;RsedogKñanwgsmIkar %>!0 edayeRbIkugRtaMg Pu / BN
EdlCMnYseday Po / AH .
       sRmab;bnÞHEdlRTTm¶n;F¶n; ¬RBMEdnrvagbnÞHRTTm¶n;Rsal nigbnÞHRTTm¶n;F¶n;minRtUv)ankMNt;
Cak;lak;¦/ Thornton (1990a) EdlesñIrnUvkarviPaKedayQrelIkarBt;BIrTisrbs;EpñkénbnÞHrvagRT
Fñwm                                       179                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
nug nigsøab. dUcEdl)anbgðajenAkñúg rUbTI 5>42 kMNat;énbnÞHenHRtUv)ancat;Tukfa fixed enAnwgRT
nug/ TRmsamBaØenAnwgsøab nigTMenrenARCugmYyeTot. kRmas;EdltRmUvkarKW
                          2 Pu
          t ≥ n'
                       0.9 BNF y
Edl       n'=
                1
                4
                  db f                                                            ¬%>!@¦
        viFITaMgbIenHRtUv)anbBa©ÚlKñaeday Thornton (1990b) ehIykarsegçbmandUcxageRkam. kM
ras;bnÞHEdlcaM)ac;KW
        t ≥l
                   2 Pu
                0.9 BNF
                                                                                 ¬%>!#¦
                              y
Edl       l = max(m, n, λn' )
                2 X
          λ=            ≤1
              1− 1− X
              ⎛ 4db     ⎞ P
          X =⎜          ⎟ u
                      f
              ⎝    (
              ⎜ d + b 2 ⎟φ P
                      f ⎠ c p)
              1
          n'=    db f
              4
          φc = 0.60
          Pp = nominal bearing strength   BI AISC Equation J9-1 b¤ J9-2.
T.Chhay                                      180                                      Beams
viTüasßanCatiBhubec©keTskm<úCa                                         Department of Civil Engineering
         CamYynwgsmIkarxagelIenH eKmincaM)ac;kMNt;fabnÞHFM b¤tUc rgbnÞúkRsal b¤F¶n;. λ Gacyk
esμInwg 1.0 (Thornton, 1990b).
         viFIenHRsedogKñaeTAnwgGVIEdl[enAkñúg Part 11 of the Manual (Volume II), “Connections
for Tension and Compression”.
]TahrN_ 5>17³ eKeRbI W10× 49 CassrnwgRtUv)anRTeday concrete pierdUcbgðajkñúgrUbTI 5>43.
épÞxagelIrbs; piermanTMhM 18in. ×18in. . KNnabnÞH A36 sRmab;bnÞúkefr 98kips nig bnÞúkGefr
145kips . ersIusþg;ebtugKW f 'c = 3000 psi .
dMeNaHRsay³ bnÞúkemKuNKW
          Pu = 1.2 D + 1.6 L = 1.2(98) + 1.6(145) = 349.6kips
KNna required bearing area
          φc Pp ≥ Pu
          φc (0.85) f 'c A1 A2 / A1 ≥ Pu
          0.6(0.85)(3)A1 18(18) / A1 ≥ 349.6
          A1 ≥ 161.1in.2
RtYtBinitü
             A2 / A1 = 18(18) / 161.1 = 1.41 < 2                (OK)
mü:ageTot bnÞHRtUvEtmanTMhMFMCagTMhMssr dUcenH
          b f d = 10.00(9.98) = 99.8in.2 < 161.1in.2            (OK)
Fñwm                                           181                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                              NPIC
sRmab; B = N = 13in. . A1 = 13(13) = 169in.2
TMhMrbs;ceRmok cantilever m nig n GacRtUv)ankMNt;BI rUbTI 5>43 b¤
             N − 0.95d 13 − 9.48
          m=            =          = 1.76in
                  2          2
             N − 0.8b f 13 − 8
          n=           =       = 2.5in.
                 2        2
BIsmIkar %>!@
                            9.98(10) = 2.497in.
                 1        1
          n' =     db f =
                 4        4
edayyk λ = 1.0 eKTTYl)an
          l = max(m, n, n') = max(176,2.5,2.497 ) = 2.5in.
BIsmIkar %>!#/ required plate thickness KW
                     2 Pu           2(349.6)
          t =l             = 2.5                 = 0.893in.
                  0.9 BNFy       0.9(13)(13)(36)
cemøIy³ eRbI PL1×13 ×13 .
5>14>     Biaxial Bending
T.Chhay                                       182                   Beams
viTüasßanCatiBhubec©keTskm<úCa                                        Department of Civil Engineering
          Biaxial bending ekItmanenAeBlEdlFñwmrgnUvlkçxNÐbnÞúkEdlbegáIt bending tamTaMgG½kS
xøaMg (major or strong axis) nigG½kSexSay (minor or weak axis). dUckrNIbgðajenAkñúgrUbTI 5>44
EdlbnÞúkcMcMNuceTaleFVIGMeBIeTAelIG½kSbeNþayrbs;Fñwm b:uEnþeRTteFobeTAnwgG½kSeKalnImYy²rbs;
muxkat;. eTaHbICakardak;bnÞúkenHmanlkçN³TUeTACagkardak;bnÞúkBIelIkmunk¾eday k¾vaenAEtCakrNI
Biess edaysarbnÞúkkat;tam shear center rbs;muxkat;. The shear center KWCacMNucEdlbnÞúkeFVIGM
eBIelIFñwmedaymin[FñwmrgrmYl (no twisting nor torsion). TItaMgrbs; shear center GacRtUv)an
kMNt;BI elementary mechanics of materials edayKNna internal resisting torsional moment
EdlbMEbkBIrMhUrkmøaMgkat;enAkñúgmuxkat;eTA external torque.
         TItaMgrbs; shear center sRmab;muxkat;TUeTACaeRcInRtUv)anbgðajenAkñúg rUbTI5>45 a Edl
shear center RtUv)ansMKal;eday “o”. témørbs; eo EdlkMNt;TItaMgrbs; shear center sRmab;
channel shapes RtUv)anerobcMCataragenAkñúg Manual. CaTUeTA shear center EtgEtsßitenAelIG½kS
sIuemRTI dUcenH shear center nwgsßitenAelITIRbCMuTm¶n;rbs;muxkat;EdlG½kSsIuemRTITaMgBIrkat;Kña. rUbTI
Fñwm                                          183                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                        NPIC
5>45 b bgðajTItaMgdabrbs;FñwmBIrepSgKña enAeBlbnÞúkGnuvtþkat;tam shear center nigminkat;tam
shear center   .
krNITI1³ bnÞúkEdlGnuvtþkat;tam shear center
         RbsinebIbnÞúkeFVIGMeBIkat;tam shear center bBaðaFñwmrgnUvm:Um:g;Bt;FmμtakñúgTisedAEkgBIr.
 dUcbgðajkñúg rUbTI 5>46 bnÞúkGacRtUv)anbMEbkCakMub:Usg;ctuekaNEkgkñúgTisedA x nigTisedA y
EdlkMub:Usg;bnÞúknImYy²begáIt bending eFobG½kSepSgKña.
         edIm,IedaHRsayCamYybnÞúkpÁÜb mundMbUgeyIgsakl,gemIl chapter H of the Specification,
“Manuals Under Combined Forces and Torsion” ¬ehIyemIleTACMBUkTI6 kñúgesovePAenH¦ sin.
The Specification edaHRsaybnÞúkpÁÜbCadMbUgtamry³kareRbI interaction formulas EdlKitBIsar³sM
xan;én\T§iBlbnÞúknImYy²EdlmanTMnak;TMngeTAnwgersIusþg;EdlRtUvKñanwg\T§iBlénbnÞúkenaH. ]Tahr-
N_ RbsinebIman bending eFobEtnwgG½kS x /
         M ux ≤ φb M nx      b¤ φ MMux ≤ 1.0
                                         b nx
Edl M ux = m:Um:g;Bt;emKuNeFobG½kS x
         M nx = nominal moment strength eFobG½kS x
dUcKña RbsinmanEt bending eFobG½kS y enaH
         M uy ≤ φb M ny      b¤ φ MMuy ≤ 1.0
                                          b    ny
Edl       M uy =   m:Um:g;Bt;emKuNeFobG½kS y
T.Chhay                                        184                                            Beams
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
          M ny = nominal moment strength    eFobG½kS y
enAeBlmanRbePT bending TaMgBIr viFI interaction formula tRmUv[plbUkpleFobTaMgBIrtUcCag
b¤esμInwg 1.0 Edl
                    M uy
           M ux
          φ M
                 +
                   φ M
                         ≤ 1.0                                               ¬%>!$¦
            b    nx      b       ny
tamkarBit tRmUvkarenHGnuBaØat[ designer dak;bnÞúkkñúgTisedAmYyEdlminmandak;enAelITisedA
mYyeTot. AISC Section H1 bBa©ÚlpleFobsRmab;bnÞúktamG½kS nig[ interaction formulas BIr
EdlmYysRmab;bnÞúktamG½kStUc nigmYyeTotsRmab;bnÞúktamG½kSFM ¬eyIgnwgsikSamUlehtusRmab;
krNIenHenAkñúgCMBUk 6¦. CamYynwgm:Um:g;Bt;BIrTis ehIyKμanbnÞúktamG½kS rUbmnþsRmab;bnÞúktam
G½kStUcKW
           Pu   M ux    M uy
              +       +        ≤ 1.0                                 (AISC Equation H1-1b)
          2φPn φb M nx φb M ny
RbsinebIbnÞúktamG½kS Pu = 0 enaHsmIkarenHRtUvKñanwgsmIkar %>!$.
       mkdl;cMNucenH eKminBicarNaersIusþg;rbs;muxkat; I- nig H-shaped EdlekageFobG½kS
exSayeT. RbsinebIeFVIEbbenH vanwgmanlkçN³smBaØ. RKb;rUbragEdlekageFobnwgG½kSexSayrbs;
vaminGac buckle kñúgTisedAepSgeToteT dUcenH lateral-torsional buckling minEmnCasßanPaBkM
Nt;eT. RbsinebIrUbragmanlkçN³ compact enaH
          M ny = K py = F y Z y ≤ 1.5M yy
Edl M yy = Fy S y = yield moment sRmab;G½kS y . sRmab;muxkat; I- nig H-shaped Edlekag
eFobG½kSexSay Ednx<s;bMput 1.5M yy nwglubCanic© ¬ Z y / S y nwgFMCag 1.5 Canic©¦. RbsinebIrUbrag
Ca noncompact ersIusþg;Edl[eday AISC Equation A-F1-3 sRmab; flange local buckling b¤
web local buckling. ¬RKb; standard shapes EdlRtUv)anerobCataragenAkñúg Manual manRTnug
compact dUcenHvaGacekItmanEt flange local buckling Etb:ueNÑaH.¦
]TahrN_ 5>18³ W 21× 68 RtUv)aneRbICaFñwmTRmsamBaØEdlmanRbEvg 12 feet . søabrgkarsgát;
RtUv)andak;TRmxagEtenAxagcug. bnÞúkeFVIGMeBItamry³ shear center CamYym:Um:g;emKuN
Fñwm                                         185                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                           NPIC
M ux = 200 ft − kipsehIy M uy = 25 ft − kips . RbsinebIeKeRbI A36 etIFñwmenHbMeBjlkçxNÐ
rbs; AISC Specification? snμt;fam:Um:g;TaMgBIrEbgEckesμIenAelIRbEvgrbs;Fñwm.
dMeNaHRsay³ eKTTYl)anTinñn½yxageRkamsRmab; A36 BI Load Factor Design Selection Table.
rUbragCa compact ehIy
          L p = 7.5 ft ,        Lr = 22.8 ft
          φb M p = 432 ft − kips,              φb M r = 273 ft − kips
The unbraced length Lb = 12 ft ,  dUcenH L p < Lb < Lr ehIysßanPaBkMNt;EdllubKWsßitenAkñúg
elastic lateral-torsion buckling enaH
                                ⎡                     ⎛               ⎞⎤
                                       (
          φb M nx = φb Cb ⎢ M p − M p − M r ⎜        )⎜ LLb −− LL p ⎟⎟⎥
                                ⎢⎣                    ⎝ r           p ⎠ ⎥⎦
                        ⎡                                       ⎛              ⎞⎤
                                       (
                   = Cb ⎢φb M p − φb M p − φb M r           )⎜⎜ LLb −− LL p ⎟⎟⎥ ≤ φb M P
                        ⎢⎣                                      ⎝ r          p ⎠⎥⎦
edaysarm:Um:g;Bt;BRgayesμI/ Cb = 1.0 ehIy
                           ⎡                       ⎛ 12 − 7.5 ⎞⎤
          φb M nx = 1.0⎢432 − (432 − 273)⎜                      ⎟⎥ = 385.2 ft − kips
                           ⎣                       ⎝ 22.8 − 7.5 ⎠⎦
müa:gvijeTot eKGacTTYl φb M nx BI beam design charts
edaysarrUbrag compact dUcenHvaKμan flange local bucklingehIy
          φb M ny = φb M py = φb Z y Fy = 0.90(24.4 )(36 ) = 790.6in. − kips = 65.88 ft − kips
RtYtBinitü         Zy
                   Sy
                           =
                               24.4
                               15.7
                                    = 1.55 > 1.5
dUcenHeRbI         M ny = 1.5M yy = 1.5 F y S y = 1.5(36 )(15.7 ) = 847.8in. − kips = 70.75 ft − kips
                   φb M ny = 0.9(70.75) = 63.59 ft − kips
BIsmIkar %>!!
           M ux    M uy    200   25
                 +       =     +      = 0.912 < 1.0                                  (OK)
          φb M nx φb M ny 385.2 63.59
cemøIy³ W 21× 68 RKb;RKan;
T.Chhay                                                   186                                     Beams
viTüasßanCatiBhubec©keTskm<úCa                                        Department of Civil Engineering
krNITI2³ bnÞúkEdlGnuvtþminkat;tam shear center
         enAeBlEdlbnÞúkGnuvtþminkat;tam shear center rbs;muxkat; lT§plKWFñwmnwgrg flexure bUk
nwg torsion. RbsinebIGaceFVIeTA)an rUbragFrNImaRtrbs;eRKOgbgÁúM nigtMNrKYrRtUvEkERbedIm,IbM)at;cM
Nakp©it. bBaðarbs; torsion enAkñúg rolled shapes KWsμúKsμaj ehIyeyIgnwgedaHRsayvaCamYyviFIRb
hak;RbEhl. eKGacrkkarerobrab;EdllkçN³lMGitsRmab;RbFanbT nig design aid RKb;RKan; enA
kñúg Torsional Analysis of Structural Steel Members (AISC, 1997). lkçxNÐénkardak;bnÞúkEdl
eFVI[ekItman torsion RtUv)anbgðajenAkñúg rUbTI 5>47 a. bnÞúkpÁÜbRtUv)andak;enAelIG½kSrbs;søab
xagelI b:uEnþExSskmμrbs;vaminkat;tam shear center rbs;muxkat;eT. RbsinebIeyIgKitBIsßanPaBlM
nwg eyIgGacrMkilkmøaMgeTA shear center edaybEnßm couple. dUcenHeKTTYl)anRbB½n§lMnwgEdlpSM
eLIgedaykmøaMgEdl[eFVIGMeBIkat;tam shear center bUknwg twisting moment dUcEdl)anbgðaj.
enAkñúg rUbTI 5>47 b eKmankMub:Usg;bnÞúkEtmYyEdlRtUvedaHRsay EtKMnitKWEtdUcKña.
        rUbTI 5>48 bgðajBIviFIEdlsRmYlkñúgkaredaHRsaykrNITaMgBIrenH. enAkñúgrUbTI5>48 a eK
snμt;søabxagelIpþl;nUversIusþg;srubeTAnwgkMub:Usg;bnÞúkedk. enAkñúg rUbTI5>48 b m:Um:g;rmYl (twisting
moment) RtUv)anTb;eday couple EdlpSMeLIgedaybnÞúkBIresμIKñaeFVIGMeBIelIsøabnImYy². tamviFIRb
hak;RbEhl eKGacsnμt;fasøabnImYy²Tb;nwgkmøaMgdac;edayELkBIKña. dUcenH bBaðaRtUv)ankat;bnßy
Fñwm                                         187                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
eTACakrNIén bending rbs;rUbragBIr EdlrUbragnImYy²TTYlbnÞúktamry³ shear center. kñúgsßan
PaBnImYy²Edl)anBiBN’naenAkñúg rUbTI 5>48 muxkat;EtRbEhlBak;kNþalb:ueNÑaH RtUv)anBicarNa
famanRbsiT§PaBtamG½kS y dUcenH enAeBlBicarNaersIusþg;rbs;rbs;søabeTal eRbItémøEtBak;
kNþalrbs; Z y sRmab;muxkat;EdlmanenAkñúgtarag.
Design of Roof Perlins
         édrENgdMbUl (roof purlin) CaEpñkénRbB½n§dMbUlCRmal (sloping roof system) EdlrgnUvm:U
m:g;Bt;BIrTis (biaxial bending) énRbePTEdleTIbnwgBN’na. sRmab; roof purlin EdlbgðajenAkñúg
rUbTI 5>49 bnÞúkmanTisedAbBaÄr EtG½kSénkarBt;KWeRTt. lkçxNÐénkardak;bnÞúkenHRtUvnwgrUbTI
5>48 a. kMub:Usg;EkgeTAnwgdMbUlnwgbegáIt bending eFobG½kS x ehIykMub:Usg;RsbBt;FñwmeFobG½kS
 y rbs;va. RbsinebI purlin RtUv)anRTedayTRmsamBaØenAnwg trusses ( b¤ rigid frame rafter) m:Um:g;
Bt;GtibrmaeFobG½kSnImYy²KW wL2 / 8 Edl w CakMub:Usg;rbs;bnÞúk. RbsinebIeKeRbI sag rods vanwg
pþl;nUv lateral support tamG½kS x ehIynwgCaTRmsRmab;G½kS y EdltRmUv[Kit purlin CaFñwmCab;.
sRmab; sag rods EdlmanKMlatesμI eKGaceRbIrUbmnþsRmab;FñwmCab;enAkñúg Part 4 of the Manual.
]TahrN_ 5>19³ RbB½n§dMbUl trusses EdlbgðajenAkñúg rUbTI 5>50 EdlmanKMlatBIKña 15 ft. . éd
rENgRtUv)andak;enAelItMN nigenAelIcMNuckNþalrbs;Ggát;xagelI. eKdak; sag rods enAkNþal
purlin nImYy². bnÞúk gravity srub EdlrYmbBa©ÚlTaMgTm¶n;édrENgsnμt;KW 30 psf énépÞdMbUl CamYy
T.Chhay                                    188                                           Beams
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
nwgpleFobbnÞúkGefrelIbnÞúkefresμInwg 1.0 . edaysnμt;favaCalkçxNÐdak;bnÞúkeRKaHfñak; cUreRbIEdk
A36 nigeRCIserIs W-shape Edlmankm<s; 6in. sRmab;édrENg.
dMeNaHRsay³ sRmab;lkçxNÐbnÞúkenH bnÞúkefr bUknwg roof live load edayKμanxül; nigRBil
bnSMbnÞúk (A4-3) nwgmantémøFMCageK³
          wu 1.2wD + 1.6 Lr = 1.2(15) + 1.6(15) = 42 psf
TTwgénépÞrgsMBaFEdlmanGMeBIelIédrENgKW
          15 10
                = 7.906 ft.
           2 3
enaH bnÞúkelIédrENg = 42(7.906) = 332.1lb / ft
            kMub:Usg;Ekg = 10
                           3
                              (332.1) = 315.1lb / ft
           kMub:Usg;Rsb = 110 (332.1) = 105.0lb / ft
nig M ux = 18 (0.3151)(15)2 = 8.862 ft − kips
CamYynwg sag rods Edldak;enAcMNuckNþalédrENgnImYy² enaHédrENgCaFñwmCab;BIrElVgtamTis
exSay. BI “Beam Diagrams and Formulas” section in Part 4 of the Manual, m:Um:g;Bt;enAelI
TRmxagkñúgCamYynwgkarrgbnÞúkEtmYyElVgKW
                  1
          M=        wL2
                 16
Edl       w=bnÞúkBRgayesμI
       L = RbEvgElVg ¬ElVgBIresμIKña¦
CamYynwgbnÞúkenAelIElVgTaMgBIr m:Um:g;GacTTYleday superposition³
                                wL2 (2 ) = wL2
                              1           1
          M = M max =
                             16           8
dUcenH    M uy =
                    1
                    8
                      (0.105)(15 / 2)2 = 0.7382 ft − kips
Fñwm                                             189                                       T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                       NPIC
edIm,IeRCIserIsrUbragsakl,g eRbI beam design charts nigeRCIserIsrUbragCamYynwgersIusþg;tam
G½kSxøaMgFM. sRmab; unbraced length 15 / 2 = 7.5 ft / sakl,g W 6 × 9 .
sRmab; Cb = 1.0 / φb M nx = 14.0 ft − kips . BI rUbTI 5>15 b Cb = 1.3 sRmab;lkçxNÐbbnÞúk nig
lkçxNÐTRmxagénFñwmenH. dUcenH
          φb M nx = 1.30(14.0) = 18.20 ft − kips
b:uEnþ φb M px = 16.8 ft − kips < 18.20 ft − kips
dUcenHeRbI φb M nx = 16.8 ft − kips
rUbragenH compact dUcenH
          φb M ny = φb M py = φb Z y Fy = 0.9(1.72 )36 = 55.73in. − kips = 4.644 ft − kips
          Zy
b:uEnþ    Sy
               =
                     1.72
                     1.11
                          = 1.55 > 1.5
dUcenH
                 (          )     (      )
φb M ny = φb 1.5M yy = φb 1.5F y S y = 0.9(1.5)(36)(1.11) = 53.95in. − kips = 4.496 ft − kips
edaysarbnÞúkRtUv)anGnuvtþenAelIsøabxagelI eRbIlT§PaBenHEtBak;kNþaledIm,ITb;Tl;nwg\T§iBl
rmYl. BIsmIkar %>!$
           M ux    M uy    8.862 0.7382
                 +       =      +        = 0.856 < 1.0                                   (OK)
          φb M nx φb M ny 16.8 4.496 / 2
kmøaMgkat;TTwgKW
                 0.3151(15)
          Vu =              = 2.363kips
                     2
BI factored uniform load table³
          φvVn = 19.5kips > 2.363kips              (OK)
cemøIy³ eRbI W 6 × 9 .
5>15> ersIusþg;m:Um:g;Bt;rbs;rUbragepSg²               (Bending Strength of Various Shape)
        W-, S- nig M-shapes Ca hot-rolled shapes EdleKeRbICaTUeTAsRmab;Fñwm ehIy bending
strength rbs;vaRtUv)anerobrab;BIxagedIm. b:uEnþeBlxøHeKk¾eRbIrUbragepSg²eTotCa flexural mem-
bers Edr ehIykñúgEpñkenHnwgniyaysegçbBIkarpþl;[rbs; AISC. smIkarTaMgGs;)anBI Chapter F
T.Chhay                                        190                                           Beams
viTüasßanCatiBhubec©keTskm<úCa                                                    Department of Civil Engineering
b¤ Appendix F of the Specification. eK[ Nominal strength sRmab; compact nig noncompact
hot-rolled shapes b:uEnþminEmnsRmab; slender shapes b¤rUbragEdlpSMeLIgBIEdkbnÞHeT. kñúgEpñkenH
min)anpþl;nUv]TahrN_CatémøelxeT Et]TahrN_ 6>11 bBa©ÚlnUvkarKNnaBI flexural strength
rbs; structural tee-shape.
        dUcEdl)anerobrab;BIxagedIm smIkarKWsRmab; nonhybrid section ( Fyw = Fyf = Fy ) nig
sRmab;krNIBt;Etb:ueNÑaH ¬minmanbnÞúktamG½kSeT¦.
          I.       Channels
                A. Width-thickness parameters for flexure
                     1.   søab
                                 bf
                          λ=
                                 tf
                                         /   λp =
                                                     65
                                                     Fy
                                                             nig   λr =
                                                                              141
                                                                             F y − 10
                                                                                              ¬sRmab; US¦
                                 bf
                          λ=
                                 tf
                                         /   λp =
                                                    170
                                                     Fy
                                                             nig   λr =
                                                                              370
                                                                             F y − 69
                                                                                              ¬sRmab; IS¦
                     2.   RTnug
                          λ=
                                  h
                                 tw
                                         /   λp =
                                                    640
                                                     Fy
                                                             nig   λr =
                                                                              970
                                                                             F y − 10
                                                                                              ¬sRmab; US¦
                          λ=
                                  h
                                 tw
                                         /   λp =
                                                    1680
                                                      Fy
                                                             nig   λr =
                                                                          2550
                                                                           Fy
                                                                                        ¬sRmab; IS¦
                B. Bending     eFobG½kSxøaMg [CamYy ¬!¦ bnÞúkGnuvtþkat;tam shear center ehIysßitenA
                     kñúgbøg;RsbnwgRTnug b¤ ¬@¦ karTb;RbqaMgnwgkarrmYlenAcMNucbnÞúkGnuvtþ nigenARtg;
                     TRm] ³ M n dUcKñasRmab; I-shapes ¬emIlEpñk 5>5 nig 5>6¦.
                C.   Bending eFobG½kSexSay³ M n dUcKñasRmab; I-shapes ¬emIlEpñk 5>14¦.
          II.        Rectangular Structural Tubes
                A. Width-thickness parameters               ¬emIlrUb 5>51¦
                     1.   søab
                          λ=
                                 b
                                 t
                                     /       λp =
                                                    190
                                                     Fy
                                                             nig   λr =
                                                                          238
                                                                           Fy
                                                                                        ¬sRmab; US¦
                          λ=
                                 b
                                 t
                                     /       λp =
                                                    500
                                                     Fy
                                                             nig   λr =
                                                                          625
                                                                           Fy
                                                                                        ¬sRmab; IS¦
                     2.   RTnug
Fñwm                                                       191                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                              NPIC
                         λ=
                               h
                               t
                                   /   λp =
                                              640
                                               Fy
                                                       nig       λr =
                                                                        970
                                                                         Fy
                                                                                  ¬sRmab; US¦
                         λ=
                               h
                               t
                                   /   λp =
                                              1680
                                                Fy
                                                       nig       λr =
                                                                        2550
                                                                         Fy
                                                                                  ¬sRmab; IS¦
                         RbsinebIeKmindwgTMhMBitR)akd b nig h EdlbgðajenAkñúg rUbTI 5>51 eKGac)a:n;
                         sμanedayykTTwgsrub b¤km<s;srubdknwgbIdgkRmas; ¬lkçN³rbs;EdkTIb
                         RCugEdlmanenAkñúg Manual KWQrelIkaMxageRkAEdlesμInwg 2t ¦.
              B. Bending       eFobG½kSxøaMg ¬bnÞúkenAkñúgbøg;sIuemRTI¦
                   1.    rUbrag compact
                         sRmab;rUbrag compact ersIusþg;nwgQrelIsßanPaBkMNt;én lateral-torsional
                         buckling (LTB).
                         sRmab; Lb ≤ L p
                            M n = M p ≤ 1.5M y                                    (AISC Equation F1-1)
                         sRmab; L p < Lb ≤ Lr
                                     ⎡                       ⎛              ⎞⎤
                                                 (
                            M n = Cb ⎢ M p − M p − M r       )⎜⎜ LLb −− LL p ⎟⎟⎥ ≤ M p (AISC Equation F1-2)
                                     ⎢⎣                      ⎝ r        p   ⎠⎥⎦
                         sRmab; Lb > Lr
                            M n = M cr ≤ M p                                      (AISC Equation F1-12)
                         Edl           M cr =
                                                57000Cb JA
                                                   Lb / ry
                                                                  xñat US         (AISC Equation F1-14)
                                       M cr =
                                                393000Cb JA
                                                    Lb / ry
                                                                   xñat IS
                                              3750ry JA
                                       Lp =
                                                 Mp
                                                                  xñat US         (AISC Equation F1-5)
T.Chhay                                              192                                             Beams
viTüasßanCatiBhubec©keTskm<úCa                                                   Department of Civil Engineering
                                                25855ry JA
                                         Lp =
                                                      Mp
                                                                      xñat IS
                                                57000ry JA
                                         Lr =
                                                   Mp
                                                                   xñat US         (AISC Equation F1-10)
                                                393000ry JA
                                         Lr =
                                                      Mp
                                                                      xñat IS
                                         M r = Fy S x                              (AISC Equation F1-11)
                     2.   rUbrag noncompact ³ The nominal strength esμInwgtémøEdltUcCageKéntémø
                          Edl)anKNnasRmab;sßanPaBkMNt; lateral torsional buckling (LTB), flange
                          local buckling (FLB) b¤ web local buckling (WLB). sRmab;sßanPaB
                          nImYy² én local buckling TaMgBIr ersIusþg;RtUv)ankMNt;BIsmIkarxageRkam³
                                                             ⎛ λ − λp           ⎞
                                                        (
                                         Mn = M p − M p − Mr ⎜    )
                                                             ⎜ λr − λ p
                                                                                ⎟ (AISC Equation A-F1-3)
                                                                                ⎟
                                                             ⎝                  ⎠
                 C. Bending  eFobG½kSexSay³ vaminmansßanPaBkMNt; LTB sRmab;RKb;rUbragEdlrg
                    karBt;eFobG½kSexSayrbs;va.
                    1. rUbrag compact
                          M n = M p ≤ 1 .5 M y                                     (AISC Equation F1-1)
                     2.   rUbrag nonompact³ RtYtBinitü FLB nig WLB CamYynwg AISC Equation A-F-
                          1-3.
          III.      Square Structural Tubes
                 A. Width-thickness parameters
                        λ=
                            b
                             t
                                     /
                                   λp =
                                         190
                                          Fy
                                                            nig   λr =
                                                                          238
                                                                           Fy
                                                                                   ¬sRmab; US¦
                          λ=
                                 b
                                 t
                                     /   λp =
                                                500
                                                 Fy
                                                            nig   λr =
                                                                          625
                                                                           Fy
                                                                                   ¬sRmab; IS¦
                 B. Nominal bending strength
                    vaminmansßanPaBkMNt; LTB sRmab;rUbragkaer ¬b¤ctuekaNEkgeT¦.
                     1. rUbrag compact
                          M n = M p ≤ 1 .5 M y                                     (AISC Equation F1-1)
Fñwm                                                    193                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                                NPIC
                   2.    rUbrag nonompact³ ersIusþg;RtUv)ankMNt;eday local buckling eday WLB b¤
                         FLB edayykmYyNaEdl M n tUcCageK.
                                              ⎛ λ − λp                 ⎞
                                           (
                          Mn = M p − M p − Mr ⎜
                                              ⎜ λr − λ p
                                                           )           ⎟
                                                                       ⎟
                                                                                   (AISC Equation A-F1-3)
                                              ⎝                        ⎠
          IV.      Solid Rectangular Bars
                   sRmab; rectangular bars sßanPaBkMNt;EdlGacGnuvtþ)anKW LTB sRmab;G½kSBt;
                   xøaMg local buckling minEmnCasßanPaBkMNt;sRmab;G½kSBt;xøaMg b¤k¾exSay.
                A. Bending eFobG½kSxøaMg
                         sRmab; Lb ≤ L p
                            M n = M p ≤ 1 .5 M y                                   (AISC Equation F1-1)
                         sRmab; L p < Lb ≤ Lr
                                     ⎡                         ⎛             ⎞⎤
                                                (
                            M n = Cb ⎢ M p − M p − M r         )⎜⎜ LLb −− LL p ⎟⎟⎥ ≤ M p (AISC Equation F1-2)
                                     ⎢⎣                        ⎝ r         p ⎠⎥⎦
                         sRmab; Lb > Lr
                            M n = M cr ≤ M p                                       (AISC Equation F1-12)
                         Edl        M cr =
                                               57000Cb JA
                                                  Lb / ry
                                                                   xñat US         (AISC Equation F1-14)
                                    M cr =
                                               393000Cb JA
                                                   Lb / ry
                                                                     xñat IS
                                           3750ry JA
                                    Lp =
                                                Mp
                                                                   xñat US         (AISC Equation F1-5)
                                           25855ry JA
                                    Lp =
                                                    Mp
                                                                     xñat IS
                                           57000ry JA
                                    Lr =
                                                 Mp
                                                                   xñat US         (AISC Equation F1-10)
                                           393000ry JA
                                    Lr =
                                                    Mp
                                                                     xñat IS
                                    M r = Fy S x                                   (AISC Equation F1-11)
                B. Bending     eFobG½kSexSay³
                         M n = M p ≤ 1 .5 M y                                      (AISC Equation F1-1)
          V.       Tees and double-anfle Shapes
T.Chhay                                              194                                               Beams
viTüasßanCatiBhubec©keTskm<úCa                                                               Department of Civil Engineering
               A. Width-thickness parameters
                  1. Tees
                          a.   søab
                                          bf
                                 λ=
                                          2t f
                                                        nig          λr =
                                                                              95
                                                                              Fy
                                                                                    eKmineRbI λ p      ¬sRmab; US¦
                                          bf
                                 λ=
                                          2t f
                                                        nig          λr =
                                                                              250
                                                                               Fy
                                                                                    eKmineRbI λ p      ¬sRmab; IS¦
                          b.   RTnug
                                 λ=
                                           d
                                          tw
                                                        nig          λr =
                                                                              127
                                                                               Fy
                                                                                    eKmineRbI λ p      ¬sRmab; US¦
                                 λ=
                                           d
                                          tw
                                                        nig          λr =
                                                                              333
                                                                               Fy
                                                                                    eKmineRbI λ p      ¬sRmab; IS¦
                     2. Double angles with separators, either leg
                          λ=
                              b
                               t
                                                λr =    nig
                                                        76
                                                         Fy
                                                                                    eKmineRbI λ p      ¬sRmab; US¦
                                 λ=
                                          b
                                          t
                                                        nig          λr =
                                                                              200
                                                                               Fy
                                                                                    eKmineRbI λ p      ¬sRmab; IS¦
                     3. Double angles in continuous contact, outstanding leg
                        λ=
                           b
                           t
                                 λr = /  95
                                         Fy
                                                      λp          eKmineRbI
                                                                        US             ¬sRmab; ¦
                          λ=
                                  b
                                  t
                                      /          λr =
                                                        250
                                                         Fy
                                                                  eKmineRbI λ p        ¬sRmab; IS¦
               B.   CamYybnÞúkenAkñúgbøg;sIuemRTI
                                              π EI y GJ ⎡
                    M n = M cr =                          B + 1+ B2 ⎤                          (AISC Equation F1-15)
                                                   Lb   ⎢     ⎣     ⎥          ⎦
                    Edl          M n ≤ 1 .5 M ysRmab; stem rgkarTaj
                                 M n ≤ 1.0 M y sRmab; stem rgkarsgát;
                                          ⎛ d ⎞ Iy
                                 B = ±2.3⎜⎜ ⎟⎟                                                 (AISC Equation F1-16)
                                          ⎝ Lb ⎠ j
                                 M y = Fy S x
Fñwm                                                              195                                                T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
                    eKeRbIsBaØabUksRmab; B enAeBlEdl stem rgkarTaj ehIysBaØadkenAeBlEdl
                    stem rgkarsgát;enARKb;kEnøgTaMgGs;tambeNþay unbraced length.
                 C. Bending eFobG½kSexSay³
                    sRmab; nonslender shapes (λ ≤ λr )
                           M n = M p ≤ 1 .5 M y
          VI.       Solid circular and square shapes
                           M n = M p ≤ 1 .5 M y
          VII.      Hollow circular shapes
                 A. Width-thickness parameters
                        λ=
                            D
                             t
                                  /
                                  λp =
                                        2070
                                         Fy
                                                       nig   λr =
                                                                    8970
                                                                     Fy
                                                                            ¬sRmab; US¦
                         λ=
                              D
                              t
                                  /   λp =
                                             14270
                                              Fy
                                                       nig   λr =
                                                                    61850
                                                                     Fy
                                                                            ¬sRmab; IS¦
                    Edl D CaGgát;p©itxageRkA
                 B. Norminal bending strength:
                    vaminmansßanPaBkMNt; LTB sRmab;rUbragmUl ¬b¤kaer¦. ersIusþg;RtUv)ankNt;
                    eday local buckling.
                    sRmab; λ ≤ λ p
                           M n = M p ≤ 1 .5 M y
                    sRmab; λ p < λ ≤ λr
                                ⎛ 600      ⎞
                           Mn = ⎜     + Fy ⎟ S (AISC Appendix F, Table A-F1.1)
                                ⎝ D/t      ⎠
T.Chhay                                              196                                  Beams
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
                                       VI.   Fñwm-ssr
                                      Beam-Columns
6>1> esckþIepþIm       (Introduction)
        enAeBlEdlGgát;eRKOgbgÁúMCaeRcInRtUv)anKitCassrrgkmøaMgtamG½kS b¤CaFñwmEdlrgEtkmøaMg
Bt; (flexural loading) Fñwm nigssrCaeRcInrgnUvkmøaMgTaMgBIrKw kmøaMgBt; nigkmøaMgtamG½kS. vaCakar
Bit CaBiesssRmab;eRKOgbgÁúMsþaTicminkMNt;. sUm,IEtTRm roller rbs;FñwmsamBaØGacpþl;nUvkmøaMg
kkitEdlGacTb;Fñwmcl½ttambeNþay enAeBlEdlbnÞúkGnuvtþEkgnwgG½kSbeNþayrbs;Fñwm. b:uEnþkñúg
krNIBiessenH CaTUeTA\T§iBlrg ¬TIBIr¦mantémøtUc ehIyGacecal)an. ssrCaeRcInRtUv)anCa
Ggát;rgkmøaMgsgát;suT§CamYynwgkMrwtlMeGogEdlGacecal)an. RbsinebIssrCaGgát;sRmab;eRKOg
bgÁúMmYyCan; ehIyTRmrbs;vaTaMgBIrRtUv)anKitCaTRm pinned FñwmnwgrgEt bending EdlCalT§plBI
bnÞúkcMNakp©itEdleRKaHfñak;tictYc.
        b:uEnþ sRmab;Ggát;eRKOgbgÁúMCaeRcIn \T§iBlTaMgBIrnwgmantémøFM EdlGgát;TaMgenaHRtUv)aneK
ehAfa beam-columns. BicarNa rigid frame enAkñúgrUbTI 6>1. sRmab;lkçxNÐbnÞúkEdl[Ggát;
edk AB minRtwmEtRTbnÞúkbBaÄrBRgayesμIeT EfmTaMgCYyGgát;bBaÄredIm,ITb;nwgbnÞúkxagcMcMNuc P .
Ggát; CD CakrNIEdleRKaHfñak;Cag eRBaHvaTb;;nwgbnÞúk P1 + P2 edayminmanCMnYyBIGgát;bBaÄr
NaeT. mUlehtuKWfa x-bracing EdlbgðajedayExSdac; karBar sidesway enACan;xageRkam.
sRmab;karbgðajTisedArbs; P2 Ggát; ED nwgrgkmøaMgTaj ehIyGgát; CF nwgFUrRbsinebI bracing
element RtUv)anKNnaedIm,ITb;EtkmøaMgTaj. b:uEnþsRmab;krNIenH Ggát; CD RtUvbBa¢ÚnbnÞúk
 P1 + P2 BI C eTA D .
Fñwm-ssr                                   197                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                               NPIC
          Ggát;bBaÄrrbs;eRKagenHk¾RtUv)anKitCa beam-columns. enACan;xagelI Ggát; AC nig BD
nigekageRkam\T§iBlrbs; P1 . elIsBIenH enARtg; A nig B m:Um:g;Bt;RtUv)anbBa¢ÚnBIGgát;edktamry³
tMNrwg. karbBa¢Únm:Um:g;enHk¾ekIteLIgenARtg; C nig D ehIyvaBitsRmab;RKb; rigid frame eTaHbI
m:Um:g;TaMgenHtUcCagm:Um:g;Edl)anBIbnÞúkxagk¾eday. ssrCaeRcInenAkñúg rigid frames Ca beam-
columns ehIy\T§iBlrbs;m:Um:g;Bt;minRtUv)anecal. b:uEnþ ssrrbs;GaKarmYyCan;EdlenAdac;BIeK
GacRtUv)anKitCaGgát;rgkmøaMgsgát;cMG½kS.
          eBlxøH]TahrN_epSgeTotrbs; beam-columns GacCYbenAkñúg roof trusses. eTaHbICaFmμta
top chord RtUv)anKitCaGgát;rgkmøaMgsgát;tamG½kSk¾eday RbsinebI purlins RtUv)andak;enAcenøaH
tMN kmøaMgRbtikmμrbs;vanwgbegáItCa bending Edldac;xatRtUv)anKitkñúgkarKNna. krNIenHnwg
RtUv)anerobrab;enAkñúgCMBUkenH.
6>2> smIkarGnþrkmμ (Interaction Formulas)
     vismPaBrbs;smIkar @># GacRtUv)ansresrkñúgTRmg;xageRkam³
                   ∑ γ i Qi ≤ 1.0                                                ¬^>!¦
                     φRn
        b¤ ∑ resistance
                  load effects
                               ≤ 1.0
        RbsinebIman resistance eRcInRbePTBak;B½n§ smIkar ^>! GacRtUv)ansresrkñúgTRmg;eKal
rbs; interaction formulas. dUcEdl)anerobrab;enAkñúgCMBUk 5 Rtg;Epñkm:Um:g;Bt;BIrTis plbUkén
pleFob load-to-resistance RtUv)ankMNt;RtwmmYyÉktþa. ]TahrN_ RbsinebIeKGnuvtþTaMgm:Um:g;Bt;
nigkmøaMgtamG½kS interaction formulas GacsresrCa
                 Pu
                      +
                         Mu
               φc Pn φb M n
                               ≤ 1 .0                                             ¬^>@¦
        Edl Pu = bnÞúksgát;tamG½kSemKuN
                   φc Pn = compressive design strength
                   Mu =    m:Um:g;Bt;emKuN
                   φb M n = design moment
          sRmab;m:Um:g;Bt;BIrTis vanwgmanpleFobm:Um:g;Bt;BIr
T.Chhay                                       198                               Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                 Department of Civil Engineering
                           ⎛ M ux     M uy     ⎞
                     Pu
                         +⎜         +
                    φc Pn ⎜⎝ φb M nx φb M ny
                                               ⎟ ≤ 1.0
                                               ⎟
                                                                                  ¬^>#¦
                                               ⎠
       Edl x nig y sMedAelIkarBt;eFobG½kS x nigG½kS y .
       smIkar ^># CasmIkareKalrbs; AISC sRmab;Ggát;rgkarBt; nigrgkmøaMgtamG½kS. eK[
smIkarBIrenAkñúg Specification: mYysRmab;bnÞúkcMG½kSEdlmantémøtUc nigmYyeTotsRmab;bnÞúkcM
G½kSEdlmantémøFM. RbsinebIbnÞúktamG½kSmantémøtUc tYbnÞúktamG½kSRtUv)ankat;bnßy. sRmab;
bnÞúktamG½kSEdlmantémøFM tYkmøaMgBt;RtUv)ankat;bnßybnþic. tRmUvkarrbs; AISC RtUv)an[enAkñúg
Chapter H, “Members Under Combined Forces and Torsion,” ehIyRtUv)ansegçbdUcxageRkam³
       sRmab; φPPu ≥ 0.2
                      c n
            Pu   8 ⎛ M ux         M uy   ⎞
                + ⎜             +        ⎟ ≤ 1.0                 (AISC Equation H1-1a)
           φc Pn 9 ⎜⎝ φb M nx φb M ny    ⎟
                                         ⎠
          sRmab;  Pu
                 φc Pn
                         < 0 .2
             Pu    ⎛ M ux     M uy       ⎞
                 +⎜         +            ⎟ ≤ 1.0                 (AISC Equation H1-1b)
           2φc Pn ⎜⎝ φb M nx φb M ny     ⎟
                                         ⎠
          ]TahrN_6>1 bgðajBIkarGnuvtþn_smIkarTaMgenH.
]TahrN_6>1³ Fñwm-ssrEdlbgðajenAkñúg rUbTI6>@ manTRm pinned enAcugsgçag ehIyrgbnÞúkem
KuNdUcbgðaj. karBt;KWeFobnwgG½kSxøaMg. kMNt;faetIGgát;enHbMeBjsmIkarGnþrkmμrbs; AISC
Specification b¤eT.
dMeNaHRsay³ dUcEdl)anbkRsayenAkñúgEpñk 6>3 m:Um:g;EdlGnuvtþenAkñúg AISC Equations H1-1a
nig b eBlxøHnwgRtUv)anbegáInedaym:Um:g;bEnßm (moment amplification). eKalbMNgén]TahrN_
enHKWbgðajBIrebobeRbIsmIkarGnþrkmμ.
        BI column load table ersIusþg;KNnakmøaMgsgát;tamG½kS (axial compression design
strength) rbs; W 8× 58 CamYynwg F y = 50ksi nigRbEvgRbsiT§PaB K y L = 1.0 × 17 = 17 ft KW
           φc Pn = 365kips
edaysarkarBt;eFobG½kSxøaMg m:Um:g;KNna (design moment) φb M n sRmab; Cb = 1.0 GacTTYl
Fñwm-ssr                                           199                                 T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                            NPIC
)anBI beam design chart in Part 4 of the Manual.
       sRmab; unbraced length Lb = 17 ft /
          φb M n = 202 ft − kips
          sRmab;lkçxNÐbnÞúk niglkçxNÐcugsRmab;bBaðaenH Cb = 1.32 ¬emIlrUbTI 5>15 c¦.
          sRmab; Cb = 1.32 /
          φb M n = 1.32(202) = 267 ft − kips
b:uEnþm:Um:g;enHFMCag φb M p = 224 ft − kips ¬EdlTTYl)andUcKñaBI            beam design charts   ¦/ dUcenH
design moment RtUv)ankMNt;Rtwm φb M p . dUcenH
          φb M n = 224 ft − kips
m:Um:g;Bt;GtibrmaenAkNþalElVgKW
                  22(17 )
          Mu =            = 93.5 ft − kips
                    4
kMNt;faetIsmIkarGnþrkmμmYyNalub
           Pu
               =
                 200
          φc Pn 365
                     = 0.547 > 0.2            dUcenHeRbI AISC Eq.H1-1a.
           Pu   8 ⎛ M ux      M uy           ⎞
                                             ⎟ = 0.5479 + 8 ⎛⎜ 93.5 + 0 ⎞⎟ = 0.919 ≤ 1.0
               + ⎜          +                                                               (OK)
          φc Pn 9 ⎜⎝ φb M nx φb M ny         ⎟
                                             ⎠            9 ⎝ 224        ⎠
cemøIy³ Ggát;enHbMeBj AISC Specification.
T.Chhay                                             200                                    Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
6>3> m:Um:g;bEnßm (Moment Amplification)
        viFIBImunsRmab;karKNnaGgát;rgkarBt; nigkmøaMgtamG½kSGaceRbI)ansRmab;EtkmøaMgtamG½kS
mantémøminFMeBk. vtþmanrbs;bnÞúktamG½kS ¬elIkElgenAeBlvamantémøtUc¦ begáItm:Um:g;TIBIrEdl
RtUv)anKitbBa©ÚlkñúgkarKNna. rUb TI 6>3 bgðajBIFñwm-ssrCamYybnÞúktamG½kS nigbnÞúkTTwgG½kS
BRgayesμI. Rtg;cMNuc O NamYyEdlmanmanm:Um:g;Bt;EdlbegáIteLIgedaybnÞúkBRgayesμInwgm:Um:g;
bEnßm Py EdlbegáIteLIgedaybnÞúktamG½kSeFVIGMeBIcMNakp©itBIG½kSbeNþayrbs;Ggát;. m:Um:g;TIBIr
enaH mantémøkan;EtFMenAkEnøgNaEdlmanPaBdabkan;EtFM. kñúgkrNIenH Rtg;km<s;Bak;kNþalm:Um:g;
srubesμInwg wL2 / 8 + Pδ . vaCakarBitEdl m:Um:g;bEnßmbegáItPaBdabbEnßmBIelIPaBdabEdl)anBI
bnÞúkTTwgG½kS. edaysareKminGacrkPaBdabsrubedaypÞal; ¬bBaðaenHCa nonlinear¦ ehIyeday
sarEteKminsÁal;PaBdab eKk¾minGacKNnam:Um:g;)anEdr.
        viFIviPaKeRKOgbgÁúMFmμta (ordinary structural analysis methode) Edlminykragpøas;TImk
KitRtUv)aneKKitCa viFIdWeRkTImYy (first-order method). eKeRbI Iterative numerical technique
¬EdleKehAfa viFIdWeRkTIBIr (second-order method)¦ edIm,IrkPaBdab nigm:Um:g;TIBIr b:uEnþviFIenHmin
GaceRbIsRmab;karKNnaedayéd EdlvaRtUv)aneRbICaTUeTACamYynwgkmμviFIkMuBüÚT½r. Design codes
nig specifications bc©úb,nñPaKeRcIn rYmbBa©ÚlTaMg AISC Specification GnuBaØatkareRbIR)as; second-
Fñwm-ssr                                    201                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                 NPIC
order analysis  b¤ moment amplification method. viFIenHtRmUvkarKNnam:Um:g;Bt;GtibrmaEdl)an
BIlT§plBI flexural loading ¬bnÞúkTTwgG½kS b¤m:Um:g;cugGgát;¦ eday first-order analysis bnÞab;mk
KuNnwgemKuNm:Um:g;bEnßm (moment amplification factor) edIm,IKitm:Um:g;TIBIr.
        rUbTI 6>4 bgðajGgát;TRmsamBaØCamYynwgbnÞúkcMG½kS nigPaBminRtg;dMbUg (initial out-of-
straightness). PaBdabdMbUg (initial crookedness) enHGacsMEdgeday³
                         πx
          yo = e sin
                         L
Edl e CabMlas;TIGtibrmadMbUg EdlekIteLIgenAkNþalElVg.
     sRmab;RbB½n§kUGredaendUcEdl)anbgðaj                eKGacsresrTMnak;TMngExSkMeNag-m:Um:g;
(moment-curvature relationship) dUcxageRkam³
          d2y           M
                   =−
               2        EI
          dx
        m:Um:g;Bt; M ekIteLIgedaysarcMNakp©iténkmøaMgtamG½kS Pu eFobG½kSrbs;Ggát;. cMNak
p©itenHpSMeLIgeday initial crookedness yo bUknwgPaBdabbEnßm y EdlekItBIkarBt;. enARtg;TI
taMgNamYy m:Um:g;KW
          M = Pu ( yo + y )
          edayCMnYssmIkarenHeTAkñúgsmIkarDIepr:g;Esül eyIgTTYl)an
          d2y         P ⎛       πx   ⎞
                   = − u ⎜ e sin + y ⎟
          dx   2      EI ⎝      L    ⎠
          d2y  P       Pe     πx
              + u y = − u sin
          dx 2 EI       EI    L
T.Chhay                                    202                                   Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
        EdlCa ordinary, nonhomogenous differential equation. edaysarvaCasmIkardWeRkTIBIr
dUcenHvamanlkçxNÐRBMEdnBIr. sRmab;lkçxNÐTRmEdlbgðaj lkçxNÐRBMEdnKW
        enARtg; x = 0 / y = 0 nigenARtg; x = L / y = 0
        enHmann½yfa PaBdabesμIsUnüenAcugsgçag. GnuKmn_EdlbMeBjTaMgsmIkarDIepr:g;Esül nig
lkçxNÐRBMEdnKW
                       πx
           y = B sin
                        L
         Edl B Catémøefr. CMnYsvaeTAkñúgsmIkarDIepr:g;Esül eyIgTTYl)an
               π2           πxP       πx  Pe     πx
           −        B sin    + u B sin = − u sin
               L2           L EI      L    EI    L
         eKTTYl)antémøefr
                Pe
               − u
                 EI =    −e        e
           B=                  =
              Pu π 2     π 2 EI Pe − 1
                −     1−         Pu
              EI L2      Pu L2
         Edl Pe = π
                            2
                                EI
                                     = Euler buckling load
                                2
                            L
         dUcenH y = B sin πLx = ⎡⎢ (P / Pe ) − 1⎤⎥ sin πLx
                                         ⎣ e   u     ⎦
           M = Pu ( yo + y )
                  ⎪⎧     πx ⎡      e       ⎤ πx ⎫⎪
             = Pu ⎨e sin + ⎢               ⎥ sin ⎬
                   ⎪⎩    L ⎣ (Pe / Pu ) − 1⎦    L ⎪⎭
          m:Um:g;GtibrmaekItenARtg; x = L / 2 ³
                      ⎡          e       ⎤
           M max = Pu ⎢e +               ⎥
                      ⎣ (Pe / Pu ) − 1⎦
                        ⎡ (P / P ) − 1 + 1 ⎤
                 = Pu e ⎢ e u              ⎥
                        ⎣ (Pe / Pu ) − 1 ⎦
                           ⎡      1       ⎤
                      = Mo ⎢              ⎥
                           ⎣1 − (Pu / Pe )⎦
       Edl M o minEmnCam:Um:g;bEnßmGtibrma (unampliflied maximum moment). kñúgkrNIenH
vaTTYl)anBI initial crookedness b:uEnþCaTUeTAvaGacCalTßplénbnÞúkTTwgG½kS b¤m:Um:g;cug. dUcenHem
Fñwm-ssr                                                 203                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                            NPIC
KuNm:Um:g;bEnßm (moment amplification factor) KW
                 1
           1 − (Pu / Pe )
                                                                              ¬^>$¦
           dUcEdl)anerobrab;mkehIy TRmg;emKuNm:Um:g;bEnßmrbs; AISC GacxusEbøkBIsmIkar ^>$
bnþic.
]TahrN_6>2³ eRbIsmIkar ^>$ edIm,IKNnaemKuNm:Um:g;bEnßmsRmab;Fñwm-ssrén]TahrN_ 6>1.
dMeNaHRsay³ edaysar Euler load Pe CaEpñkrbs;emKuNm:Um:g;bEnßm eKRtUvKNnavasRmab;G½kSén
karBt; EdlkñúgkrNIenHKWG½kS x . eKGacsresr Euler load Pe edayeRbI effective length nig
slenderness ratio dUcxageRkam³
                  π 2 EAg
           Pe =
                  (KL / r )2
¬emIlCMBUk 4 smIkar $>^ a¦. sRmab;G½kSénkarBt;
           KL K x L 1.0(17 )(12)
              =    =             = 55.89
            r   rx     3.65
                  π 2 EAg          π 2 (29000)(17.1)
           Pe =                =                       = 1567kips
                  (KL / r )2           (55.89)2
BIsmIkar ^>$
                 1               1
                         =                  = 1.15
           1 − (Pu / Pe ) 1 − (200 / 1567 )
EdlbgðajkarekIneLIg 15% BIelIm:Um:g;Bt;. m:Um:g;bEnßmKW
           1.15 × M u = 1.15(93.5) = 107.5 ft − kips
cemøIy³ emKuNm:Um:g;bEnßm 1.15
6>4>      Web Local Buckling in Beam-Columns
        karkMNt;rbs; design moment tRmUv[RtYtBinitümuxkat;sRmab; compactness . enAeBl
EdlKμanbnÞúktamG½kS RTnugrbs;RKb;rUbragEdlmanenAkñúgtaragsuT§Et compact. RbsinebImanvtþ
manbnÞúktamG½kS RTnugTaMgenaHGacnwgmin compact. enAeBlEdleyIg[ λ = h / t w /
        RbsinebI λ ≤ λ p rUbragKW compact.
T.Chhay                                                204                   Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                                  Department of Civil Engineering
          RbsinebI λ p < λ ≤ λr rUbragKW noncompact.
          RbsinebI λ > λr rUbragKW slender.
          ASIC B5 enAkñúg Table B5.1 erobrab;nUvkarkMNt;xageRkam³
                                             ⎛ 2.75Pu ⎞
          sRmab; φ PPu ≤ 0.125 / λ p = 640F ⎜
                                             ⎜1 −
                                                  φ P ⎟
                                                       ⎟ ¬xñat US¦
                      b y                       y   ⎝     b y     ⎠
                                          1680 ⎛⎜ 2.75Pu      ⎞
                                   λp =
                                            Fy ⎜⎝
                                                  1−
                                                     φb Py
                                                              ⎟
                                                              ⎟
                                                                  ¬xñat IS¦
                                                              ⎠
                                                ⎛                 ⎞
          sRmab; φ PPu              /
                             > 0.125 λ p =      ⎜ 2.33 − Pu ⎟ ≥ 253
                                              191
                                                ⎜
                                               Fy          φb Py ⎟⎠     Fy
                                                                                ¬xñat US¦
                      b y                       ⎝
                                         500 ⎛⎜           P ⎞ 665
                                   λp =
                                          Fy ⎜⎝
                                                2.33 − u ⎟ ≥
                                                        φb Py ⎟⎠      Fy
                                                                               ¬xñat IS¦
                                                  970 ⎛⎜             P ⎞
          sRmab;témøepSg²rbs;        Pu
                                   φb Py
                                          /λr =
                                                   F y ⎜⎝
                                                          1 − 0.74 u ⎟
                                                                    φb Py ⎟⎠
                                                                               ¬xñat US¦
                                                2550 ⎛⎜             P ⎞
                                          λr =
                                                  Fy ⎜⎝
                                                        1 − 0.74 u ⎟
                                                                  φb Py ⎟⎠
                                                                               ¬xñat IS¦
Edl Py = Ag Fy / bnÞúktamG½kScaM)ac;edIm,IeTAdl;sßanPaBkMNt; yielding.
        edaysar Pu CaGBaØti eKminGacRtYtBinitü compactness rbs;RTnug nigminGacerobcMCata
ragTukCamun)aneT. b:uEnþ rolled shape xøHbMeBjnUvkrNId¾GaRkk;bMput 665 / Fy Edlmann½yfarUb
ragenaHmanRTnug compact edayminTak;TgnwgbnÞúktamG½kS. rUbragEdlmanenAkñúg column load
table in Part 3 of the Manual EdlminbMeBjlkçxNÐRtUv)ankMNt;bgðaj enaHeKRtUvRtYtBinitü
compactness rbs;RTnugrbs;va. rUbragEdlmansøabmin compact k¾RtUv)ankMNt;bgðaj dUcenHRKb;
rUbragTaMgGs;Edlmin)anbgðaj enaHmann½yfarUbragTaMgenaHKW compact.
]TahrN_6>3³ Edk A36 EdlmanrUbrag W 12 × 65 RtUv)andak;[rgm:Um:g;Bt; nigbnÞúktamG½kSem
KuN 300kips . RtYtBinitü compactness rbs;RTnug.
dMeNaHRsay³ rUbragenHKW compact sRmab;RKb;témøbnÞúktamG½kS BIeRBaHminmankarkMNt;cMNaMNa
mYyenAkñúg column load table. b:uEnþ edIm,Ibgðaj eyIgRtYtBinitü width-thickness ratio rbs;RTnug
Fñwm-ssr                                            205                                                 T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
           Pu      Pu         300
               =        =              = 0.4848 > 0.125
                         (   )
          φb Py φb Ag Fy 0.9(19.1)(36)
                  ⎛               ⎞
dUcenH    λp =    ⎜ 2.33 − Pu ⎟ = 191 (2.33 − 0.4848) = 58.74
                 191
                  ⎜
                  Fy       φb Py ⎟⎠  36
                  ⎝
          253   253
              =      = 42.17 < 58.74
           Fy    36
dUcenH λ p = 58.74
BI dimensions and properties tables/
                h
          λ=      = 24.9 < 58.74
               tw
dUcenH RTnugKW compact. cMNaMfa sRmab;RKb;témørbs; Fy enaH th nwgmantémøtUcCag
                                                                   w
253 / Fy EdlCatémøEdltUcbMputrbs; λ p dUcenHRTnugrbs; W 12 × 65 nwgenAEtCa compact.
6>5> eRKagBRgwg nigeRKagGt;BRgwg (Braced versus Unbraced Frame)
         AISC Specification erobrab;BI moment amplification in Chapter C, Frames and other
Structures”. eKmanemKuNbEnßmBIrEdleRbIenAkñúg LRFD: mYyedIm,IKitBIm:Um:g;bEnßmEdlCalT§plBI
PaBdabrbs;Ggát; nigmYyeTotsRmab;KitBI\T§iBl sway enAeBlEdlGgát;CaEpñkrbs; unbraced
frame. viFIenHmanlkçN³RsedogKñaeTAnwgviFIEdleRbIenAkñúg ACI Building Code sRmab;ebtug
BRgwgedayEdk (ACI, 1995). rUbTI 6>5 nwgbgðajBIGgát;TaMgBIr. enAkñúg rUbTI 6>5 a Ggát;RtUv)anTb;
RbqaMgnwg sidesway ehIym:Um:g;TIBIrGtibrmaKW Pδ EdlRtUvbEnßmeTAelIm:Um:g;GtibrmaenAkñúgGgát;
enaH. RbsinebIeRKagminRtUv)anBRgwg vanwgelceLIgnUvm:Um:g;TIBIr EdlbgðajenAkñúg rUbTI 6>5 b Edl
begáIteday sidesway. m:Um:g;TIBIrenHmantémøGtibrma PΔ EdlbgðajBIkarbEnßménm:Um:g;cug.
         edIm,IKItBI\T§iBlTaMgBIrenH emKuNm:Um:g;bEnßm B1 nig B2 RtUv)aneRbIsRmab;m:Um:g;BIrRbePT.
m:Um:g;bEnßmEdleRbIsRmab;KNnaRtUv)anKNnaBIbnÞúkemKuN nigm:Um:g;emKuNdUcxageRkam³
          M u = B1M nt + B2 M lt                                      (AISC Equation C1-1)
Edl       M nt =   m:Um:g;GtibrmaEdlsnμt;faminman sidesway ekIteLIg eTaHbICaeRKagBRgwgb¤minBRgwg
                   k¾eday ¬ nt mann½yfa no translation¦
T.Chhay                                       206                                   Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
              m:Um:g;GtibrmaEdlekIteLIgeday sidesway ekIteLIg ¬ lt mann½yfa lateral transla-
           M lt =
               tion¦. m:Um:g;enHGacekItBI lateral load b¤edaysar unbalanced gravity loads .
               bnÞúkTMnajGacbegáIt sidesway RbsinebIeRKagGt;sIuemRTI b¤k¾bnÞúkTMnaj enaHRtUv)an
               dak;edayminmanlkçN³sIuemRTI. M lt nwgmantémøesμIsUnüRbsinebIeRKagRtUv)anBRgwg.
    B1 = emKuNm:Um:g;bEnßmsRmab;m:Um:g;EdlekIteLIgenAkñúgGgát;EdlRtUv)anBRgwgTb;nwg sidesway.
     B2 = emKuNm:Um:g;bEnßmsRmab;m:Um:g;Edl)anBI sidesway.
        eyIgnwgerobrab;BIkarkMNt;emKuNTaMgBIr B1 nig B2 enAkñúgEpñkxageRkam.
6>6> Ggát;enAkñúgeRKagEdlBRgwg (Members in Braced Frames)
       emKuNm:Um:g;bEnßmEdl[edaysmIkar ^>$ RtUv)anbMEbksRmab;Ggát;EdlBRgwgRbqaMgnwg
sidesway. rUbTI 6>6 bgðajBIGgát;RbePTenHEdlrgm:Um:g;enAxagcugesμIKñaEdlbegáIt single-
curvature bending ¬kMeNagEdlbegáItkarTaj nigkarsgát;enAEtEpñkmçagrbs;Ggát;¦. m:Um:g;bEnßm
GtibrmaekItenARtg;Bak;kNþalkm<s; EdlPaBdabmantémøFMbMput. dUcenHm:Um:g;TIBIrGtibrma nigm:U
m:g;emGtibrmaRtUv)anbUkbBa©ÚlKña. eTaHRbsinebIm:Um:g;enAxagcugminesIμKñak¾eday RbsinebIm:Um:g;mYy
vilRsbTisRTnicnaLika nigmYyeTotvilRcasRTnicnaLika vanwgbegáIt single-curvature bending
ehIym:Um:g;emGtibrma nigm:Um:g;TIBIrGtibrmanwgekIteLIgenAEk,Kña.
Fñwm-ssr                                    207                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
       vanwgminEmnCakrNIeT enAeBlEdlm:Um:g;enAcugEdlGnuvtþbegáIt reverse-curvature bending
dUcbgðajenAkñúg rUbTI 6>7 . enAeBlenH m:Um:g;emGtibrmaKWenAcugmçag ehIym:Um:g;TIBIrGtibrmaekIt
eLIgenAcenøaHcugTaMgBIr. m:Um:g;bEnßmGacFMCag b¤tUcCagm:Um:g;cugGaRs½ynwgbnÞúktamG½kS.
       dUcenHm:Um:g;GtibrmaenAkñúg beam-column GaRs½ynwgkarEbgEckm:Um:g;Bt;enAkñúgGgát;. kar
EbgEckenHRtUv)anKitedayemKuN Cm EdlGnuvtþenAkñúgemKuNm:Um:g;bEnßm B1 . emKuNm:Um:g;bEnßm
Edl[edaysmIkar ^>$ RtUv)anbMEbksRmab;krNIGaRkk;bMput dUcenH Cm nwgminRtUvFMCag 1.0 .
TRmg;cugeRkayrbs;emKuNm:Um:g;bEnßmKW³
                      Cm
          B1 =                   ≥1                                (AISC Equation C1-2)
                 1 − (Pu / Pe1 )
Edl Pe1 = Ag 2Fy = π
                            2
                                EAg
                 λc      (KL / r )2
enAeBlKNna Pe1 eRbI KL / r sRmab;G½kSénkarBt; ehIyemKuNRbEvgRbsiT§PaB          K ≤ 1 .0   ¬Edl
RtUvKñanwglkçxNÐEdlBRgwg¦.
karKNnaemKuN Cm
        emKuN Cm GnuvtþEtelIlkçxNÐEdlBRgwgEtb:ueNÑaH. eKmanGgát;BIrRbePT EdlmYyman
bnÞúkTTwgG½kSGnuvtþenAcenøaHcug nigmYyeTotminmanbnÞúkTTwgG½kS.
        rUbTI 6>8 b nig c bgðajBIkrNITaMgBIrxagelIenH ¬Ggát; AB Ca beam-column EdlRtUvKit¦.
T.Chhay                                   208                                   Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
          !> RbsinebIminmanbnÞúkTTwgG½kSeFVIGMeBIenAelIGgát;
                                    ⎛M ⎞
                    C m = 0.6 − 0.4⎜⎜ 1 ⎟⎟                        (AISC Equation C1-3)
                                    ⎝ M2 ⎠
                  CapleFobénm:Um:g;Bt;enAcugrbs;Ggát;. M1 Catémødac;xaténm:Um:g;cugEdltUcCag
           M1 / M 2
eK ehIy M 2 CatémøFMCag enaHpleFobnwgviC¢mansRmab;Ggát;EdlekagkñúgTRmg; reversecurvature
nigGviC¢mansRmab; single-curvature bending ¬rUbTI 6>9 ¦. Reverse curvature ¬pleFobviC¢man¦
ekIteLIgenAeBlEdl M1 nig M 2 vilRsbRTnicnaLikaTaMgBIr b¤RcasRTnicnaLikaTaMgBIr.
        @> sRmab;Ggát;rgbnÞúkTTwgG½kS eKGacyk Cm = 0.85 RbsinebIcugrbs;vaRtUv)anTb;RbqaMg
nwgkarvil nigesμInwg 1.0 RbsinebIcugrbs;vaminRtUv)anTb;nwgkarvil ¬pinned¦. CaTUeTAkarTb;cug
(end restraint) ekItBIPaBrwgRkaj (stiffness) rbs;Ggát;EdlP¢ab;eTAnwg beam-column. lkçxNÐ
TRm pinned CalkçxNÐmYyEdlRtUv)aneRbIsRmab;TajrkemKuNm:Um:g;bEnßm dUcenHvaminmankarkat;
bnßytémøemKuNm:Um:g;bEnßmsRmab;krNIenHeT EdlvaRtUvKñanwg Cm = 1.0 . eTaHbICalkçxNÐcugBit
Fñwm-ssr                                       209                                      T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
R)akdsßit enAcenøaHkarbgáb;eBj (fully fixity) nigknøas;Kμankkit (frictionless pin) k¾eday eKGac
eRbItémøNa mYyk¾)anEdr eRBaHvanwgpþl;lT§plCaTIeBjcitþ.
        viFIsaRsþEdl)aneFVI[RbesIreLIgsRmab;Ggát;rgbnÞúkxagTTwgG½kS ¬krNITIBIr¦ RtUv)anpþl;
[enAkñúg section C1 of the commentary to the Specification. emKuNkat;bnßyKW
                    P
          Cm = 1 +ψ u
                   Pe1
          sRmab;Ggát;TRmsamBaØ
T.Chhay                                    210                                     Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
                π 2δ o EI
          ψ=                −1
                  M o L2
        Edl δ o CaPaBdabGtibrmaEdlekItBIbnÞúkxagTTwgG½kS ehIy M o Cam:Um:g;GtibrmaenA
cenøaHTRmEdl)anBIbnÞúkxagTTwgG½kS. emKuN ψ RtUv)anKNnaBIsßanPaBFmμtaCaeRcInehIyRtUv)an
pþl;[enAkñúg commentary Table C-C1.1.
]TahrN_6>4³ Ggát;EdlbgðajenAkñúg rUbTI 6>10 CaEpñkrbs; braced frame. bnÞúk nigm:Um:g;RtUv)an
KNnaCamYybnÞúkemKuN ehIykarBt;KWwFobnwgG½kSxøaMg. RbsinebIeKeRbI A572 Grade 50 etIGgát;
enHRKb;RKan;b¤eT? KL = KL y = 14 ft .
dMeNaHRsay³ kMNt;faetIRtUveRbIrUbmnþGnþrkmμmYyNa
                        KL K y L 14(12)
          maximum          =    =       = 55.63
                         r   ry   3.02
          BI AISC Table 3-50, φc Fcr = 33.89ksi dUcenH
           φc Pn = Ag (φc Fcr ) = 19.1(33.89 ) = 647.4kips
            Pu    420
                =      = 0.6487 > 0.2
           φc Pn 647.4
          dUcenHeRbI AISC Equation H1-1a.
          enAkñúgbøg;énkarBt;
Fñwm-ssr                                        211                                     T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                          NPIC
          KL K x L 14(12 )
             =    =        = 31.82
           r   rx   5.28
                  Ag F y         π 2 EAg            π 2 (29000 )(19.1)
          Pe1 =            =                    =                        = 5399kips
                   λ2c         (K x L / rx )2           (31.82)2
                          ⎛M ⎞              ⎛ 70 ⎞
          C m = 0.6 − 0.4⎜⎜ 1 ⎟⎟ = 0.6 − 0.4⎜ − ⎟ = 0.9415
                          ⎝ M2 ⎠            ⎝ 82 ⎠
                    Cm              0.9415
          B1 =                =                 = 1.021
               1 − (Pu / Pe1 ) 1 − (420 / 5399)
          BI Beam design charts,CamYynwg Cb = 1.0 nig Lb = 14 ft. moment strength KW
          φb M n = 347 ft − kips
          sRmab;témø Cb BitR)akd edayeyagtamdüaRkam:Um:g;enAkñúg rUbTI 6>10³
                            12.5M max                        1.25(82 )
          Cb =                                  =                                   = 1.06
                  2.5M max + 3M A + 4 M B + 3M C 2.5(82 ) + 3(73) + 4(76 ) + 3(79 )
          dUcenH φb M n = Cb (347) = 1.06(347) = 368 ft − kips
          b:uEnþ φb M p = 358 ft − kips ¬BItarag¦ < 368 ft − kips
          dUcenHeRbI φb M n = 358 ft − kips
          m:Um:g;emKuNKW M nt = 85 ft − kips M lt = 0
          BI AISC Equation C1-1,
          M u = B1M nt + B2 M lt = 1.021(82 ) + 0 = 83.72 ft − kips = M ux
          BI AISC Equation H1-1a,
           Pu   8 ⎛ M ux      M uy              ⎞
                                                ⎟ = 0.6487 + 8 ⎛⎜ 83.72 ⎞⎟ = 0.857 < 1.0
               + ⎜          +                                                               (OK)
          φc Pn 9 ⎜⎝ φb M nx φb M ny            ⎟
                                                ⎠            9 ⎝ 358 ⎠
          cemøIy³ Ggát;enHKWRKb;RKan;.
]TahrN_ 6>5³ Fñwm-ssredkEdlbgðajenAkñúgrUbTI 6>11 rgnUv service live loads dUcEdlbgðaj
kñúgrUb. Ggát;enHRtUv)anBRgwgxagenAxagcugrbs;vaTaMgBIr ehIykarBt;KWeFobnwgG½kS x . RtYtBinitü
faetIGgát;enHRKb;RKan;tam AISC Specification.
T.Chhay                                                   212                              Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                                     Department of Civil Engineering
dMeNaHRsay³ bnÞúkemKuNKW
           Pu = 1.6(20 ) = 32.0kips
ehIym:Um:g;GtibrmaKW
           M nt =
                    (1.6 × 20)(10) + (1.2 × 0.035)(10)2        = 80.52 ft − kips
                            4                       8
Ggát;enHRtUv)anBRgwgTb;nwgkarbMlas;TIxagcug dUcenH M lt = 0 .
KNnaemKuNm:Um:g;bEnßm
sRmab;Ggát;rgbnÞúkxagEdlRtUv)anBRgwgTb;nwg sidesway ehIy unrestrained end enaH Cm = 1.0 .
témøEdlsuRkitCagEdl)anBI AISC Commentary Table C-C1.1 KW
                         P
           C m = 1 − 0 .2 u
                         Pe1
sRmab;G½kSénkarBt;
           KL K x L 1.0(10 )(12 )
              =    =              = 34.19
            r   rx     3.51
                   π 2 EAg           π 2 (29000)(10.3)
           Pe1 =                 =                       = 2522kips
                   (KL / r )2            (34.19)2
                       ⎛ 32.0 ⎞
           Cm = 1 − 0.2⎜      ⎟ = 0.9975
                       ⎝ 2522 ⎠
emKuNm:Um:g;bEnßm
                       Cm              0.9975
           B1 =                  =                   = 1.010 > 1.0
                  1 − (Pu / Pe1 ) 1 − (32.0 / 2522 )
sRmab;G½kSénkarBt;
           M u = B1M nt + B2 M lt = 1.010(80.52 ) + 0 = 81.33 ft − kips
Fñwm-ssr                                                 213                                               T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                     NPIC
edIm,ITTYl design strengths dMbUgemIleTA column load tables in Part 3 of the Manual Edl [
          φc Pn = 262kips
BI beam design charts in Part 4 of the Manual sRmab; Lb = 10 ft nig Cb = 1.0
          φb M n = 91.8 ft − kips
edaysarTm¶n;FñwmtUcNas;ebIeRbobeFobnwgbnÞúkGefrcMcMNuc enaH Cb = 1.32 BI rUbTI 5>13 c.
          φb M n = 1.32(91.8) = 121 ft − kips
m:Um:g;enHFMCag φb M p = 93.6 ft − kips EdlTTYl)anBI beam design chart dUcKña dUcenH design
strength RtUv)ankMNt;RtwmtémøenH. dUcenH
          φb M n = 93.6 ft − kips
RtYtBinitürUbmnþGnþrkmμ³
           Pu    32.0
               =      = 0.1221 < 0.2
          φc Pn 262
dUcenHeRbI AISC Equation H1-1b³
            Pu    ⎛ M ux     M uy      ⎞ 0.1221 ⎛ 81.33     ⎞
                +⎜         +           ⎟=      +⎜       + 0 ⎟ = 0.930 < 1.0           (OK)
          2φc Pn ⎜⎝ φb M nx φb M ny    ⎟
                                       ⎠    2   ⎝ 93.6      ⎠
cemøIy³ W 8× 35 KWRKb;RKan;
]TahrN_ 6>6³ Ggát;EdlbgðajenAkñúg rUbTI6>12 eFVIBIEdk A242 EdlmanrUbrag W 12 × 65 ehIy
RtUvRTnUvbnÞúksgát;tamG½kSemKuN 300kips . enAcugTMenrmçagCa pinned nigcugmçageTotrgnUvm:Um:g;
emKuN 135 ft − kips eFobG½kSxøaMg nig 30 ft − kips eFobG½kSexSay. eRbII K x = K y = 1.0 cUreFVIkar
GegátBIGgát;enH.
dMeNaHRsay³ dMbUg kMNt; yield stress Fy . BI Table 1-2, Part 1 of the Manual, W12 × 65
CarUbragRkumTIBIr. BI Table 1-1, Edk A242 manersIusþg;EtmYyKW Fy = 50ksi .
bnÞab;mkeTot rk compressive strength. sRmab; KL = 1.0(15) = 15 ft axial compressive design
strength BI column load table KW³
          φc Pn = 626kips
cMNaMfa taragbgðajfasøabrbs; W12 × 65 KW noncompact sRmab; Fy = 50ksi .
T.Chhay                                         214                                  Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                             Department of Civil Engineering
KNnam:Um:g;Bt;eFobG½kSxøaMg (strong axis bending moment).
                                    = 0.6 − 0.4(0 ) = 0.6
                                 M1
           Cmx = 0.6 − 0.4
                                 M2
           K x L 15(12 )
                =        = 34.09
            rx    5.28
                        π 2 EAg          π 2 (29000 )(19.1)
           Pe1x =                    =                        = 4704kips
                    (K x L / rx )2           (34.09)2
                        C mx               0.6
           B1x =                   =                 = 0.641 < 1.0
                   1 − (Pu / Pe1x ) 1 − (300 / 4704)
dUcenH eRbI B1x = 1.0
           M ux = B1x M ntx + B2 x M ltx = 1.0(135) + 0 = 135 ft − kips
BI beam design charts CamYy Lb = 15 ft / φb M nx = 342 ft − kips sRmab; Cb = 1.0 ehIy
φb M px = 357.8 ft − kips . BI rUbTI 5>15 g, Cb = 1.67 ehIy
           Cb × (φb M nx for Cb = 1.0 ) = 1.67(342) = 571 ft − kips
lT§plenHFMCag φb M px dUcenHeRbI φb M nx = φb M px = 357.8 ft − kips
KNna m:Um:g;Bt;eFobG½kSexSay (weak axis bending moment).
                                    = 0.6 − 0.4(0) = 0.6
                                 M1
           Cmy = 0.6 − 0.4
                                 M2
           K yL        15(12)
                   =          = 59.60
            ry          3.02
Fñwm-ssr                                                215                                        T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                              NPIC
                        π 2 EAg            π 2 (29000)(19.1)
          Pe1 y =                      =                            = 1539kips
                      (K y L / ry )2               (59.60)2
                       C mx             0.6
          B1 y =                 =                 = 0.745 < 1.0
                         (             )
                   1 − Pu / Pe1 y 1 − (300 / 1539)
dUcenH eRbI B1y = 1.0
          M uy = B1 y M nty + B2 y M lty = 1.0(30 ) + 0 = 30 ft − kips
edaysarsøabrbs;rUbragenH noncompact enaHersIusþg;m:Um:g;Bt;eFobG½kSexSayRtUv)ankMNt;eday
FLB.
                 bf
          λ=            = 9.9
               2t f
                      65   65
          λp =           =     = 9.192
                      Fy    50
                       141       141
          λr =                =         = 22.29
                      Fy − 10   50 − 10
edaysar λ p < λ < λr
                                  ⎛ λ − λp ⎞
                             (
          Mn = M p − M p − Mr ⎜              ⎟
                                  ⎜ λr − λ p ⎟
                                               )                                  (AISC Equation A-F1-3)
                                  ⎝          ⎠
                                 50(44.1)
          M p = M py = F y Z y =           = 183.8 ft − kips
                                    12
                             (             )
          M r = M ry = F y − Fr S y = (50 − 10)(29.1) = 1164in. − kips = 97.0 ft − kips
edayCMnYscUleTAkñúgsmIkar AISC Equation A-F1-3 eyIgTTYl)an
                                              ⎛ 9.9 − 9.192 ⎞
          M n = M ny = 183.8 − (183.8 − 97.0 )⎜               ⎟ = 179.1 ft − kips
                                              ⎝ 22.29 − 9.192 ⎠
          φb M ny = 0.90(179.1) = 161.2 ft − kips
rUbmnþGnþrkmμ[
           Pu    300
               =     = 0.4792 > 0.2
          φc Pn 626
dUcenHeRbI AISC Equation H1-1a³
           Pu   8 ⎛ M ux      M uy                   ⎞
                                                     ⎟ = 0.4792 + 8 ⎛⎜ 135 + 30 ⎞⎟ = 0.980 < 1.0 (OK)
               + ⎜          +
          φc Pn 9 ⎜⎝ φb M nx φb M ny                 ⎟
                                                     ⎠            9 ⎝ 357.8 161.2 ⎠
cemøIy³ W 12 × 65 RKb;RKan;
T.Chhay                                                       216                             Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
6>7> Ggát;enAkñúgeRKagEdlminBRgwg (Members in Unbraced Frames)
        Fñwm-ssrEdlcugrbs;vaGacrMkil)an m:Um:g;dMbUgGtibrmaEdl)anBI sidesway CaTUeTAeRcIn
sßitenAelIEtcugmçag. dUcEdl)anbgðajenAkñúgrUbTI 6>5 m:Um:g;TIBIrGtibrmaEdl)anBI sidesway Etg
EtsßitenAelIcugmçag. dUcenHsRmab;krNIenH m:Um:g;TImYy nigm:Um:g;TIBIrGtibrmaCaTUeTARtUv)anbUk
bBa©ÚlKña ehIyminRtUvkaremKuN Cm eT ¬karBit Cm = 1.0 ¦. eTaHbICaenAeBlEdlmankarkat;bnßy
k¾va mantémøtictYc nigGacecal)an. cUrBicarNaFñwm-ssrEdlbgðajenAkñúgrUbTI 6>13. m:Um:g;esμIKña
enAxagcug)anmkBI sidesway ¬BIbnÞúkedk¦. bnÞúktamG½kS ¬EdlCaEpñkmYyénbnÞúkEdlmanGMeBIelI
Fñwm-ssrminbNþal[man sidesway¦RtUv)anKitbBa©ÚleTAkñúgm:Um:g;cugEdr.
     emKuNm:Um:g;bEnßmsRmab; sidesway moments B2 RtUv)an[smIkarBIr. eKGaceRbIsmIkar
NamYyk¾)anEdr GaRs½ynwgPaBgayRsYlsRmab;GñkKNna³
                           1
           B2 =                                                    (AISC Equation C1-4)
                1 − ∑ Pu (Δ oh / ∑ HL )
b¤         B2 =
                        1
                1 − (∑ Pu / ∑ Pe 2 )
                                                                   (AISC Equation C1-5)
Edl        ∑ Pu =   plbUkbnÞúkemKuNenAelIRKb;ssrenAelICan;EdlBicarNa
Fñwm-ssr                                    217                                          T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                     NPIC
          Δ oh = drift (sidesway displacement)   rbs;Can;EdlBIcarNa
          ∑ H = plbUkénbnÞúkedkTaMgGs;EdlbegáIt Δ oh
          L = km<s;Can;
         ∑ Pe 2 = plbUkén Euler loads rbs;ssrTaMgGs;enAelICan;EdlBicarNa ¬enAeBlEdl
                  KNna Pe2 eKRtUveRbI KL / r sRmab;G½kSénkarBt; ehIy K CatémøEdlRtUvKñanwg
                  unbraced condition.
         plbUkén Pu nigplbUkén Pe2 GnuvtþeTARKb;ssrEdlsßitenAkñúgCan;EdlBicarNaCamYyKña.
eKeRbIplEckrvagplbUkbnÞúkTaMgBIrsRmab;smIkarxagelIedaysar B2 GnuvtþsRmab; unbraced
frames ehIyRbsinebI sidesway nwgekItman enaHssrTaMggs;enAkñúgCan;EdlBicarNanwg sway kñúg
eBlCamYyKña. enAkñúgkrNICaeRcIn eRKOgbgÁúMRtUv)anKNnaenAkñúgbøg; dUcenH ∑ Pu nig ∑ Pe2 KWsRmab;
ssrenACan;rbs;eRKag ehIybnÞúkxag H CabnÞúkxagEdleFVIGMeBIenAelIeRKag nigBIelICan;Edl
BicarNa. CamYynwg Δ oh EdlekIteLIgeday ∑ H pleFob Δ oh / ∑ H GacQrelIbnÞúkemKuN b¤
bnÞúkKμanemKuN. TRmg;epSgeTotrbs; B2 RtUv)an[eday AISC Equation C1-5 manlkçN³Rs
edognwgsmIkarsRmab; B1 elIkElgsRmab;plbUk.
         AISC Equations C1-4 nig C1-5 RtUv)anbMEbkedayviFIBIrepSgKña b:uEnþenAkñúgkrNICaeRcInva
nwgpþl;nUvlT§pldUcKña (Yura, 1988). enAkñúgkrNICaeRcInEdltémø B2 TaMgBIrxusKñaxøaMg tYénbnÞúk
cMG½kSrbs;rUbmnþGnþrkmμnwglub ehIylT§plcugeRkaynwgminxusKñaeRcIneT. dUcEdl)anerobrab;BI
xagedIm kareRCIserIsKWsßitenAelIPaBgayRsYl vaGaRs½ynwgtYenAkñúgsmIkar.
         kñúgkrNIEdl M nt nig M lt eFVIGMeBIenAcMNucBIrepSgKñaenAelIGgát; dUcbgðajenAkñúgrUbTI 6>14
AISC Equation C1-1 nwgpþl;nUvlT§plEdlsnSMsMéc.
         rUbTI 6>14 bgðajbEnßmeTotBI superposition concept. rUbTI 6>14 a bgðajBI braced frame
rgnUvTaMgbnÞúkTMnaj (gravity load) nigbnÞúkxag (lateral load). m:Um:g;enA M nt enAkñúgGgát; AB
RtUv)anKNnaedayeRbIEt gravity load. edayPaBsIuemRTI eKminRtUvkar bracing edIm,IkarBar
sidesway BIbnÞúkenH. m:Um:g;enHRtUv)anbEnßmCamYyCamYynwgemKuN B1 edIm,IkarBar\T§iBl Pδ .
 M lt m:Um:g;EdlRtUvKñanwg sway ¬EdlbegáIteLIgedaybnÞúkedk H ¦ nwgRtUv)anbEnßmeday B2 edIm,I
karBarnwg\T§iBl PΔ .
T.Chhay                                     218                                      Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                        Department of Civil Engineering
        enAkñúg rUbTI 6>14 b unbraced frame RTEtbnÞúkbBaÄr. edaysarkardak;bnÞúkenHminsIuemRTI
vanwgman sidesway bnþic. m:Um:g; M nt RtUv)anKNnaedayBicarNafaeRKagRtUv)anBRgwg ¬kñúgkrNI
enH edaysarTRmedkkkit nigkmøaMgRbtikmμRtUvKμaEdleKehAfa tMNTb;nimitþ (artificial joint
restraint AJR). edIm,IKNnam:Um:g; sidesway eKRtUvykTRmkkitecj ehIyCMnYsedaykmøaMgEdlman
témøesμInwg artificial joint restraint b:uEnþmanTisedApÞúyKña. kñúgkrNIenH m:Um:g;TIBIr PΔ nwgmantémø
tUcNas; ehIyeKGacecal M lt )an.
        RbsinebITaMgbnÞúkxag nigbnÞúkTMnajminsIuemRTI eKGacbEnßmkmøaMg AJR eTAelIbnÞúkxagBit
R)akd enAeBlEdl M lt RtUv)ankMNt;.
]TahrN_ 6>7³ Edk W 12 × 65 RbePT A572 grade 50 RbEvg 15 ft sRmab;eRbICassrenAkñúg
unbraced frame. bnÞúkcMG½kS nigm:Um:g;cugTTYl)anBI first-order analysis énbnÞúkTMnaj ¬bnÞúkefr
Fñwm-ssr                                      219                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
nigbnÞúkGefr¦ RtUv)anbgðajenAkñúg rUbTI 6>15 a . eRKagmanlkçN³sIuemRTI ehIybnÞúkTMnajk¾
RtUv)andak;sIuemRTIEdr. rUbTI 6>15 b bgðajBIm:Um:g;énbnÞúkxül;Edl)anBI first-order analysis. m:U
m:g;Bt;TaMgGs;KWeFobnwgG½kSxøaMg. emKuNRbEvgRbsiT§PaB K x = 1.2 sRmab;krNI sway nig
 K x = 1.0 sRmab;krNI nonsway ehIy K y = 1.0 . kMNt;faetIGgát;enHeKarBtam AISC
Specification b¤eT?
dMeNaHRsay³ karbnSMbnÞúkTaMgGs;Edl[enAkñúg AISC A4.1 suT§EtmanbnÞúkGefr ehIyelIk
ElgEtkarbnSMbnÞúkTImYyecj EdlkarbnSMbnÞúkTaMgGs;manbnÞúkxül; b¤bnÞúkGefr b¤TaMgBIr. Rbsin
ebIRbePTbnÞúk ¬ E, Lr , S , nig R ¦ enAkñúg]TahrN_enHminRtUv)anbgðaj lkçxNÐénkarbnSMbnÞúk
RtUv)ansegçbdUcxageRkam³
          1 .4 D                                                                     (A4-1)
          1 .2 D + 1 .6 L                                                            (A4-2)
          1.2 D + (0.5 L or 0.8W )                                                   (A4-3)
          1.2 D + 1.3W + 0.5L                                                        (A4-4)
          1 .2 D + 0 .5 L                                                            (A4-5)
          0.9 D ± 1.3W                                                               (A4-5)
        enAeBlEdlbnÞúkefrtUcCagbnÞúkGefrR)aMbIdg enaHbnSMbnÞúk (A4-1) GacminRtUvKit. bnSM
bnÞúk (A4-4) nwgmantémøFMCag (A4-3) dUcenH (A4-3) Gacdkecj)an. bnSMbnÞúk (A4-5) k¾Gac
ecal)anedaysarvanwgpþl;eRKaHfñak;tUcCag (A4-2). cugeRkay karbnSMbnÞúk (A4-6) nwgmineRKaH
T.Chhay                                     220                                     Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                         Department of Civil Engineering
fñak;dUc (A4-4) ehIyk¾Gacdkecj)anBIkarBicarNa EdlenAsl;EtbnSMbnÞúkBIrEdlRtUveFVIkarGegátKW
(A4-2)nig (A4-4) ³
         1.2 D + 1.6 L nig      1.2 D + 1.3W + 0.5L
         rUbTI 6>16 bgðajBIbnÞúktamG½kS nigm:Um:g;Bt;EdlKNnaecjBIbnSMbnÞúkTaMgBIrenH
         kMNt;G½kSeRKaHfñak;sRmab;ersIusþg;kmøaMgsgát;tamG½kS
           K y L = 15 ft
            K x L 1.2(15)
                   =      = 10.29 ft < 15 ft
           rx / ry   1.75
      dUcenHeRbI KL = 15 ft
      BI column load tables CamYynwg KL = 15 ft / φc Pn = 626kips
      sRmab;lkçxNÐbnÞúk (A4-2)/ Pu = 454kips / M nt = 104.8 ft − kips nig M lt = 0 ¬eday
sarEtsIuemRTI vaminmanm:Um:g; sidesway¦. emKuNm:Um:g;Bt;KW
                          ⎛M ⎞              ⎛ 90 ⎞
           Cm = 0.6 − 0.4⎜⎜ 1 ⎟⎟ = 0.6 − 0.4⎜       ⎟ = 0.2565
                          ⎝ M2 ⎠            ⎝ 104.8 ⎠
          sRmab;G½kSénkarBt;
           KL K x L 1.0(15)(12 )
              =    =             = 34.09
            r   rx     5.28
          ¬krNIenHKμan sidesway dUcenHeKeRbI K x sRmab; braced condition¦. enaH
                   π 2 EAg           π 2 (29000)(19.1)
           Pe1 =                 =                       = 4704kips
                   (KL / r )2            (34.09)2
          emKuNm:Um:g;bEnßmsRmab;m:Um:g; nonsway KW
                       Cm              0.2565
           B1 =                  =                  = 0.284 < 1.0
                  1 − (Pu / Pe1 ) 1 − (454 / 4704 )
          dUcenHeRbI B1 = 1.0
           M u = B1M nt + B2 M lt = 1.0(104.8) + 0 = 104.8 ft − kips
          BI beam design charts CamYynwg Lb = 15 ft
          φb M n = 343 ft − kips ¬sRmab; Cb = 1.0 ¦
Fñwm-ssr                                                 221                                   T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
          φb M p = 358 ft − kips
          rUbTI 6>17 bgðajBIdüaRkamm:Um:g;Bt;sRmab;m:Um:g;énbnÞúkTMnaj. ¬karKNna
Cb   KWQrelItémø dac;xat dUcsBaØaenAkñúgdüaRkamenHminmansar³sMxan;eT¦. dUcenH
                           12.5M max
          Cb =
                2.5M max + 3M A + 4M B + 3M C
                            12.5 × (104.8)
              =                                        = 2.24
                2.5(104.8) + 3(41.3) + 4(74) + 3(56.1)
          sRmab; Cb = 2.24
          φb M n = 2.24(343) > φb M p = 358 ft − kips
          dUcenHeRbI     φb M n = 358 ft − kips
T.Chhay                                       222                                  Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                             Department of Civil Engineering
          kMNt;smIkarGnþrkmμEdlsmRsb
            Pu    454
                =     = 0.7252 > 0.2
           φc Pn 626
          eRbIsmIkar AISC Equation H1-1a.
            Pu   8 ⎛ M ux      M uy        ⎞
                                           ⎟ = 0.7252 + 8 ⎛⎜ 104.8 + 0 ⎞⎟ = 0.985 < 1.0
                + ⎜          +                                                                (OK)
           φc Pn 9 ⎜⎝ φb M nx φb M ny      ⎟
                                           ⎠            9 ⎝ 358         ⎠
        sRmab;lkçxNÐbnÞúk (A4-4), Pu = 212kips / M nt = 47.6 ft − kips ehIy
M lt = 171.6 ft − kips . sRmab; unbraced condition/
                          ⎛M ⎞              ⎛ 40.5 ⎞
           Cm = 0.6 − 0.4⎜⎜ 1 ⎟⎟ = 0.6 − 0.4⎜      ⎟ = 0.2597
                          ⎝ M2 ⎠            ⎝ 47.6 ⎠
           Pe1 = 4704kips           ¬ Pe1 minGaRs½ynwglkçxNÐbnÞúk¦
                       Cm              0.2597
           B1 =                  =                  = 0.272 < 1.0
                  1 − (Pu / Pe1 ) 1 − (212 / 4704 )
      dUcenH B1 = 1.0
      eyIgminmanTinñy½nRKb;RKan;edIm,IKNnaemKuNm:Um:g;bEnßm[)ansuRkitsRmab; sway
moment B2 BI AISC Equation C1-4 b¤ C1-5. RbsinebIeyIgsnμt;fapleFobrvagbnÞúktamG½kS
EdlGnuvtþmkelIGgát; nig Euler load capacity mantémødUcKñasRmab;RKb;ssrenAkñúgCan; nigsRmab;
ssrEdleyIgBicarNa enaHeyIgGacsresr Equation C1-5³
                            1                 1
           B2 =                      ≈
                  1 − (∑ Pu / ∑ Pe2 ) 1 − (Pu / Pe 2 )
          sRmab; Pe2 eRbI K x EdlRtUvnwg unbraced condition³
           KL K x L 1.2(15)(12 )
              =    =             = 40.91
            r   rx     5.28
Fñwm-ssr                                           223                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                              NPIC
                   π 2 EAg          π 2 (29000)(19.1)
          Pe 2 =                =                       = 3266kips
                   (KL / r )2            (40.91)2
          BI AISC Equation C1-5/
                         1                     1
          B2 ≈                      =                    = 1.069
                 1 − (Pu / Pe 2 )       1 − (212 / 3266)
          m:Um:g;bEnßmsrubKW
          M u = B1M nt + B2 M lt = 1.0(47.6) + 1.069(171.6) = 231.0 ft − kips
       eTaHbICam:Um:g; M nt nig M lt mantémøxusKñak¾eday k¾BYkvaRtUv)anEbgEckdUcKña ehIy Cb
nwgenAdEdl . enARKb;GRtaTaMgGs; BYkvamantémøFRKb;RKan;Edl φb M p = 358 ft − kips Ca design
strength edayminKitBIm:Um:g;NamYyeLIy.
           Pu    212
               =     = 0.3387 > 0.2
          φc Pn 626
dUcenHeRbI AISC Epuation H1-1a³
           Pu   8 ⎛ M ux      M uy              ⎞
                                                ⎟ = 0.3387 + 8 ⎛⎜ 231.0 + 0 ⎞⎟ = 0.912 < 1.0
               + ⎜          +                                                                   (OK)
          φc Pn 9 ⎜⎝ φb M nx φb M ny            ⎟
                                                ⎠            9 ⎝ 358         ⎠
cemøIy³ Ggát;enHbMeBjtRmUvkarrbs; AISC Specification.
6>8 KNnamuxkat;Fñwm-ssr (Design of Beam-Column)
        edaysarenAkñúgrUbmnþGnþrkmμmanGBaØtiCaeRcIn enaHkarKNnamuxkat;Fñwm-ssrCadMeNIrkar
KNnaEdlRtUvkarCacaM)ac;nUv trial-and-error process. sRmab;kareRCIserIscugeRkay KWeKeRCIserIs
rUbragNakan;EtEk,r kan;Etl¥. muxkat;sakl,gRtUv)aneRCIserIs nigRtUv)anepÞógpÞat;eLIgvijeday
eRbIrUbmnþGnþrkmμ. dMeNIrkard¾manRbsiT§PaBbMputkñúgkareRCIserIsmuxkat;sakl,gRtUv)anbegáIteLIg
CadMbUgsRmab; allowable stress design (Burgett, 1973), ehIyRtUv)anTTYl ykmkeRbIsRmab;
LRFD Edlmanerobrab;enAkñúg part 3 of the Manual, “Column Design”. lkçN³sMxan;sRmab;viFI
enHKWCa karbMElgBIm:Um:g;Bt;eTACabnÞúktamG½kSsmmUl. bnÞúkEdl)anBIkarbMElgRtUv)anykeTA
bEnßmelIbnÞúkCak;Esþg ehIyrUbragEdlRtUvRTbnÞúksrubRtUv)aneRCIserIsBI column load tables.
bnÞab;mkeKRtUvBinitürUbragsakl,genHCamYy Equation H1-1a b¤ H1-1b. bnÞúktamG½kSRbsiT§PaB
srubRtUv)an[eday
T.Chhay                                                 224                                    Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
           Pu eq = Pu + M ux m + M uy mu
Edl        Pu = bnÞújktamG½kSemKuNCak;Esþg
           M ux = m:Um:g;emKuNeFobG½kS x
           M uy = m:Um:g;emKuNeFobG½kS y
          m = témøefrEdlmanenAkúñgtarag
          n = témøefrEdlmanenAkúñgtarag
          eKalkarN_énkarviFIenHGacRtUv)anRtYtBinitüedaysresrsmIkar ^># eLIgvijdUcxageRkam.
          dMbUgKuNGgÁTaMgBIreday φc Pn ³
               φ PM      φc Pn M uy
           Pu + c n ux +            ≤ φc Pn
                φb M nx   φb M ny
        b¤ Pu + (M ux × a constant ) + (M uy × a constant ) ≤ φc Pn
        GgÁxagsþaMénvismIkarCa design strength rbs;Ggát;EdlBicarNa ehIyGgÁxageqVgGacCa
bnÞúkemKuNxageRkAEdlRtUvTb;Tl;. tYnImYy²énGgÁxageqVgmanxñatkmøaMg dUcenHtémøefrCaGñkbM
Elgm:Um:g;Bt; M ux nig M uy eTACakMub:Usg;bnÞúktamG½kS.
        témøefrmFüm m RtUv)anKNnasRmab;RkumepSgKñarbs; W-shape ehIyRtUv)an[enAkñúg
Table 3-2 in Part 3 of the Manual. témø u RtUv)an[enAkñúg column load table sRmab;rUbrag
nImYy²EdlmanenAkñúgtarag. edIm,IeRCIserIsrUbragsakl,gsRmab;Ggát;CamYynwgbnÞúktamG½kS nigm:U
m:g;Bt;eFobG½kSTaMgBIr eKRtUvGnuvtþdUcxageRkam.
        !> eRCIserIstémøsakl,g m edayQrelIRbEvgRbsiT§PaB KL . yk u = 2.0
        @> KNnabnÞúksgát;tamG½kSRbsiT§PaB³
                    Pu eq = Pu + M ux m + M uy mu
            eRbIbnÞúkenHedIm,IeRCIserIsrUbragBI column load tables.
         #> eRbItémø u Edl[enAkñúg column load tables nigtémøfμIrbs; m BI Table 3-2 edIm,I
            KNnatémøfμIrbs; Pu eq . eRCIserIsrUbragepSgeTot.
         $> eFVIeLIgvijrhUtdl;témø Pu eq ElgERbRbYl.
Fñwm-ssr                                       225                                         T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                     NPIC
]TahrN_ 6>8³ Ggát;eRKOgbgÁúMxøHenAkñúg braced frame RtUvRTbnÞúksgát;tamG½kSemKuN 150kips nig
m:Um:g;cugemKuN 75 ft − kips eFobnwgG½kSxøaMg ehIy 30 ft − kips eFobnwgG½kSexSay. m:Um:g;TaMgBIr
enHeFVIGMeBIenAelIcugmçag ÉcugmçageTotCaTRm pinned. RbEvgRbsiT§PaBeFobnwgG½kSnImYy²KW 15 ft .
minmanbnÞúkxageFVIGMeBIelIGgát;enHeT, eRbIEdk A36 nigeRCIserIs W-shape EdlRsalCageK.
dMeNaHRsay³ emKuNm:Um:g;bEnßm B1 Gacsnμt;esμInwg 1.0 edIm,IeFVIkareRCIserIsmuxkat;sakl,g.
sRmab;G½kSnImYy²
          M ux = B1M ntx ≈ 1.0(75) = 75 ft − kips
          M uy = B1M nty ≈ 1.0(30 ) = 30 ft − kips
BI Table 3-2, part 3 of the Manual, m = 1.75 edayeFVI interpolation
        eRbItémøedIm u = 2.0
          Pu eq = Pu + M ux m + M uy mu = 150 + 75(1.75) + 30(1.75)(2.0 ) = 386kips
cab;epþImCamYynwgrUbragtUcCageKenAkñúg column load tables, sakl,g W 8 × 67 ¬ φc Pn = 412kips /
u = 2.03 ¦³
          m = 2.1
          Pu eq = 150 + 75(2.1) + 30(2.1)(2.03) = 435kips
témøenHFMCag design strength= 412 ft − kips dUcenHeKRtUvsakl,gmuxkat;epSgeTot.
sakl,g W10 × 60 ¬ φc Pn = 416kips / u = 2.0 ¦³
          m = 1.85
          Pu eq = 150 + 75(1.85) + 30(1.85)(2.00 ) = 400kips < 416kips                 (OK)
dUcenH W 10 × 60 CarUbragsakl,gEdlGaceRbIkar)an. RtYtBinitü W 12s nig W 14s . sakl,g
W 12 × 58 ¬ φc Pn = 397kips / u = 2.41 ¦³
          m = 1.55
          Pu eq = 150 + 75(1.55) + 30(1.55)(2.41) = 378kips < 397 kips                 (OK)
dUcenH W 12 × 58 CarUbragsakl,gEdlGaceRbIkar)an. W14 EdlRsalCageKsRmab;eFVIkarCamYy
nwgbnÞúkxageRkAKW W 14 × 61 EtvaF¶n;Cag W 12 × 58 . dUcenHeRbI W 12 × 58 CarUbragsakl,g³
           Pu    150
               =     0.3778 > 0.2
          φc Pn 397
T.Chhay                                        226                                    Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                           Department of Civil Engineering
dUcenHeRbI AISC Equatiom H-1-1a
KNnam:Um:g;Bt;eFobG½kS x
           K x L 15(12 )
                =        = 34.09
            rx    5.28
                   π 2 EAg           π 2 (29000)(17.0)
           Pe1 =                 =                       = 4187kips
                   (KL / r )2     (34.09)2
           C m = 0.6 − 0.4(M 1 / M 2 ) = 0.6 − 0.4(0 / M 2 ) = 0.6 ¬sRmab;G½kSTaMgBIr¦
                       Cm                0 .6
           B1 =                  =                  = 0.622 < 1.0
                  1 − (Pu / Pe1 ) 1 − (150 / 4187 )
dUcenHeRbI B1 = 1.0
           M ux = B1M ntx = 1.0(75) = 75 ft − kips
bnÞab;mk kMNt; design strength. BI beam designth curves, sRmab; Cb = 1 nig Lb = 15 ft /
φb M n = 220 ft − kips . BIrUbTI 5>15g, Cb = 1.67 . sRmab; Cb = 1.67 design strength KW
           Cb × 220 = 1.67(220) = 367 ft − kips
m:Um:g;enHFMCag φb M p = 233 ft − kips
dUcenHeRbI φb M n = 233 ft − kips
KNnam:Um:g;Bt;eFobG½kS y
           K yL        15(12 )
                   =           = 71.71
            ry          2.51
                   π 2 EAg           π 2 (29000)(17.0)
           Pe1 =                 =                       = 946.2kips
                   (KL / r )2            (71.71)2
                       Cm                0.6
           B1 =                  =                   = 0.713 < 1.0
                  1 − (Pu / Pe1 ) 1 − (150 / 946.2 )
dUcenHeRbI B1 = 1.0
           M uy = B1M nty = 1.0(30 ) = 30 ft − kips
W 12 × 58CarUbrag compact sRmab;RKb;témørbs; Pu dUcenH nomical strength KW M py ≤ 1.5M yy .
Design strength KW
           φb M ny = φb M py = φb Z y F y = 0.90(32.5)(36 ) = 1053in. − kips
                       = 87.75 ft − kips
Fñwm-ssr                                                 227                                     T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                               NPIC
b:uEnþ Z y / S y = 32.5 / 21.4 = 1.52 > 1.5 Edlmann½yfa φb M ny KYrEtykesμInwg
          φb (1.5M yy ) = φb (1.5 F y S y ) = 0.90(1.5)(36 )(21.4 ) = 1040in. − kips = 86.67 ft − kips
BI AISC Equation H1-1a,
           Pu   8 ⎛ M ux      M uy        ⎞
                                          ⎟ = 0.3778 + 8 ⎛⎜ 75 + 30 ⎞⎟
               + ⎜          +
          φc Pn 9 ⎜⎝ φb M nx φb M ny      ⎟
                                          ⎠            9 ⎝ 233 86.67 ⎠
                                            = 0.972 < 1.0                              (OK)
cemøIy³ eRbI   W 12 × 58   .
       ebIeTaHbICaviFIEdleTIbnwgbgðajsRmab;eRCIserIsrUbragsakl,gqab;rkeXIjk¾eday k¾viFIEdl
manlkçN³smBaØCagenHRtUv)anesñIeLIgeday Yura (1988). bnÞúktamG½kSEdlsmmUlEdlRtUv)an
eRbIKW
                       2 M x 7.5M y
        Pequiv = P +
                         d
                            +
                                b
                                                                               ¬^>%¦
Edl P = bnÞúktamG½kSemKuN
       M x = m:Um:g;emKuNeFobG½kS x
       M y = m:Um:g;emKuNeFobG½kS y
       d = km<s;Fñwm
       b = TTwgFñwm
       tYTaMgGs;enAkñúgsmIkar ^>@ RtUvEtmanxñatRtUvKña.
]TahrN_ 6>9³ eRbI Yura’s method edIm,IeRCIserIsrUbragsakl,g W12 sRmab;Fñwm-
ssrén]TahrN_ 6>8.
dMeNaHRsay³ BIsmIkar 6>5 bnÞúktamG½kSsmmUlKW
                         2 M x 7.5M y         2(75 × 12 ) 7.5(30 × 12 )
          Pequiv = P +        +       = 150 +            +              = 525kips
                           d      b              12           12
EdlTTwg b RtUv)ansnμt;esμInwg 12inches . BI column load tables, sakl,g W 12 × 72
¬ φc Pn = 537kips ¦.
CamYynwg Yura’s method eKTTYl)anrUbragsakl,gFMCag Manual method Etvaminy:agdUcenH
T.Chhay                                           228                                         Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
rhUteT.
       enAeBlEdltYm:Um:g;Bt;lub ¬]TahrN_ Ggát;manlkçN³CaFñwmCagssr¦ Yura ENnaMfa bnÞúk
tamG½kSRtUvbMElgeTACam:Um:g;Bt;smmUleFobG½kSG½kS x . bnÞab;mkrUbragsakl,gRtUv)aneRCIserIs
BI beam design charts in part 3 of the Manual. m:Um:g;smmUlKW³
                                 d
           M equiv = M x + P
                                 2
karKNnamuxkat;Fñwm-ssrEdlminBRgwg                   Design of Unbraced Beam-Column
         karKNnamuxkat;dMbUgrbs;Fñwm-ssrenAkñúg braced frame RtUv)anbgðajrYcehIy. emKuNm:U
m:g;bEnßm B1 RtUv)ansnμt;esμI 1.0 edIm,IeRCIserIsmuxkat;sakl,g bnÞab;mk B1 RtUv)ankMNt;sRmab;
rUbragenaH. sRmab;Fñwm-ssrRbQmnwg sidesway emKuNm:Um:g;bEnßm B2 EdlQrelIGBaØtiCaeRcIn
EdlminsÁal;rhUtdl;ssrTaMgGs;enAkñgú eRKagRtUv)aneRCIserIs. RbsinebI AISC Equation C1-4
RtUv)aneRbIsRmab; B2 enaHeKminman sidesway deflection Δ oh sRmab;karKNnamuxkat;dMbUgeT.
Rb sinebIeKeRbI AISC Equation C1-5 enaHeKGacminsÁal; ∑ Pe2 . viFIxageRkamRtUv)anesñIeLIg
edIm,Irk B2 .
viFITI1> snμt; B2 = 1.0 . bnÞab;BIeRCiserIsrUbragsakl,g KNna B2 BI AISC Equation C1-5 eday
         snμt;fa ∑ Pu / ∑ Pe2 KWdUcKñanwg Pu / Pe2 sRmab;Ggát;EdlBicarNa
         ¬dUcenAkñúg]TahrN_6>7¦.
viFITI2> eRbIkarkMNt;dMbUg (predetermined limit) sRmab; drift index Δ oh / L EdlCapleeFob
         story drift elIkm<s;Can;. kareRbInUv drift index GnuBaØatGtibrmasRmab; serviceability
         requirement RsedogKñanwgkarkMNt;PaBdabrbs;Fñwm. eKENnaM[eRbI drift index cenøaHBI
         1 / 500 eTA 1 / 200 . cMNaMfa Δ oh Ca drift EdlekItBI ∑ H dUcenHRbsinebI drift index
         QrenAelI service load enaHbnÞúkxag H RtUvEtCa service load Edr.
]TahrN_ 6>10³ rUbTI 6>18 bgðajBI single-story unbraced frame EdlrgnUvbÞúkefr bnÞúkGefrelI
dMbUl nigxül;. rUbTI 6>18 a bgðajBI service gravity load nig rUbTI6>18 b bgðajBI service wind
Fñwm-ssr                                   229                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
load  ¬EdlrYmbBa©ÚlTaMg uplift b¤ suction enAelIdMbUl¦. eRbIEdk A572 grade 50 nigeRCIserIs
rUbrag W 12 sRmab;ssr ¬Ggát;bBaÄr¦. KNnamuxkat;sRmab; drift index 1/ 400 edayQrelI
service wind load. m:Um:g;Bt;eFobnwgG½kSxøaMg ehIyssrnImYy²BRgwgxagenAxagcug nigKl;.
dMeNaHRsay³ eRKagenHCaeRKagsþaTicminkMNt;mYydWeRk. karviPaKrcnasm<½n§minkMNt;minRtUv)aneFVI
enATIenHeT. lT§plénkarviPaKeRKagRtUv)anbgðajenAkñúgrUbTI 6>19edaysegçb. bnÞúktamG½kS nig
m:Um:g;cugRtUv)an[dac;edayELkBIKñasRmab;bnÞúkefr bnÞúkGefr bnÞúkxül;EdlmanGMeBIelIdMbUl nig
bnÞúkxül;xag. bnÞúkbBaÄrTaMgGs;RtUv)andak;sIuemRTIKña ehIycUlrYmEtCamYynwgm:Um:g; M nt b:ueNÑaH.
bnÞúkxagbegáItm:Um:g; M lt .
bnSMbnÞúkEdlBak;B½n§CamYynwgbnÞúkefr D / bnÞúkGefrelIdMbUl Lr nigbnÞúkxül; W KWdUcxageRkam³
          A4-2: 1.2 D + 0.5 Lr
                   Pu = 1.2(14 ) + 0.5(26) = 29.8kips
                   M nt = 1.2(50 ) + 0.5(94 ) = 107 ft − kips
                   M lt = 0
          A4-3: 1.2 D + 1.6 Lr + 0.8W
                   Pu = 1.2(14 ) + 1.6(26 ) + 08(− 9 + 1) = 52.0kips
                   M nt = 1.2(50 ) + 1.6(94 ) + 0.8(− 32 ) = 184.8 ft − kips
                M lt = 0.8(20 ) = 16.0 ft − kips
          A4-4: 1.2 D + 0.5 Lr + 1.3W
                   Pu = 1.2(14 ) + 0.5(26 ) + 1.3(26 ) = 19.4kips
T.Chhay                                           230                              Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                                 Department of Civil Engineering
                    M nt = 1.2(50 ) + 0.5(94 ) + 1.3(− 32 ) = 65.4 ft − kips
                    M lt = 1.3(20 ) = 26 ft − kips
                    bnSMbnÞúk A4-3 pþl;nUvtémøFMCageK.
        sRmab;eKalbMNgénkareRCIserIsrUbragsakl,g snμt;fa B1 = 1.0 . témørbs; B2 Gac
RtUv)anKNnaBI AISC Equation C1-4 nig design drift index³
                  1                         1                             1
B2 =                          =                            =                              = 1.107
       1 − ∑ Pu (Δ oh / ∑ HL ) 1 − (∑ Pu / ∑ H )(Δ oh / L ) 1 − [2(52.0 ) / 2.7](1 / 400)
bnÞúkedkKμanemKuN ∑ H RtUv)aneRbIBIeRBaH drift index KWQrelI drift GtibrmaEdlbNþalmkBI
service load. dUcenH
           M u = B1M nt + B2 M lt = 1.0(184.8) + 1.107(16 ) = 202.5 ft − kips
edayminsÁal;TMhMrbs;Ggát; eKminGaceRbI alignment chart sRmab;emKuNRbEvgRbsiT§PaB)aneT.
Table C-C2.1 enAkñúg Commentary to the Specification bgðajfakrNI (f) RtUvKñay:agxøaMgeTAnwg
lkçxNÐcugsRmab;krNI sidesway én]TahrN_enH ehIyEdl K x = 2.0 .
       sRmab; braced condition, eKeRbI K x = 1.0 . edaysarEtGgát;TaMgGs;RtUv)anBRgwgTisedA
 mYyeTotEdr enaHeKyk K y = 1.0 . bnÞab;mk eKGaceRCIserIsmuxkat;sakl,gEdlman[enAkñúg
Fñwm-ssr                                             231                                               T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
Part 3 of the Manual        . BI Table 3-2 emKuNm:Um:g;Bt; m = 1.5 sRmab; W12 CamYynwg KL = 15 ft .
          Pu eq = Pu + M ux m + M uy mu = 52.0 + 202.5(1.5) + 0 = 356kips
sRmab; KL = K y L = 15 ft / W 12 × 53 man design strength φc Pn = 451kips . sRmab;G½kS x
           K x L 2.0(15)
                  =      = 14.2 ft < 15 ft
          rx / ry   2.11
dUcenH KL = 15 ft lub
sakl,g W 12 × 53 . sRmab; braced condtition
          K x L 1.0(15)(15)
               =            = 34.42
           rx      5.23
                     π 2 EAg            π 2 (29000 )(15.6)
          Pe1x =                    =                        = 3769
                   (K x L / rx )2           (34.42)2
                          ⎛M ⎞               ⎛ 0 ⎞
          C m = 0.6 − 0.4⎜⎜ 1 ⎟⎟ = 0.6 − 0.4⎜⎜    ⎟⎟ = 0.6
                          ⎝ M2 ⎠             ⎝ M2 ⎠
          BI AISC Equation C1-2
                      Cm                0 .6
          B1 =                  =                   = 0.608 < 1.0
                 1 − (Pu / Pe1 ) 1 − (52.0 / 3769 )
        dUcenHeRbI B1 = 1.0
        cMNaMfa B1 = 1.0 Catémøsnμt;dMbUg ehIyedaysarEt B2 minRtUv)anpøas;bþÚr enaHtémø
M u = 202.5 ft − kips Edl)anKNnaBIdMbUgk¾minRtUv)anpøas;bþÚrEdr. BI beam design chart in Part
4 of the manual CamYynwg Lb = 15 ft design moment sRmab; W 12 × 53 CamYynwg Cb = 1.0 KW
          φb M n = 262 ft − kips
      sRmab;m:Um:g;Bt;EdlERbRbYlsmamaRtBIsUnüenAcugmçag eTAGtibrmaenAcugmçageTot
témørbs; Cb = 1.67 ¬emIlrUbTI 5>15 g¦. dUcenHtémøEdlEktRmUvén design moment KW
          φb M n = 1.67(262) = 438 ft − kips
        b:uEnþ m:Um:g;enHFMCag plastic moment capasity φb M p = 292 ft − kips / EdleKGacek)anenA
kñúg charts. dUcenH design strength RtUv)ankMNt;Rtwm
          φb M n = φb M p = 292 ft − kips
          kMNt;rUbmnþGnþrkmμEdlsmRsb
T.Chhay                                                232                          Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                             Department of Civil Engineering
            Pu    52
                =    = 0.1153 < 0.2
           φc Pn 451
          dUcenHeRbI AISC Equation H1-1b:
             Pu    ⎛ M ux     M uy              ⎞ 0.1153 ⎛ 202.5     ⎞
                 +⎜         +                   ⎟=      +⎜       + 0 ⎟ = 0.751 < 1.0 (OK)
           2φc Pn ⎜⎝ φb M nx φb M ny            ⎟
                                                ⎠    2   ⎝ 292       ⎠
          edaysarlT§plenHtUcCag 1.0 xøaMg dUcenHsakl,grUbragEdltUcCagenHBIrTMhM.
          sakl,g W12 × 45 . sRmab; KL = K y L = 15 ft, φc Pn = 299kips . sRmab;G½kS x
            K x L 2.0(15)
                   =      = 11.3 ft < 15 ft
           rx / ry   2.65
          dUcenH KL = 15 ft lub
          sRmab; braced condtition
           K x L 1.0(15)(15)
                =            = 34.95
            rx      5.15
                      π 2 EAg            π 2 (29000 )(13.2 )
           Pe1x =                    =                         = 3093
                    (K x L / rx )2           (34.95)2
          BI AISC Equation C1-2,
                       Cm                0 .6
           B1 =                  =                  = 0.610 < 1.0
                  1 − (Pu / Pe1 ) 1 − (52.0 / 3093)
       dUcenHeRbI B1 = 1.0
       BI beam design charts CamYynwg Lb = 15 ft m:Um:g;KNnasRmab; W12 × 45 CamYynwg
Cb = 1.0 KW
           φb M n = 201 ft − kips
          sRmab; Cb = 1.67
           φb M n = 1.67(201) = 336 ft − kips > φb M p = 242.5 ft − kips
          dUcenH design strength KW
           φb M n = φb M p = 242.5 ft − kips
          kMNt;rUbmnþGnþrkmμEdlsmRsb³
            Pu    52.0
                =      = 0.1739 < 0.2
           φc Pn 299
Fñwm-ssr                                                233                                        T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                         NPIC
           dUcenHeRbI AISC Equation H1-1b:
             Pu    ⎛ M ux     M uy                 ⎞ 0.1739 ⎛ 202.5     ⎞
                 +⎜         +                      ⎟=      +⎜       + 0 ⎟ = 0.922 < 1.0    (OK)
           2φc Pn ⎜⎝ φb M nx φb M ny               ⎟
                                                   ⎠    2   ⎝ 242.5     ⎠
cemøIy³ eRbI W12 × 45 .
       enA]TahrN_6>10 karkMNt; drift index CaviFIkñúgkarKNna ehIyeKminmanviFINaedIm,I
KNnaemKuNm:Um:g;bEnßm B2 . RbsinebIeKminR)ab; drift index témørbs; B2 GacRtUv)ankMNt;ecj
BI AISC Equation C1-5 dUcxageRkam ¬edayeRbIlkçN³rbs; W 12 × 45 ¦³
           K x L 2.0(15)(12 )
                =             = 69.90
            rx      5.15
                        π 2 EAg            π 2 (29000)(13.2)
           Pe 2 x =                    =                         = 773.2kips
                      (K x L / rx )2            (69.90)2
                             1                             1
           B2 =                             =                             = 1.072
                  1 − (∑ Pu / ∑ Pe 2 )          1 − [2(52.0) / 2(773.2 )]
6>9>      Trusses With Top Chord Loads Between Joints
         RbssinebIGgát;rgkarsgát;rbs; truss RtUvRTbnÞúkEdlmanGMeBIenAcenøaHcugsgçagrbs;va enaH
vanwgRtUvrgnUvm:Um:g;Bt; k¾dUcCabnÞúksgát;tamG½kS dUcenHGgát;enHCa beam-colum. krNIenHGacekIt
manenAelI top chord of the roof truss edayédrEngsßitenAcenøaHtMN. eKk¾RtUvKNna top chord of
an open-web steel joist Ca beam-column Edr BIeRBaH open-web steel joist RtUvRTbnÞúkTMnajEdl
BRgayesμIenAelI top chord rbs;va. edIm,IkarBarbnÞúkenH eKRtUveFVIm:UEdl truss CakarpSMeLIgeday
man continuous chord member nig pin-connected web members. bnÞab;mkeKGacedaHRsayrk
bnÞúktamG½kS nigm:Um:g;Bt;edayeRbIkarviPaKeRKOgbgÁúMdUcCag stiffness method. eK)anesñIeLIgnUvviFI
saRsþdUcxageRkam³
         !> KitGgát;nImYy²rbs; top chord CaFñwmbgáb;cug. eRbIm:Um:g;bgáb;cugCam:Um:g;GtibrmaenAkñúg
            Ggát;. Cak;Esþg top chord CaGgát;Cab; CagCaesrIénGgát;tMNsnøak; dUcenHkarcat;TukenH
            manlkçN³suRkitCagkarEdlcat;TukGgát;nImYy²CaFñwmsmBaØ.
         @> bEnßmkmøaMgRbtikmμBIFñwmbgáb;cugenHeTAbnÞúkenARtg;tMNedIm,ITTYl)anbnÞúkelItMNsrub.
T.Chhay                                                    234                            Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                 Department of Civil Engineering
       #> viPaK truss CamYynwgbnÞúkRtg;tMNTaMgenH. bnÞúktamG½kSEdlCalT§plenAkñúg top chord
           member CabnÞúksgát;tamG½kSEdlRtUvykeTAeRbIkñúgkarKNna.
       viFIenHRtUv)anbgðajCalkçN³düaRkamenAkñúg rUbTI 6>20. müa:gvijeTot eKGacrkm:Um:g;Bt;
nigRbtikmμrbs;Fñwmedaycat;Tuk top chord CaFñwmCab;EdlmanTRmenARtg;tMNnImYy².
]TahrN_ 6>11³ rUbTI 6>21 bgðajBI parallel-chord roof trussEdl top chord RTédrENgenA
Rtg;tMN nigenARtg;cenøaHtMN. bnÞúkemKuNEdlbBa¢ÚnedayédrENgRtUv)anbgðaj. KNnamuxkat;
top chord. eRbIEdk A36 nigeRCIserIs structural tee Edlkat;ecjBI W-shape.
dMeNaHRsay³ m:Um:g;Bt; nigkmøaMgelItMNEdlbNþalmkBIbnÞúkEdlmanGMeBIenAcenøaHtMNRtUv)anrk
edaycat;Tuk top chord nImYy²CaFñwmbgáb;cug. BI Part 4 of the Manual, “Beam and girder
Design,”m:Um:g;bgáb;cugsRmab;Ggát; top chord nImYy²KW
                           PL 2.4(10 )
           M = M nt =         =        = 3.0 ft − kips
                            8    8
Fñwm-ssr                                         235                                   T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
m:Um:g;cug nigkmøaMgRbtikmμTaMgenHRtUv)anbgðajenAkñúg rUbTI 6>22 a. enAeBlEdleKbEnßmkmøaMg
RbtikmμeTAelIbnÞúkelItMN enaHeKTTYl)ankardak;bnÞúkdUcbgðajenAkñúgrUbTI 6>22 b. kmøaMgsgát;
GtibrmatamG½kSnwgekItmanenAkñúgGgát; DE ¬nwgenAkñúgGgát;EdlenAEk,r EdlenAxagsþaMG½kSrbs;
ElVg¦ nigGacRtUv)anrkedayBicarNalMnwgrbs;GgÁesrIrbs;Epñkrbs; truss EdlenAxageqVgmuxkat;
a-a³
          ∑ M I = (19.2 − 2.4 )(30 ) − 4.8(10 + 20 ) + FDE (4 ) = 0
          FDE = −90kips  ¬rgkarsgát;¦
KNnamuxkat;sRmab;bnÞúktamG½kS 90kips nigm:Um:g;Bt; 3.0 ft − kips
     Table 3-2 in Part 3 of the Manual min)anpþl;[sRmab; structural tee. eKGaceRbI Yura’s
method (Yura, 1988) Edl)anbegáIteLIgsRmab;Ggát; I- nig H-shape. eKRtUvkarrUbragtUc BIeRBaH
bnÞúktamG½kStUc ehIym:Um:g;k¾tUcebIeFobnwgbnÞúktamG½kS. RbsinebIeKeRbI tee Edlmankm<s; 6in.
                         2 M x 7.5M y        2(3)(12)
          Pequiv = P +        +       = 90 +          + 0 = 102kips
                           d      b             6
BI column load table CamYynwg K x L = 10 ft nig K y L = 5 ft / sakl,g WT 6 ×17.5
¬ φc Pn = 124kips ¦. m:Um:g;Bt;KWeFobnwgG½kS x ehIyGgát;RtUv)anBRgwgRbqaMgnwg sidesway³
                               /
          M nt = 3.0 ft − kips M lt = 0
edaysarmankmøaMgxagmanGMeBIelIGgát; ehIycugRtUv)anTb;enaH Cm = 0.85 ¬Commentary
approach minRtUv)aneRbIenATIenHeT¦. KNna B1 ³
          KL K x L 10(12 )
             =    =        = 68.18
           r   rx   1.76
T.Chhay                                          236                             Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                          Department of Civil Engineering
                   π 2 EAg           π 2 (29000)(5.17 )
           Pe1 =                 =                        = 318.3kips
                   (KL / r )2            (68.18)2
                       Cm           0.85
           B1 =                 =              = 1.185
                  1 − P1 / Pe1 1 − 90 / 318.3)
                     (        )   (
m:Um:g;bEnßmKW
           M u = B1M nt + B2 M lt = 1.185(3.0 ) + 0 = 3.555 ft − kips
RbsinebImuxkat;RtUv)ancat;fñak;Ca slender enaH nominal moment strength rbs; structural tee
nwgQrelI local buckling EtRbsinebImindUecñaHeT vanwgQrelI lateral-torsional buckling ¬emIl
AISC Equation F1.2c nig Epñk 5>14 kñúgesovePAenH¦. sRmab;søab
                  bf         6.560
           λ=           =            = 6.308
                 2t f       2(0.520)
                    95   95
           λr =        =     = 15.83 > λ
                    Fy    36
Fñwm-ssr                                                  237                                   T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                            NPIC
sRmab;RTnug
               d     6.25
          λ=      =        = 20.83
              t w 0.300
                 127    127
          λr =        =      = 21.17 > λ
                  Fy      26
edaysar λ < λr sRmab;TaMgsøab nigRTnug rUbragminEmnCa slender eT ehIy lateral-torsional
buckling lub. BI AISC Equation F1-15/
                           π EI y GJ ⎛         2⎞
          M n = M cr =               ⎜ B + 1+ B ⎟                                (AISC Equation F1-15)
                                Lb        ⎝                ⎠
                         ≤ 1 .5 M ysRmab;eCIg b¤tYxøÜnrgkarTaj
                         ≤ 1.0 M y sRmab;eCIg b¤tYxøÜnrgkarsgát;
BI AISC Eqution F1-16,
                                          ⎡ 6.25 ⎤ 12.2
          B = ±2.3(d / Lb ) I y / J = ±2.3⎢        ⎥       = ±1.378
                                          ⎣ 5(12 ) ⎦ 0.369
ehIy nominal strength BI AISC Equation F1-15 KW`
                 π 29000(12.2)(11200)(0.369) ⎛                                 2⎞
          Mn =                                          ⎜ ± 1.378 + 1 + (1.378) ⎟
                                 5(12 )                 ⎝                       ⎠
               = 2002(± 1.378 + 1.703) = 6168in. − kips         b¤   650.5in. − kips
témøviC¢manrbs; B RtUvKñanwgkmøaMgTajenAkñúgtYxøÜnrbs; tee ehIysBaØaGviC¢manRtUv)aneRbIedIm,ITTYl
ersIusþg;enAeBltYxøÜnrgkmøaMgsgát;. sRmab;kardak;bnÞúkenAkñúg]TahrN_enH m:Um:g;GtibrmaekItman
enATaMgcugbgáb; nigkNþalElVg dUcenHersIusþg;RtUv)anRKb;RKgedaykmøaMgsgát;enAkñúgtYxøÜn ehIy
          M n = 650.5in. − kips = 54.12 ft − kips
RbQmnwgtémøGtibrmaén
                                      1.0(36 )(3.23)
          1.0 M y = 1.0 Fy S x =                     = 9.690 ft − kips < 54.21 ft − kips
                                           12
dUcenHeRbI M n = 9.690 ft − kips
          φb M n = 0.90(9.690) = 8.721 ft − kips
kMNt;rkrUbmnþGnþrkmμEdlRtUveRbI
           Pu    90
               =    = 0.7258 > 0.2
          φc Pn 124
T.Chhay                                              238                                     Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                                   Department of Civil Engineering
dUcenHeRbI AISC Equation H1-1a:
            Pu   8 ⎛ M ux      M uy             ⎞
                                                ⎟ = 0.7258 + 8 ⎛⎜ 3.555 + 0 ⎞⎟
                + ⎜          +
           φc Pn 9 ⎜⎝ φb M nx φb M ny           ⎟
                                                ⎠             9 ⎝ 8.721      ⎠
                                                  = 1.09 > 1.0 (N.G)
enAkñúg]TahrN_enH m:Um:g;Bt;mantémøtUc ehIydUcKñasRmab; bending strength dUcenHehIyeFVI[tY
m:Um:g;Bt;rbs;rUbmnþGnþrkmμmantémøFM. kñúgkareRCIserIsmuxkat;EdlsmRsb GñkKNnaRtUvdwgc,as;
fa bending strength nig axial compressive strength mantémøFM. rUbragbnÞab;enAkñúg column load
tables KW WT 6 × 20 CamYynwg axial compressive strength 133kips . tamkarGegátenAelI
dimensions and peoperties tables bgðajfaeyIgkMBugbBa©ÚlRkumrUbragEdlmanG½kS x CaG½kS
exSay. dUcenHkarBt;rbs;eyIg\LÚvenHKWeFobnwgG½kSexSay ehIyvaKμansßanPaBkMNt; lateral-
torsional buckling. elIsBIenH RbsinebIrUbrag slender enaH nominal strength nwgQrelI yielding
ehIyesμInwg plastic moment capacity EdlRtUvnwgEdlx<s;bMputRtwm 1.5M y .
         dUcenHsakl,g WT 6 × 20 ¬ φc Pn = 133kips ¦. dMbUg KNna B1 ³
           KL K x L 10(12 )
              =    =        = 76.43
            r   rx   1.57
                   π 2 EAg           π 2 (29000)(5.89)
           Pe1 =                 =                       = 288.6kips
                   (KL / r )2            (76.43)2
                       Cm               0.85
           B1 =                  =                  = 1.235
                  1 − (P1 / Pe1 ) 1 − (90 / 288.6 )
m:Um:g;bEnßmKW
           M u = B1M nt = 1.235(3.0) = 3.705 ft − kips
RtYtBinitü slenderness parameters. sRmab;søab
                  bf         8.005
           λ=           =            = 7.772 < λr = 15.83
                 2t f       2(0.515)
sRmab;RTnug λ = td = 50..970
                         295
                             = 20.2 < λr = 21.17
                  w
edaysarkarBt;eFobnwgG½kSexSay
                                         5.30(36 )
           M n = M p = Z x Fy =                    = 15.9 ft − kips
                                            12
RbQmnwgtémøGtibrmaén
Fñwm-ssr                                                 239                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                        NPIC
                                  1.5(36 )(2.95)
          1.5M y = 1.5 Fy S x =                  = 13.28 ft − kips
                                       12
edaysarEt M p > 1.5M y
          φb M n = φb (1.5M y ) = 0.90(13.28) = 11.95 ft − kips
kMNt;rkrUbmnþGnþrkmμEdlRtUveRbI
           Pu    90
               =    = 0.6767 > 0.2
          φc Pn 133
dUcenHeRbI AISC Equation H1-1a:
           Pu   8 ⎛ M ux      M uy        ⎞
                                          ⎟ = 0.6767 + 8 ⎛⎜ 3.705 + 0 ⎞⎟ = 0.952 < 1.0
               + ⎜          +                                                             (OK)
          φc Pn 9 ⎜⎝ φb M nx φb M ny      ⎟
                                          ⎠            9 ⎝ 11.95       ⎠
cemøIy³ eRbI WT 6 × 20 .
T.Chhay                                          240                                     Beam-Column
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
                                       VII. tMNsamBaØ
                                    Simple Connections
7>1> esckþIepþIm        (Introduction)
         kartP¢ab;rbs;eRKOgbgÁúMEdkCaEpñkmYyEdlmansar³sMxan;bMput. kartP¢ab;Edlminman
lkçN³minRKb;RKan; EdleKGac[eQμaHfa “weak link” enAkñúgeRKOgbgÁúM GacbegáItnUvkar)ak;Ca
eRcInkrNI. kar)ak;rbs;Ggát;eRKOgbgÁúMKWkRmnwgekIteLIgNas; kar)ak;rbs;rcnasm<½n§PaKeRcInKW
bNþalmkBIkar KNnakartP¢ab; nigkarlMGitkartP¢ab;. bBaðaenHbNþalmkBIkarTTYlxusRtUvkñúg
karKNnakartP¢ab;. kñúgkrNIxøH kartP¢ab;minRtUv)anKNnaedayvisVkrEdlKNnaGgát;rbs;eRKOg
bgÁúMeT EtvaRtUv)anpþl;[edayplitkrEdlpÁt;pÁg;smÖar³sRmab;KMerageTAvij. b:uEnþvisVkreRKOgbgÁúM
Edlplitbøg;KNna CaGñkTTYlxusRtUvkñúgkarKNnaTaMgGs;rYmTaMgkartP¢ab;. kñúgkrNIEdltMN
RtUv)anKNnaedayvisVkrepSgeTot epSgBIvisVkrEdlKNnaGgát;eRKOgbgÁúM dUcenHeKRtUvkarvisVkr
EdlmanCMnajc,as;las;kñúgkarKNnakartP¢ab;.
         eRKOgbgÁúMEdkTMenIbRtUv)antP¢ab;edaykarpSar nigedayb‘ULúg ¬ersIusþg;x<s; b¤Fmμta¦ b¤eday
bnSMénkartP¢ab;TaMgBIr. BIeBlmun kartP©ab;eFVIeLIgedaykarpSar b¤edayrIev. enAkñúgqñaM 1947
Research Council of Riveted and Bolted Structural Joints RtUv)anbegáIteLIg ehIy Specifi-
cation dMbUgrbs;vaRtUv)anecjpSayenAkñúgqñaM 1951. ÉksarenH)anGnuBaØat[CMnYs edayb‘ULúg
ersIusþg;x<s;sRmab;rIev. taMgBIeBlenaHmk b‘ULúgersIusþg;x<s;TTYl)anRbCaRbiyPaBy:agelOn ehIy
eKk¾gakmkeRbIb‘ULúgersIsþg;x<s;enAkñúgsMNg;sIuvilvij. eKmanmUlehtuCaeRcInkñúgkarpøas;bþÚrenH.
kmμkrBInak;EdlKμanCMnajGacdMeLIgb‘ULúgersIusþg;x<s;)an cMENkkardMeLIgrIevvij eKRtUvkarkmμkr
tMNsamBaØ                                   241                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
EdlmanCMnajdl;eTAbYnnak;. elIsBIenHeTot vapþl;nUvsemøg nigeRKaHfñak;tictYckñúgRbtibtþkarN_
tP¢ab;rIev edaysarkarpþl;kMedAkñúgkardMeLIgrIev. b:uEnþkartP¢ab;edayrIevk¾enAEtmanerobrab;enAkñúg
AISC Specfication nig Manual of steel construction edaysarEtsMNg;cas;²eRbItMNrIev dUcenH
karyl;dwgBIkarRbRBwtþeTArbs;vamansar³sMxan;Nas;sRmab;karvaytémøersIusþg; nigkarCYsCulnUv
sMNg;TaMgenaH. karKNna nigkarviPaKtMNrIevmanlkçN³RsedogKñanwgtMNb‘ULúgFmμtaEdr Etvaxus
KñaRtg;lkçN³smÖar³Etb:ueNÑaH.
         tMNpSarmanGtßRbeyaCn_eRcInCagtMNb‘ULúg. kartP¢ab;edaykarpSarmanlkçN³samBaØ nig
RtUvkarrn§ticCagtMNb‘ULúg. kartP¢ab;EdlmanlkçN³sμúKsμajCamYynwgeRKOgP¢ab;GacmanlkçN³
gayRsYlCamYynwgkarpSar dUckrNIkñúgrUbTI 7>1. muneBlEdlkarpSarmanlkçN³eBjniym kar
dMeLIgrUbrag built-up RbePTenHRtUv)anplitedayrIev. edIm,IP¢ab;bnÞHEdksøabeTAnwgbnÞHEdkRTnug
EdkEkg (angle shape) RtUv)aneRbIedIm,IbMElgbnÞúkcenøaHFatuTaMgBIr. RbsinebIeKbEnßmbnÞHEdkBIelI
mYyeTot enaHplitplsMercnwgmanlkçN³kan;EtsμúKsμaj. b:uEnþkartP¢ab;edaykarpSarmanlkçN³
gayRsYlCag. b:uEnþsRmab;tMNpSar eKRtUvkarkmμkrCMnajxagpSar ehIyvaBi)akkñúgkarGegát nig
cMNayR)ak;eRcIn.         EtKuNvibtþienHeKGacedaHRsay)anedaykarpSarenAkñúgeragCagCMnYs[kar
pSarenAkardæanenARKb;eBlEdlGaceFVIeTA)an. enAeBlEdlkartP¢ab;eFVIeLIgedaybnSMénkarpSar nig
b‘ULúg enaHeKeRcInpSarenAeragCag ehIycab;b‘ULúgenAkardæan. sRmab; single-plate beam-to-
column connectioction EdlbgðajenAkñúgrUbTI 7>2 bnÞHEdkRtUv)anpSarP¢ab;eTAnwgsøabrbs;ssrenA
eragCag ehIycab;b‘ULúgCamYynwgRTnugrbs;FñwmenAkardæan.
         edIm,IBicarNaBIkarRbRBwtþeTAénRbePTepSg²rbs;tMN eKRtUvEbgEckvaeTAtamRbePTénkar
dak;bnÞúk. rUbTI 7>3 a bgðajBI tension member lap splice EdlmaneRKOgP¢ab;rgnUvkmøaMgkat;. dUc
Kña tMNpSarenAkñúgrUbTI 7>3 b RtUvTb;Tl;nwgkmøaMgkat;TTwg. tMNrbs; bracket eTAnwgsøabssr
T.Chhay                                     242                               Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
dUckñúgrUbTI 7>3 c edaykarpSar b¤edayb‘ULúg eFIV[eRKOgP¢ab; b¤TwkbnSarrgnUvkmøaMgkat;enAeBl
EdlbnÞúkGnuvtþmkelIva. tMNBÜürEdlbgðajenAkñúgrUbTI 7>3 d dak;[eRKOgP¢ab;rgkmøaMgTaj.
kartP¢ab;EdlbgðajenAkñúgrUbTI 7>3 e begáItTaMgkmøaMgkat;TTwg nigkmøaMgTajenAkñúgeRKOgP¢ab;CYr
xagelI. ersIusþg;rbs;eRKOgP¢ab;KWGaRs½yelIfaetIvargnUvkmøaMgkat; b¤kmøaMgTaj b¤k¾kmøaMgTaMgBIr.
karpSarmankmøaMgexSaysRmab;kugRtaMgkmøaMgkat; ehIyCaTUeTAvaRtUv)ansnμt;fadac;edaykmøaMgkat;
edayminKitBITisedAénkardak;bnÞúk.
        enAeBlEdlkmøaMgkñúgeRKOgP¢ab;mYy b¤kmøaMgkñúgmYyÉktþaRbEvgrbs;TwkbnSarRtUv)ankMNt;
vaCaerOgmYyEdlgayRsYlkñúgkarkMNt;PaBRKb;RKan;rbs;tMN. karkMNt;enHQrelIeKalkarN_én
tMNsamBaØ                                  243                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
kartP¢ab;cMbgBIr. RbsinebIExSskmμrbs;kmøaMgpÁÜbEdlRtUvTb;Tl;kat;tamTIRbCMuTm¶n;rbs;tMN enaH
EpñknImYy²rbs;tMNRtUv)ansnμt;faTb;Tl;nwgbnÞúkEdlEbgEckesμI ehIytMNEbbenHRtUv)aneK[
eQμaHfa tMNsamBaØ. enAkñúgtMNEbbenH ¬EdlbgðajenAkñúgrUbTI 7>3 a nig b¦ eRKOgP¢ab;nImYy²
nigRbEvgÉktþrbs;TwkbnSarnwgTb;Tl;nUvkmøaMgesμIKña*. bnÞab;mkeKGacrklT§PaBTb;Tl;bnÞúkrbs;
tMNedayKuNlT§PaBTb;Tl;kmøaMgrbs;eRKOgP¢ab;nImYy² b¤RbEvgÉktþarbs;TWkbnSar CamYynwgcMnYn
eRKOgP¢ab;srub b¤RbEvgsrubrbs;TwkbnSar. kartP¢ab;énkmøaMgcakp©it RtUv)anerobrab;enAkñúgCMBUkTI 8
EdlExSskmμrbs;bnÞúkmineFVIGMeBIkat;tamTIRbCMuTm¶n;rbs;tMN. kartP¢ab;enAkñúgrUbTI 7>3 d nig e Ca
RbePTéntMNenH. kñúgkrNIenHbnÞúkRtUv)anTb;Tl;esμIKñaedayeRKOgP¢ab;nImYy² b¤RbEvgÉktþarbs;Twk
bnSareT ehIykarkMNt;énkarEbgEckbnÞúkKWCaktþad¾sμúKsμajkñúgkarKNnaénRbePTtMNenH.
        AISC Specification erobrab;BIkartP¢ab;EdlrYmman b‘ULúg rIev nig karpSarenAkñúg Chapter
J, ”Connections, Joints and Fasteners”. EtenAkñúgesovePAenH eyIgmin)anBicarNaBItMNrIeveT.
7>2>      Bolted Shear Connections: Failure Mode
         munnwgBicarNaBIersIusþg;Cak;lak;rbs;b‘ULúg eyIgRtUvBicarNaBIrebobénkardac;EdlGacekIt
manenAelItMNEdlmaneRKOgP¢ab;rgkmøaMgkat;TTwg. eKmanrebobénkardac;FMBIr³ kardac;rbs;eRKOg
P¢ab; nigkardac;rbs;EpñkEdlRtUvP¢ab;. BicarNa lap joint EdlbgðajenAkñúgrUbTI 7>4 a. kardac;rbs;
eRKOgP¢ab;GacRtUv)ansnμt;fanwgekIteLIgdUcEdl)anbgðaj. kmøaMgkat;TTwgmFümenAkñúgkrNIenHKW
*
    Cak;EsþgvamancMNakp©ittUcenAkñúgtMNTaMgBIrenH EtvaRtUv)anecal
T.Chhay                                               244                    Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
                  P    P
           fv =     =
                  A πd 2 / 4
Edl P CabnÞúkEdlmanGMeBIelIeRKOgP¢ab;nImYy² A CaRkLaépÞmuxkat;rbs;eRKOgP¢ab; nig d CaGgát;
p©itrbs;va. enaHbnÞúkenHGacsresrCa
          P = fv A
eTaHbICakardak;bnÞúkkñúgkrNIenHmincMcMNucl¥k¾eday k¾cMNakp©itmantémøtUcEdlGacecal)an. kar
tenAkñúgrUbTI 7>4 b manlkçN³RsedogKña EtkarviPaKdüaRkamGgÁesrIrbs;eRKOgP¢ab;bgðajfamuxkat;
nImYy²rgEtBak;kNþalbnÞúksrub b¤eKGacniyayfamuxkat;TaMgBIrTb;Tl;nUvkmøaMgsrub. kñúgkrNIenH
kmøaMg P = 2 f v A ehIybnÞúkenHRtUv)aneKehAfa double shear. karbEnßmbnÞHenAkñúgkartnwgbegáIn
cMnYnbøg;kat; ehIyvanwgkat;bnßykmøaMgenAkúñgbøg;nmI Yy². b:uEnþ vanwgbegáInRbEvgrbs;eRKOgP¢ab; ehIy
vanwgrgkugRtaMgBt;.
         rebobénkadac;mYyeTotsRmab; shear connection Bak;B½n§nwgkardac;rbs;EpñkEdlRtUv)an
P¢ab; ehIyCaTUeTAvaRtUv)anEbgEckCaBIrEpñk³
         !> kardac;EdlbNþalBI karTaj kmøaMgkat; b¤m:Um:g;Bt;FMenAkñúgEpñkEdlRtUvtP¢ab;. RbsinebI
Ggát;rgkarTajRtUv)antP¢ab; kmøaMgTajelI gross area nig effective net area RtUv)anGegát.
GaRs½ynwgrUbragénkartP¢ab; block shear k¾RtUv)anBicarNa. eKk¾RtUvRtYtBinitü block shear enA
kñúgkartP¢ab; beam-to-column ¬Edlmanerobrab;enAkñúgCMBUkTI 3 nigTI5 ehIyvak¾RtUv)anerobrab;enA
kñúg AISC J4.3¦. GaRs½ynwgRbePTénkartP¢ab; nigkardak;bnÞúk ral;kartP¢ab;eTAnwg gusset plate
nig framing angle TamTarnUvkarviPaKsRmab; kugRtaMgkat; kugRtaMgTaj kugRtaMgBt; nig block shear.
karKNnakartP¢ab;rbs;Ggát;rgkarTajRtUv)aneFVIeLIgRsbKñaCamYynwgkarKNnaGgát;rgkarTajBI
eRBaHdMeNIrkarTaMgBIrenHTak;TgKñaeTAvijeTAmk.
         @> kardac;rbs;EpñkEdlRtUvP¢ab;edaysar bearing EdlbegáIteLIgedayeRKOgP¢ab;. RbsinebI
RbehagmanTMhMFMCageRKOgP¢ab;bnþicbnþÜc ehIyeRKOgP¢ab;RtUv)ansnμt;faRtUv)andak;y:agENnenAkñúg
Rbehag épÞb:HrvageRKOgP¢ab; nigEpñkEdlRtUvP¢ab;nwgekItmaneRcInCagBak;kNþalénbrimaRtrbs;
eRKOgP¢ab;enAeBlEdlbnÞúkGnuvtþ. krNIenHRtUv)anbgðajenAkñúgrUbTI 7>5. kugRtaMgnwgERbRbYlBI
GtibrmaenARtg; A eTAsUnüenARtg; B . edIm,IgayRsYl eKeRbIkugRtaMgmFümEdlRtUv)anKNna
edayEckkmøaMgnwgépÞRbeyalb:H.
tMNsamBaØ                                   245                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
                dUcenH bearing stees RtUv)anKNnaeday f p = P /(dt ) Edl P CakmøaMgEdlGnuvtþ
mkelIeRKOgP¢ab;/ d CaGgát;p©iteRKOgP¢ab; nig t CakRmas;rbs;EpñkEdlrgnUv bearing. dUcenH
bearing load KW
          P = f p dt
       karKNna bearing GacmanlkçN³sμúKsμajedaysarvtþmanrbs;b‘ULúgEdlenAEk,r b¤eday
sarcm¶ayBIrn§eTARCugEKmkñúgTisedArbs;bnÞúkmancm¶ayxøI dUcbgðajenAkñúgrUbTI 7>6. KMlatrvagb‘U
Lúg nigcm¶ayBIrn§eTARCugEKmman\T§iBlelI bearing strength.
7>3>      Bearing Strength, Spacing and Edge-distance Requirements
          Bearing strengthminTak;TgnwgRbePTrbs;eRKOgP¢ab;eT BIeRBaHkugRtaMgEdlRtUvBicarNasßit
enAelIEpñkEdlRtUvP¢ab; minEmnenAelIeRKOgP¢ab;eT. sRmab;mUlehtuenH bearing strength k¾dUcCag
T.Chhay                                   246                              Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
tRmUvkarKMlat nig edge-distance k¾minTak;TgnwgRbePTeRKOgP¢ab;Edr ehIyvaRtUv)anBicarNamunkug
RtaMgkat;kñúgb‘ULúg nigersIusþg;Taj.
         karpþl;[rbs; AISC Specification sRmab; bearing strength k¾dUcCatRmUvkarepSg²sRmab;
b‘ULúgersIusþg;x<s; KWQrelIkarpþl;[rbs; specification of the Research Council on Structural
Connections of the Engineering Foundation (RCSC, 1994). kare)aHBum<pSayfμI²rbs;ÉksarenH
minTan;CaEpñkrbs; AISC Specification (AISC, 199a) EtvaRtUv)aneRbIenAkñúgesovePAenH drabNa
manlkçN³minRtUvKña eKnwgeRbIkarpþl;[eday AISC. enAeBlsmIkarenAkñúg RSCS Specification
RtUv)anbgðajelxsmIkarmkBIÉksarenaHnwgRtUv)aneRbI ¬]TahrN_/ RCSC Equation LRFD 4.3¦.
karerobrab;xageRkam EdlQrelI Commentary EdlENnaMeday RCSC Specification nwgBnül;BI
eKalkrN_rbs;smIkar RCSC sRmab; bearing strength.
         rebobdac;EdlGacekItmanEdl)anBI bearing FM KWkmøaMgkat;rEhk (shear tear-out) enAxag
cugrbs;FatuEdlRtUvtP¢ab; dUcbgðajenAkñúgrUbTI 7>7 a. RbsinebIépÞdac;manlkçN³l¥dUcrUbTI 7>7 b,
failure load enAelIépÞmYyénépÞTaMgBIresμInwg shear fracture stress KuNnwgRkLaépÞkat; b¤
           Rn
              = 0.6 Fu Lc t
            2
Edl                                   rbs;EpñkEdlRtUvP¢ab;
          0.6 Fu = shear fracture strees
         Lc = cm¶ayBIRCugEKRmbs;RbehageTAcugrbs;EpñkEdlRtUvP¢ab;
         t = kRmas;rbs;EpñkEdlRtUvP¢ab;
ersIusþg;srubKW
          Rn = 2(0.6 Fu Lc t ) = 1.2 Fu Lc t                                      ¬&>!¦
          kmøaMgkat; tear-out enHekItmanenAxagcugrbs;EpñkEdlRtUvtP¢ab; dUcEdlbgðaj b¤enAcenøaH
rn§BIrkñúgTisedAén bearing load. edIm,IkarBarsac;lUtFMrbs;Rbehag eKRtUvkMNt;EdnkMNt;x<s;bMput
rbs; bearing load Edl[edaysmIkar &>!. EdkkMNt;enHsmamaRteTAnwg fracture stress KuNnwg
bearing area b¤
          Rn = C × Fu × bearing area = CFu dt                                     ¬&>@¦
Edl C = témøefr
          d = Ggát;p©itb‘ULúg
tMNsamBaØ                                      247                                       T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
          t=   Ggát;rbs;EpñkEdlRtUvtP¢ab;
RCSC Specification  eRbIsmIkar &>! sRmab; bearing strength RbQmnwgEdnkMNt;Edl[eday
smIkar &>@. RbsinebIeKminKitkMhUcRTg;RTay témøefr C GacykesμInwg 3.0 . RbsinebIkMhUcRTg;
RTayFMRtUv)anKit C GacykesμInwg 2.4 ehIyCaTUeTAvaCatémøEdleKykmkeRbI. témøenHRtUvKñanwg
sac;lUtrbs;RbehagRbEhl 1 / 4in. = 6mm ¬RCSC, 1994¦. enAkñúgesovePAenH eyIgBicarNa
kMhUcRTg;RTaysRmab;karKNna. RCSC bearing strength sRmab;b‘ULúgeTalGacRtUv)ansMEdgCa
φRn Edl
          φ = 0.75
nig       Rn = 1.2 Lc tFu ≤ 2.4dtFu                           ¬RCSC Equation LRFD 4.3¦
Edl    Lc = clear distance enAkñúgTisRsbnwgbnÞúkEdlGnuvtþ BIcg u énrn§b‘ULúgeTARCugEKmrbs;rn§Edl
             enAEk,r b¤eTARCugEKmrbs;smÖar³.
        t = kRmas;rbs;eRKOgP¢ab;
        d = Ggát;p©itb‘ULúg ¬minEmnGgát;p©itrbs;RbehageT¦
        Fu = ultimate tensile stress rbs;EpñkEdlRtUvP¢ab; ¬minEmnrbs;b‘ULúg¦
rUbTI 7>8 bgðajbEnßmeTotBIcm¶ay Lc . enAeBlEdlKNna bearing strength sRmab;b‘ULúg eKRtUv
BicarNacm¶ayBIb‘ULúgenaHeTAb‘ULúgEdlenAEk,r b¤eTARCugEKmkñúgTisedArbs; bearing load elIEpñk
T.Chhay                                     248                               Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
EdlRtUvP¢ab;. sRmab;krNIEdl)anbgðaj bearing load sßitenAEpñkxageqVgrbs;rn§nImYy². dUcenH
ersIusþg;sRmab;b‘ULúg ! RtUv)anKNnaCamYy Lc Edlvas;eTAb‘ULúg @ ehIyersIusþg;sRmab;b‘ULúg @
RtUv)anKNnaCamYy Lc Edlvas;eTARCugEKmrbs;EpñkEdlRtUvP¢ab;.
          RCSC Equation LRFD 4.3   mantémøsRmab; standard, oversized, short-slotted and long
slotted holes CamYynwg slot EdlRsbeTAnwgbnÞúk. eyIgeRbIEt standard holes enAkñúgesovePAenH
¬RbehagEdlmanGgát;p©itFMCagGgát;p©itb‘ULúg 1/16in. = 2mm ¦.
        enAeBlEdlKNnacm¶ay Lc eRbIGgát;p©itRbehagCak;Esþg nigmincaM)ac;bUkbEnßm 2mm dUc
EdlRtUvkarenAkñúg AISC B.2 sRmab;KNna net area rbs;Ggát;rgkarTaj. müa:gvijeTot eRbIGgát;
p©it d + 1 / 16in. = d + 2mm minEmn d + 1 / 8in. = d + 4mm . RbsinebI h bgðajBIGgát;p©itRbehag
enaH
          h = d + 1 / 16in.
karKNnarbs; bearing strength BI RCSC Equation LRFD 4.3 GacRtUv)ansRmYlxøHdUcxageRkam.
EdnkMNt;nwgmanRbsiT§PaBenAeBl
          1.2 Lc tFu = 2.4dtFu
b¤ eRkayeBlEdlsRmYlehIy
          Lc = 2d
TMnak;TMngenHGacRtUv)aneRbIedIm,IKNnaenAeBlEdlEdnkMNt; 2.4dtFu lub³
         RbsinebI Lc ≤ 2d eRbI Rn = 1.2Fu Lct
         RbsinebI Lc > 2d eRbI Rn = 1.2Fu dt
tMNsamBaØ                                 249                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                     NPIC
Spacing and Edge-Distance Requirments
        edIm,IrkSacenøaHTMenrrvagex©Ab‘ULúg nigedIm,Ipþl;nUvTIFøaRKb;RKan;sRmab; wrench socket AISC
J3.3 tRmUvfaKMlatBIG½kSeTAG½kS (center-to-center spacing) rbs;eRKOgP¢ab; ¬enARKb;Tis¦ minRtUv
tUcCag 2 2 3 d ehIyCakarniymKWminRtUvtUcCag 3d Edl d CaGgát;p©iteRKOgP¢ab;. cm¶ayBIRCugEKm
smÖar³ ¬RKb;Tis¦ Edlvas;BIG½kSrbs;Rbehag RtUv)an[enAkñúg AISC Table3.4 CaGnuKmn_eTA
nwgTMhMrbs;b‘ULúg nigRbePTrbs;RCug ¬sheared, rolled or gas cut¦. KMlat nigcm¶ayeTARCugEKm
EdlsMKal;eday s nig Le RtUv)anbgðajenAkñúgrUbTI 7>9.
Summary fo Bearing Strength, Spacing and Edge-Distance Requirements
(standard hole)
     a. Bearing strength:
        φRn = 0.75(1.2 Lc tFu ) ≤ 0.75(2.4dtFu )               (RCSC Equation LRFD 4.3)
          b¤ eyIgGacsresrmüa:geTot
          RbsinebI        Lc ≤ 2d / φRn = 0.75(1.2 Lc tFu )
          RbsinebI        Lc > 2d / φRn = 0.75(2.4dtFu )
     b.    KMlat nigsMgayeTARCugEKmGb,brma³ sRmab;RKb;Tis TaMgRsbnwgExSskmμ nigEkgnwgExS
           skmμ
           s ≥ 2 23 d    ¬CakareBjniym 3d ¦
           Le ≥ témøBI AISC J3.4
          sRmab; single- nig double-angle shapes CaTUeTA gage distances RtUv)an[enAkñúg Part 9 of
          the Manual, Volume II (emIlEpñk 3>6)EdlGaceRbICMnYs[témøGb,brma.
T.Chhay                                      250                                Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
]TahrN_ 7>1³ RtYtBinitü KMlatb‘ULúg nigcm¶ayeTARCugEKmsRmab;kartP¢ab;EdlbgðajenAkñúgrUbTI
7>10.
dMeNaHRsay³ BI AISC J3.3, KMlatGb,brmasRmab;RKb;TisTaMgGs;KW
                         ⎛3⎞
          2 2 3 d = 2.667⎜ ⎟ = 2in.
                         ⎝4⎠
       KMlatCak;Esþg = 2.5in. > 2in. (OK)
       cm¶ayeTARCugEKmGb,brmasRmab;RKb;TisTaMgGs;EdlTTYlBI AISC Table J3.4. RbsinebI
eyIgsnμt; sheared edges ¬krNIEdlGaRkk;CageK¦ enaHcm¶ayeTARCugEKmGb,brmaKW 1 1 4 in.
dUcenH
       cm¶ayeTARCugEKmCak;Esþg = 1 14 in. (OK)
       edIm,IKNna bearing strength eRbIGgát;p©itrn§
                      1 3 1 13
          h=d+         = +  = in.
                     16 4 16 16
       RtYtBinitü bearing TaMgelIGgát;rgkarTaj nig gusset plate. sRmab;Ggát;rgkarTaj nigEdl
enAEk,rRCugEKmrbs;Ggát;CageK
                        h          13 / 16
          Lc = Le −       = 1.25 −         = 0.8438in.
                        2            2
          φRn = φ (1.2 Lc tFu ) ≥ φ (2.4dtFu )
                                          ⎛1⎞
          φ (1.2 Lc tFu )0.75(1.2)(0.8438)⎜ ⎟(58) = 22.02kips
                                          ⎝2⎠
                                  ⎛ 3 ⎞⎛ 1 ⎞
          φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ ⎟(58) = 39.15kips > 22.02kips
                                  ⎝ 4 ⎠⎝ 2 ⎠
dUcenHyk φRn = 22.02kips / bolt
sRmab;rn§epSgeTot
tMNsamBaØ                                         251                                      T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
                                13
          Lc = s − h = 2.5 −       = 1.688in.
                                16
          φRn = φ (1.2 Lc tFu ) ≤ φ (2.4dtFu )
                                              ⎛1⎞
          φ (1.2 Lc tFu ) = 0.75(1.2)(1.688)⎜ ⎟(58) = 44.06kips
                                              ⎝2⎠
          φ (2.4dtFu ) = 39.15kips < 44.06kips
dUcenHyk φRn = 39.15kips / bolt
sRmab;Ggát;rgkarTaj bearing strength KW
          φRn = 2(22.02) + 2(39.15) = 122kips > 65kips             (OK)
sRmab; gusset plat nigrn§EdlenAEk,rRCugEKmrbs;bnÞHCageK
                         h          13 / 16
          Lc = Le −        = 1.25 −         = 0.8438in.
                         2            2
          φRn = φ (1.2 Lc tFu ) ≤ φ (2.4dtFu )
                                                  ⎛3⎞
          φ (1.2 Lc tFu ) = 0.75(1.2)(0.8438)⎜ ⎟(58) = 16.52kips
                                                  ⎝8⎠
                                     ⎛ 3 ⎞⎛ 3 ⎞
          φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ ⎟(58)
                                     ⎝ 4 ⎠⎝ 8 ⎠
                          = 29.36kips > 16.52kips
dUcenHyk φRn = 16.52kips / bolt
sRmab;rn§déTeTot
                                13
          Lc = s − h = 2.5 −       = 1.688in.
                                16
          φRn = φ (1.2 Lc tFu ) ≤ φ (2.4dtFu )
                                           ⎛3⎞
          φ (1.2 Lc tFu ) = 0.75(1.2)(1.688)⎜ ⎟(58) = 33.04kips
                                           ⎝8⎠
                                  ⎛ 3 ⎞⎛ 3 ⎞
          φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ ⎟(58) = 29.36kips < 33.04kips
                                  ⎝ 4 ⎠⎝ 8 ⎠
dUcenHyk φRn = 33.04kips
bearing strength sRmab; gusset plate KW
          φRn = 2(16.52) + 2(29.36) = 91.8kips
gusset plate   man bearing strength tUcCag bearing strength rbs;Ggát; dUcenH gusset plate lub
          φRn = 91.8kips > 65kips                       (OK)
T.Chhay                                             252                        Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                      Department of Civil Engineering
cemøIy³ tRmUvkar bearing strength, KMlat nig cm¶ayeTARCugEKmmanlkçN³RKb;RKan;.
        KMlatb‘ULúg nigcm¶ayeTARCugEKmenAkñúg]TahrN_ 7>1 mantémødUcKñasRmab;Ggát;rgkarTaj
nig gusset plate. vaxusKñaEtkRmas; dUcenH gusset plate lub. sRmab;krNIdUc]TahrN_enH eKRtYt
BinitüEteRKOgbgÁúMNaEdlmankRmas;esþIgCag. b:uEnþRbsinebIcm¶ayeTAcugEKmmantémøxusKña dac;xat
eKRtUvEtRtYtBinitüTaMgGgát;rgkarTaj nig gusset plate.
7>4> b‘ULúgFmμta (Common Bolts)
         eyIgcab;epþImkarerobrab;BIersIusþg;rbs;eRKOgP¢ab;CamYynwg b‘ULúgFmμta EdlxusKñaBIb‘ULúger-
sIusþg;x<s;minRtwmEtlkçN³smÖar³b:ueNÑaHeT EfmTaMgkmøaMgrwtbNþwgb‘ULúgeTotpg. b‘ULúgFmμta Edl
eKsÁal;Ca unfinished bols RtUv)ansMKal;Ca ASTM A307.
         Design shear strength rbs; A307 KW φRn / EdlemKuNersIusþg; φ = 0.75 ehIy nominal
shear strength KW
          Rn = Fv Ab
Edl       Fv = ultimate shearing stress
          Ab = RkLaépÞmuxkat;rbs;EpñkEdlKμaneFμjrbs;b‘ULúg ¬EdleKsÁal;Ca nominal bolt area
               b¤ nominal body area¦
          Ultimate shearing stress RtUv)an[enAkñúg AISC Table J3.2 KW 24ksi = 165MPa Edl
[ nominal strength
          Rn = Fv Ab = 24 Ab
]TahrN_ 7>2³ kMNt; design strength rbs;kartP¢ab;EdlbgðajenAkñúgrUbTI 7>11 edayQrelI
kmøaMgkat;TTwg nig bearing.
dMeNaHRsay³ kartP¢ab;GacRtUv)ancat;cMNat;fñak;CatMNsamBaØ ehIyeRKOgP¢ab;mYy²RtUv)anBicar-
NaedIm,ITb;Tl;karEbgEckkmøaMgesμIKña. kñúgkrNICaeRcInvamanlkçN³gayRsYlkñúgkarkMNt;ersIusþg;
rbs;eRKOgP¢ab;mYy rYcbnÞab;mkKuNnwgcMnYneRKOgP¢ab;srub.
tMNsamBaØ                                   253                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
Shear strength:    vaCakrNI single shear ehIy design shear strength rbs;b‘ULúgmYyKW
          φRn = φFv Ab = 0.75(24 Ab )
Nominal bolt area        KW
                 πd 2         π (3 / 4)2
          Ab =           =                 = 0.4418in 2
                  4               4
dUcenH design shear strength sRmab;b‘ULúgmYyKW
          φRn = 0.75(24 )(0.4418) = 7.952kips
sRmab;b‘ULúgBIrKW
          φRn = 2(7.952) = 15.9kips
Bearing strength: edaysarcm¶ayeTARCugEKRmbs;Ggát;rgkarTaj nigrbs; gusset plate dUcKña enaH
beaing strength rbs; gusset plate nwglub BIeRBaHkRmas;rbs;vaesþIgCagkRmas;rbs;Ggát;rgkarTaj.
sRmab;karKNna bearing strength eRbIGgát;p©itRbehag
                    1 3 1 13
          h=d+       = +  = in.
                   16 4 16 16
sRmab;rn§EdlenAEk,rRCugEKRmbs; gusset plate CageK
                   h         13 / 16
          Lc = Le −  = 1.5 −         = 1.094in.
                   2           2
                ⎛3⎞
          2d = 2⎜ ⎟ = 1.5in.
                ⎝4⎠
edaysar Lc < 2d
                                                           ⎛3⎞
          φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.094)⎜ ⎟(58) = 21.42kips
                                                           ⎝8⎠
sRmab;rn§déTeTot
                                 13
          Lc = s − h = 3 −          = 2.188in. > 2in.
                                 16
T.Chhay                                                   254                 Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                                Department of Civil Engineering
dUcenH φRn = φ (2.4dtFu ) = 0.75(2.4)⎛⎜⎝ 34 ⎞⎟⎠⎛⎜⎝ 83 ⎞⎟⎠(58) = 29.36kips
Bearing strength sRmab;tMNKW
             φRn = 21.42 + 29.36 = 50.8kips
Bearing strength              enHFMCag shearing strength dUcenH shear strength lub ehIyersIusþg;rbs;tMNKW
             φRn = 15.9kips
cMNaMfaRKb;tRmUvkarKMlat nigcm¶ayeTARCugEKmTaMgGs;RtUvEtRKb;RKan;. sRmab; sheared edge
cm¶ayeTARCugEKmEdlTamTareday AISC Table J3.4 KW 1 1 4 in. = 30mm ehIykarTamTarenHKW
RKb;RKan;sRmab;TaMgTisbeNþay nigTisTTwg. KMlatb‘ULúgKW 3in = 75mm EdlFMCag 2 d =                       2
                                                                                                           3
2.667(   3
             4   ) = 2in. .
cemøIy³ edayQrelI shear nig bearing, design strength rbs;tMNKW 15.9kips . ¬cMNaMfa sßanPaB
kMNat;déTepSgeTotEdlminTan;)anRtYtBinitüdUcCa kugRtaMgTajenAelI net area rbs;Ggát;Gacnwg
CaGñkkMNt; design strength¦.
]TahrN_ 7>3³ r)arEdk 4 × 3 / 8in. RtUv)aneRbICaGgát;rgkarTajedIm,ITb;Tl;nwg service dead load
8kips     nig service live load 22kips . Ggát;enHRtUv)anKNnaeRkamkarsnμt;fa b‘ULúg A307 Ggát;
p©it 3 / 4in. mYyCYrRtUv)aneRbIedIm,IP¢ab;Ggát;enHeTA gusset plate EdlmankRmas; 3 / 8in. . TaMgGgát;
rgkarTaj nig gusset plate CaEdk A36 . etIeKRtUvkarb‘ULúgb:unμanRKab;?
dMeNaHRsay³ bnÞúkemKuNKW
             Pu = 1.2 D + 1.6 L = 1.2(8) + 1.6(22) = 44.80kips
KNnalT§PaBrbs;b‘ULúgmYy. BI]TahrN_ 7>2 shear strength KW
             φRn = 7.952kips / bolt
sRmab;                    eKminsÁal;KMlat nigcm¶ayeTARCugEKm dUcenHeyIgsnμt;fa EdnkMNt;
             bearing strength,
φ 2.4dtFu nwglub enaHeyIgTTYl)an
                                    ⎛ 3 ⎞⎛ 3 ⎞
             φRn = 0.75(2.4)⎜ ⎟⎜ ⎟(58) = 29.36kips / bolt
                                    ⎝ 4 ⎠⎝ 8 ⎠
tMNsamBaØ                                              255                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
Bearing strength     Cak;EsþgsRmab;tMNenHnwgGaRs½yelItémørbs; Lc sRmab;b‘ULúgnImYy². enA
eBl EdltémøenHRtUv)ankMNt;enAkñúgkarKNnacugeRkay enaH bearing strength RtUv)anRtYtBinitü
eLIgvijb:uEnþ shear enAEtTMngCalub.
       cMnYnb‘ULúgEdlRtUvkarKW
             44.80kips
                           = 5.63bolts
          7.952kips / bolt
cemøIy³ eRbIb‘ULúg A307 Ggát;p©it 3 / 4in. cMnYnR)aMmYyRKab;.
7>5> b‘ULúgersIusþg;x<s; (High-Strength Bolts)
         b‘ULúgersIusþg;x<s;sRmab;tMNrbs;eRKOgbgÁúMmanBIry:agKW ASTM A325 nig ASTM A490 .
karpþl;[rbs; AISC sRmab;ersIusþg;x<s;KWCaEpñkxøHrbs;karpþl;[rbs; specification of the
Research Council on Structural Connections of the Engineering Foundation (RCSC, 1994).
         b‘ULúg A490 man ultimate tensile strength FMCagb‘ULúg A325 ehIyRtUv)ankMNt;faman
nominal strength FMCag. b‘ULúg A490 RtUv)andak;[eRbIR)as;ry³eBly:agyUrbnÞab;BIb‘ULúg
 A325 RtUv)aneRbICaTUeTA sRmab;eRbICamYyEdkEdlmanersIusþg;x<s; ¬Bethlehem, 1969¦. b‘ULúg
 A490 mantémøéføCag A325 b:uEnþCaTUeTAeKRtUvkarvacMnYnticCag.
         kñúgkrNIxøH b‘ULúg A490 nig A325 RtUv)andMeLIgCamYynwgkRmittwgEdleFVI[BYkvargnUv
kmøaMgTajFMEmnETn. ]TahrN_ kmøaMgTajdMbUgenAkñúgb‘ULúg A325 Ggát;p©it 5 / 8in. GacFMesμInwg
19kips = 85KN . bBa¢IénkmøaMgTajGb,brmasRmab;tN          M TaMgenaHRtUvkarRtUv)an[enAkñúg AISC
Table J3.1, Minimum Bolt Tension. témønImYy²esμInwg 70% énersIusþg;TajGb,brmarbs;b‘ULúg.
eKalbMNgEdleKRtUvkarkmøaMgTajFMEbbenHKWedIm,ITTYl)ankmøaMgrwtEdlbgðajenAkñúgrUbTI 7>12.
b‘ULúgEbbenHRtUv)aneKehAfa fully tensioned.
       enAeBlEdlex©ARtUv)anmYlP¢ab;eTAnwgb‘ULúg EpñkEdlRtUvP¢ab;rgnUvkmøaMgsgát; ehIyb‘ULúglUt.
düaRkaGgÁesrI (free body diagram) enAkñúgrUbTI 7>12 a bgðajfakmøaMgsgát;srubEdlmanGMeBIelI
EpñkEdlRtUvP¢ab;esμInwgkmøaMgTajenAkñúgb‘ULúg. RbsinebIeKGnuvtþkmøaMgxageRkA P kmøaMgkkitnwg
ekItmanenAcenøaHEpñkP¢ab;. kmøaMgGtibrmaEdlGacekItmanKW
          F = μN
T.Chhay                                       256                          Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
Edl μ CaemKuNkkitsþaTicrvagEpñkEdlRtUvP¢ab; ehIy N CakmøaMgsgát;EdlmanGMeBIenAelIépÞxag
kñúg. témørbs; μ GaRs½ynwglkçxNÐépÞrbs;Edk ]TahrN_dUcCa épÞrbs;vamanlabfñaM b¤manERcHsIu.
dUcenHb‘ULúgnImYy²enAkñúgkartP¢ab;RtUvmanlT§PBedIm,ITb;Tl;nwgbnÞúk P = F . RbsinebIkmøaMgkkit
minFM vanwgminman bearing b¤ shear. RbsinebI P FMCag F slip ekIteLIg enaH shear nig bearing nwg
CH\T§iBldl;lT§PaBrbs;tMN.
kardMeLIg           (Installation)
        etIeKTTYl)ankmøaMgTajFMEdlmanPaBsuRkitedayrebobNa? bc©úb,nñeKmanviFIsaRsþEdl
GnuBaØat[cMnYnbYnsRmab;kardMeLIgb‘ULúgersIusþg;x<s; (RCSC, 1994).
        !> Turn-of-the-nut method. viFIenHQrelIlkçN³bnÞúk-kMhUcRTg;RTay (load-deforma-
tion characteristic) rbs;eRKOgP¢ab; nigEpñkEdlRtUvP¢ab;. ex©AEdlmYlP¢ab;eTAnwgb‘ULúgGaceFVI[
b‘ULúg lUtsac;. TMnak;TMng stress-strain sRmab;smÖar³b‘ULúgGacRtUv)aneRbIedIm,IKNnakmøaMgTaj
tMNsamBaØ                                 257                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                      NPIC
enAkñúgb‘ULúg. dUcenHsRmab;RKb;TMhM nigRbePTrbs;b‘ULúg cMnYnCMumYlex©AEdlRtUvkaredIm,IbegáItkmøaMg
TajGacRtUv)anKNna. Table 5 enAkñúg high-strength bolt specification (RCSC, 1994) [nUvcMnYn
CMurbs;ex©AEdlRtUvkarsRmab;TMhMepSg²rbs;b‘ULúgkñúgTMrg;pleFobRbEvgelIGgát;p©it. viFIsaRsþenHeK
eRbI ordinary spud wrench.
         @> Calibrated wrench tightening. kñúgviFIsa®sþenHeKRtUveRbI torque wrench. kmøaMgrmYl
EdlRtUvkaredIm,ITTYlkmøaMgTajkMNt;enAkñúgb‘ULúgRtUv)ankMNt;edaykarrwtbNþwgb‘ULúgenHCamYy]b
krN_EdlbgðajkmøaMgTaj.
         #> Alternated wrench bolts. eKRtUvkar wrench BiessedIm,IdMeLIgb‘ULúg. karRtYtBinitükar
gardMeLIgenHmanlkçN³gayRsYlCaBiess.
         $> Direct tension indicators. smÖar³EdleKniymeRbIenAkñúgviFIsaRsþenHKW washer Edlman
protrusion enAelIépÞrbs;va. enAeBlEdleKrwtb‘ULúg protrusion rgnUvkmøaMgsgát;EdlsmamaRteTA
nwgkmøaMgTajenAkñúgb‘ULúg.
7>6>      Shear Strength of High-Strength Bolts
          Design shear strength rbs;b‘ULúg A325 nig A490 KW φRn EdlemKuNersIusþg; φ = 0.75 . dUc
Kñanwgb‘ULúgFmμtaEdr nominal shear strength rbs;b‘ULúgersIusþg;x<s;RtUv)an[eday ultimate
shearing stress KuNnwg nominal bolt area. Etb‘ULúg A307 mindUcb‘ULúg A325 nig A490 Rtg; shear
strength rbs;b‘ULúgersIusþg;x<s;GaRs½ynwgeFμjrbs;b‘ULúgsßitenAkñúgbøg;kat;b¤ minsßitenAkñúgbøg;kat;.
edIm,IsRmYlkñúgkareRbI reduced cross-sectional area enAeBlEdlEpñkEdlmaneFμjrgnUvkmøaMgkat;
TTwg enaH ultimate shearing stress rbs;vaRtUvKuNnwg 0.75 EdlCapleFobRbhak;RbEhlénRkLa
épÞEdlmaneFμj elIRkLaépÞEdlKμaneFμj. ersIusþg;RtUv)an[enAkñúg AISC Table J3.2 ehIyRtUv)an
segçbenAkñúgtarag 7>1 . AISC Table J3.2 sMedAeFμjenAkñúgbøg;kat;Ca “not excluded from shear
planes” ehIysMedAeFμjEdlminenAkñúgbøg;kat;Ca “excluded from shear planes”. RbePTTImYy
eFμjsßitenAkñúgbøg;kat; eKsMedACaRbePTtMN “N” ehIyb‘ULúg A325 énRbePTenHGacsmÁal; eday
 A325 − N . karsMKal; “X” GacRtUv)aneRbIedIm,IbgðajfaeFμjminsßitenAkñúgbøg;kat;eT ]TahrN_
 A325 − X .
T.Chhay                                      258                                 Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                            Department of Civil Engineering
           tarag 7>1
                                                                Nominal shear strength
                                    eRKOgP©ab;                       Rn = Fv Ab
                                                                   US           IS
            A325 / eFμjenAkñúgbøg;kat;                            48 Ab            330 Ab
            A325 / eFμjminenAkñúgbøg;kat;                         60 Ab            415 Ab
            A490 / eFμjenAkñúgbøg;kat;                            60 Ab            415 Ab
            A490 / eFμjminenAkñúgbøg;kat;                         75 Ab            520 Ab
]TahrN_7>4³ kMNt; design strength rbs;tMNEdlbgðajenAkñúgrUbTI 7>13. GegÁt bolt shear,
bearing nig tensile strength rbs;Ggát;. b‘ULúgEdleRbICaRbePT A325 Ggát;p©it 7 / 8in. ehIyeFμj
rbs;vaminsßitenAkñúgbøg;kat;. Ggát;CaRbePTEdk A572 Grade 50 .
dMeNaHRsay³ shear strength sRmab;b‘ULúgmYy
                  π (7 / 8)2
          Ab =                   = 0.6013in.2
                       4
          φRn = φFv Ab = 0.75(60)(0.6013) = 27.06kips
sRmab;b‘ULúgbI
          φRn = 3(27.06) = 81.2kips
Bearing strength      ³ sRmab;karKNna bearing strength eRbIGgát;p©itrn§
tMNsamBaØ                                        259                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                               NPIC
                    1 7 1 15
           h=d+      = +  = in.
                   16 8 16 16
RtYtBinitü bearing EdlekItmanTaMgelI Ggát;rgkarTaj nig gusset plate. sRmab;Ggát;rgkarTaj
nigb‘ULúgEdlenAEk,rRCugEKmCageKrbs;Ggát;
                         h          15 / 16
           Lc = Le −       = 1.25 −         = 0.7812in.
                         2            2
           2d = 2(7 / 8) = 1.75in.
edaysar Lc < 2d
                                                     ⎛1⎞
          φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(0.7812)⎜ ⎟(65) = 22.85kips
                                                     ⎝2⎠
sRmab;RbehagepSgeTot
                               15
           Lc = s − h = 2.75 −    = 1.812in. > 2d
                               16
                                        ⎛ 7 ⎞⎛ 1 ⎞
dUcenH    φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ ⎟(65) = 51.19kips
                                        ⎝ 8 ⎠⎝ 2 ⎠
Bearing strength     sRmab;Ggát;rgkarTajKW
          φRn = 22.85 + 2(51.19) = 125kips
KNna bearing strength rbs; gusset plate. sRmab;rn§EdlenAEk,rRCugEKRmbs; gusset CageK
                      h          15 / 16
           Lc = Le −    = 1.5 −          = 1.031in. < 2d
                      2             2
                                                  ⎛3⎞
dUcenH    φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.031)⎜ ⎟(65) = 22.62kips
                                                  ⎝8⎠
sRmab;RbehagdéTeTot
                               15
           Lc = s − h = 2.75 −    = 1.812in. > 2d
                               16
                                        ⎛ 7 ⎞⎛ 3 ⎞
dUcenH    φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ ⎟(65) = 38.39kips
                                        ⎝ 8 ⎠⎝ 8 ⎠
Bearing strength     rbs; gusset plate KW
          φRn = 22.62 + 2(38.92) = 99.4kips
Gusset plate    man strength tUcCag dUcenH bearing strength sRmab;tMNKW
          φRn = 99.4kips
RtYtBinitü tensile strength rbs;Ggát;rgkarTaj.
Tension on the gross atea:
T.Chhay                                           260                     Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                           Department of Civil Engineering
                                      ⎛    1⎞
          φt Pn = φt Fy Ag = 0.90(50)⎜ 3 × ⎟ = 67.5kips
                                      ⎝    2⎠
Tension on the net area:   muxkat;TaMgGs;rbs;Ggát;RtUv)antP¢ab; dUcenHvaminman            shear lag   eT
dUcenHeyIg)an Ae = An . eRbIGgát;Rbehag
                 1 7 1
          h = d + = + = 1.0in.
                 8 8 8
Design strength       KW
          φt Pn = φt Fu Ae = φt Fu t (wg − ∑ h ) = 0.75(65)⎜ ⎟[3 − 1(1.0)] = 48.8kips
                                                         ⎛1⎞
                                                         ⎝2⎠
karTajenAelI net section mantémøtUcCageK
cemøIy³ Design strength rbs;tMNKW 48.8kips
7>7>    Slip-Critical Connections
         eKcat;cMNat;fñak;kartP¢ab;EdleRbIb‘ULúgersIusþg;x<s;Ca slip-critical connection b¤ bearing-
type connection. Slip-critical connection CakartP¢ab;EdleKminGnuBaØat[man slip EdlminRtUv
FMCagkmøaMgkkit. sRmab; bearing-type connection eKGnuBØat[man slip ehIy shear nig bearing
ekIteLIgFmμta. enAkñúgRbePTeRKOgbgÁúMxøH CaBiesss<an kmøaMgEdlmanGMeBIelItMNGacekIteLIgCa
lkçN³xYb. kñúgkrNIEbbenH fatigue rbs;eRKOgP¢ab;GackøayCaeRKaHfñak;RbsinebIeKGnuBaØat[man
slip rYmCamYynwgkarekIteLIgsarcuHsareLIg enaHeKRtUvRtYtBinitü slip-critical connec-tion. enAkñúg
eRKOgbgÁúMCaeRcIn eKGnuBaØat[man slip ehIy bearing-type connection RtUvEt RKb;RKan;. ¬b‘ULúg
 A307 RtUv)aneRbIsRmab;Et bearing-type connection¦. sRmab; slip-critical connection eKcaM)ac;
RtUvEteFVIkardMeLIg[)anl¥ edIm,ITTYlnUvkmøaMgTajdMbUgRKb;RKan;dUcEdl)anerobrab;. AISC J1.11
erobrab;BIsßanPaBkMNt;Edlb‘ULúgersIusþg;x<s;RtUvEtmankmøaMgTajeBj. enAkñúg bearing-type
connection tRmUvkarcaM)ac;EtmYyKt;kñúgkardMeLIgb‘ULúgKWeKRtUvpþl;nUvkmøaMgTajRKb;RKan;edIm,I[épÞ
b:HKñaGacTb;Tl;Kña)aneTAvijeTAmk. kardMeLIgenHbegáItnUv snug-tight condition Edl)anerobrab;
enAkñúg turn-of-the-nut method.
         eTaHbICatamRTwsþI slip-critical connection minRbQmnwg shear nig bearing k¾eday k¾eKRtUv
tMNsamBaØ                                       261                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                      NPIC
Etman shear strength nig bearing strength RKb;RKan;sRmab;krNI overload EdlGaceFVI[ekItman
slip.
        edIm,IkarBar slip eKRtUvmanEdnkMNt;sRmab; service load b¤ factored load. eTaHbICakar
karBar slip mansar³sMxan;sRmab; serviceability requiremnent k¾eday k¾ AISC Specification
GnuBaØat[ slip-critical strength GacQrelI service load b¤ factored load.
        dUcEdl)anerobrab;BIxagelI lT§PaBTb;nwg slip CaGnuKmn_énplKuNrvagemKuNkkitsþaTic
nig normal force cenøaHEpñkP¢ab;. TMnak;TMngenHRtUv)anbgðajenAkñúg RCSC Specification Edl
eyIgeRbIenATIenHsRmab; slip-critical connection (RCSC, 1994). Slip-critical strength rbs;tMN
KW φRstr Edl φ = 1.0 sRmab; standard hole ehIy
          Rstr = 1.13μTm N b N s                                    (RCSC Equation LRFD 5.3)
Edl       μ = mean slip coefficient ¬emKuNkkitsþaTic¦ = 0.33 sRmab;épÞ Class A
        Tm = kmøaMgTajrbs;eRKOgP¢ab;Gb,brmaEdl)anBI AISC Table J3.1 b¤ RCSC Table 4
        N b = cMnYnb‘ULúgenAkñúgtMN
        N s = cMnYn slip plan ¬bøg;kat;¦
épÞ Class A CaépÞEdlmanEdkG‘uksIutenAépÞrbs;va. enAkñúg Specification manENnaMnUvRbePTépÞ
CaeRcIneTot EtenAkñúgesovePAenH eyIgeRbIEtépÞ Class A Edlpþl;nUv slip coefficient tUcCageKbMput.
        Slip-critical design strength sRmab;b‘ULúgmYyén single shear KW
          φRstr = φ (1.13μTm N b N s ) = 1.0(1.13)(0.33)Tm (1)(1)
                 = 0.373Tm kips
]TahrN_ 7>5³ kartP¢ab;EdlbgðajenAkñúgrUbTI 7>14 eRbIb‘ULúg A325 Ggát;p©it 3 / 4in. EdleFμj
rbs;vasßitenAkñúgbøg;kat;. eKminGnuBaØat[man slip. TaMgGgát;rgkarTaj nig gusset plate CaRbePT
Edk A36 . kMNt; design strength.
dMeNaHRsay³ Shear strength: sRmab;b‘ULúgmYy
                 π (3 / 4 )2
          Ab =                 = 0.4418in.2
                     4
          φRn = φFv Ab = 0.75(48)(0.4418) = 15.90kips
T.Chhay                                         262                              Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                          Department of Civil Engineering
sRmab;b‘ULúgbYnRKab;
          φRn = 4(15.90) = 63.60kips
Slip-critical strength:  edaysareKminGnuBaØat[man slip enaHkartP¢ab;enHRtUv)ancat;Ca               slip-
critical. BI AISC Table J3.1 kmøaMgTajkñúgb‘ULúgGb,brmaKW Tm = 28kips . BIsmIkar &>#/
          φRstr = 0.373Tm = 0.373(28) = 10.4kips / bplt
sRmab;b‘ULúgbYn
          φRstr = 4(10.4) = 41.6kips
Bearing strength:  edaysarcm¶ayeTARCugEKmmanRbEvgdUcKña ehIy gusset palte esþIgCagr)ar enaH
eyIgenwgeRbI gusset plate EdlmankRmas; 3 / 8in. edIm,IKNna bearing strength.
Ggát;p©itRbehag
                     1 3 1 13
          h=d+        = + = in.
                    16 4 16 16
sRmab;RbehagEdlenACitRCugEKRmbs; gusset plate CageK
                   h         13 / 16
          Lc = Le −  = 1.5 −         = 1.094in.
                   2           2
                ⎛3⎞
          2d = 2⎜ ⎟ = 1.5in.
                ⎝4⎠
edaysar Lc < 2d
                                                ⎛ 3⎞
          φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.094)⎜ ⎟(58) = 21.42kips / bolt
                                                ⎝8⎠
sRmab;déTeTot
tMNsamBaØ                                      263                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
                               13
          Lc = s − h = 3 −        = 2.188in. > 2d
                               16
dUcenH φRn = φ (2.4dtFu ) = 29.36kips / bolt
Bearing strength sRmab;kartMNKW
          φRn = 2(21.42) + 2(29.36) = 102kips
RtYtBinitü tensile strength rbs;Ggát;rgkarTaj
karTajenAelI gross area:
                                          ⎛       1⎞
          φt Pn = φt Fy Ag = 0.90(36)⎜ 6 × ⎟ = 97.2kips
                                          ⎝       2⎠
karTajenAelI net area: muxkat;TaMgmUlrbs;Ggát;RtUv)antP¢ab; dUcenHvaKμan shear lag eT enaHeyIg
TTYl)an Ae = An .
Ggát;p©itRbehag
                   1 3 1 7
          h=d+      = + = in.
                   8 4 8 8
Design strength     KW
                                      (            )         ⎛ 1 ⎞⎡   ⎛ 7 ⎞⎤
          φt Pn = φt Fu Ae = φt Fu t wg − ∑ h = 0.75(58)⎜ ⎟ ⎢6 − 2⎜ ⎟⎥ = 92.4kips
                                                             ⎝ 2 ⎠⎣   ⎝ 8 ⎠⎦
Block shear stredngth: failure block   sRmab; gusset plate manTMhMdUcTMhMsRmab;Ggát;rgkarTaj
Edr EtxusKñaRtg;kRmas; ¬rUbTI 7>14 b¦. Gusset plate EdlmankRmas;esþIgCagnwgmanersIusþg;tUc
Cag. vaman shear-failure plane cMnYnBIr³
          Agv = 2 ×
                         3
                           (3 + 1.5) = 3.375in.2
                         8
edaysarvaman 1.5 Ggát;p©itRbehagkñúgmYyCYredkrbs;b‘ULúg
                   3⎡                 ⎛ 7 ⎞⎤
          Anv = 2 × ⎢(3 + 1.5) − (1.5)⎜ ⎟⎥ = 2.391in.2
                   8⎣                 ⎝ 8 ⎠⎦
sRmab;RkLaépÞrgkarTaj
          Agt =
               3
                 (3) = 1.125in.2
               8
               3⎛     7⎞
          Ant = ⎜ 3 − ⎟ = 0.7969in.2
               8⎝     8⎠
AISC Equation J4-3a          [
                   [                          ]
          φRn = φ 0.6 Fy Agv + Fu Ant = 0.75[0.6(36 )(3.375) + 58(0.7969 )]
T.Chhay                                                264                     Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
                = 0.75[72.90 + 46.22] = 89.3kips
AISC Equation J4-3b          [
                     [                ]
          φRn = φ 0.6 Fy Anv + Fy Agt = 0.75[0.6(58)(2.391) + 36(1.125)]
                = 0.75[83.21 + 40.50] = 92.8kips
tY fracture ¬EdlBak;B½n§nwg Fu ¦ enAkñúgsmIkarTIBIrmantémøFMCagenAkñúgsmIkarTImYy dUcenH AISC
Equation 4.3b lub.
        design strength sRmab; block shear = 92.8kips
kñúgcMeNamsßanPaBkMNt;TaMgGs;Edl)aneFVIkarGegát eyIgeXIjfaersIusþg;EdlRtUvKñanwg slip man
témøtUcCageK.
cemøIy³ Design strength rbs;tMNKW 41.6kips
]TahrN_ 7>6³ Ggát;rgkarTajkRmas; 5 / 8in. RtUv)antP¢ab;eTAnwg splice plate kRmas; 1 / 4in.
cMnYnBIr dUcEdl)anbgðajenAkñúgrUbTI 7>15. bnÞúkEdl)anbgðajCabnÞúk service load. eKeRbIEdk
A36 nig b‘ULúg A325 Ggát;p©it 5 / 8in. . RbsinebIeKGnuBaØat[man slip etIeKRtUvkarb‘ULúg
b:unμanRKab;? G½kSrbs;b‘ULúgnImYy²EdlbgðajKWCaCYrrbs;b‘ULúgkñúgTisTTwgrbs;bnÞHEdk.
dMeNaHRsay³ Shear: sRmab; shear, norminal bolt area KW
tMNsamBaØ                                     265                                          T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                           NPIC
                  π (5 / 8)2
           Ab =                = 0.3068in.2
                      4
snμt;fa eFμjb‘ULúgsßitenAkúñgbøg;kat;. enaH design strength sRmab;b‘ULúgmYyKW
          φRn = φFv Ab × 2planes of shear = 0.75(48)(0.3068)(2) = 22.09kips
Bearing: Beating force    enAelIGgát;rgkarTajkRmas; 5 / 8in. nwgFMCag bearing force enAelI splice
plate kRmas; 1 / 4in. nImYy² BIrdg. edaysarbnÞúksrubenAelI splice plates esμInwgbnÞúkenAelIGgát;
rgkarTaj enaH splice plate nwgmaneRKaHfñak;enAeBlEdlkRmas;srubrbs; splice plate esþIgCag
kRmas;rbs;Ggát;rgkarTaj. eRbIGgát;p©itRbehag
                     1 5 1 11
           h=d+       = + = in.
                    16 8 16 16
sRmab;RbehagEdlenAEk,rRCugEKmCageK
                    h         11 / 16
           Lc = Le −  = 1.5 −         = 1.156in.
                    2           2
                 ⎛5⎞
           2d = 2⎜ ⎟ = 1.25in.
                 ⎝8⎠
edaysar Lc < 2d / bearing strength KW
                                                   ⎛1   1⎞
          φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.156)⎜ + ⎟(58) = 30.17kips / bolt
                                                   ⎝4   4⎠
sRmab;rn§déTeTot
                           11
           Lc = s − h = 3 −    = 2.312in. > 2d
                          16
                                        ⎛ 5 ⎞⎛ 1 1 ⎞
dUcenH    φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ + ⎟(58) = 32.62kips / bolt
                                        ⎝ 8 ⎠⎝ 4 4 ⎠
Shearing strength         kñúgb‘ULúgmYyKWtUcCagtémø bearing TaMgBIr dUcenHersIusþg;rbs;tMNKW 22.09kips .
bnÞúkemKuNKW
           Pu = 1.2 D + 1.6 L = 1.2(25) + 1.6(25) = 70kips
cMnYnb‘ULúgEdlRtUvkar    =
                              total load
                            load per bolt
                              70
                         =         = 3.17bolts
                            22.09
cemøIy³ eRbIb‘ULúgbYn EdlkñúgmYyCYrmanBIrRKab; enAelIRCugnImYy²rbs;          splice. b‘ULúgcMnYn R)aMbI
RKab;GacRtUvkarsRmab;kartP¢ab;enH.
T.Chhay                                           266                                 Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
]TahrN_ 7>7³ C 6 ×13 EdlbgðajenAkñúgrUbTI 7>16 RtUv)aneRCIserIsedIm,ITb;Tl;nwgbnÞúkTajem
KuN 108kips . Ggát;enHRtUv)anP¢ab;eTAnwg gusset plate kRmas; 3 / 8in. CamYynwgb‘ULúg A325 Edl
manGgát;p©it 7 / 8in. . ]bmafaeFμjrbs;b‘ULúgsßitenAkñúgbøg;énkmøaMgkat;TTwg ehIyeKGnuBaØat[man
slip sRmab;kartP¢ab;enH. kMNt;cMnYn nigeFVIkarteRmobb‘ULúgy:agNaedIm,ITTYl)anRbEvgtP¢ab; h
Gb,brma. eKeRbIEdk A36 .
dMeNaHRsay³ kMNt;lT§PaBrbs;b‘ULúgeTal
kmøaMgkat;TTwg³
                 π (7 / 8)2
          Ab =                   = 0.6013in.2
                      4
          φRn = φFv Ab = 0.75(48)(0.6013) = 21.65kips
bearing ³ edaysarkRmas;rbs; gusset plate esþIgCaRTnugrbs;Edk channel dUcenH bearing
strength rbs; gusset plate nwgtUcCagEdk channel. snμt;faRbEvg Lc EdlRsbnwgkmøaMgEdl
GnuvtþmantémøFMCag 2d sRmab;b‘ULúgTaMgGs;. enaH
                                                ⎛ 7 ⎞⎛ 3 ⎞
          φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ ⎟(58) = 34.26kips
                                                ⎝ 8 ⎠⎝ 8 ⎠
enaH kmøaMgkat;TTwglub. dUcenH
        cMnYnb‘ULúgEdlRtUvkar = 21108.65 = 4.99
eTaHbICab‘ULúg 5 pþl;nUversIusþg;RKb;RKan;k¾eday k¾eKsakl,gb‘ULúg 6RKab;EdlGacerobCalkçN³
sIuemRTI edaymanb‘ULúg 3RKab;BIrCYr dUcbgðajenAkñúgrUbTI 7>17. ¬b‘ULúgBIrCYrRtUv)aneRbIedIm,I
TTYl)anRbEvgtP¢ab;Gb,brma¦. eyIgmin)andwgfaetIkarKNnamuxkat;Ggát;rgkarTajenHQrelI
tMNsamBaØ                                              267                               T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
karsnμt;eRKOgP¢ab;b:unμanCYr dUcenHlT§PaBTb;karTajrbs;Edk channel CamYynwgb‘ULúgBIrCYrRtUv)an
RtYtBinitümunnwgdMeNIrkarKNnakartP¢ab;bnþ.
          karTajenAelI gross area:
          φt Pn = 0.90 Fy Ag = 0.90(36 )(3.83) = 124kips
          net area
          An = 3.83 − 2(1.0)(0.437 ) = 2.96in.2
     edaysareyIgminTan;sÁal;RbEvgtP¢ab;BitR)akd dUcenHeyIgRtUveRbItémømFümrbs;          U    BI
Commentary.
          Ae = UAn = 0.85(2.96) = 2.51in.2
          kmøaMgTajenAelI net area
          φt Pn = 0.75Fu Ae = 0.75(58)(2.51) = 109kips     ¬lub¦
dUcenH lT§PaBrbs;Ggát;rgkarTajKWQrelIb‘ULúgBIrCYr.
       RtYtBinitüKMlat nigRbEvgeTARCugEKmtamTisEkgnwgkmøaMg. BI AISC J3.3
       KMlatGb,brma = 2.667⎛⎜⎝ 78 ⎞⎟⎠ = 2.33in.
       BI AISC Table J3.4
       RbEvgeTARCugEKmGb,brma = 1 18 in.
       KMlat 3in. nigRbEvgeTARCugEKm1 1 2 in. nwgRtUv)aneRbIkñúgTisEkgnwgkmøaMg.
       eKGackMNt;RbEvgtP¢ab;Gb,brmarbs;kartP¢ab;edayeRbIKMlat nigRbEvgeTARCugEKmGnuBaØat
Gb,brmakñúgTisbeNþay ¬RsbnwgkmøaMg¦. KMlatGb,brmakñúgTisnImYy²KW 2 2 3 d = 2.33in. .
sakl,g 2 1 2 in. . RbEvgeTARCugEKmGb,brmaKW 1 18 in. . cm¶ayGb,brmaTaMgenHnwgRtUv)aneRbI
T.Chhay                                       268                          Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                             Department of Civil Engineering
sRmab;epÞógpÞat; bearing strength rbs;kartP¢ab;. sRmab;karKNna bearing strength
eKeRbIGgát;p©it rn§
                      1 7 1 15
          h=d+         = +  = in.
                     16 8 16 16
          sRmab;RbehagEdlenAEk,rRCugEKmrbs; gusset plate CageK
                        h           15 / 16
          Lc = Le −       = 1.125 −         = 0.6562in.
                        2             2
          2d = 2(7 / 8) = 1.75in.
          edaysar Lc < 2d bearing strength KW
                                                      ⎛3⎞
          φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(0.6562)⎜ ⎟(58) = 12.85kips / bolt
                                                      ⎝8⎠
          sRmab;RbehagdéTeTot
                                 15
          Lc = s − h = 2.5 −        = 1.562in. < 2d
                                 16
          dUcenH φRn = φ (1.2LctFu ) = 0.75(1.2)(1.562)⎛⎜⎝ 83 ⎞⎟⎠(58) = 30.58kips / bolt
          Bearing strength srubsRmab;kartP¢ab;KW
          φRn = 2(12.85) + 4(30.58) = 148kips > Pu = 108kips                  (OK)
       rUbTI 7>18 bgðajBIkartP¢ab;sakl,gsRmab;RtYtBinitüemIl block shear enAkñúg gusset
plate ¬sRmab;ragGrNImaRtén failure block enAkñúgEdl channel KWdUcKña b:uEnþ gusset plate man
kRmas;esþIgCag¦.
          Shear areas:
          Agv = (2.5 + 2.5 + 1.125)(2) = 4.594in.2
                 3
                 8
tMNsamBaØ                                         269                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                       NPIC
          ehIyedaysarEtvamanRbehag 2.5 enAtamépÞkat;nImYy²
          Anv =
                3
                  [6.125 − 2.5(1.0)](2) = 2.719in.2
                8
          Tension area
          Agt = (3) = 1.125in.2
                3
                8
          ehIy  Ant = (3 − 1.0) = 0.75in.2
                      3
                      8
          RtYtBinitüsRmab; tension yield nig shear fracture CamYynwg AISC Equation J4-3a:
          φRn = φ [0.6 Fy Agv + Fu Ant ]
               = 0.75[0.6(36 )(4.594 ) + 58(0.75)] = 0.75[99.23 + 43.50] = 107.0kips
          RtYtBinitüsRmab; tension fracture nig shear yield CamYynwg AISC Equation J4-3b:
          φRn = φ [0.6 Fu Anv + Fy Agt ]
               = 0.75[0.6(58)(2.719 ) + 36(1.125)] = 0.75[94.62 + 40.50] = 101.3kips
tY fracture ¬tYEdlBak;B½n§nwg Fu ¦ enAkñúgsmIkarTIBIrmantémøFMCagtY fracture enAkñúgsmIkarTImYy
dUcenH smIkarTIBIrlub.
         Design strength sRmab; block shear = 101.3kips < 108kips (N.G.)
viFIEdlsamBaØbMputkñúgkarbegáIn block shear strength sRmab;kartP¢ab;enHKWbegáIn shear area eday
begáInKMlatb‘ULúg. RbsinebIeKbegáInKMlat AISC Equation J4-3b enAEtlubdEdl. ebIeTaHbICaKM
latEdlRtUvkarGackMNt;eday trial and error k¾eday k¾eKGacedaHRsayedaypÞal;dUcEdleyIg
nwgeFVIenATIenH. BI AISC Equation J4-3b, eK[
          0.75[0.6(58)Anv + 40.50] = 108kips
          dUcenHeKRtUvkar Anv = 2.974in.2
          Anv =
                  3
                    (2s + 1.125 − 2.5)(2) = 2.974in.2
                  8
       dUcenH s = 2.67in.
       yk s = 3in.
CamYynwgKMlat 3in. net shear area KW
          Anv =
                  3
                    (3 + 3 + 1.125 − 2.5)(2) = 3.469in.2
                  8
          ehIy block shear strength BI AISC Equation J4-3b KW
T.Chhay                                          270                              Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                         Department of Civil Engineering
                    [
          φRn = φ 0.6 Fu Anv + Fy Agt   ]
                = 0.75[0.6(58)(3.469 ) + 36(1.125)] = 0.75[120.7 + 40.50] = 120.9kips
edayeRbIKMlat nigRbEvgeTARCugEKmEdl)ankMNt; dUcenHRbEvgGb,brmaKW
          h = 1.125 + 2 × 3 + 1.125 = 8.5in
cemøIy³ eRbIkartP¢ab;lMGitEdlbgðajenAkñúgrUbTI 7>19.
        karteRmobb‘ULúgenAkñúg]TahrN_ 7>7 manlkçN³sIuemRTIeFobnwgG½kSRsbnwgG½kSTIRbCMu
Tm¶n;. dUcenHkmøaMgpÁÜbEdlTb;Tl;kmøaMgEdlpþl;[edayeRKOgP¢ab;k¾eFVIGMeBItamG½kSenH ehIyrag
FrNImaRt enHRtUvKñanwgkartP¢ab;samBaØ. RbsinebIeKRtUvkarcMnYnb‘ULúgess ehIyeKeRbIBIrCYr vanwg
minmanPaBsIuemRTIeT ehIykartP¢ab;nwgmanlkçN³cakp©it. kñúgkrNIEbbenH GñkKNnamuxkat;nwg
manCeRmIseRcIn³ ¬!¦ minKitcMNakp©it edaysnμt;fa\T§BlenHGacecal)an/ ¬@¦ KitcMNakp©it/ ¬#¦
eRbIkartM erobqøas; (staggered pattern) EdlGacrkSanUvPaBsIuemRTI/ b¤ ¬$¦ bEnßmcMnYnb‘ULúgedIm,I
TTYl)ankarteRmobEdlmanlkçN³sIuemRTI. visVkrPaKeRcInRbEhlCanwgeRCIserIsCeRmIscugeRkay.
]TahrN_ 7>8³ Ggát;rgkarTajRbEvg 13 ft nigkartP¢ab;rbs;vaRtUv)anKNnasRmab; service dead
load 8kips  nig service live load 22kips . eKminGnuBaØat[man slip sRmab;kartP¢ab;enHeT.
Ggát;enHRtUv)antP¢ab;eTAnwg gusset plate kRmas; 3 / 8in. dUcbgðajenAkñúgrUbTI 7>20. eRbIEdkEkg
eTal (single angle) sRmab;Ggát;rgkarTaj. eRbIb‘ULúg A325 nigEdk A572 grade
50 sRmab;Ggát;rgkarTaj nig gusset plate.
tMNsamBaØ                                      271                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                             NPIC
dMeNaHRsay³ bnÞúkemKuNEdlRtUvTb;Tl;KW
          Pu = 1.2 D + 1.6 L = 1.2(8) + 1.6(22 ) = 44.8kips
edaysarTMhMb‘ULúg nigkarteRmobb‘ULúgCH\T§iBldl; net area rbs;Ggát;rgkarTaj eyIgnwgcab;epþIm
CamYynwgkareRCIserIsb‘ULúg. yuT§saRsþKWkareRCIserIssRmab;karsakl,g/ kMNt;cMnYnb‘ULúgEdlRtUv
kar/ rYcbnÞab;mksakl,gTMhMepSgeTotRbsinebITMhMEdl)ansakl,gFMeBk b¤tUceBk. Ggát;p©itb‘U
LúgsßitenAcenøaHBI 1/ 2in. ≈ 13mm eTA 1 12 in. ≈ 38mm edayekIneLIgmþg 1 / 8in. ≈ 3mm
        sakl,gb‘ULúg 5 / 8in. . Nominal bolt area KW
                 π (5 / 8)2
          Ab =                = 0.3068in.2
                        4
Shear strength     KW
          φRn = φFv Ab = 0.75(48)Ab = 0.75(48)(0.3068)
               = 11.04kips / bolt¬edaysnμt;faeFμjsßitenAkñúgbøg;kat;¦
edayeKminGnuBaØat[man slip dUcenHkartP¢ab;enHCa slip-critical. eyIgsnμt;épÞ Class A ehIy
sRmab;b‘ULúgGgát;p©it 5 / 8in. kmøaMgTajGb,brmaKW Tm = 19kips ¬BI AISC Table J3.1). BI RCSC
Equation LRFD 5.3, slip critical strength sRmab;b‘ULúgeTalKW
          φRstr = φ (1.13μTm N b N s ) = 1.0(1.13)(0.33)(19)(1)(1) = 7.085kips / bolt
eday slip-critical strength tUcCag shear strength dUcenH slip-critical strength lub. eyIgnwgkM
Nt;cMnYnb‘ULúgedayQrelI slip-critical strength ehIyRtYtBinitü bearing bnÞab;BIeRCIserIsGgát;
¬edaysar bearing strength minGackMNt;)an Tal;EteKsÁal;kRmas;Ggát;sin¦. dUcenH
        cMnYnb‘ULúg = load
                        total load
                                   =
                                     44.8
                           per bolt 7.085
                                           = 6.3bolts
T.Chhay                                         272                                     Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
dUcenHeKRtUvkarb‘ULúgy:agtic 7 RKab;. RbsinebIeKeRbIBIrCYr eKRtUvbEnßmb‘ULúgmYyRKab;edIm,IrkSaPaB
sIuemRTI. rUbTI 7>21 bgðajBIkarteRmobb‘ULúgEdlmanCaeRcInTRmg;.
karteRmobb‘ULúgTaMgenHeKGaceRbI)anTaMgGs; EtRbEvgénkartP¢ab;GacRtUv)ankat;bnßyedayeRbITMhM
b‘ULúgFM nigcMnYntic.
         sakl,gb‘ULúgEdlmanGgát;p©it 7 / 8in. . Nominal bolt area KW
                  π (7 / 8)2
          Ab =                   = 0.6013in.2
                       4
          Shear strength         KW
          φRn = 0.75(48)Ab = 0.75(48)(0.6013)
                                ¬edaysnμt;faeFμjsßitenAkñúgbøg;kat;¦
                 = 21.65kips / bolt
kmøaMgTajGb,brmasRmab;b‘ULúg A325 Ggát;p©it 7 / 8in. KW Tm = 39kips dUcenH slip-critical
strength KW
        φRstr = φ (1.13μTm N b N s ) = 1.0(1.13)(0.33)(39)(1)(1) = 14.54kips / bolt ¬lub¦
eKRtUvkarb‘ULúgEdlmanGgát;p©it 7 / 8in. cMnYn
           44.8
                = 3.1bolts
          14.54
dUcenHeyIgeRbIb‘ULúg A325 EdlmanGgát;p©it 7 / 8in. cMnYn 4 RKab;. BI AISC J3.3, KMlatGb,brmaKW
                           ⎛7⎞                                         ⎛7⎞
        s = 2.667d = 2.667⎜ ⎟ = 2.33in. ¬b¤sRmab;karniym/ 3d = 3⎜ ⎟ = 2.62in. ¦
                           ⎝8⎠                                         ⎝8⎠
BI AISC Table J3.4, cm¶ayeTARCugEKmKW
        Le = 1.5in.    ¬edaysnμt; sheared edges¦
tMNsamBaØ                                       273                                         T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
edaysakl,gkarteRmobdUcbgðajenAkñúgrUbTI 7>22 eRCIserIsGgát;rgkarTaj. Gross area Edl
RtUvkarKW
                   Pu    44.8
          Ag ≥         =         = 0.996in.2
                 0.9 Fy 0.9(50 )
Effective net area       EdlRtUvkarKW
                   Pu     44.8
          Ae ≥         =          = 0.9190in.2
                 0.75Fy 0.75(36 )
edaysar effective net area KW A = UA / net area EdlRtUvkarKW
                                        e    n
               requiredAe
          An =
                   U
BIkarteRmobb‘ULúgEdlbgðajenAkñúgrUbTI 7>22/ CamYynwgb‘ULúgeRcInCagBIrkñúgTisénkmøaMgEdlGnuvtþ
témømFümrbs; U BI Commentary to the AISC Specification KW 0.85 . ¬enAeBlEdleKeRCIserIs
Ggát;rYcehIy eKGackMNt;témø U CamYynwg AISC Equation B3-2¦. dUcenH
                 0.9190
          An ≥          = 1.08in.2
                  0.85
cMNaMfa net area EdlRtUvkarKWFMCag gross area EdlRtUvkar. kaMniclPaBGb,brmaEdlRtUvkarKW
                    L    13(12 )
          rmin =       =         = 0.52in.
                   300    300
sakl,g L3 1 2 × 2 12 × 14
          Ag = 1.44in.2 > 0.996in.2          (OK)
          rmin = rz = 0.544in. > 0.52in. (OK)
sRmab;karKNna net area, eRbIGgát;p©itrn§ 7 8 + 18 = 1.0in.
                                      ⎛1⎞
          An = Ag − Ahole = 1.44 − 1.0⎜ ⎟ = 1.190in.2 > 1.08in.2   (OK)
                                      ⎝4⎠
T.Chhay                                          274                       Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                           Department of Civil Engineering
KNna U CamYynwg AISC Equation B3-2:
                   x
          U =1−      ≤ 0.9
                   L
                   0.785
              = 1−       = 0.913
                     9
edaysartémøenHFMCag 0.9 / dUcenHeRbI U = 0.9 . Effective net area KW
          Ae = UAn = 0.9(1.190) = 1.071in.2 > 0.9190in.2          (OK)
RtYtBinitü bearing strength. cm¶ayeTARCugEKmsRmab;EdkEkgesμInwgcm¶ayeTARCugEKmsRmab;
gusset plate ehIyedaysarEdkEkgmankRmas;esþIgCag gusset plate dUcenHeyIgeRbIEdkEkgEdl
mankRmas; 1 / 4in. sRmab;KNna bearing strength. sRmab;karKNna bearing strength,
eyIgeRbIGgát;p©itRbehag
                      1 7 1 15
          h=d+         = +  = in.
                     16 8 16 16
sRmab;RbehagEdlenAEk,RCugEKmGgát;CageK
                        h         15 / 16
          Lc = Lc −       = 1.5 −         = 1.031in.
                        2           2
          2d = 2(7 / 8) = 1.75in.
edaysar Lc < 2d / bearing strength KW
                                                   ⎛1⎞
          φRc = φ (1.2 Lc tFu ) = 0.75(1.2)(1.031)⎜ ⎟(65) = 15.08kips / bolt
                                                   ⎝4⎠
sRmab;RbehagdéTeTot
                          15
          Lc = s − h = 3 −    = 2.062in. > 2d
                          16
                                        ⎛ 7 ⎞⎛ 1 ⎞
dUcenH    φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟⎜ ⎟(65) = 25.59kips / bolt
                                        ⎝ 8 ⎠⎝ 4 ⎠
Bearing strength       srubsRmab;kartP¢ab;KW
          φRn = 15.08 + 3(25.59) = 91.9kips > Pu = 44.8kips       (OK)
RtYtBinitü block shear. CamYynwgb‘ULúgEdlP¢ab;enAelIeCIgEvgCamYynwgcm¶ayKMlat ¬emIlCMBUk
III/ rUbTI 3>22¦ failure block RtUv)anbgðajenAkñúgrUbTI 7>23. Shear area KW
          Agv =
               1
                 (1.5 + 9) = 2.625in.2
               4
          Anv = [1.5 + 9 − 3.5(1.0 )] = 1.750in.2
               1
               4
                                                         ¬Ggát;p©itRbehagmancMnYn 3.5 ¦
tMNsamBaØ                                         275                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                      NPIC
Tension area     KW
          Agt =
               1
                 (1.5) = 0.3750in.2
               4
          Ant = [1.5 − 0.5(1.0 )] = 0.25in.2
               1
               4
                                                        ¬Ggát;p©itRbehagmancMnYn 0.5 ¦
AISC Equation J4-3a       [
                      [
          φRn = φ 0.6 Fy Agv + Fu Ant   ]
               = 0.75[0.6(50 )(2.625) + 65(0.25)] = 0.75(78.75 + 16.25) = 71.2kips
AISC Equation J4-3b       [
                      [
          φRn = φ 0.6 Fu Anv + Fy Agt   ]
               = 0.75[0.6(65)(1.75) + 50(0.375)] = 0.75(68.25 + 18.75) = 65.2kips
smIkar J4-3bmantY fracture FMCag dUcenHsmIkarenHlub. dUcenH block shear strength KW
          φRn = 65.2kips > Pu = 44.8kips         (OK)
T.Chhay                                        276                               Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                       Department of Civil Engineering
cemøIy³ eRbI L3 12 × 2 12 × 14 CamYynwgkartP¢ab;enAelIeCIgEvg. eRbIb‘ULúg A325 Ggát;p©it 7 8 in.
dUcbgðajenAkñúgrUbTI 7>24.
7>8> b‘ULúgersIusþg;x<s;rgkarTaj High-Strength Bolts in Tension
        enAeBlEdlkmøaMgTajEdlGnuvtþelIb‘ULúgedayKμankmøaMgTajedIm (initial tension) kmøaMg
TajenAkñúgb‘ULúgesμInwgkmøaMgEdlGnuvtþ. b:uEnþ RbsinebIb‘ULúgrgeRbkugRtaMg Epñkd¾FMrbs;kmøaMgEdl
GnuvtþRtUv)aneRbIedIm,Ibn§ÚrkmøaMgsgát; b¤kmøaMgrwt (clamping force) enAelIEpñkEdlRtUvtP¢ab; dUcEdl
kMNt;eday Kulak, Fisher, nig Struik (1987) ehIyRtUv)anbkRsayenATIenH. rUbTI 7>25 bgðajBI
tMNBüÜr (hanger connection) EdlpSMeLIgeday structural tee shape EdlRtUv)ancab;b‘ULúgeTAnwg
søabxageRkamrbs; W-shape nigrgnUvkmøaMgTaj. b‘ULúgeTal nwgcMENkénEpñkEdlRtUvtP¢ab; RtUv
)ansikSamun nigeRkayeBldak;bnÞúk.
        düaRkamGgÁesrIrbs;kartP¢ab;muneBldak;bnÞúkRtUv)anbgðajenAkñúgrUbTI 7>26 a. ral;kmøaMg
TaMgGs;CakmøaMgkñúg. edIm,IPaBgayRsYl kmøaMgTaMgGs;RtUv)ansnμt;sIuemRTIeFobG½kSrbs;b‘ULúg
ehIycMNakp©itminRtUv)anKit. RbsinebIeKBicarNaEpñkEdlRtUvtP¢ab;dac;edayELk kmøaMgrYmman
kmøaMgTajrbs;b‘ULúg To nigkmøaMgrwt Ekg (normal clamping force) N o EdlbgðajenATIenHRtUv)an
BRgayesμI. edIm,I[manlMnwg eKRtUvkar To = N o . enAeBlEdleKGnuvtþkmøaMgxageRkA kmøaMgenAelI
kartP¢ab;RtUv)anbgðajenAkñúgrUbTI 7>26 b Edl F tMNag[kmøaMgTajsrubEdlGnuvtþmkelIb‘ULúg
mYy. rUbTI 7>26 c bgðajkmøaMgEdlmanGMeBIelIdüaRkamGgÁesrIrbs;Epñkénsøabrbs; structural tee
nigEpñkEdlRtUvKñarbs;b‘ULúg. bUkkmøaMgtamTisG½kSb‘ULúg eyIgTTYl)an
          T =F+N
tMNsamBaØ                                    277                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                 NPIC
        kmøaMg F nwgbegáInkmøaMgTajrbs;b‘ULúg ehIyeFVI[valUt)an δ b . kmøaMgsgát;enAkñúgsøab
rbs; structurel atee nwgRtUv)ankat;bnßy CalT§plvamanbMlas;TI δ fl EdlmanTisdUc δ b . TMnak;
TMngrvagkmøaMgGnuvtþn_ nigbERmbRmYlkmøaMgTajrbs;b‘ULúgGacRtUv)ankMNt;dUcxageRkam³
       BI elementary mechanics of materials, kMhUcRTg;RTaytamG½kSrbs;bnÞúktamG½kSEdl
GnuvtþelIGgát;KW³
        δ=
             PL
             AE
                                                                               ¬&>$¦
Edl P = kmøaMgtamG½kS
        L = RbEvgedIm
        A = RkLaépÞmuxkat;
        E = m:UDuleGLasÞic
BIsmIkar &>$ eyIgGacTajrkkmøaMg
             AEδ
        P=
               L
                                                                               ¬&>%¦
T.Chhay                                   278                               Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                                      Department of Civil Engineering
dUcenHbERmbRmYlkmøaMgenAkñúgb‘ULúgEdlRtUvKñaeTAnwgkMhUcRTg;RTay δ b KW
              A E δ
          ΔT = b b b
                Lb
                                                                                                         ¬&>^¦
BIsmIkar &>% eKTTYl)anbERmbRmYlkmøaMg N
                   A fl E fl δ fl
          ΔN =
                        L fl
                                                                                                         ¬&>&¦
Edl L fl CakRmas;rbs;søab. RbsinEpñkEdlRtUvP¢ab; ¬søabTaMgBIr¦ enAb:HKña kMhUcRTg;RTayrbs;
b‘ULúg δ b nigkMhUcRTg;RTaysøab δ fl nwgesμIKña. edaysar E fl esÞIresμInwg Eb (Bickford, 1981),
ehIy A fl FMCag Ab
           A fl E fl δ fl     A E δ
                            >> b b b
               L fl             Lb
dUcenH ΔN >> ΔT
pleFob ΔN elI ΔT sßitenAcenøaHBI 0.05 eTA 0.1 (Kulak, Fisher, nig Struik, 1987). dUcenH ΔT
minRtUvFMCag 0.1ΔN EdlbgðajfakmøaMgEdlGnuvtþPaKeRcInKWbn§ÚrkmøaMgsgát;rbs;EpñkEdlRtUvtP¢ab;.
KNnakmøaMgEdlRtUvkaredIm,IeFVI[EpñkEdlRtUvP¢ab;XøatecjBIKña emIlrUbTI 7>27. enAeBlEdlEpñk
TaMgBIrXøatecjBIKña
          T =F
b¤ To + ΔT = F                                                                 ¬&>*¦
enAeBlEdlCitdl;cMNucEdlRtUvXøatKña sac;lUtrbs;b‘ULúg nigKMlatrbs;søabKWesμIKña
             A E        A E
       ΔT = b b δ b = b b δ fl
               Lb        Lb
                                                                               ¬&>(¦
Edl δ fl CakMhUcRTg;RTayEdlRtUvKñanwgkmøaMgsgát;edIm N o . BIsmIkar &>$
                   N o L fl
          δ fl =
                   A fl E fl
CMnYsvaeTAkñúgsmIkar &>( eyIg)an
                ⎛ A E ⎞⎛ N o L fl      ⎞ ⎛ Ab Eb / Lb         ⎞       ⎛
                                                              ⎟ N o = ⎜ Ab Eb / Lb
                                                                                           ⎞
          ΔT = ⎜⎜ b b ⎟⎟⎜              ⎟=⎜                                                 ⎟To ≈ 0.1To
                ⎝ Lb ⎠⎜⎝ A fl E fl     ⎟ ⎜ A fl E fl / L fl
                                       ⎠ ⎝
                                                              ⎟
                                                              ⎠
                                                                      ⎜ A fl E fl / L fl
                                                                      ⎝
                                                                                           ⎟
                                                                                           ⎠
BIsmIkar &>*
          To + 0.1To = F            b¤         F = 1.1To
tMNsamBaØ                                            279                                                     T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
dUcenH enAxN³eBlEdlcab;epþImXøat kmøaMgTajenAkñúgb‘ULúgFMCagkmøaMgTajedImEdlmanenAeBl
dMeLIgb‘ULúgRbEhl 10% . b:uEnþ enAeBlEdlEpñkEdlRtUvP¢ab;Xøatecj kmøaMgxageRkAEdlekIneLIg
nwgRtUv)anTb;edaykmøaMgEdlekIneLIgRtUvKñaenAkñúgb‘ULúg. RbsinebIeKsnμt;fakmøaMgTajenAkñúgb‘ULúg
RtUv)andak;[esμIkmøaMgxageRkA ¬RbsinebIKμankmøaMgTajedIm¦ ehIykartP¢ab;rgnUvbnÞúkrhUtdl;Epñk
EdltP¢ab;XøatecjBIKña enaHkmøaMgTajenAkñúgb‘ULúgRtUv)anKNnaticCag 10% . sRmab;krNIenH
b‘ULúgersIusþg;x<s;RtUvrgnUveRbkugRtaMgtamtémøEdlmanenAkñúg AISC Table J3.1 eTaHCakartP¢ab; enH
Ca slip-critical b¤minEmnk¾eday. CarYm eKRtUvKNnakmøaMgTajenAkñúgb‘UøLúgedayKitbBa©ÚlTaMgkmøaMg
TajedIm.
Prying Action
          sRmab;kartP¢ab;PaKeRcInEdleRKOgP¢ab;rgkmøaMgTaj kMhUcRTg;RTayrbs;EpñkEdlRtUvP¢ab;
GacbegáInkmøaMgTajEdlGnuvtþeTAelIeRKOgP¢ab;. RbePT hanger connection Edl)anerobrab;xag
elICaRbePTkartP¢ab;EdlmanlkçN³eFVIkardUcEdl)anerobrab;. kmøaMgTajbEnßmRtUv)aneKehAfa
prying force ehIyRtUv)anbgðajenAkñúgrUbTI 7>28 EdlrUbenHbgðajBIkmøaMgenAelIGgÁesrIrbs;
hanger. muneBlEdlbnÞúkxageRkAGnuvtþ kmøaMgsgát;Ekg (normal compressive force) N o RbmUl
pþúMenAelIGgS½rbs;b‘ULúg. enAeBlEdlbnÞúkGnuvtþ RbsinebIsøab flexible RKb;RKan; enaHvanwgxUcRTg;
RTaydUcEdlbgðaj ehIykmøaMgsgát;nwgrMkileTAxagcugrbs;søab. karBRgaykmøaMgeLIgvijenH nwg
EkERbTMnak;TMngrvagbnÞúkTaMgGs; ehIykmøaMgTajrbs;b‘ULúgnwgekIneLIg. b:uEnþ RbsinebIEpñkEdl
RtUvP¢ab;manlkçN³rwgRKb;RKan; vanwgminmankarpøas;bþÚrkmøaMgeT ehIyk¾minman prying action Edr.
eKTTYl)antémøGtibrmarbs; prying force enAeBlEdlkac;RCugrbs;søabenAEtb:HCamYynwgEpñk
EdlRtUvP¢ab;déTeTot.
T.Chhay                                    280                               Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
        enAkñúgkartP¢ab;RbePTenH bending EdlekIteLIgeday prying force EtgEtmanlkçN³lub
kñúgkarKNnaEpñkEdlRtUvP¢ab;. AISC J3.6 tRmUv[KitbBa©Úl prying force eTAkñúgkarKNnakmøaMg
TajEdlGnuvtþelIeRKOgP¢ab;.
         viFIsaRsþsRmab;karKNna prying force EdlQrelI Guide to design Criteria for Bolted
and Riveted Joints (Kulak, Fisher, nig Strick, 1987) manenAkñúg Manual in Part 11, “Connec-
tions for Tension and Compression” (Volume II). krNICak;lak;EdlRtUv)anRtYtBinitüCakart
P¢ab; structural tee shape ehIyEdkEkgKUrEdlxñgTl;xñg ( a pair of back-to-back angle) nwg
RtUv)anKitkñúgpøÚvdUcKñaEdr. viFIEdlbgðajenATIenHmanTMrg;xusKñabnþicEtpþl;nUvlT§pldUcKña.
         viFIEdleRbIKWQrelIKRmUEdlbgðajenAkñúgrUbTI 7>29. RKb;kmøaMgTaMgGs;KWsRmab;EteRKOg
P¢ab;mYy. dUcenH T CakmøaMgTajemKuNxageRkAEdlGnuvtþeTAelIEtb‘ULúgmYy/ Q Ca prying force
EdlRtUvKñanwgb‘ULúgmYy nig Bc CakmøaMgb‘ULúgsrub. Prying force )anrMkileTAcugrbs;søab ehIy
vamantémøGtibrma.
         smIkarxageRkamRtUv)anbMEbkBIsmIkarlMnwgrbs;GgÁesrIkñúgrUbTI 7>29. BIplbUkm:Um:g;Rtg;
muxkat; B-B enAkñúgrUbTI 7>29 b
         Tb − M a − a = Qa                                                            ¬&>!0¦
tMNsamBaØ                                 281                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
BIrUbTI 7>29 c
          M b − b = Qa                                                               ¬&>!!¦
cugeRkay/ kmøaMglMnwgRtUvkarKW
          Bc = T + Q                                                              ¬&>!@¦
smIkarlMnwgTaMgbIenHGacbBa©ÚlKñaedIm,ITTYl)ansmIkareTalsRmab;kmøaMgb‘ULúgsrub EdlrYmbBa©Úl
TaMg\T§iBl prying force. dMbUgeyIgkMNt;Gefr α CapleFobrvagm:Um:g;kñúgmYyÉktþaRbEvgtam
beNþayG½kSb‘ULúgelIm:Um:g;kñúgmYyÉktþaRbEvgenARtg;épÞKl;. sRmab;G½kSb‘ULúg/ RbEvgCa net length,
dUcenH
                        / ( p − d ') M b − b ⎛               ⎞ M b −b
               M
         α = b −b
                 M a−a / p
                                    =         ⎜⎜
                                                    1
                                                             ⎟=
                                      M a − a ⎝ 1 − d ' / p ⎟⎠ δM a − a
                                                                                  ¬&>!#¦
Edl p = RbEvgrgsMBaFrbs;søabsRmab;b‘ULúgmYy ¬emIlrUbTI 7>29 a¦
         d ' = Ggát;p©itrbs;Rbehagb‘ULúg
                   d'   net area at bolt line
          δ = 1−      =
                   p gross area at web face
                                                            (
          M a − a = design strength at a − a = φb M p = φb pt 2f F y / 4   )
T.Chhay                                         282                            Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
eyIgGacbBa©ÚlsmIkarlMnwgbI &>!0-&>!@ edIm,ITTYl)ankmøaMgb‘ULúgsrub/ Bc :
                 ⎡    δα b ⎤
          Bc = T ⎢1 +          ⎥                                                   ¬&>!$¦
                 ⎣ (1 + δα ) a ⎦
CamYynwg bnÞúkEdlTTYl)anBIsmIkar &>!$ eyIgnwgTTYl)ankMhUcRTg;RTayFMEdleFVI[kugRtaMgTaj
pÁÜbenAkñúgb‘ULúgminRtYtsIuKñaCamYyG½kSrbs;b‘ULúg. dUcenH kmøaMgkñúgb‘ULúgEdl[edaysmIkar &>!$
minRtUvKñaCamYynwglT§plBiesaFn_. edIm,ITTYl)anlT§plEdlcg;)an luHRtaEtkmøaMg Bc rMkileTA
kan;Kl;rbs; tee edaybrimaN d / 2 Edl d CaGgát;p©itb‘ULúg. dUcenHtémø b nig a RtUv)anEkERbCa
          b' = b −
                   d
                    2
                             ni g       a' = a +
                                                 d
                                                 2
¬edIm,I[RtUvnwglT§plBiesaFn_kan;Etl¥ témørbs; a minRtUvFMCag 1.25b eT¦
        CamYynwgkarpøas;bþÚrenHeyIgGacsresrsmIkar &>!$ Ca
                   ⎡       δα b' ⎤
          Bc = T ⎢1 +                 ⎥                                            ¬&>!%¦
                   ⎣ (1 + δα ) a ' ⎦
eyIgGackMNt; α BIsmIkar &>!% eday[kmøaMgenAkñúgb‘ULúg Bc esμIeTAnwg design tensil strength
EdleyIgsMKal;Ca B . lT§plEdlTTYl)anKW
          α=
                   [(B / T ) − 1](a' / b')                                         ¬&>!^¦
               δ {1 − [(B / T ) − 1](a' / b')}
        eKGacmansßanPaBkMNt;BIr³ tensil failure rbs;b‘ULúg nig bending failure rbs; tee. eK
snμt;fa failure rbs; tee ekItmanenAeBlEdlsnøak;)aøsÞic (plastic hinges) ekItmanRtg;muxkat; a-a,
Rtg;Kl;rbs; tee, nigenARtg;muxkat; b-b. edayehtuenHvanwgbegáItCa beam mechanism. m:Um:g;énTI
taMgTaMgenHnwgesμInwg M p EdlCalT§PaBm:Um:g;)aøsÞicénRbEvgrbs;RbEvgrgsMBaFrbs;søabsRmab;b‘U
LúgmYy. RbsinebItémødac;xatrbs; α EdlTTYl)anBIsmIkar &>!^ tUcCag 1.0 enaHm:Um:g;enARtg;
G½kSb‘ULúgtUcCagm:Um:g;enARtg;Kl; tee Edlvabgðajfa beam mechanism minRtUv)anbegáIteT ehIy
sßanPaBkMNt;RtUv)ankMNt;Ca tensile failure rbs;b‘ULúg. kmøaMgb‘ULúg Bc kñúgkrNIenH nwgesμInwg
design strength B . RbsinebItémødac;xatrbs; α ≥ 1.0 enaH plastc hinges nwgekItmanenARtg; a-a
nig b-b ehIysßanPaBkMNt;KW flexural failure rbs;søabrbs; tee. edaysarEtm:Um:g;Rtg;kEnøgTaMg
BIrenHRtUv)ankMNt;Rtwmm:Um:g;)aøsÞic M p enaH α KYrEtUv)ankMNt;esμInwg 1.0 .
        smIkarlMnwgbI &>!0-&>!@ k¾GacRtUv)anrYmbBa©ÚlKñakøayCasmIkarEtmYysRmab;kMNt;kRmas;
søab t f . BIsmIkar &>!0 nig &>!! eyIgGacsresr
tMNsamBaØ                                  283                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
          Tb'− M a − a = M b − b
Edl b' RtUv)anCMnYs[ b . BIsmIkar &>!#
          Tb'− M a − a = δαM a − a                                               ¬&>!&¦
[ M a − a esμInwg design strength eKTTYl)an
                                    pt 2f F y
          M a − a = φb M p = φb
                                       4
Edl t f CakRmas;søabEdlRtUvkar. CMnYs M a − a eTAkñúgsmIkar &>!& eyIgTTYl)an
                       4Tb'
          tf =
                  φb pFy (1 + δα )
Edl φb = 0.90
          tf =
                    4.444Tb'
                   pF y (1 + δα )
                                                                                 ¬&>!*¦
        karKNnakartP¢ab;EdlrgnUv prying action CatMeNIrkarKNna trial-and-error. enAeBl
eRCIserIsTMhM nigcMnYnrbs;b‘ULúg eyIgRtUvEtKiteRtomTuksRmab; prying force. kareRCIserIskRmas;
tee mankarlM)akCagedaysarvaTak;TgeTAnwgkareRCIserIsb‘ULúg nigTMhM tee. eKGaceRbI Prelimi-
nary Hanger Connection Selection Table EdlmanenAkñúg Part 11 of the Manual sRmab;CYy
sRmYldl;kareRCIserIsrUbragsakl,g. enAeBlEdleKeRCIserIsmuxkat;sakl,g/ dwgcMnYnb‘ULúg nig
karteRmobb‘ULúgrYcehIy eKGaceRbIsmIkar &>!% nig &>!* edIm,IepÞógpÞat;.
        RbsinebIkRmas;søabCak;EsþgxusBItémøEdlRtUvkar témøCak;Esþgrbs; α nig Bc k¾GacxusBIGVI
EdleK)anKNnaknøgmkEdr. RbsinebIeKRtUvkmøaMgb‘ULúgCak;Esþg EdlrYmbBa©ÚlTaMg prying force
Q enaHeKRtUvkMNt; α eLIgvijdUcxageRkam.
          M b − b = Tb'− M a − a
BIsmIkar &>!#/
               M b −b
          α=
              δM a − a
              Tb'− M a − a Tb' / M a − a − 1
            =             =
               δM a − a           δ
eday[ M a − a esμIwTAnwg design moment eK)an
T.Chhay                                         284                        Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
                                 ⎛ pt 2 F ⎞
                                 ⎜ f y⎟
        M a − a = φb M p = 0.90⎜           ⎟
                                 ⎜ 4 ⎟
                                 ⎝         ⎠
                Tb'
                             −1
          0.90 pt 2f F y / 4       ⎛            ⎞
                                 1 ⎜ 4.444Tb' ⎟
enaH   α=
                    δ
                                = ⎜
                                 δ ⎜ pt 2 Fy
                                             − 1⎟                                  ¬&>!(¦
                                                ⎟
                                   ⎝     f      ⎠
eKGacrkkmøaMgb‘ULúgsrubBIsmIkar &>!%
]TahrN_ 7>9³ WT10.5 × 66 RbEvg 8in. RtUv)anP¢ab;eTAnwg)atsøabrbs;Fñwm dUcbgðajenAkñúgrUbTI
7>30. Hanger enHrgnUvbnÞúkemKuN 90kips . kMNt;cMnYnb‘ULúg A325 Ggát;p©it 7 / 8in. EdlRtUvkar
nigepÞógpÞat;nUvPaBRKb;RKan;rbs; tee. EdkEdleRbICaRbePTEdk A36 .
dMeNaHRsay³ RkLaépÞb‘ULúgKW
                  π (7 / 8)2
          Ab =                   = 0.6013in.2
                      4
ehIy design strength rbs;b‘ULúgmYyKW
          B = φRn = φFt Ab = 0.75(90 )(0.6013) = 40.59kips
tMNsamBaØ                                       285                                     T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
cMnYnb‘ULúgEdlRtUvkarKW 90 / 40.59 = 2.22 . cMnYnb‘ULúgGb,brmaEdlRtUvkarKW 4 edIm,IrkSaPaBsIuem-
RTI. BITMhMEdlbgðajenAkñúgrUbTI 7>30
          b=
               (5.5 − 0.650) = 2.425in.
                       2
          a=
             (12.44 − 5.5) = 3.470in.
                       2
          1.25b = 1.25(2.425) = 3.031in. < 3.470in.
          yk a = 3.031in.
                   d           7/8
          b' = b −   = 2.425 −     = 1.988in.
                   2            2
                   d           7/8
          a ' = a + = 3.031 +      = 3.468in.
                   2            2
bnÞúkxageRkAemKuNkñúgmYyb‘ULúg edayKitTaMg prying force KW T = 90 / 4 = 22.5kips .
KNna δ ³
                     1 7 1
          d'= d +     = + = 1in.
                     8 8 8
              8
          p=     = 4in.
               2
                  d'    1
          δ = 1 − = 1 − = 0.75
                  p     4
KNna α ³
          B       40.59
             −1 =       − 1 = 0.8040
          T        22.5
          a ' 3.468
             =       = 1.744
          b' 1.988
BIsmIkar &>!^/
          α=
                   [(B / T ) − 1](a' / b') = 0.8040(1.744) = −4.65
               δ {1 − [(B / T ) − 1](a' / b')} 0.75[1 − 0.8040(1.744)]
edaysar α > 1.0 / yk α = 1.0 . BIsmIkar &>!*
                      4.444Tb'        4.444(22.5)(1.988)
          tf =                      =
                     pF y (1 + δα )     4(36 )(1 + 0.75)
             = 0.888in. < 1.035in.         (OK)
TaMgcMnYnb‘ULúgEdleRCIserIs nwgkRmas;søabKWRKb;RKan; ehIyminRtUvkarkarKNnateTAmuxeToteT.
b:uEnþ edIm,IbgðajBIviFIsaRsþKNna eyIgKNna prying force edayeRbIsmIkar &>!( nig &>!%. BI
smIkar &>!(/
T.Chhay                                         286                           Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                      Department of Civil Engineering
              ⎛            ⎞
            1 ⎜ 4.444Tb' ⎟      1 ⎡ 4.444(22.5)(1.988) ⎤
          α= ⎜ 2        − 1⎟ =       ⎢                 − 1⎥ = 0.3848
            δ ⎜ pt F y     ⎟   0.75 ⎣⎢ 4(1.035)2 (36 )    ⎦⎥
              ⎝    f       ⎠
BIsmIkar &>!%/ kmøaMgb‘ULúgsrub edayKitTaMg prying force KW
                 ⎡      δα b' ⎤
          Bc = T ⎢1 +            ⎥
                 ⎣ (1 + δα ) a ' ⎦
                    ⎡    0.75(0.3848) ⎛ 1.988 ⎞⎤
             = 22.5⎢1 +                ⎜       ⎟⎥ = 25.39kips
                    ⎣ 1 + 0.75(0.3848) ⎝ 3.468 ⎠⎦
Prying force     KW
          Q = Bc − T = 25.39 − 22.5 = 2.89kips
cemøIy³ WT10.5 × 66 RKb;RKan;. eRbIb‘ULúg A325 Ggát;p©it 7 / 8in.
        RbsinebIkRmas;søabminRKb;RKan; eKGacsakl,g tee shape EdlmanTMhMFMCag b¤k¾eRbIcMnYn
b‘ULúgbEnßmedIm,Ikat;bnßy T EdlCakmøaMgxageRkAkñúgmYyb‘ULúg. Prying force enAkñúg]TahrN_
7>9 bEnßmRbEhl 13% eTAelIkmøaMgxageRkA. karecalnUvkmøaMgTajbEnßmenHnwgpþl;nUvplvi)ak
y:agF¶n;F¶r.
7>9> kmøaMgpÁÜbrvagkmøaMgTaj nigkmøaMgTajenAkñúgb‘ULúg   (Combined Shear and Tension
       in Fasteners)
          enAkñúgsßanPaBCaeRcInkartP¢ab;EtgRbQmnwgkmøaMgkat; nigkmøaMgTaj. tMNEdlTTYlbnÞúk
cMNakp©itRtUv)anerobrab;enAkñúgCMBUkTI 8. b:uEnþ sRmab;tMNsamBaØxøH eRKOgP¢ab;sßitkñúgsßanPaB
kmøaMgpÁÜb. rUbTI 7>31 bgðajBIkMNat; structural tee EdlP¢ab;eTAnwgsøabrbs;ssrkñúgeKalbMNg
edIm,IP¢ab;Ggát;BRgwg (bracing member). Ggát;BRgwgenHRtg;)andak;tMrg;y:agNaedIm,I[ExSskmμ
rbs;kmøaMgkat;tamTIRbCMuTm¶n;rbs;kartP¢ab;. bgÁúMkmøaMgbBaÄrnwgeFVI[eRKOgP¢ab;rgkugRtaMgkat; ehIy
bgÁúMkmøaMgedknwgbegáItkmøaMgTaj ¬EdlGacmankarpSMCamYynwg prying force¦. edaysarExSskmμ
rbs;kmøaMgeFVIGMeBIkat;tamTIRbCMuTm¶n;rbs;tMN eRKOgP¢ab;nImYy²RtUv)ansnμt;faTTYlkugRtaMgedaycM
ENkesμI²Kña.
tMNsamBaØ                                   287                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
         kñúgkrNIbgÁúMkmøaMgepSgeTot eKGaceRbIviFIrUbmnþGnþrkmμ (interaction formula approach) .
ersIusþg;kmøaMgkat; nigersIusþg;kmøaMgTajsRmab;b‘ULúgRbePT bearing KWQrelIlT§plénkarBiesaF
nwgRtUv)anykBI elliptical interaction curve EdlbgðajenAkñúgrUbTI 7>32. smIkarrbs;ExSenHKW
                     2              2
          ⎡ Pu ⎤         ⎡ Vu ⎤
          ⎢           ⎥ +⎢           ⎥ = 1.0
          ⎣⎢ (φRn )t ⎦⎥  ⎢⎣ (φRn )v ⎦⎥
Edl       Pu = kmøaMgTajemKuNenAelIb‘ULúg
          (φRn )t = design strength rbs;b‘ULúgrgkarTaj
          Vu = kmøaMgkat;TTwgemKuNenAelIb‘ULúg
          (φRn )v = design strength rbs;b‘ULúgrgkarkat;
       bnSMkmøaMgkat; nigkmøaMgTajEdlGacTTYlyk)anKWvaCYbKñaRtg;kEnøgEdlsßitenABIeRkamExS
ekag. enHCatRmUvkarrbs; RCSC Specification Edl
                     2              2
          ⎡ Pu ⎤         ⎡ Vu ⎤
          ⎢           ⎥ +⎢           ⎥ ≤ 1 .0                (RCSC Equation LRFD 4.2)
          ⎣⎢ (φRn )t ⎦⎥  ⎢⎣ (φRn )v ⎦⎥
T.Chhay                                         288                           Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
        sRmab; slip-critical connection Edlb‘ULúgrgnUvkmøaMgkat; nigkmøaMgTaj \T§iBlrbs;kmøaMg
TajKWbn§Úrbnßy clamping force EdleFVI[mankarkat;bnßykmøaMgkkit. AISC Specification kat;
bnßy slip-critical shear strength sRmab;krNIenH. BI AISC Appendix J, slip-critical shear
strength RtUv)anKuNedayemKuN
          ⎡     Tu     ⎤
          ⎢1 −         ⎥                                     (AISC Equation A-J3-2)
          ⎣ 1.13Tm N b ⎦
Edl          kmøaMgTajemKuNenAelItMN
          Tu =
        Tm = kmøaMgTajb‘ULúgedImEdl)anBI AISC Table J3.1
        N b = cMnYnb‘ULúgenAkñúgtMN
cMNaMfa RCSC Equation LRFD 4.2 Edl)anbgðajenATIenHRtUv)anGnuvtþeTAelIb‘ULúgeTal Et
AISC Equation A-J3-2 Edl)anbgðajenATIenHGnuvtþeTAelItMNTaMgmUl. smIkarnImYy²Gac
RtUv)anEkERbedIm,IGnuvtþsRmab;viFIepSgeTot.
]TahrN_ 7>10³ eKeRbI WT10.5 × 31 Ca             bracket edIm,IbBa¢Ún service load 60kips eTAssr
W 14 × 90 dUcEdl)anbgðajenAkñúgrUUbTI 7>31. bnÞúkpSMeLIgedaybnÞúkefr 15kips nigbnÞúkGefr
45kips . eKeRbIb‘ULúg A325 Ggát;p©it 7 / 8in. cMnYn 4 RKab;. TaMgssr nig bracket eFVIBIEdk A36 .
snμt;fatRmUvkarKMlat nigcm¶ayeTARCugEKmTaMgGs;KWRKb;RKan; edayrYmbBa©ÚlTaMgPaBcaM)ac;sRmab;
kareRbIR)as; design strengn GtibrmasRmab; bearing ¬dUcCa φ [2.4dtFu ] ¦ nigkMNt;nUvPaBRKb;RKan;
rbs;b‘ULúgsRmab;kartP¢ab;xageRkam³
¬!¦ bearing –types connection EdlmaneFμjsßitenAkñúgbøg;kat;. ¬@¦ slip-critical connection
EdlmaneFμjsßitenAkñúgbøg;kat;.
dMeNaHRsay³ bnÞúkemKuNKW
          1.2 D + 1.6 L = 1.2(15) + 1.6(45) = 90kips
¬!¦ sRmab; bearing-type connection EdlmaneFμjsßitenAkñúgbøg;kat; kmøaMgkat;TTwgsrubKW
          3
            (90) = 54kips
          5
kmøaMgkat;TTwgsRmab;b‘ULúgmYyKW
tMNsamBaØ                                      289                                        T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                         NPIC
                 54
          Vu =      = 13.5kips
                  4
                    π (7 / 8) 2
nig       Ab =
                          4
                                  = 0.6013in. 2
          (φRn )v = φFv Ab = 0.75(48)(0.6013)
                    = 21.65kips > 13.5kips
Bearing strength      ¬søabrbs; tee lub¦ KW
                                      ⎛7⎞
          φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟(0.615)(58)
                                      ⎝8⎠
               = 56.18kips > 13.5kips (OK)
kmøaMgTajsrubKW
          4
            (90) = 75kips
          5
kmøaMgTajsRmab;b‘ULúgmYyKW
                 72
          Pu =      = 18kips
                  4
BI AISC Table J3.2,
          (φRn )t   = φFt Ab = 0.75(90 )(0.6013) = 40.59kips > 18kips       (OK)
BI RCSC Equation LRFD 4.2,
                      2               2
          ⎡ Pu ⎤         ⎡ Vu ⎤         ⎛ 18 ⎞
                                                  2
                                                    ⎛ 13.5 ⎞
                                                              2
          ⎢           ⎥ +⎢           ⎥ =⎜       ⎟ +⎜        ⎟ = 0.585 < 1.0        (OK)
          ⎣⎢ (φRn )t ⎦⎥  ⎢⎣ (φRn )v ⎦⎥  ⎝ 40.59 ⎠   ⎝ 21.65 ⎠
cemøIy³ kartP¢ab;manlkçN³RKb;RKan;Ca                              . ¬edIm,IkMu[Bi)akyl;kñúgkar
                                                  bearing-type connection
bnSMbnÞúkrbs;]TahrN_enH prying action minRtUv)anrYmbBa©ÚleTAkñúgkarviPaKeT¦.
¬@¦ sRmab; slip-critical connection, EdlmaneFμjsßitenAkñúgbøg;kat; BIEpñk ¬!¦ shear, bearing/
and tension strength KWmanlkçN³RKb;RKan;. BI RCSC Equation LRFD 5.3, slip-critical strenght
KW
          φRstr = φ (1.13μTm N b N s )
BI AISC Table J3.1, kmøaMgTajsRmab;b‘ULúg A325 Ggát;p©it 7 / 8in. KW
          Tm = 39kips
RbsinebIeyIgsnμt;épÞb:HCa Class A, slip coefficent KW μ = 0.33 nigsRmab;b‘ULúgbYnRKab;
          φRstr = φ (1.13μTm N b N s ) = 1.0(1.13)(0.33)(39)(4)(1) = 58.17kips
T.Chhay                                             290                             Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                                                             Department of Civil Engineering
edaysarvamankmøaMgTajenAelIb‘ULúg/ slip-critcal strength RtUv)ankat;bnßyedayemKuN
          ⎛      Tu                 ⎞ ⎡       72       ⎤
          ⎜⎜1 −                     ⎟⎟ = ⎢1 −          ⎥ = 0.5916
           ⎝ 1.13Tm N b              ⎠ ⎣ 1.13(39 )(4 ) ⎦
dUcenHresIusþg;Edl)ankat;bnßyehIyKW
          φRstr = 0.5916(58.17 ) = 34.4kips < 54kips                                          (N.G.)
cemøIy³ kartP¢ab;minmanlkçN³RKb;RKan;Ca slip-critical connection eT.
        kartP¢ab;edayb‘ULúgEdlrgnUvkmøaMgkat;TTwg nigkmøaMgTajGacRtUv)anKNnaedaypÞal;. eK
GaceRbI RCSC Equation 4.2 edIm,IedaHRsayTMhMb‘ULúgdUcxageRkam³
                            2                2                                    2                    2
          ⎡ Pu ⎤         ⎡ Vu ⎤           ⎛ Pu                                ⎞     ⎛ Vu          ⎞
          ⎢           ⎥ +⎢           ⎥ = ⎜⎜                                   ⎟⎟ + ⎜⎜             ⎟⎟
          ⎣⎢ (φRn )t ⎦⎥  ⎢⎣ (φRn )v ⎦⎥    ⎝ φFt ∑ Ab                           ⎠    ⎝ φFv ∑ Ab     ⎠
                                                                        2                         2
                                                     ⎛P            ⎞              1    ⎛V    ⎞             1
                                                  = ⎜⎜ u           ⎟⎟               + ⎜⎜ u   ⎟⎟
                                                     ⎝ φFt          ⎠       (∑ Ab )2 ⎝ φFv    ⎠        (∑ Ab )2
Edl       Pu =kmøaMgTajsrubenAelItMN
        Ft = ultimate tensile stress rbs;b‘ULúg
        Vu = kmøaMgkat;TTwgsrubenAelItMN
        Fv = ultimate shear stress rbs;b‘ULúg
        ∑ Ab = RkLaépÞmuxkat;b‘ULúgsrub
CMnYseTAkñúg RCSC Equation LRFD 4.2, eyIg)an
                        2                              2
          ⎛ Pu     ⎞            1    ⎛V           ⎞            1
          ⎜⎜       ⎟⎟               +⎜ u          ⎟⎟                         ≤ 1 .0
                                   2 ⎜ φF
           ⎝ φFt    ⎠       (∑ Ab ) ⎝ v            ⎠        (∑ Ab )2
                                     2                  2
                  ⎛P                ⎞     ⎛V       ⎞
b¤        ∑ Ab ≥ ⎜⎜ u               ⎟⎟ + ⎜⎜ u      ⎟⎟                                                                         ¬&>@0¦
                  ⎝ φFt              ⎠    ⎝ φFv     ⎠
Edl       ∑ Ab      CaRkLaépÞmuxkat;b‘ULúgsrub
]TahrN_ 7>11³ tMNEdlrgbnÞúkcMp©itrgnUv service load shear force 50kips nig service tensile
force 100kips           . bnÞúk
                            CabnÞúkefr nig 75% CabnÞúkGefr. eRKOgP¢ab;rgnUv single shear
                                     25%
ehIy baring strength nwgRtUv)anKNnaCamYynwgEpñkEdlRtUvP¢ab;EdlmankRmas; 5 / 16in. . snμt;
tMNsamBaØ                                                                   291                                                    T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                          NPIC
fa KMlat nigcm¶ayeTARCugEKmTaMgGs;manlkçN³RKb;RKan; nigsnμt;faeKGnuBaØat[eRbI bearing
strength Gtibrma φ (2.4dtFu ) . kMNt;cMnYnb‘ULúg A325 Ggát;p©it 3 / 4in. EdlcaM)ac;sRmab;krNIxag
eRkam³
¬!¦ bearing-type connection CamYynwgeFμjsßitenAkñúgbøg;kat;
¬@¦ slip-critical connection CamYynwgeFμjsßitenAkñúgbøg;kat;
épÞb:HTaMgGs;man clean mill scale.
         karKNnaenHmin)anBicarNa prying action sMxan;eT.
dMeNaHRsay³ kmøaMgkat;TTwgemKuN = 1.2[0.25(50)] + 1.6[0.75(50)] = 75kips
          kmøaMgTajemKuN = 1.2[0.25(100)] + 1.6[0.75(100)] = 150kips
¬!¦ sRmab; bearing-type connection CamYynwgeFμjsßitenAkñúgbøg;kat; smIkar &>@0 [
                                2                            2            2
                  ⎛P           ⎞     ⎛V      ⎞    ⎡ 150 ⎤       ⎡ 75 ⎤
          ∑ Ab ≥ ⎜⎜ u          ⎟⎟ + ⎜⎜ u     ⎟⎟ = ⎢          ⎥ +⎢         ⎥ = 3.046in.2
                  ⎝ φFt         ⎠    ⎝ φFv    ⎠   ⎣ 0.75(90) ⎦  ⎣ 0.75(48)⎦
RkLaépÞrbs;muxkat;eTalKW
                 π (3 / 4 )2
          Ab =                 = 0.4418in.2
                     4
dUcenHcMnYnb‘ULúgEdlRtUvkarKW
          ∑ Ab   3.046
               =        = 6.89
           Ab    0.4418
sakl,gb‘ULúg 7 RKab; ehIyRtYtBinitü bearing:
          φRn = φ (2.4dtFu ) × 7
                          ⎛ 7 ⎞⎛ 5 ⎞
               = 0.75(2.4)⎜ ⎟⎜ ⎟(58)(7 ) = 171kips > 75kips
                          ⎝ 8 ⎠⎝ 16 ⎠
¬eKminRtUvkarRtYtBinitüKMlat nigcm¶ayeTARCugEKmsRmab;karKNnacugeRkayeT¦
cemøIy³ eRbIb‘ULúg 7 RKab;. ¬RbsinebIeKerobb‘ULúgCaBIrCYr enaHeRbIb‘ULúg 8 RKab;edIm,IPaBsIuemRTI¦
¬@¦ sRmab; slip-critical connection, slip-critical strength Edl[eday RCSC Equation LRFD
RtUv)anKuNedayemKuNkat;bnßyrbs; AISC Equation A-J3-2:
                                     ⎛             ⎞
        φRstr = φ (1.13μTm N b N s )⎜⎜1 −
                                              Tu
                                          1.13T N ⎟
                                                   ⎟                                     ¬&>@!¦
                                             ⎝        m     b⎠
T.Chhay                                               292                            Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
BI AISC Table J3.1, sRmab;b‘ULúg A325 Ggát;p©it 3 / 4in. / Tm = 28kips . CMnYs Tm eTAkñúgsmIkar
&>@!/ eyIg)an
                                      ⎛           Tu       ⎞
          φRstr = φ (1.13μTm N b N s )⎜⎜1 −                ⎟⎟
                                      ⎝       1.13Tm N b    ⎠
                                                ⎡             ⎤
                  = 1.0(1.13)(0.33)(28)(N b )(1)⎢1 −
                                                        150
                                                              ⎥
                                                ⎣ 1.13(28)N b ⎦
                          ⎛ 4.741 ⎞
                  = 10.44⎜⎜1 −       ⎟ = 10.44( N b − 4.741)
                          ⎝     N b ⎟⎠
dak;lT§plEdlTTYl)anenH nigkmøaMgkat;TTwgEdlGnuvtþ[esμIKña enaHeyIgGacrkcMnYnb‘ULúgEdl
RtUvkaredIm,IkarBar slip³
          10.44(N b − 4.741) = 75kips
          N b = 11.9
        edaysarb‘ULúg 7 RKab;RKb;RKan;sRmab; shear, bearing nig tension dUcenHeKminRtUvkarRtYt
BinitüsßanPaBkMNt;TaMgenHeT.
cemøIy³ eRbIb‘ULúg A325 Ggát;p©it 3 / 4in.
7>10> tMNpSar (Welded connections)
         karpSarCadMeNIrkareFVI[EpñkEdlRtUvP¢ab;Cab;Kña. ]TahrN_ Ggát;rgkarTajEdlman lap
joint dUcbgðajenAkñúgrUbTI 7>33 a GacRtUv)aneFVIeLIgedaykarpSartamcugTaMgsgçagrbs;EpñkEdl
RtUvP¢ab;. kMBs;d¾tUcbMputrbs;smÖar³RtUv)anrlay eRkayBITuk[RtCak; eRKOgbgÁúMEdk nig weld
metal eFVIkardUcEpñkEdlCab;KñaenAkEnøgtMN. EdkbEnßmRtUv)andak;BI special electrode EdlCaEpñk
rbs;crnþGKÁisnIeTAelIEpñkEdlRtUvP¢ab; b¤ base metal.
tMNsamBaØ                                         293                                     T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                 NPIC
        enAkñúgdMeNIrkar shielded metal arc welding (SMAW) EdlbgðajenAkñúgrUbTI 7>34 FñÚ
GKÁisnI (current arc) kat;tamcenøaHrvag electrode nig base metal edayrMlayEpñkEdlRtUvP¢ab;
nigdak;Epñkrbs;eGLicRtUteTAkñúg base metal Edlrlay. Specail coating enAelI electrode begáIt
protective gaseous shield edaykarBar molten weld metal BIGuksIutkmμmunnwgvarwg. eKrMkil
electrode kat;tamtMN ehIy weld bead RtUv)andak; TMhMrbs;vaGaRs½ynwgGRtaéndMeNIrrbs;
electrode. enAeBlEdlTwkbnSaRtCak; impuriries elceLIgenAelIépÞ EdlbegáItCa coating EdleK
ehAfa slag ehIy slag enHRtUv)anykecjmunnwglabfñaMelIGgát; b¤EpñkepSg²EdlRtUv)anbegáIteLIg
eday electrode.
        CaTUeTA Shielded metal arc welding EdlRtUv)aneFIVeLIgedayéd ehIyCadMeNIrkareKeRbICa
sklenAelIkardæan. sRmab;karpSarenAeragCag eKniymeRbIdMeNIrkarsV½yRbvtþ b¤Bak;kNþalsV½y
Rbvtþ. karRtYtBinitüKuNPaBsRmab;kartP¢ab;edaykarpSarKWmanlkçN³Bi)ak edaykarTwkbnSarEdl
minl¥sßitenABIeRkamépÞ b¤k¾PaBminl¥d¾tictYcEdlmanenAépÞbnSar GaceKcputBIExSEPñkrbs;eyIg)an.
sRmab;karpSarenARtg;kEnøgEdleRKaHfñak;eKRtUvkarCagpSarEdlmanCMnajRtwmRtUv ehIyeKRtUveRbI
bec©keTsBiessdUcCa radiography b¤ ultresonic testion.
        eKniymeRbIkarpSarBIrRbePTKW fillet weld nig groove weld. Lap joint EdlbgðajenAkñúgrUb
TI 7>33 a nig b RtUv)anbegáIteLIgeday fillet weld . Groove weld RtUv)aneRbIsRmab; butt, tee
nig corner dUcbgðajenAkñúgrUbTI 7>35 a nig b. rUbTI 7>36 bgðajBI plug and slot wled Edl
eBlxøHva RtUvkaredIm,IbEnßmBIelIkarpSartamRCug. rn§ragmUl b¤RTEvgRtUv)ankat;ecjBIEpñkmYyedIm,I
T.Chhay                                   294                               Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
GacbMeBjTwkbnSar)an.
        kñúgcMeNamkarpSarTaMgBIrRbePTenH eyIgnwgelIkykkar pSar fillet weld mkbkRsaylMGit
enATIenH. karKNnasRmab; complete penetration groove weld minmanlkçN³minsMxan;Edlkar
pSar manersIusþg;dUcKñanwg base metal nigEpñkEdlRtUvP¢ab;. ersIusþg;rbs; partial penetration
groove weld GaRs½yeTAnwgbrimaNén penetration. dMeNIrkarénkarKNna groove weld Rsedog
KñanwgkarKNna fillet weld.
7>11>      Fillet Welds
       karKNna nigkarviPaKsRmab; fillet weld KWQrelIkarsnμt;famuxkat;rbs;TwkbnSarCa
RtIekaNEkgEdlmanmMu 45o dUcbgðajkñúgrUbTI 7>37. TTwgrbs; fillet weld RtUv)ansMKal;eday w .
tMNsamBaØ                                295                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
TMhMTWkbnSarbTdæanKWekIneLIgmþg 1 / 16in. = 2mm . eTaHbICaRbEvgrbs;karpSarGacrgnUvbnÞúk tam
TiskmøaMgkat;/ kmøaMgsgát; nigkmøaMgTajk¾eday k¾fillet weld manersIusþg;exSaysRmab;kmøaMgkat;
ehIyvaEtg EtRtUv)aneKsnμt;fadac;edaysarkmøaMgenH. kardac;RtUv)ansnμt;ekItmantambøg;Edl
kat;tam throat rbs;TwkbnSar. sRmab; fillet weld EdlbegáIteLIgCamYy shielded metal arc
process, throat CaRb EvgEkgBIRCugEKm b¤ root rbs;TwkbnSareTAGIub:Uetnus nigmantémøesμI 0.707
dgénTMhMTwkbnSar. ¬Effective throad thickness sRmab;TwkbnSarEdl)anBI arc welding process
manTMhMFMCag. dUcenH kñúgesovePAenH eyIgsnμt;eRbI shielded metal arc welding process¦.
dUcenHsRmab;RbEvg L Edlrg bnÞúk P / kugRtaMgkmøaMgkat;eRKaHfñak;KW
                      P
          fv =
                 0.707 × w × L
Edl w CaTTwgTwkbnSar
      RbsinebIeKeRbI weld ultimate shearing stress/ FW enAkñúgsmIkarenH eKGacsresr
nominal load capacity rbs;TwkbnSardUcxageRkam³
          Rn = 0.707 × w × L × FW
ehIy nominal design strength KW
          φRn = 0.707 × w × L × φFW                                              ¬&>@@¦
T.Chhay                                   296                              Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
        ersIusþg;rbs; fillet weld GaRs½yeTAnwgkareRbIR)as; weld metal EdlCaGnuKmn_eTAnwg
RbePT electrode. ersIusþg;rbs; electrode RtUv)ankMNt;Ca ultimate tensile strength rbs;vaCamYy
nwgersIusþg; 60, 70, 80, 90, 100, nig 120ksi b¤ 415, 480, 550, 620, 690, nig 830MPa sRmab;
shielded metal arc welding process. nimitþsBaØasRmab;kMNt; electrod KWGkSr E Edlbnþ
edayelxBIrxÞg; b¤bIxÞg;EdlbgðajBIersIusþg;rbs;vaCa ksi . edaysarEtersIusþg;CalkçN³dMbUg Edl
design engineer ykcitþTukdak; CaTUeTAGkSrBIrxÞg;cugeRkayRtUv)anbgðajeday XX ehIykMNt;
smÁal;køayCa E70 XX b¤ E 70 EdlbgðajBI electrode CamYy ultimate tensile strength 70ksi .
eKKYreRCIserIs electrode [RtUvKñaCamYynwg base metal. sRmab; grade rbs;EdkEdleRbIR)as;TUeTA
eKBicarNaEt electrode BIrRbePTb:ueNÑaHKW³
        eRbI electrode E70 XX CamYynwgEdkEdlman yield strength tUcCag 60ksi
        eRbI electrode E80 XX CamYynwgEdkEdlman yied strength 60ksi b¤ 65ksi
        nimitþsBaØasRmab; electrode nigkarpþl;[rbs; AISC Specification EdledaHRsayCamYy
nwgTwkbnSarRtUv)andkRsg;ecjBI Structural Welding Code rbs; American Welding Society
(AWS, 1996). eKGacrk)annUvlkçxNÐEdlminmanEcgenAkñúg AISC Specification enAkñúg AWS
Code.
        Design strength rbs;TwkbnSarRtUv)anbgðajenAkñúg AISC Table J2.5. Ultimate shearing
stress FW enAkñúg fillet weld esμInwg 0.6 dgén tensile strength rbs; weld metal EdlRtUv)ansM
Kal;eday FEXX . dUcenH design stress KW φFW Edl φ = 0.75 nig FW = 0.60FEXX . sRmab;
electrode FmμtaTaMgBIr design strengths (stresses) RtUv)anbgðajdUcxageRkam³
          E 70 XX : φFW = 0.75[0.60(70)] = 31.5ksi
          E 80 XX : φFW = 0.75[0.6(80)] = 36ksi
tRmUvkarbEnßmKWfakmøaMgkat;TTwgemKuNenAelI base metal minKYrbegáIt stress FMCag φFBM Edl
φFBM Ca nominal shear strength rbs;smÖar³EdlRtUvP¢ab;. dUcenHbnÞúkemKuNsRmab;tMNRtUv)an
kMNt;Rtwm
          φRn = φFBM × area of base metal subject to shear
AISC J5, “Connecting elements”     [ shear yielding strength Ca φRn Edl
tMNsamBaØ                                   297                                         T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                      NPIC
          φ = 0.90
          R n = 0 .6 A g F y                                           (AISC Equation J5-3)
nig Ag CaRkLaépÞEdlrgkmøaMgkat;TTwg. dUcenH shear strength rbs; base metal CasresrCa
          φFBM = 0.90(0.6) F y = 0.54 F y
dUcenH enAeBlEdlbnÞúksßitenAkñúgTisdUcG½kSrbs;TwkbnSar eKRtUveFVIkarGegát base metal edayeRbI
TMnak;TMngénsmIkar &>@#. eKGacBnül;BItRmUvkarenHedayRtYtBinitükartP¢ab; bracket edaykar
pSar EdlbgðajenAkñúgrUbTI 7>38. edaysnμt;fa bnÞúksßitenAEk,rcugEdlpSaredayeyIgGacecal
cMNakp©it. RbsinebITWkbnSarTaMgBIrmanTMhMdUcKña design strength rbs;TwkbnSarmçag²kñúgRbEvg
ÉktþaGacRtUv)anrkBIsmIkar &>@@ Ca
          0.707 × w × φFW
b:uEnþBIsmIkar &>@#/ ersIusþg;rbs; bracket plate Tb;nwgkmøaMgkat;kñúgmYyÉktþaRbEvgKW
          t × φFBM
Cak;Esþg TwkbnSaminGacTb;Tl;nwgbnÞúkeRcIndUc base metal ¬kñúgkrNIenHvaCa bracket¦eT. eKdac;
xatRtUvEteFVIkarGegátenHenAeBlEdl base metal rgnUvkmøaMgkat;TTwg.
        kñúgkrNIkartP¢ab;edaykarpSarCaeRcIn eTaHbICakarviPaKkþI karKNnakþI vamanPaBgayRsYl
EdleKykersIusþg;kñúgmYyÉktþaRbEvgrbs;karpSar EdlGacCaersIusþg;rbs;TwkbnSar b¤CaersIusþg;rbs;
base metal EdlmYyNatUcCagmksikSa. viFIenHnwgRtUv)anbgðajenAkñúg]TahrN_xageRkam.
]TahrN_ 7>12³ eKeRbIEdkbnÞHCaGgát;rgkarTajedayP¢ab;eTAnwg gusset pate dUcbgðajenAkñúgrUbTI
7>39. karpSarCaRbePT fillet welds 3 / 16in. EdleFVIeLIgCamYynwg electrode E70 XX . EpñkEdl
T.Chhay                                      298                                 Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                           Department of Civil Engineering
RtUvP¢ab;CaRbePTEdk A36 . snμt;faersIusþg;Tajrbs;Ggát;RKb;RKan; cUrkMNt;         design strength    rbs;
tMNpSar.
dMeNaHRsay³ edaysarkarpSarmanlkçN³sIuemRTIeFobnwgG½kSrbs;Ggát; EpñknImYy²rbs;TwkbnSar
nwgrgnUvkmøaMgEdlEbgEckesμI. manEtRbEvgsrubrbs;TwkbnSar CamYynwgkmøaMgGnuvtþpÁÜbkat;tamTI
RbCMuTm¶n;rbs;TwkbnSar ¬edayminKitcMNakp©ittictYc¦/ TItaMg nigTisedArbs;TwkbnSarnImYy²minTak;
TgeT.
        ersIusþg;rbs; weld metal sRmab; electrode KW E 70
          φFW = 31.5ksi
                                 ⎛3⎞
          0.707 × w × φFW = 0.707⎜ ⎟(31.5) = 4.176kips / in.
                                 ⎝ 16 ⎠
RtYtBinitü ersIusþg;rbs; base metal ¬kRmas;tUcCageKlub¦. BIwsmIkar &>@#/
          φRn = φFBM × area subject to shear
                                                  ⎛1⎞
                = φFBM × t = 0.54 F y t = 0.54(36)⎜ ⎟ = 4.86kips / in.
                                                  ⎝4⎠
ersIusþg;rbs;TwkbnSarlub. sRmab;kartP¢ab;
          φRn = 4.176kips / in. × (4 + 4)in. = 33.4kips
cemøIy³ ersIusþg;rbs;tMNKW 33.4kips
]TahrN_ 7>13³ RbePTtMNEdleRbIenAkñúg]TahrN_ 7>12 RtUvTb;nwgkmøaMgemKuN 40kips . etI
eKRtUvkarRbEvgTwkbnSarsrub RbePT filet weld 3 / 16in. EdleRbI electrode E70 XX b:unñan?
tMNsamBaØ                                      299                                               T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                 NPIC
dMeNaHRsay³ ersIusþg;rbs;TwkbnSarkñúgmYyÉktþaRbEvgEdl)anBI]TahrN_TI 7>12 KW
          φRn = 4.176kips / in.
RbEvgsrubEdlRtUvkarKW
            40
                = 9.58in.
          4.176
cemøIy³ RbEvgsrubKW 10in. EdlRtUvKñanwg 5in. sRmab;mçag².
         karKNnakartP¢ab;edaykarpSarTamTarnUvkarBicarNanUv TMhMTwkbnSarGb,brma nigGtibrma
nigRbEvgTwkbnSar. tRmUvkarTaMgenHsRmab; fillet welds RtUv)anbgðajenAkñúg AISC J2.2b
ehIyRtUv)an segçbdUcxageRkam³
         TMhMGb,brma
         TMhMGb,brmaEdlGnuBaØatCaGnuKmn_eTAnwgkRmas;rbs;EpñkEdlRtUvP¢ab;Rkas;CageK ehIy
RtUv)an[enAkñúg AISC Tabel J2.4.
         TMhMGtibrma
         tambeNþayRCugEKRmbs;Ggát;EdlmankRmas;tUcCag 1 / 4in. = 6.5mm TMhM fillet weld
GtibrmaesμInwgkRmas;rbs;Ggát;enaH. sRmab;Ggát;EdlRkas;CagenH TMhMGtibrmaKW t − 1 / 16in b¤
t − 2mm Edl t CaTMhMrbs;Ggát;.
         RbEvgGb,brma
         RbEvgGb,brmaGnuBaØatsRmab; fillet weld KWbYndgTMhMTwkbnSar. karkMNt;enHmintwgEtgeT
b;uEnþRbsinebIminGacpþl;RbEvgTwkbnSarenH)an eKGaceRbIRbEvgxøICagenH)an RbsinebI effective size
rbs;TwkbnSarRtUv)aneKykesμInwgmYyPaKbYnénRbEvfTwkbnSar. kartP¢ab;RbePTEdl)anbgðajenA
kñúgrUbTI 7>40 EdldUcKñanwg]TahrN_BImun CakrNIBiesssRmab; shear lag sRmab;kartP¢ab;eday
TwkbnSar Edl)anerobrab;enAkñúgCMBUkTI 3. AISC B3 )anbgðajfaRbEvgTwkbnSarenAkñúgkrNIenHmin
RtUvtUcCagcm¶ayrvagTwkbnSareT KW L ≥ W .
T.Chhay                                   300                               Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
          End returns
         enAeBlEdlTwkbnSarlatsn§wgdl;kac;RCug vaRtUvEtbnþCMuvijRCugenaH dUcbgðajenAkñúgrUbTI
7>41. mUlehtusRmab;karbnþ EdleKehAfa end return KWCakarkarBarkugRtaMgRbmUlpþúM (stress
concentration) nigFanafaTMhMTwkbnSarRtUv)anrkSaelIRbEvgeBjrbs;TwkbnSar. End return KYrEt
manRbEvgy:agticesμIBIrdgTMhMTwkbnSar. RbEvgrbs; end return GacRtUv)anKitbBa©ÚleTAkñúgkar
KNna load capacity b¤k¾eKGacecalva)an.
         CaTUeTAkarpSarEdlmanTMhMtUcmantémøefakCagkarpSarEdlmanTMhMFM. TMhMGtibrmaEdl
eFVICamYynwgkarpSarmþgmanTMhMRbEhl 5 / 16in. ehIykarpSareRcIndgnwgbEnßmtémø. elIsBIenH
sRmab; load capacity EdleKsÁal; eTaHbICaTwkbnSartUcbegáItRbEvgEvgCag EtTwkbnSarTMhMFMEdl
begáItRbEvgxøInwgRtUvkarbrimaN weld metal eRcInCag.
]TahrN_TI 7>14³ r)arEdk A36 EdlmanTMhM 4 × 1 / 2in. RtUv)aneRbICaGgát;rgkarTajedIm,ITb;Tl;
nwg service dead load 6kips nig service live load 18kips . eKP¢ab;vaeTAnwg gusset plate Edlman
kRmas; 3 / 8in. dUcEdlbgðajenAkñúgrUbTI 7>42. KNnakartP¢ab;edaypSar.
dMeNaHRsay³ enAkñúgkartP¢ab;enH base metal CaEdk A36 dUcenHeyIgRtUveRbI electrode E70 XX .
edaysarEtRbEvgTwkbnSarminRtUv)ankMNt; dUcenHeyIgeRbITMhMGb,brmaGnuBaØat
     TMhMGb,brma = 163 in.        (AISC Table J2.4)
tMNsamBaØ                                 301                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                         NPIC
sakl,g      electrode E70 XX fillet weld 3 / 16in.        . lT§PaBkñúgmYyÉktþaRbEvgKW
                               ⎛3⎞
          0.707 w(φFW ) = 0.707⎜ ⎟(31.5) = 4.176kips / in.
                               ⎝ 16 ⎠
lT§PaBrbs; base metal KW
                               ⎛3⎞
          0.54 F y t = 0.54(36)⎜ ⎟ = 7.29kips / in.
                               ⎝8⎠
ersIusþg;rbs;TwkbnSartUcCag dUcenHeRbIvaedIm,IKNna.
         bnÞúkemKuN
          Pu = 1.2 D + 1.6 L = 1.2(6) + 1.6(18) = 36kips
ehIy RbEvgEdlRtUvkar        =
                                 36
                               4.176
                                      = 8.62in.
          RbEvgGtibrma = 4⎛⎜⎝ 163 ⎞⎟⎠ = 0.75in < 8.62in       (OK)
sRmab; end return,
          RbEvgGb,brma = 2⎛⎜⎝ 163 ⎞⎟⎠ = 0.375in. yk 1in.
sRmab;kartP¢ab;RbePTenH RbEvgrbs;TwkbnSarxagRtUvEtFMCagcm¶ayrvagTwkbnSar EdlkñúgkrNIenH
KW esμInwg 4in. . RbEvgTwkbnSarsrubrYmbBa©ÚlTaMg end return
          2(4 + 1) = 10in. > 8.62in. EdlRtUvkar
cemøIy³ eRbI electrode E70 XX fillet weld 3 / 16in. CamYynwgRbEvg 10in. dUcEdlbgðajenAkñúgrUb
TI 7>43.
nimitþsBaØasRmab;karpSar
      karpSarRtUv)ankMNt;enAelI design drawing edaynimitþsBaØasþg;dar Edlpþl;nUvviFIgayRsYl
sRmab;BN’naBItRmUvkarrbs;karpSar. PaBlMGitRtUv)an[enAkñúg Part 8 of the Manual, “Bolts,
T.Chhay                                          302                                Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                      Department of Civil Engineering
Welds, and Connected Elements”(Volume II),           ehIyminRtUv)anbgðajenATIenHGs;eT. enAkñúg
esovePAenH eyIgpþl;EtkarENnaMy:agsegçbBInimitþsBaØabTdæansRmab; fillet welds dUcEdlbgðajenA
kñúgrUbTI 7>44.
          nimitþsBaØaeKalKWExSedk (reference line) EdlrYmmanB½t’manBI RbePT/ TMhM nigRbEvgrbs;
TwkbnSar rYmCamYynwgk,alRBYjEdlbgðajBITItaMgEdlRtUvpSar. RtIekaNEkgEdlmanRCugQrenA
xageqVgRtUv)aneRbIedIm,Ibgðaj fillet weld. RbsinebIrUbRtIekaNenHenABIeRkam reference line kar
pSarKWsßitenAxagrbs;k,alRBYj. EtpÞúymkvij ebIrUbRtIekaNenHsßitenAxagelI reference line vij
enaHkarpSarRtUvsßitenAmçageTotrbs;kartP¢ab; EdlGac)aMg b¤min)aMgenAkñúgbøg;. elxenAelI
reference line rab;BIeqVgmksþaM manTMhMTwkbnSar nigRbEvgTwkbnSar. vaKYrRtUv)andak;tamlMdab;Ebb
enH. RbsinebITaMgxagmux nigxageRkayrbs;tMNEdlP¢ab;edaykarpSar B½t’manTaMgGs;RtUvEtbgðaj
enAelI reference line TaMgelI nigeRkam. edIm,IkMNt;viFIsRsþEdlRtUveRbI b¤edIm,Ipþl;B½t’manbEnßm eK
Gacdak;knÞúyRBYjenAxagcugrbs; reference line ehIykarkMNt;bgðajGacdak;enAEk,renaH. Rbsin
ebIminmanB½t’manbEnßmeT knÞúyRBYjenaHRtUv)andkecj. cugeRkayrUbdgTg;CatiGacRtUv)andak;enA
kEnøg Edl reference line kac;edIm,IbgðajfapSarenAkardæan.
tMNsamBaØ                                   303                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
]TahrNI 7>15³ bnÞHEdk A36 TMhM 3 / 4 × 8in. RtUv)aneRbICaGgát;rgkarTajehIyRtUv)anP¢ab;eTAnwg
gusset plate TMhM 3 / 8in. dUcbgðajenAkñúgrUbTI 7>45. RbEvgrbs;karP¢ab;minRtUvelIsBI 8in. . KNna
karpSaredIm,IbegáItkmøaMgTajeBjdl;Ggát;.
dMeNaHRsay³ design strength rbs;Ggát;QrelI gross area rbs;vaKW
                                       ⎛3⎞
          φt Pn = 0.90 F y Ag = 0.90(36)⎜ ⎟(8) = 194.4kips
                                       ⎝4⎠
bnÞab;mk KNna design strength rbs;Ggát;edayQrelI net area rbs;va. sRmab;kartP¢ab;Ggát;
bnÞH RbsinebIkarpSarsßitenAEttamRCugxag enaH Ae = UAg . EtRbsinebImankarpSartamTisTTwg
enA xagcugGgát; enaH Ae = Ag . snμt;ykkrNITIBIr enaHeyIg)an
                                      ⎛3⎞
          φt Pu = 0.75Fu Ae = 0.75(58)⎜ ⎟(8) = 261kips
                                      ⎝4⎠
KNnasRmab;bnÞúkemKuN 194.4kips nigeRbI electrode E 70
          φFW = 31.5ksi
BI AISC Table J2.4 TMhMTwkbnSarGb,brmaKW 1 / 4in. . sakl,g fillet weld E 70 TMhM 1 / 4in. ³
                                                               ⎛1⎞
       Design strength kñúgmYyÉktþaRbEvgrbs;TwkbnSar = 0.707⎜ ⎟(31.5) = 5.568kips / in.
                                                               ⎝4⎠
       ersIusþg;rbs; base metal = 0.54Fy t = 0.54(36)⎛⎜⎝ 83 ⎞⎟⎠ = 7.290kips / in.
       RbEvgTwkbnSarEdlRtUvkar = 194   .4
                                    5.568
                                           = 34.9in.
tamsmμtikmμ RbEvgEdlGacpSar)anKW 8 + 8 + 8 = 24in. dUcenHeKminGaceRbITMhMTwkbnSar 1 / 4in. eT.
RbsinebIRbEvgRtUv)ankMNt;Rtwm 24in. enaHBIsmIkar &>@@ TMhMTwkbnSarEdlRtUvkarKW
T.Chhay                                      304                              Simple Connections
viTüasßanCatiBhubec©keTskm<úCa                                            Department of Civil Engineering
                  φRn                    194.4
                                 =                    = 0.364in.
          0.707 × L × φFW            0.707(24 )(31.5)
sakl,g 3 / 8in.
        TMhMTwkbnSarGtibrma = 34 − 161 = 16  11      3
                                                in. > in.
                                                     8
                                                                   (OK)
        RbEvgTwkbnSar = 4⎛⎜⎝ 8 ⎞⎟⎠ = 1.5in. < 24in.
                             3
                                                                   (OK)
cemøIy³ eRbIkarpSardUcbgðajkñúgrUbTI 7>46.
tMNsamBaØ                                           305                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
                                      VIII. tMNcakp©it
                                  Eccentric Connections
8>1> ]TahrN_sRmab;tMNcakp©it             (Examples of Eccentric Connections)
        tMNcakp©itCatMNmYyEdlkmøaMgpÁÜbminkat;tamTIRbCMuTm¶n;rbs;eRKOgP¢ab; b¤TWkbnSar. Rbsin
ebItMNmanbøg;sIuemRTI eKeRbITIRbCMuTm¶n;rbs;RkLaépÞkmøaMgkat;rbs;eRKOgP¢ab; b¤TwkbnSarCacMNuc
eKal (reference point) ehIycm¶ayEkgBIExSskmμrbs;kmøaMgeTATIRbCMuTm¶n;RtUv)aneKehAfa cMNak
p©it. eTaHbICatMNCaeRcInGacrgnUvkmøaMgcakp©it EtkñúgkrNICaeRcIncMNakp©itTaMgenaHmantémøtUc
EdlGacecal)an.
        kartP¢ab; framed beam EdlbgðajenAkñúgrUbTI 8>1 a CaRbePTmYyéntMNcakp©it. kart
P¢ab;enH eTaHCakñúgTRmg;tP¢ab;edayb‘ULúg b¤edaypSark¾eday vaRtUv)aneKeRbICaTUeTAsRmab;tP¢ab;Fñwm
eTAssr. eTaHbICacMNakp©itkñúgtMNRbePTenHGacecal)ank¾eday EtvaRtUv)anykmkbgðajenATI
enH. vamankartP¢ab;BIrepSgKñaKW kartP¢ab;BIEdkEkgeTAEdkFñwm nigkartP¢ab;EdkEkgeTAEdkssr.
kartP¢ab;TaMgenHbgðajBItMNcakp©iteKalBIrRbePT³ tMNcMNakp©itEdlbegáItEtkmøaMgkat;TTwgenAkñúg
eRKOgP¢ab; b¤TwkbnSar nigtMNcMNakp©itEdlbegáItTaMgkmøaMgkat;TTwg nigkmøaMgTaj.
       RbsinebIeKBicarNaFñwm nigEdkEkgdac;edayELkBIssr dUcEdlbgðajenAkñúgrUbTI 8>1 b
enaHvabgðajy:agc,as;fa Rbtikmμ R eFVIGMeBIcMNakp©it e BITIRbCMuTm¶n;rbs;RkLaépÞrbs;eRKOgP¢ab;enA
T.Chhay                                     306                             Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                      Department of Civil Engineering
kñúgRTnugFñwm. dUcenHeRKOgP¢ab;TaMgenHrgTaMgkmøaMgkat;TTwg nigm:Um:g;KU (couple) EdlsßitenAelI
rbs;tMN ehIybegáItCakugRtaMgkmøaMgkat;rmYl (torsional shearing stress).
         RbsinebIssr nigEdkEkgRtUv)anpþac;ecjBIFñwm dUcbgðajenAkñúgrUbTI 8>3 c enaHeyIgeXIj
y:agc,as;fa eRKOgP¢ab;enAkñúgsøabssrrgnRbtikmμ R EdlmanGMeBIenAcMNakp©it e BIbøg;rbs;eRKOg
P¢ab; edaybegáIt couple dUcBImun. b:uEnþ kñúgkrNIenH bnÞúkminsßitenAkñúgbøgr; bs;eRKOgP¢ab; dUcenH
couple eFVI[EpñkxagelIrbs;tMNrgkugRtaMgTaj ehIyEpñkxageRkamrgkugRtaMgsgát;. dUcenH eRKOg
P¢ab;enAEpñkxagelIbMputrbs;tMNrgTaMgkmøaMgkat;TTwg nigkmøaMgTaj.
         eTaHbICa eyIgeRbIkartP¢ab;edayb‘ULúgenATIenHedIm,Ibgðajk¾eday k¾kartP¢ab;edaykarpSar
Gacbgðajy:agsmBaØBIkarrgEtkmøaMgkat;TTwg b¤kmøaMgkat;TTwgrYmTaMgkmøaMgTaj.
         RbtikmμbnÞúkemKuNGtibrmasRmab;tMN framed beam epSg²RtUv)an[enAkñúg Table 9-2
rhUtdl; 9-12 in Part 9 of the Manual, “Simple Shear and PR Moment Connections” (Volume
II). cMNap©itEdltUcEmnETnsRmab;tMNenHGacecal)an ehIyeKBicarNaEtkmøaMgkat;TTwgEt
b:ueNÑaH.
8>2> tMNcMNakp©itedayb‘ULúg³ EtkmøaMgkat; (Eccentric Bolted Connections: Shear only)
        rUbTI 8>2 EdlbgðajBI column bracket connection Ca]TahrN_BItMNedayb‘ULúgEdlrg
kmøaMgkat;TTwgcakp©it. eKmanviFIBIrsRmab;edaHRsaybBaðaenH³ traditional elastic analysis ¬viPaK
eGLasÞicburaN¦ nigviFIEdlmanlkçN³suRkitCag ¬b:uEnþsμúKsμajCag¦ Ca ultimate strength
analysis ¬viPaKersIusþg;cugeRkay¦. viFITaMgBIrenHnwgRtUv)anbgðaj.
tMNcakp©it                                  307                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
          Elastic Analysis
          enAkñúgrUbTI 8>3 a, RkLaépÞkmøaMgkat;TTwgrbs;eRKOgP¢ab; nigbnÞúkRtUv)anbgðajdac;eday
ELkBIssr nig bracket plate. eKGacdak;bnÞúkcMNakp©it P CamYynwgbnÞúkdUcKñaEdlmanGMeBIRtg;
TIRbCMuTm¶n;rYmCamYynwg couple, M = Pe Edl e CacMNakp©it. RbsinebIeyIgeFVIEbbenH bnÞúknwgman
GMeBIcMp©it ehIyeKsnμt;faeRKOgP¢ab;nImYy²Tb;Tl;nUvcMENkbnÞúkesμI²Kña KW pc = P / n Edl n CacMnYn
eRKOgP¢ab;. kmøaMgeRKOgP¢ab;Edl)anBI couple Gacrk)anedaysnμt;fakugRtaMgkmøaMgkat;TTwgenAkñúg
eRKOgP¢ab;CalT§plrbs; torsion énmuxkat;EdlekItBIRkLaépÞmuxkat;rbs;eRKOgP¢ab;. RbsinebI
eyIgeFVIkarsnμt;EbbenH kugRtaMgkMMlaMgkat;enAkñúgeRKOgP¢ab;nImYy²GacRtUv)anrkBIrUbmnþkmøaMgrmYl
           fv =
                 Md
                   J
                                                                                     ¬*>!¦
Edl d = cm¶ayBITIRbCMuTm¶n;rbs;RkLaépÞeTAcMNucEdlkugRtaMgkMBugRtUv)ankMNt;
           J = m:Um:g;niclPaBb:UElrba;RkLaépÞeFobTIRbCMuTm¶n;
ehIykugRtaMg f v EkgeTAnwg d . eTaHbICarUbmnþkmøaMgrmYlGnuvtþn_)anEtcMeBaHragsIuLaMg EteKeRbIva
enATIenHedIm,IsnSMsMéc edaysar yielding stress mantémøFMCagkugRtaMgBitR)akd.
      RbsinebIeKeRbIRTwsþIbTG½kSRsb (parallel-axis theorem) ehIyeKecalm:Um:g;niclPaBb:UElr
énRkLaépÞeFobG½kSTIRbCMuTm¶n;rbs;va enaHeKGackMNt; J sRmab;RkLaépÞsrubKW
T.Chhay                                    308                             Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
          J = ∑ Ad 2 = A ∑ d 2
          edayRKb;eRKOgP¢ab;manRkLaépÞ A dUcKña. enaHsmIkar *>! GacRtUv)ansresrCa
                    Md
           fv =
                  A∑ d 2
          ehIykmøaMgkat;enAkñúgeRKOgP¢ab;nImYy²EdlekIteLIgeday couple KW
                                  Md            Md
          Pm = Af v = A                     =
                                        2
                                 A∑ d           ∑d2
dUcenHbgÁúMkmøaMgkat;TTwgTaMgBIrEdl)ankMNt;RtUv)anbUkbEnßmedaybBaÄredIm,ITTYl)ankmøaMgpÁÜb P
dUcbgðajenAkñúgrUbTI 8>3 b EdleyIgykeRKOgP¢ab;enAxagsþaMEpñkxageRkameKbMputmkbgðaj. enA
eBlEdleKkMNt;)ankmøaMgpÁÜbFMCageKbMput TMhMeRKOgP¢ab;k¾RtUv)aneRCIserIsedIm,ITb;Tl;kmøaMgenaH.
eKminGaceFVIkarGegátedIm,IrkeRKOgP¢ab;EdleRKaHfñak;CaeKeT KWeKRtUveFVIkarKNnaCatémøelx.
       CaTUeTA vamanlkçN³gayRsYlCagkñúgkareFVIkarCamYynwgbgÁúMkmøaMgctuekaNEkg. sRmab;
eRKOgP¢ab;nImYy² bgÁúMkmøaMgedk nigbgÁúMkmøaMgQrEdl)anBIkmøaMgkat;TTwgedaypÞal;KW
                                         Py
        pcx = x
                 P
                  n
                         ni g     pcy =
                                         n
Edl Px nig Py CabgÁúMkmøaMgtamTis x nigTis y rbs;kmøaMgsrub P dUcEdl)anbgðajenAkñúgrUbTI
8>4. eKGacrkbgÁúMkmøaMgedk nigQrEdlekIteLIgedaycMNakp©itdUcxageRkam.
          cm¶ayBITIRbCMuTm¶n;rbs;tMNeTAeRKOgP¢ab;nImYy²
                       (
          ∑ d 2 = ∑ x2 + y2        )
Edl cMNucrYmrbs;RbB½n§kUGredaenKWCaTIRbCMuTm¶n;énRkLaépÞkmøaMgkat;rYmrbs;eRKOgP¢ab;. kmøaMgpÁÜb
tamTis x rbs; pm KW³
tMNcakp©it                                            309                                  T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                      NPIC
                   y      y Md     y   Md         My
          p mx =
                   d
                     pm =
                          d ∑d 2
                                 =
                                       2
                                   d ∑x +y 2
                                            (=
                                                      ) (
                                               ∑ x + y2
                                                  2
                                                                   )
dUcenH pmy =          Mx
                      (
                   ∑ x2 + y2   )
ehIykmøaMgeRKOgP¢ab;srubKW
          p=     (∑ p x )2 + (∑ p y )2
Edl       ∑ p x = pcx + p mx
          ∑ p y = pcy + p my
RbsinebI P ¬bnÞúkEdlGnuvtþeTAelItMN¦ CabnÞúkemKuN enaHkmøaMg p enAelIeRKOgP¢ab;Ca bnÞúkem
KuNedIm,ITb;Tl;nwg shear nig bearing EdlCa design strength EdlRtUvkar.
]TahrN_ 8>1³ kMNt;kmøaMgrbs;eRKOgP¢ab;EdleRKaHfñak;enAkñúg bracket connection Edl)anbgðaj
enAkñúgrUbTI 8>5.
dMeNaHRsay³ TIRbCMuTm¶n;rbs;RkumeRKOgP¢ab;GacRtUv)anrkedayeRbIG½kSedkkat;tameRkam nigeday
GnuvtþeKalkarN_m:Um:g;
               2(5) + 2(8) + 2(11)
          y=                       = 6in.
                        8
bgÁúMkmøaMgQr nigkmøaMgedkKW
          Px =
                  1
                   5
                       (50) = 22.63kips ←         nig   Py =
                                                               2
                                                               5
                                                                   (50) = 44.72kips ↓
T.Chhay                                         310                           Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                         Department of Civil Engineering
edayeyageTAtamrUbTI 8>6 a, eyIgGacKNnam:Um:g;rbs;bnÞúkeFobTIRbCMuTm¶n;³
          M = 44.72(12 + 2.75) − 22.36(14 − 6 ) = 480.7in. − kips                ¬RsbRTnicnaLika¦
rUbTI 8>6 b bgðajBITisedArbs;bgÁúMkmøaMgb‘ULúg nigTMhMénbgÁúMkmøaMgb‘ULúgEdlRtUvKñaEdlekIteLIg
edaym:Um:g;KUr (couple). edayeRbITisedATaMgenH nigTMhMEdlRtUvKñaCakarnaMpøÚvEdlkmøaMgTaMgenaH
RtUv)anbUktamc,ab;RbelLÚRkam. eyIgGacsnñidæan)anfaeRKOgP¢ab;xagsþaMEpñkxageRkameKbMput
nwgmankmøaMgpÁÜbFMCageKbMput.
        bgÁúMkmøaMgedk nigbBaÄrrbs;eRKOgP¢ab;nImYy²Edl)anBIkmøaMgcMp©itKW
                        = 2.795kips ← nig pcy =
                  22.36                            44.72
         pcx =                                           = 5.590kips ↓
                    8                                8
sRmab; couple
             (           )           [                         ]
          ∑ x 2 + y 2 = 8(2.75)2 + 2 (6 )2 + (1)2 + (2 )2 + (5)2 = 192.5in 2
tMNcakp©it                                     311                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                      NPIC
                           My            480.7(6 )
          p mx =
                  (∑x +y   2
                              ) 2
                                     =
                                          192.5
                                                   = 14.98kips ←
                     Mx           480.7(2.75)
                 ∑ (x 2 + y 2 )
          p my =                =             = 6.867kips ↓
                                    192.5
          ∑ p x = 2.795 + 14.98 = 17.78kips ←
          ∑ p y = 5.590 + 6.867 = 12.46kips ↓
          P=     (17.78)2 + (12.46)2                  ¬emIlrUbTI 8>6 c¦
                                             = 21.7 kips
cemøIy³ kmøaMgb‘ULúgEdleRKaHfñak;KW 21.7kips . karGegátBITMhM nigTisedArbs;bgÁúMkmøaMgedk
nigbBaÄrbBa¢ak;fakarsnñidæanfaeRKOgP¢ab;Edl)aneRCIserIsBitCamaneRKaHfñak;Emn.
          Ultimate Strength Analysis
        viFIEdlerobrab;BIxagmuxmanlkçN³gayRsYlkñúgkarGnuvtþ b:uEnþminsuRkit. kñúgkarviPaK KW
)ansnñidæanfaTMnak;TMngbnÞúk-kMhUcRTg;RTayrbs;eRKOgP¢ab;manlkçN³smamaRt ¬CabnÞat;¦ ehIy
fa yield stress minRtUvFM. karBiesaFn_bgðajfavaminEmnCakrNI ehIyfaeRKOgP¢ab;nImYy²minman
shear yield stress BitR)akdeT. viFIsaRsþEdlBN’naenATIenHkMNt; ultimate strength rbs;tMN
edayeRbITMnak;TMngminsmamaRtbnÞúk-kMhUcRTg;RTayEdlkMNt;edaykarBiesaFn_ sRmab;eRKOgP¢ab;
nImYy².
        karsikSaedaykarBiesaFEdlraykarN_enAkñúg Crawford and Kulak (1971) edayeRbI
b‘ULúgRbePT bearing A325 Ggát;p©it 3 / 4in. nigEdkbnÞH A36 b:uEnþlT§plGaceRbIsRmab;b‘ULúg
 A325 EdlmanTMhMepSg²CamYynwgEdkRbePTepSg²CamYynwglT§pllMeGogtictYc. viFIenHnwgpþl;
nUvlT§pllMeGogenAeBleRbICamYyb‘ULúg slip-critical nigCamYyb‘ULúg A490 (AISC, 1994).
        kmøaMgb‘ULúgEdlRtUvnwgkMhUcRTg;RTay Δ KW
                       (
          R = Rult 1 + e − μΔ       )λ
                   (
             = 74 1 − e10Δ      )0.55                                         ¬*>@¦
Edl       Rult = kmøaMgkat;TTwgrbs;b‘ULúgenAeBldac; = 74kips = 330MPa
          e = eKalrbs;elakenEB = 2.718
          μ = emKuNkat;bnßy = 10
          λ = emKuNkat;bnßy = 0.55
T.Chhay                                               312                    Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
Ultimate strength      rbs;tMNKWQrelIkarsnμt;dUcxageRkam³
          !> enAeBldac; RkumeRKOgP¢ab;vilCMuvij instantaneous center (IC).
          @> kMhUcRTg;RTayrbs;ERKOgP¢ab;mYy²smamaRteTAnwgcm¶ayBI IC nwgeFVIGMeBIEkgeTAkaMén
              rgVil.
          #> eKGacTTYl)anlT§PaBrbs;tMNenAeBlEdl ultimate strength rbs;eRKOgP¢ab;enAq¶aybM
              putBI IC. ¬rUbTI 7>8 bgðajBIkmøaMgb‘ULúgCakmøaMgTb;Tl;EdleFVIGMeBIRbqaMgnwgkmøaMg
              Gnuvtþn_¦.
          $> EpñkEdlRtUvP¢ab;RtUvEtrwg.
          Cavi)akénkarsnμt;TIBIr kMhUcRTg;RTayrbs;eRKOgP¢ab;nImYy²KW
          Δ=
                   r
                       Δ max =
                                  r
                                        (0.34)
                rmax             rmax
Edl        cm¶ayBI IC eTAeKOgP¢ab;
          r=
        rmax = cm¶ayeTAeRKOgP¢ab;EdlenAq¶aybMput
        Δ max = kMhUcRTg;RTayrbs;eRKOgP¢ab;q¶aybMputenA ultimate = 0.34in. ¬EdlkMNt;eday
karBiesaFn_¦
CamYynwg elastic analysis, vamanPaBgayRsYlCagkñúgkareFVIkarCamYynwgbgÁúMkmøaMgctuekaNEkg b¤
       Ry = R
              x
              r
                      b¤            y
                               Rx = R
                                    r
tMNcakp©it                                       313                                       T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
Edl x nig y Cacm¶ayedk nigcm¶aybBaÄrBI instantaneous center eTAeRKOgP¢ab;. enAxN³eBl
dac; lMnwgRtUv)anrkSa ehIysmIkarlMnwgbIxageRkamRtUv)anGnuvtþeTAelIRkumeRKOgP¢ab; ¬eyageTAelI
rUbTI 8>7¦³
                  m
         ∑ Fx = ∑ (R x )n − Px = 0                                                 ¬*>#¦
                   n =1
                              m
          M IC = P(ro + e ) − ∑ (rn × Rn ) = 0                                       ¬*>$¦
                             n =1
ehIy ∑ Fy = ∑(R y )n − Py = 0
                   m
                                                                                     ¬*>%¦
Edl Gnu)at n kMNt;nUveRKOgP¢ab;mYy² nig m CacMnYnsrubrbs;eRKOgP¢ab;. viFIsaRsþTUeTAKWsnμt;TI
taMg instantaneous center bnÞab;mkkMNt;témøRtUvKñarbs; P EdlbMeBjsmIkarlMnwg. RbsinebI
GBa©wgEmn TItaMgenHKWRtwmRtUv ehIy P CalT§PaBrbs;tMN. viFIsaRsþCak;lak;KWdUcxageRkam³
        !> snμt;témøsRmab; ro .
        @> edaHRsayrk P BIsmIkar *>$.
        #> CMnYs ro nig P eTAkñúgsmIkar *># nig *>%.
        $> RbsinebIsmIkarTaMgenaHRtUv)anbMeBjCamYynwgkRmitlMeGogEdlGacTTYlyk)an kar
           viPaKenHRtUv)anbBa©b;. EtebImindUecñaHeT eKRtUveFVIkareRCIserIstémøsakl,g ro fμI ehIy
           eKRtUveFVIkarKNnaeLIgvij.
        sRmab;krNITUeTAénbnÞúkbBaÄr smIkar *># nwgRtUv)anbMeBjedays½VyRbvtþ. edIm,IPaBgay
RsYl nigkMu[)at;bg;»PasPaB eyIgBicarNaEtkrNIenH. EteTaHbICamYykarsnμt;enH karKNna
sRmab; trial problem CaeRcInmanlkçN³lM)ak EdlRtUvkarCMnYykMuBüÚT½rCacaM)ac;. Epñk (B) rbs;
]TahrN_ 8>2 RtUv)aneFVIkarCamYynwgCMnYyBI standard spreadsheet program sRmab; personal
computers.
]TahrN_ 8>2³ Bracket connection EdlbgðajenAkñúgrUbTI 8>8 RtUvRTkmøaMgemKuNcakp©it 53kips .
tMNRtUv)anKNnaeday[manb‘ULúgBIrCYrQr EdlkñúgmYyCYr²manb‘ULúg 4 RKab; Etb‘ULúgmYyRKab;
RtUv)andkecaledayKμanectna. RbsinebIeKeRbIb‘ULúg bearing-type A325 EdlmanGgát;p©it 7 / 8in.
etItMNenHmanlkçN³RKb;RKan;b¤Gt;? snμt;faeFμjb‘ULúgsßitenAkñúgbøg;kat;. eRbIEdk A36 nigGnuvtþ
nUvkarviPaKxageRkam³ (a) elastic analysis; (b) ultimate strength analysis.
T.Chhay                                          314                        Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                        Department of Civil Engineering
dMeNaHRsay³ a. Elastic analysis. sRmab;RbB½n§kUGredaenEdlmanKl;enARtg;p©itrbs;b‘ULúgxag
eRkamEpñkxageqVg ¬rUbTI 8>9¦
             2(3) + 2(6 ) + 1(9 )
          y=                      = 3.857in.
                     7
             3(3)
          x=      = 1.286in.
              7
   (          )
∑ x 2 + y 2 = 4(1.286 )2 + 3(1.714 )2 + 2(3.857 )2 + 2(0.857 )2 + 2(2.143)2 + 1(5.143)2 = 82.29in.2
          e = 3 + 5 − 1.286 = 6.714in.
          M = Pe = 53(6.714 ) = 355.8in. − kips            ¬RsbRTnicnaLika¦
                    53
           pcy =       = 7.571kips ↓         pcx = 0
                    7
BITisedA nigTMhMEdlRtUvKñaEdlbgðajenAkñúgrUbTI 8>9 b‘ULúgeRkameKEpñkxagsþaMRtUv)ancat;TukfaCa
b‘ULúgEdlmaneRKaHfñak;CageK
                         My          355.8(3.857 )
           p mx =
                  (       )
                    ∑ x2 + y2
                                 =
                                        82.29
                                                   = 16.68kips ←
                       Mx     355.8(1.714 )
                ∑ (x + y )
          Pmy =             =               = 7.411kips ↓
                    2   2        82.29
          ∑ p x = 16.68kips
          ∑ p y = 7.571 + 7.411 = 14.98kips
           p=      (16.68)2 + (14.98)2   = 22.4kips
tMNcakp©it                                       315                                          T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                           NPIC
edIm,IkMNt; design strength rbs;b‘ULúgrg bearing eRbIGgát;p©itrn§
                     1 7 1 15
           h=d+       = +  = in.
                    16 8 16 16
sRmab;rn§EdlenAEk,rRCugEKmCageK eRbI Le = 2in. enaH
                    h       15 / 16
           Lc = Le −  = 2−          = 1.513in.
                    2          2
                 ⎛7⎞
           2d = 2⎜ ⎟ = 1.75in.
                 ⎝8⎠
eday Lc < 2d bearing strength KW
          φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.531)(0.455)(58) = 36.4kips / bolt
sRmab;rn§epSgeTot eRbI s = 3in. enaH
                           15
           Lc = s − h = 3 −    = 2.062in. > 2d
                           16
                                        ⎛7⎞
dUcenH    φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟(0.455)(58) = 41.56kips / bolt
                                        ⎝8⎠
témø bearing TaMgBIrFMCagkmøaMgkñúgmYyb‘ULúg dUcenH bearing strength KWRKb;RKan;.
sRmab; shear
                  π (7 / 8)2
           Ab =         = 0.6013in.2
                  4
          φRn = φFv Ab = 0.75(48)(0.6013) = 21.6kips < 22.4kips           (N.G.)
cemøIy³ tMNminbMeBjlkçxNÐeday elastic analysis.
T.Chhay                                        316                                 Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                               Department of Civil Engineering
b.eyIgedaHRsaytamviFI ultimate strength analysis CamYynwgCMnYyrbs; standard spreadsheet
software. lT§plrbs;témøsakl,gcugeRkayrbs; ro = 1.57104in. RtUv)an[enAkñúgtarag 8>1.
RbB½n§kUGredaen nigelxerogb‘ULúgRtUv)anbgðajenAkñúgtarag 8>10.
tarag 8>1
              eKalenARtg;         eKalenARtg;
 eRKOg
              b‘ULúgelx !                IC
                                                                     Δ                                 Ry
  P¢ab;                                                       r               R           rR
                x'          y'    x             y
     1        0.000 0.000        0.285        -3.857         3.868   0.255   70.774     273.731       5.221
     2        3.000 0.000        3.285        -3.857         5.067   0.334   72.553     367.598      47.045
     3        0.000 3.000        0.285        -0.857         0.903   0.060   47.649      43.046      15.050
     4        3.000 3.000        3.285        -0.857         3.395   0.224   69.563     236.188      67.310
     5        0.000 6.000        0.285        2.143          2.162   0.143   63.631     137.555       8.398
     6        3.000 6.000        3.285        2.143          3.922   0.259   70.891     278.061      59.377
     7        0.000 9.000        0.285        5.143          5.151   0.340   72.631     374.107       4.023
srub                                                                                  1710.287 206.424
tMNcakp©it                                             317                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                      NPIC
BIsmIkar *>$
          P(ro + e ) = ∑ rR
               ∑ rR         1710.29
          P=          =                = 206.424kips
              ro + e 1.57104 + 6.71429
Edl e RtUv)anyk 5 xÞg;eRkayex,ósedIm,IsuRkitPaBx<s;.
BIsmIkar *>%
          ∑ F y = ∑ R y − P = 206.424 − 206.424 = 0.00
bnÞúkEdlGnuvtþminmnabgÁúMkmøaMgedk dUcenHsmIkar *># RtUv)anbMeBjedaysV½yRbvtþ.
        bnÞúk 206.424kips EdleTIbnwg)ankMNt;Ca failure load sRmab;kartP¢ab; ehIyRtUv)anQr
enAelIeKalkarN_EdleRKOgP¢ab;EdleRKaHfñak;eTAdl; ultimate load capacity. RbsinebIbnÞúkdac;
rbs;tMNRtUv)anKuNedaypleFob fasterner design strength elI fasterner ultimate strength
74kips (Crawford nig Kulak, 1971), eyIgnwgTTYl)anlT§PaBrbs;tMN.
        BI a. design strength rbs;b‘ULúgmYy ¬EdlQrelI shear¦ KW 21.6kips .
        bnÞúkemKuNGtibrma = 206(21.6 / 74) = 60.1kips > 53kips (OK)
cemøIy³ kartP¢ab;manlkçN³RKb;RKan;eday ultimate strength analysis.
          Table 8-18dl; 8-25 enAkñúg Part 8 of the Manual (Volume II) pþl;[emKuNsRmab;viPaK
b¤KNnaKMrUFmμtaénRkumb‘ULúgEdlrgnUvbnÞúkcakp©it. sRmab;kartMeobb‘ULúgnImYy²Edl)anBicarNa
taragTaMgenaHpþl;nUvtémø C EdlCapleFob connection failure load elI fasterner ultimate
strength. edImI,TTYl)anbnÞúktMNEdlmansuvtßiPaB témøefrenHRtUv)anKuNeday design strength
rbs;eRKOgP¢ab;EdleRbI. sRmab;bnÞúkcakp©itminRtUv)anbBa©ÚleTAkñúgtaragTaMgenHeT dUcenH eKGac
eRbI elastic method EdlCaviFImansuvtßiPaB. BitNas; kmμviFIkMuBüÚT½r b¤ spreadsheet software k¾RtUv
)aneRbIedIm,IKNna ultimate strength anlysis.
]TahrN_ 8>3³ eRbItaragenAkñúg Part 8 of the Manual edIm,IkMNt; factored load capacity Pu Edl
QrelI bolt shear sRmab;tMNEdlbgðajenAkñúgrUbTI 8>11. b‘ULúg bearing-type A325 Ggát;p©it
3 / 4in. edayeFμjsßitenAkñúgbøg;kat;. b‘ULúgrgnUv single shear.
T.Chhay                                      318                              Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                            Department of Civil Engineering
design strength      rbs;b‘ULúgGgát;p©it 3 / 4in. Edlrg single shear KW
          φrn = φ (48)Ab = 0.75(48)(0.4418) = 15.90kips
eday C = Pu / φrn /
          Pu = Cφrn = 1.53(15.90 ) = 24.3kips
cemøIy³ lT§PaBbnÞúkemKuNGtibrma (maximum factored load capacity) rbs;tMNKW 24.3kips .
8>3> tMNcMNakp©itedayb‘ULúg³ kmøaMgkat;bUknwgkmøaMgTaj
          Eccentric Bolted Connections: Shear Plus Tension
        sRmab;kartP¢ab;EdleKeRbI tee stub bracket dUckñúgrUbTI 8>12 bnÞúkcMNakp©itbegáIt couple
EdlGacbegáInkmøaMgTajenAkñúgCYrxagelIrbs;eRKOgP¢ab; ehIykat;bnßykugRtaMgTajenAkñúgCYrxag
eRkam. RbsinebIeRKOgP¢ab;Cab‘ULúgEdlKμankugRtaMgTajedIm b‘ULúgxagelInwgRtUv)andak;[rgkug
RtaMgTaj ehIyb‘ULúgxageRkamnwgminrg\T§iBl. edayminKitBIRbePTrbs;eRKOgP¢ab; b‘ULúgnImYy²
nwgrgnUvcMENkkmøaMgkat;esμI²Kña.
tMNcakp©it                                       319                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
        RbsinebIeRKOgP¢ab;Cab‘ULúgersIusþg;x<s;EdlrgeRbkugRtaMg épÞb:Hrvagsøabssr nigsøab
bracket nwgrgkarsgát;esμI munnwgkmøaMgxageRkAGnuvtþmk. Bearing pressure nwgesμInwgkmøaMgTaj
b‘ULúgsrubEdlEckedayépÞb:H. edaysarbnÞúk P Gnuvtþbnþicmþg² kmøaMgsgát;enAxagelInwgRtUv)an
kat;bnßy ehIykmøaMgsgát;enAxageRkamnwgekIneLIg dUcbgðajenAkñúgrUbTI 8>13 a. enAeBlEdlkM
laMgsgát;enAxagelIRtUv)anrMsayGs;rlIg bgÁúMkmøaMgnwgRtUv)anbMEbk ehIy couple Pe nwgRtUv)an
Tb;Tl;edaykmøaMgb‘ULúgTaj ehIykmøaMgsgát;enAelIépÞb:HEdlenAsl; dUcEdlbgðajenAkñúgrUbTI
8>13 b. enAeBlEdlkmøaMgxiteTArk ultimate load kmøaMgenAkñúgb‘ULúgnwgxiteTACit ultimate
tensile strength rbs;va.
        viFIEdlsamBaØ nigmansuvtßiPaBRtUv)aneRbIenATIenH. eKsnμt;G½kSNWtrbs;tMNkat;tamTIRbCMu
Tm¶n;rbs;RkLaépÞb‘ULúg. bU‘LúgEdlsßitenABIxagelIG½kSenHrgkmøaMgTaj ehIyb‘ULúgEdlenABIxag
eRkamG½kSenHRtUv)ansnμt;fargkmøaMgsgát; dUcbgðajenAkñúgrUbTI 8>13 c. b‘ULúgnImYy²RtUv)ansnμt;
faTTYl)antémø ultimate rut . edaysarEtmanb‘ULúgBIrRKab;enARKb;nIv:U ¬rUbTI 8>13 c¦ kmøaMgnI-
mYy²RtUv)anbgðaj 2rut . kmøaMgpÁÜbénkmøaMgTaj nigkmøaMgsgát;Ca couple EdlesμInwgm:Um:g;Tb;rbs;
tMN. m:Um:g; couple GacRtUv)anrkedayeFVIplbUkm:Um:g;énkmøaMgb‘ULúgeFobG½kSNamYyEdlgayRsYl
dUcCaG½kSNWt. enAeBlEdlm:Um:g;Tb;RtUv)andak;[esμIm:Um:g;Gnuvtþn_ eKGacrkkmøaMgTajb‘ULúg rut
EdlminsÁal;BIsmIkarEdlTTYl)an. ¬viFIenHRsedogKñanwg Case II in Part 8 of the Manual,
Volume II).
T.Chhay                                   320                             Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                        Department of Civil Engineering
]TahrN_ 8>4³ tMN beam-to-column RtUv)anbegáIteLIgeday structural tee dUcbgðajenAkñúgrUbTI
8>14. eKeRbIb‘ULúg fully tightened bearing-type A325 Ggát;p©it 3 / 4in. cMnYn 8 RKab;edIm,IP¢ab;
søabrbs; tee eTAnwgsøabssr. cUrGegátPaBRKb;RKan;rbs;tMN ¬tee-to-column connecvtion¦ Rb
sinebIvargbnÞúkemKuN 88kips enAcMNakp©it 3in. . snμt;faeFμjb‘ULúgsßitenAkñúgbøg;kat;. EdkTaMg
Gs;Ca A36 .
dMeNaHRsay³ shear/bearing load sRmab;b‘ULúgmYyKW 88 / 8 = 11kips . sRmab; bearing design
strength   eRbIGgát;p©itRbehag
                      1 3 1 13
          h=d+         = +  = in.
                     16 4 16 16
sRmab;RCugEdlenAEk,rRCugEKmCageKbMput yk Le = 1.5in. . enaH
                   h         13 / 16
          Lc = Le −  = 1.5 −         = 1.094in.
                   2           2
                ⎛3⎞
          2d = 2⎜ ⎟ = 1.5in.
                ⎝4⎠
edaysar Lc < 2d /
          φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.094)(0.560)(58) = 31.98kips > 11kips       (OK)
sRmab;RbehagepSgeTotyk s = 3in. . enaH
                          13
          Lc = s − h = 3 −    = 2.188in. > 2d
                          16
                                       ⎛3⎞
dUcenH   φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟(0.560)(58) = 43.85kips > 11kips
                                       ⎝4⎠
                                                                                         (OK)
tMNcakp©it                                    321                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                     NPIC
tMNmanlkçN³RKb;RKan;sRmab; bearing.
sRmab; shear design strength
                 π (3 / 4 )2
          Ab =                 = 0.4418in 2
                     4
          φRn = φFv Ab = 0.75(48)(0.4418) = 15.90kips
KNnakmøaMgTajsRmab;b‘ULúgmYy nwgbnÞab;mkRtYtBinitü tension-shear interaction. edaysarPaB
sIuemRTI TIRbCMuTm¶n;sßitenAkm<s;Bak;kNþal. rUbTI 8>15 bgðajRkLaépÞb‘ULúg nigkarEbgEckkmøaMg
Tajb‘ULúg.
         m:Um:g;rbs; resisting couple RtUv)anrkedayeFVIplbUkm:Um:g;eFobG½kSNWt³
          ∑ M NA = 2rut (4.5 + 1.5 + 1.5 + 4.5) = 24rut
m:Um:g;EdlGnuvtþKW
          M u = Pu e = 88(3) = 264in. − kips
dak;m:Um:g;Tb; nigm:Um:g;Gnuvtþn_[esμIKña eyIg)an
          24rut = 264 b¤           rut = 11kips
Tensile design strength KW
          φRn = φFt Ab = 0.75(90)(0.4418) = 29.82kips
RtYtBinitü RCSC Equation LRFD 4.2 BI bolt specification (RCSC, 1994) CamYynwg
 Pu = rut = 11kips nig Vu = bolt shear force = 11kips
                     2                2
          ⎡ Pu ⎤         ⎡ Vu ⎤         ⎛ 11 ⎞
                                                  2
                                                    ⎛ 11 ⎞
                                                             2
          ⎢           ⎥ +⎢           ⎥ =⎜       ⎟ +⎜       ⎟ = 0.615 < 1.0   (OK)
          ⎢⎣ (φRn )t ⎥⎦  ⎢⎣ (φRn )v ⎥⎦  ⎝ 29.82 ⎠   ⎝ 15.9 ⎠
cemøIy³ tMNKWRKb;RKan;
T.Chhay                                             322                      Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
       enAeBlEdlb‘ULúgenAkñúgtMN slip-critical rgkarTaj slip-critical strength CaFmμtaRtUv)an
kat;bnßyedayemKuNEdlpþl;[eday AISC Equation A-J3-2 ¬emIl Epñk 7>9¦. mUlehtuKWfa
clamping effect nigkmøaMgkkitRtUv)ankat;bnßy. b:uEnþenAkñúgtMNEdleTIbnwgBicarNa vamankmøaMg
sgát;bEnßmenAkñúgEpñkxageRkamrbs;tMNEdlbegáInkmøaMgkkit EdlvaTUTat;nwgkarkat;bnßyenAkñúg
EpñkxageRkamrbs;tMN. sRmab;mUlehtuenH slip-critical strength minKYrRtUv)ankat;bnßyenAkñúgRb
ePTtMNenHeT.
8>4> tMNcMNakp©itedaypSar³ EtkmøaMgkat;
          Eccentric Welded Connections: Shear only
       eKviPaKtMNcMNakp©itedaypSartamviFIdUcKñasRmab;tMNedayb‘ULúg elIkElgRtg;kmøaMgkñúg
eRKOgP¢ab;mYy²RtUv)anCMnYsedaykmøaMgkñúgRbEvgTwkbnSarÉktþa. dUckñúgkrNIEdltMNcMNakp©it
edayb‘ULúgrgkmøaMgkat; tMNedaypSarrgkmøaMgkat;GacRtUv)anGegátedayviFI elastic method b¤
ultimate strength method.
Elastic method
         bnÞúkenAelI bracket EdlbgðajenAkñúgrUbTI 8>16 a GacnwgRtUv)anBicarNa[eGVIGMeBIenA
kñúgbøg;énTwkbnSar EdlCabøg;rbs; throat. RbsinebIeyIgsnμt;EbbenH bnÞúknwgRtUv)anTb;edayRkLa
épÞTwkbnSarEdlbgðajenAkñúgrUb 8>16 b. b:uEnþ karKNnamanlkçN³samBaØ RbsinebIeKeRbI throat
mYyÉktþa. bnÞab;mkbnÞúkEdlKNna)anRtUvKuNnwg 0.707 CamYynwgTMhMrbs;TwkbnSaedIm,ITTYl)an
bnÞúkBitR)akd.
tMNcakp©it                                323                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                     NPIC
        bnÞúkcMNakp©itenAkñúgbøg;TwkbnSarEdleFVI[TwkbnSarrgTaMgkmøaMgkat;pÞal; (direct shear)
nigkmøaMgkat;edayrmYl (torsional shear). edaysarFatunImYy²rbs;TwkbnSarTb;Tl;nwgcMENk
esμIrbs; direct shear enaH direct shear stress KW
                 P
          f1 =
                 L
Edl L CaRbEvgsrubrbs;TwkbnSar ehIyesμInwgRkLaépÞkmøaMgkat;edayKitCaelx edaysareKsnμt;
TMhM throat esμInwgmYyÉktþa. RbsinebIeKeRbIkMub:Usg;Ekg
                                      Py
         f1x = x
                P
                 L
                       ni g    f1 y =
                                       L
Edl Px nig Py CabgÁúMkmøaMgtamTis x nig y . kugRtaMgkmøaMgkat;EdlekIteLIgedaysar couple
RtUv)aneKrkCamYynwgrUbmnþkmøaMgrmYl
                 Md
          f2 =
                  J
Edl       d= cm¶ayBITIRbCMuTm¶n;rbs;RkLaépÞkmøaMgkat;eTAcMNucEdlkugRtaMgkMBugRtUv)anKNna
         J = m:Um:g;niclPaBb:UElrrbs;RkLaépÞenaH
rUbTI 8>17 bgðajBIkugRtaMgTaMgenHenARtg;kac;RCugxagelIEpñkxageRkamrbs;TwkbnSar. tamkMub:Usg;
Ekg
         f 2x =
                 My
                  J
                         ni g     f2y =
                                        Mx
                                        J
Edl J = ∫A r 2 dA = ∫A (x 2 + y 2 )dA = ∫A x 2 dA + ∫A y 2 dA = I y + I x
Edl I x nig I y Cam:Um:g;niclPaBrbs;RkLaépÞkmøaMgkat;. enAeBlEdlbgÁúMkmøaMgTaMgGs;RtUv)ankM
Nt; eyIgGacbUkbgÁúMkmøaMgedIm,ITTYl)ankugRtaMgkmøaMgkat;srubenARtg;cMNucEdleyIgcg;dwg b¤
          fv =       (∑ f x )2 + (∑ f y )2
T.Chhay                                      324                             Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                             Department of Civil Engineering
dUcKñanwgtMNedayb‘ULúg CaTUeTATItaMgeRKaHfñak;sRmab;kugRtaMgpÁÜbGacRtUv)ankMNt;BIkarsegátelI
témø nigTisedArbs;bgÁúM direct shear nig torsional shearing stress.
         edaysareKeRbITwkbnSarkñúgmYyÉktþa karKNnaTIRbCMuTm¶n; nigm:Um:g;niclPaBKWmanlkçN³Ca
ExSbnÞat;. enAkñúgesovePAenH eyIgKitGgát;TwkbnSarCaGgát;ExSEdleyIgsnμt;eTARbEvgdUcKñanwgRCug
EKmrbs;EpñkEdlRtUvP¢ab;EdlenAEk,rva. elIsBIenH eyIgecalm:Um:g;niclPaBrbs;Ggát;ExSeFobeTA
nwgG½kSEdlRtYtKñaCamYynwgExS.
]TahrN_ 8>5³ kMNt;TMhMrbs;TwkbnSarEdlRtUvkarsRmab;tMN bracket enAkñúgrUbTI 8>18. bnÞúk
60kips    CabnÞúkemKuN. eKeRbIEdk A36 sRmab;ssr nig bracket.
dMeNaHRsay³ eKGacCMnYsbnÞúkcakp©itedaybnÞúkcMp©it nig couple dUcbgðajenAkñúgrUbTI 8>18.
Direct shearing stress       KitCa kips / in. KWdUcKñasRmab;RKb;Ggát;TwkbnSar ehIyesμInwg
tMNcakp©it                                        325                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
                       60      60
          f1 y =             =    = 2.143kips / in.
                   8 + 12 + 8 28
munnwgKNnabgÁúMkmøaMgrmYlrbs; shearing stress, eKRtUvkMNt;TItaMgrbs;TIRbCMuTm¶n;rbs;RkLaépÞ
kmøaMgkat;. BIeKalkarN_m:Um:g;CamYynwgplbUkm:Um:g;eFobG½kS y /
          x(28) = 8(4 )(2 )    b¤ x = 2.286in.
cMNakp©it e KW 10 + 8 − 2.286 = 15.71in.
ehIym:Um:g;rmYlKW M = Pe = 60(15.71) = 942.6in. − kips
RbsinebIeKecalm:Um:g;niclPaBrbs;TwkbnSartamTisedknImYy²eFobG½kSTIRbCMuTm¶n;rbs;va enaH
m:Um:g;niclPaBénRkLaépÞsrubeFobnwgG½kSTIRbCMuTm¶n;tamTisedkKW
          Ix =
                 1
                   (1)(12)3 + 2(8)(6)2 = 720.0in.4
                12
                  ⎡1                         ⎤
dUcKña    I y = 2 ⎢ (1)(8)3 + 8(4 − 2.286 )2 ⎥ + 12(2.286 )2 = 195.0in.4
                  ⎣12                        ⎦
ehIy J = I x + I y = 720.0 + 195.0 = 915.0in 4
rUbTI 8>18 bgðajTisedArbs;bgÁúMkugRtaMgTaMgBIrenAkac;RCugrbs;tMNnImYy². tamkarsegát/ kac;
RCugxagelIEpñkxagsþaM b¤kac;RCugxageRkamEpñkxagsþaMGacRtUv)anKitCaTItaMgEdlmaneRKaHfñak;. Rb
sinebIeKeRCIserIskac;RCugxageRkamEpñkxagsþaM enaH
               My 942.6(6)
          f 2x =  =         = 6.181kips / in.
                J    915.0
               M    942.6(8 − 2.286 )
          f2y = x =                   = 5.886kips / in.
                J        915.0
          fv =     (6.181)2 + (2.143 + 5.886)2   = 10.13kips / in.
RtYtBinitüersIusþg;rbs; base metal. BIsmIkar &>@!
          φRn = φFBM × area subject to shear
                                                   ⎛9⎞
               = φFBM × t = 0.54 F y t = 0.54(36)⎜ ⎟
                                                   ⎝ 16 ⎠
               = 10.94kips / in. > 10.13kips / in. (OK)
BIsmIkar &>@0 weld strength KW
          φRn = 0.707 × w × L × φFW
Electrode EdlRtUvKñasRmab;Edk A36 KW E 70 / CamYynwg φFW = 31.5ksi .
dUcenHTMhMTwkbnSarEdl RtUvkarKW
T.Chhay                                          326                       Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                      Department of Civil Engineering
                    φRn        10.13
          w=              =                 = 0.455in.
                0.707 LφFW 0.707(1.0)(31.5)
cemøIy³ eRbI fillet weld 1 / 2in. CamYynwg electrode E 70 .
Ultimate Strength Analysis
            eKGacKNna Eccentric welded shear connection edayeRbI elastic method y:agsuvtßiPaB
b:uEnþemKuNsuvtßiPaBGacFMCagGVIEdlRtUvkar ehIyGacERbRbYlBItMNmYyeTAtMNmYy (Bultler, Pal,
and Kulak, 1920). karviPaKRbePTenHmanKuNvibtþixøHdUc elastic method sRmab; eccentric bolted
connections, edayrYbbBa©ÚlTaMgkarsnμt;faTMnak;TMngrvag bnÞúk-kMhUcRTg;RTay sRmab;karpSar. Rb
PBepSgeTotrbs;kMhusKWkarsnμt;faersIusþg;rbs;TwkbnSarminGaRs½ynwgTisedArbs;bnÞúkEdlGnuvtþ.
Ultimat strength procedure RtUv)anbgðajenAkñúg Part 8 of the Manual (Volume II) ehIyRtUv)an
segçbenATIenH. vaQrelIkarsikSaRsavRCavrbs; Butler et al. (1972) nig Timler (1984) ehIyviFI
EdlesÞIrEtdUcKñaEdlbegáIteLIgsRmab; eccentric bolted connections eday Crawford and Kulak
(1971).
            CMnYs[karBicarNaelIeRKOgP¢ab;mYy² eyIgKitTwkbnSarEdlCab;CaGgát;TwkbnSardac;² Edl
pÁúMP¢ab;Kña. enAeBldac; bnÞúkEdlGnuvtþmkelItMNRtUv)anTb;edaykmøaMgenAkñúgFatunImYy² CamYynwg
kmøaMgEdleFVIGMeBIEkgeTAnwgkaMEdlbegáIteLIgBI instantaneous center of rotation eTATIRbCMuTm¶n;
rbs;Ggát;TwkbnSar dUcbgðajenAkñúgrUbTI 8>19. KMnitkñúgkarKNnaenHKWRsedogKñanwgKMnitEdleRbI
sRmab;eRKOgP¢ab;. b:uEnþ karkMNt;kMhUcRTg;RTayGtibrmarbs;Ggát;TwkbnSar nigkarkMNt;kmøaMgkñúg
énGgát;TwkbnSarnImYy²enAeBlEdldac;KWBi)ak. edIm,IkMNt;FatuEdlmaneRKaHfñak; eKRtUvkMNt;pl
eFob Δ max / r sRmab;FatunImYy²/ Edl
          Δ max = 1.087 w(θ + 6)−0.65 ≤ 0.17 w
          θ=  mMurvagkmøaMgTb; nigG½kSrbs;Ggát;TwkbnSar ¬emIlrUbTI 8>19¦
          w = TMhMTwkbnSar
          r = cm¶ayBI IC eTATIRbCMuTm¶n;rbs;Ggát;TwkbnSar
tMNcakp©it                                   327                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                      NPIC
FatuEdlmanpleFobtUcCageKKWCaFatuEdleTAdl; ultimate capacity muneK. bnÞab;mkkMhUcRTg;
RTayrbs;FatudéTeTotRtUv)ankMNt;eday
                 r
          Δ=             Δ max
               rmax
Edl       kaMsRmab;Fatu
          r=
       Δ max Δ
             = sRmab;FatuEdleRKaHfñak;
       rmax     r
eKGackMNt;kmøaMgTb;sRmab;FatunImYy²BI
                             (               )
          R = 0.60 FEXX 1.0 + 0.50 sin1.5 θ [ p(1.9 − 0.9 p )]0.3
Edl       FEXX = weld electrode tensil strength
                  Δ
          p=
               Δ max
¬mindUckrNItMNedayb‘ULúgEdl R CaGnuKmn_eTAnwg θ ¦. karKNnaBImunKWQrelIkarsnμt;TItaMg
rbs; instantaneous center of rotation. RbsinebIvaCaTItaMgBitR)akd smIkarlMnwgnwgRtUv)anbMeBj.
karKNnabnþeTotKWRsedogKñanwgtMNedayb‘ULúg.
       !> KNna load capacity BIsmIkar
                     ∑ M IC = 0
             Ed;l IC Ca instantaneous center.
          @> RbsinebIsmIkarlMnwgkmøaMgBIrRtUv)anbMeBj enaHTItaMg instantaneous center Edl)an
             snμt; nigbnÞúkEdl)anrkenAkñúgCMhanmYyBitCaRtwmRtUv EtebImindUecñaHeT eKRtUvsnμt;TI
             taMgfμI ehIyeFVIkarKNnasareLIgvij.
T.Chhay                                          328                          Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
         vabgðajy:agc,as;nUv)aBcaM)ac;kñúgkareRbIR)as;kmμviFIkMuBüÚT½r. dMeNaHRsayedaykMuBüÚT½r
sRmab;;TRmg;FmμtaCaeRcInsRmab; eccentric welded shear connection RtUv)an[enAkñúgtaragEdl
manenAkñúg Part 8 of the Manual. Table 8-38 rhUtdl; 8-45 [lT§PaBbnÞúkemKuN (factored load
capacity) sRmab;karbnSMGgát;TwkbnSartamTisedk nigTisbBaÄrFmμtaCaeRcInedayQrelI ultimate
strength analysis. taragTaMgenHGacRtUv)aneRbIsRmab;karKNna b¤karviPaK nwgerobrab;nUvsßanPaB
CaeRcInEdlvisVkrGacnwgCYbRbTH. sRmab;tMNTaMgLayNaEdlmin)anerobrab;enAkñúgtarageKGac
eRbI elastic methoid.
]TahrN_ 8>6³ kMNt;TMhMTwkbnSarEdlcaM)ac;sRmab;kartP¢ab;enAkñúg]TahrN_ 8>5 edayQrelIkar
BicarNa ultimate strength. cUreRbItaragsRmab; eccentrically load weld group Edl[enAkñúg
Part 8 of the Manual.
dMeNaHRsay³ TwkbnSarrbs;]TahrN_ 8>5 CaRbePTdUcKñaeTAnwgrUbEdlbgðajenAkñúg Tabl;e 8-42
(angle = 0 o )/ ehIykardak;bnÞúkk¾dUcKña. eKRtUvkartémøefrxageRkamsRmab;bBa©ÚleTAkñúgtarag³
            al e 15.7
          a=   = =      = 1.3
             l  l   12
            kl 8
          k= =    = 0.67
            l 12
edayeFVI interpolation enAkñúg Table 8-42 sRmab; a = 1.3
        C = 1.14        sRmab; k = 0.6        ehIy C = 1.30          sRmab;            k = 0 .7
enaHsRmab; k = 0.67 eyIgTTYl)an C = 1.25
sRmab; electrode E70 XX / C1 = 1.0
témø D EdlcaM)ac;KW
                  Pu       60
          D=         =                = 4 .0
                 CC1l 1.25(1.0 )(12 )
dUcenHTMhMTwkbnSarEdlcaM)ac;KW
           1
          16
             (4.0) = 0.25         ¬TMhMTwkbnSarEdlRtUvkarenAkñúg]TahrN_ 8>5 KW 0.455
cemøIy³ eRbI electrode E 70 / fillet weld 1 / 4in.
tMNcakp©it                                     329                                          T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
karpþl;[CaBiesssRmab;Ggát;rgbnÞúktamG½kS Special Provision for Axially
Loaded Members
         enAeBlEdlGgát;eRKOgbgÁúMrgbnÞúktamG½kS kugRtaMgRtUv)anBRgayesμIenAelImuxkat; ehIy
kmøaMgpÁÜbRtUv)anBicarNafaeFVIGMeBItamG½kSTIRbCMuTm¶n; EdlvaCaG½kSEvgkat;tamTIRbCMuTm¶n;. sRmab;
Ggát;EdlrgbnÞúkcMp©itenAxagcugrbs;va kmøaMgTb;pÁÜbEdlpþl;[edaytMNk¾RtUveFVIGMeBItamG½kSenHEdr.
RbsinebIGgát;enHmanmuxkat;sIuemRTI lT§plGacRtUv)ansMercedaykarpSar b¤P¢ab;b‘ULúgedaysIuemRTI.
RbsinebIGgát;manmuxkat;minsIuemRTI dUcCamuxkat;EdkEkgDub (double-angle section) enAkñúgrUbTI
8>20 karpSar b¤karP¢ab;b‘ULúgedaysIuemRTIeFVI[tMNenaHCatMNrgbnÞúkcakp©it CamYynwg couple Te
dUcbgðajenAkñúgrUbTI 8>20 b.
          AISC J1.8GnuBaØat[ecalcMNakp©itenHsRmab;Ggát;rgkmøaMgsþaTic. enAeBlEdlGgát;rg
fatigue EdlbNþalmkBIPaBRcMdEdlénkardak;bnÞúk b¤PaBmanGt;rbs;kugRtaMg cMNakp©itRtUvEtyk
mkBicarNa b¤k¾minykmkBicarNaedaysarkartP¢ab;edaykarpSar b¤edayb‘ULúgEdlmanlkçN³sm
Rsb . ¬CakarBit eTaHbIdMeNaHRsayGacRtUv)aneKeRbIsRmab;EtGgát;EdlrgEtkmøaMgsþaTick¾eday¦.
eKGackMNt;karP¢ab;enHedayGnuvtþsmIkarlMnwgkmøaMg nigm:Um:g;. sRmab;tMNEdlpSarEdlbgðajenA
kñúgrUbTI 8>21 smIkardMbUgGacRtUv)anTTYledayplbUkm:Um:g;eFobTwkbnSartamTisedkxageRkam³
T.Chhay                                   330                             Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
                          L
          ∑ M L2 = Tc − P3 3 − P1 L3 = 0
                           2
eKedaHRsaysmIkarenHedIm,Irk P1 EdlCakmøaMgTb;caM)ac;enAkñúgTwkbnSartamTisedkxagelI.
bnÞab;mkeKGacCMnYstémøenHeTAkñúgsmIkarlMnwgkmøaMgxageRkam³
          ∑ F = T − P1 − P2 − P3 = 0
      eKGacedaHRsaysmIkarenHedIm,Irktémø P2 EdlCakmøaMgTb;caM)ac;enAkñúgTwkbnSartamTis
edkxageRkam. sRmab;RKb;TMhMrbs;TwkbnSar eKGacedaHRsayrkRbEvg L1 nig L2 . dMeNIrkaredaH
RsayRtUv)anbgðajenAkñúg]TahrN_ 8>7 EdleKsÁal;Ca balancing the weld.
]TahrN_ 8>7³ Ggát;rgkarTajEdlpSMeLIgeday double-angle section, 2L5 × 3 × 1 / 2 EdleKdak;
eCIgEvgrbs;vaTl;xñgKña. EdkEkgRtUv)anP¢ab;eTAnwg gusset plate kRmas; 3 / 8in. . EdkTaMgGs;Ca
 A36 . KNnatMNedaykarpSar edayeFVIkarkat;bnßycMNakp©itedIm,ITb;nwg tensil capacity eBj
rbs;Ggát;.
dMeNaHRsay³ Load capacity rbs;Ggát;edayQrelI gross section KW
          φt Pn = 0.90 F y Ag = 0.90(36)(7.5) = 243.0kips
Load capacity EdlQrelI net seactionRtUvkartémørbs; U .
eKminsÁal;RbEvgTwkbnSar dUcenHeKminGacKNna U BI AISC Equation B3-2 )aneT. edayeRbI
témømFüm 0.85 eKTTYl)an³
          Ae = UAg = 085(7.5) = 6.375in.2
tMNcakp©it                                   331                                          T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                      NPIC
          φt Pn = 0.75Fu Ae = 0.75(58)(6.375) = 277.3kips > 243.0kips
Yeildingrbs; gross section CasßanPaBkMNt;EdlykmksikSa dUcenH φt Pn = 243.0kips .
sRmab;EdkEkgmYy bnÞúkEdlRtUvTb;KW
          243.0
                = 121.5kips
            2
        EdlRtUvKñanwgEdk A36 KW E70 XX / ehIy
Electrode
     TMhMTwkbnSarGb,brma = 163 in. (AISC Table J2.4)
     TMhMGtibrma = 12 − 161 = 167 in. (AISC J2.2b)
sakl,g electrode E 70 fillet weld 5 / 16in. ³
     lT§PaBenAkñúgRbEvg 1in. = 0.707w(φFW )
                                         ⎛5⎞
                                  = 0.707⎜ ⎟(31.5)
                                         ⎝ 16 ⎠
                                  = 6.960kips / in.
          lT§PaBrbs; base metal rgkmøaMgkat; = t (φFBM ) = t (0.54Fy )
                                                      ⎛3⎞
                                                    = ⎜ ⎟(0.54)(36)
                                                      ⎝8⎠
                                                    = 7.29kips / in.
          edayersIusþg;rbs;TwkbnSartUcCageK dUcenHeRbIersIusþg;rbs;TwkbnSar 6.960kips / in. .
          eyagtamrUbTI 8>22. lT§PaBrbs;TwkbnSarenAxagcugrbs;EdkEkgKW
          P3 = 6.960(5) = 34.80kips
                                      ⎛5⎞
          ∑ M L2 = 121.5(3.25) − 34.80⎜ ⎟ − P1 (5) = 0
                                      ⎝2⎠
T.Chhay                                       332                             Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
          P1 = 61.58kips
          ∑ F = 121.5 − 61.58 − 34.80 − P2 = 0   /   P2 = 25.12kips
          L1 =
                 P1
                     =
                       61.58
               6.960 6.960
                             = 8.85in. yk 9in.
          L2 =
               25.12
               6.960
                     = 3.61in.yk    4in.
cemøIy³ eRbIkarpSaredUcbgðajenAkñúgrUbTI 8>23
8>5> tMNcMNakp©itedaypSar³ kmøaMgkat; nigkmøaMgTaj
          Eccentric Welded Connections: Shear and Tension
         tMNcMNakp©itCaeRcIn CaBiesskartP¢ab; beam-to-column TwkbnSarrgkmøaMgTaj nigkmøaMg
kat;. tMNEbbenHBIrRbePTRtUv)anbgðajenAkñúgrUbTI 8>24.
     Seated beam connection pSMeLIgedayEdkEkgEdlmanRbEvgxøIRtUv)aneRbICaeFñIr (shelf) edIm,I
RTFñwm. TwkbnSarEdlP¢ab;EdkEkgenHeTAssrRtUvTb;nwgm:Um:g;EdlekIteLIgedayRbtikmμcakp©it k¾dUc
direct shear Edl)anBIRbtikmμrbs;Fñwm. EdkEkgEdlP¢ab;enAxagelIrbs;søabFñwmpþl;nUv torsional
stability eTA[Fñwm Etvamin)anCYyRTRbtikmμeT. eKGacP¢ab;vaeTAnwgRTnugrbs;FñwmCMnYs[karP¢ab;
eTAnwgsøabrbs;Fñwm)an. beam-to-angle connection GacRtUv)aneFVIeLIgedaykarpSar b¤b‘ULúg ehIy
vaminRTnUvbnÞúkKNnaNaeT.
     Framed beam connection ¬manlkçN³FmμtaCageK¦ EdlmanEdkEkgbBaÄrpSarP¢ab;eTAnwg
ssr ehIyrgnUvRbePTbnÞúkdUckrNI seated beam connection. Epñkrbs;kartP¢ab; beam-to-angle
k¾CaRbePTcakp©it b:uEnþbnÞúkenAkñúgbøg;énkmøaMgkat;TTwg dUcenHvaminmankmøaMgTajeT. TaMg seated
connection nig framed connection GacRtUv)anP¢ab;edayb‘ULúg.
tMNcakp©it                                  333                                          T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
      enAkñúgRbePTnImYy²Edl)anerobrab;xagelI TWkbnSarbBaÄrenAelIsøabssrrgbnÞúkdUcbgðajenA
kñúgrUbTI 8>25. dUcKñaCamYynwgtMNedayb‘ULúgenAkñúgrUbTI 8>3 bnÞúkcakp©it P nig couple M = Pe .
kugRtaMgkmøaMgkat;KW
                 P
          fv =
                 A
     Edl A CaRkLaépÞ throat srubrbs;TwkbnSar. eKGacKNnakugRtaMgkmøaMgTajGtibrmaBI
flexure formula
              Mc
         ft =
               I
    Edl I Cam:Um:g;niclPaBeFobG½kSTIRbCMuTm¶n;rbs;RkLaépÞEdlpSMeLIgedayRkLaépÞ throat
srubrbs;TwkbnSar nig c Cacm¶ayBIG½kSTIRbCMuTm¶n;eTAcMNucq¶abMputrbs;RCugEdlrgkarTaj. eKGac
rkkugRtaMgkmøaMgpÁÜbGtibrmaedayeFVIplbUkviuTr½kMub:Usg;TaMgBIrenH enaHeK)an
          fr =       f v2 + f t2
     sRmab;xñat kips nig in. / kugRtaMgenHnwgRtUv)anKitCa kips / in 2 . RbsinebIkñúgkarKNnaenH eK
eRbITMhM throat Éktþa enaHeKGacsMEdgtémøenAHCa kips / in. . RbsinebI f r RtUv)ankMNt;BIbnÞúkem
KuN eKGaceRbobeFobvaCamYynwg design strength rbs;TwkbnSarénRbEvgÉktþa. eTAHbICaviFIKNna
RtUv)ansnμt;eFVIkarCalkçN³eGLasÞick¾eday k¾vamanlkçN³suvtßiPaBCamYynwg LRFD context Edr.
T.Chhay                                    334                             Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
]TahrN_ 8>8³ eKeRbI L6 × 4 × 1 / 2 enAkñúg seated beam connection dUcbgðajenAkñúgrUbTI 8>26.
vaRtUvRTnUvbnÞúkemKuNRbtikmμ 22kips . EdkTaMgGs;Ca A36 ehIyeKeRbI electrode E70 XX . etI
eKRtUvkarTMhMTwkbnSar fillet weld b:unμansRmab;tP¢ab;eTAnwgsøabssr?
dMeNaHRsay³ dUckñúg]TahrN_KNnaBImun/ eKeRbITMhM throat ÉktþasRmab;KNna. eTaHbICakarpSar
enHRtUvkar end return k¾eday edIm,IsRmYlkñúgkarKNna eKnwgecalvasRmab;karKNnaxageRkam.
enARKb;krNI eKGac)a:n;sμanRbEvgrbs;vaenARtg;cMNucenH edaysareKminTan;)ankMNt;TMhMTwkbnSar.
        edaysarmanKMlatBIssr 3 / 4in. FñwmRtUv)anRTeday 3.25in. elIRbEvg 4in. éneCIgrbs;
EdkEkg. RbsinebIeKsnμt;[kmøaMgRbtikmμeFVIGMeBIRtg;cMNuckNþalrbs;RbEvgEdlb:H enaHcMNak
p©iteFobnwgTwkbnSarKW
                        3.25
          e = 0.75 +         = 2.375in.
                          2
tMNcakp©it                                335                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                              NPIC
ehIym:Um:g;Kw
          M = Pe = 22(2.375) = 52.25in. − kips
sRmab;rUbragénkarpSarEdlsnμt;enAkñúgrUbTI 8>27
            2(1)(6 )3
                      = 36in.4 /
                                          6
        I=                           c = = 3in.
               12                         2
              Mc 52.25(3)
          ft =   =          = 4.354kips / in.
               I     36
              P    22
          fv = =         = 1.833kips / in.
              A 2(1)(6 )
          fr =     f t2 + f v2 =   (4.354)2 + (1.833)2   = 4.724kips / in.
eKGacrkTMhMTwkbnSarEdlcaM)ac; w eday[ f r esμIeTAnwglT§PaBTwkbnSarkñúgmYyÉktþaRbEvg
          f r = 0.707 w(φFW )
          4.724 = 0.707 w(31.5)     /       w = 0.212in.
BI AISC Table J2.4,
         TMhMTwkbnSarGb,brma = 14 in. ¬edayQrelITMhMsøabrbs;ssr 5 / 8in.
BI AISC J2.2b,
         TMhMGtibrma = 12 − 161 = 167 in.
RtYtBinitülT§PaBkmøaMgkat;TTwgrbs; base metal:
          Applied direct shear = f v = 1.833kips / in.
                                                          (
          Shear capacity of angle leg = t (φFBM ) = t 0.54 F y =   )   1
                                                                       2
                                                                         (0.54)(36)
T.Chhay                                          336                                  Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                         Department of Civil Engineering
                                                   = 9.72kips / in. > 1.833kips / in.     (OK)
cemøIy³ eRbI electrode E70 XX / fillet weld 1 / 4in. .
         eyIgecalnUv end returns enAkñúg]TahrN_ 8>8 b:uEnþeKGacbBa©ÚlvaedaykareFVIkarKNna
elIkTIBIrCamYynwg end return EdlmanRbEvgBIrdgTMhMTwkbnSarEdl)anrkeXIjenAkñúgkarKNna
elIkTImYy. ¬CMhanbENßmenHminRtUv)anGnuvtþenAkñúg]TahrN_enHeTedaysarTMhMTwkbnSarGb,-
brmaRKb;RKan;sRmab;karKNna¦. End return RtUv)anykmkniyayenAkñúg]TahrN_ 8>9.
]TahrN_ 8>9³ rUbTI 8>28 bgðajBI framed beam connection edaypSar. Edk framing angle Ca
            ehIyssrCa W12 × 72 . EdkTaMgGs;CaRbePT A36 ehIyeKeRbI electrode
L4 × 3 × 1 / 2
E70 XX edIm,IbegáIt fillet weld 3 / 8in. . kMNt;kmøaMgRbtikmμemKuNrbs;FñwmEdlkMNt;edayTwk
bnSarenAelIsøabssr.
     dMeNaHRsay³ eKsnμt;kmøaMgRbtikmμrbs;FñwmeFVIGMeBIkat;tamTIRbCMuTm¶n;rbs;TwkbnSarén framing
   . dUcenH cMNakp©itrbs;kmøaMgeFobnwgTwkbnSarenARtg;søabssrCacm¶ayBITIRbCMuTm¶n;eTAsøab
angle
ssr. sRmab;TMhM throat mYyÉktþa nigTwkbnSarEdlbgðajenAkñúgrUbTI 8>29 a
          2(2.5)(1.25)
     x=                = 0.1689in. nig e = 3 − 0.1689 = 2.831in.
          32 + 2(2.5)
tMNcakp©it                                   337                                               T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
m:Um:g;enAelITwkbnSarEdlenAelIsøabssrKW
          M = Re = R 2.831in. − kips
Edl R CaRbtikmμrbs;FñwmKitCa kips
BITMhMEdl[enAkñúgrUbTI 8>29 b/ lkçN³rbs;TwkbnSarenAelIsøabssr
                32(16)
          y=             = 15.63in.
               32 + 0.75
               1(32 )3
          I=           + 32(16 − 15.63)2 + 0.75(15.63)2 = 2918in.4
                 12
sRmab;TwkbnSarTaMgBIr
          I = 2(2918) = 5836in.4
               Mc 2.831R(15.63)
          ft =     =                = 0.007582 Rkips / in.
                I        5836
                R        R
          fv = =                 = 0.01527 Rkips / in.
                A 2(32 + 0.75)
          fr =     (0.007582R )2 + (0.01527 R )2   = 0.01705Rkips / in.
yk 0.01705R = 0.707w(φFW ) ykKNnarktémø R
                        ⎛3⎞
         0.0175R = 0.707⎜ ⎟(31.5) / R = 489.8kips
                        ⎝8⎠
RtYtBinitülT§PaBkmøaMgkat;TTwgrbs; base metal ¬kRmas;rbs;EdkEkglub¦
                         (      )
          t (φFBM ) = t 0.54 F y = 0.5(0.54 )(36 ) = 9.72kips / in.
Direct shear     RtUv)anTb;Kw
T.Chhay                                         338                       Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
           489.8
                   = 7.48kips / in. < 9.72kips / in.   (OK)
          2(32.75)
cemøIy³ kmøaMgRbtikmμFñwmemKuNGtibrma = 490kips
8>6> tMNTb;m:Um:g; (Moment-Resisting Connection)
        enARKb; beam-to-column connection nig beam-to-beam connection TaMgGs; vaEtgman
karTb;m:Um:g;xøH eTaHbICakarKNnatMNenaHCatMNsamBaØ b¤k¾tMNEdlKμanm:Um:g;k¾eday. müa:gvijeTot
eKBi)akkñúgkareFVI[man perfectly frictionless pin or hinge ehIytMNCaeRcInEdlRtUv)anKNna
CatMNEdldac;edayKμanm:Um:g;. dUcKña eKk¾Bi)akkñúgkareFVI[man perfectly rigid joint EdlGac
manlT§PaBepÞr moment capacity rbs;Ggát;mYyeTAGgát;mYyeTotEdr. dUcenH eTaHbICa framed nig
seated beam connections EdlbgðajkñúgrUbTI 8>24 k¾GacCatMNrwgxøH EdlvaGacbBa¢Únm:Um:g;tictYc
RbsinebI connecting angle man flexible RKb;RKan;. dUcEdl)ankt;cMNaMBIxagelI bnÞúkcakp©iteFob
eTAnwgb‘ULúg b¤TwkbnSarKWtUcNas; ehIyEdlCaTUeTARtUv)anecal.
        AISC Specification kMNt;kartP¢ab;enHCaBIrRbePT enAkñúg Section A2.2, “Types of
Comstruction.”
          Type FR – Fully Restrained (Rigid, or Continuous, Framing).   eRKOgbgÁúMEdlman
moment-resistingg joint GacepÞrm:Um:g;EdlGgát;GacTb;)an edaymineFVI[Ggát;enaHmanmMurgVil
enARtg;tMNenaH. RbsinebIeRKagRtUv)anKNnaCa rigid frame dUcenHtMNRtUv)anKNnaCa moment
connection.
        Type PR – Partially Restrained (semirigid Framing). eRKagRbePTenHCa eRKagEdl
RtUv)anKNnaedayQrelIkarsÁal;brimaNTb; (restraint) cenøaHrvagtMNsamBaØ nigtMNrwg. CaTUeTA
moment restraint sßitenAcenøaH 20% eTA 90% rbs; member moment capacity. bBaðacMbgrbs;
eRKagEdlmantMNRbePTenHKWTamTarnUvkarviPaKeRKagd¾saMjauMedaysarvtþmanrbs; partial joint
restraint. tRmUvkarcaM)ac; sRmab;tMNRbePTenHKWExSekag m:Um:g;-mMurgVil.
        RbsinebIeKecal partial restraint eKGaccat;TukFñwmCaFñwmTRmsamBaØEdlminman moment
restraint enARtg;tMN. Framed and seated beam connections sßitenAkñúgRbePTenH. CaTUeTAtMN
EdlepÞr member capacity ticCag 20% RtUv)ancat;TukCatMNsamBaØ.
tMNcakp©it                                     339                                       T.Chhay
mhaviTüal½ysMNg;sIuvil                                                               NPIC
TRmFñwmEdlRtUv)anKNnaenA kñúgkrNIenH eBlxøHRtUv)aneKehAfa shear connection EdlmanEt
kmøaMgRbtikmμ b¤kmøaMgkat;enAxag cugEdlRtUv)anbBa¢Ún.
         eRKagEdlman shear connection RtUv)anBRgwgenAkñúgbøg;rbs;eRKagedaysarvaKμan “frame
action”edIm,IeFVI[man lateral stability. cRmwg (bracing) TaMgenHmaneRcInTRmg; GacCa diagonal
bracing members, shear wall, or lateral support BIeRKagEdlenACab;. m:Um:g;EdlekItBIbnÞúkxag
¬CaTUeTAKW xül; nigrBa¢ÜydI¦ RtUv)anykmkKitkñúgkarKNnasRmab;kareRCIserIs beam-to-column
connections. sRmab;viFIenH eKsnμt;tMN[eFVIkarCatMNsamBaØedIm,ITb;Tl;nwgbnÞúkefr nigbnÞúk
Gefr ¬bnÞúkTMnaj gravity load¦ nigCa moment connection CamYynwglT§PaBEdlmankMNt;kñúgkar
Tb;Tl;m:Um:g;xül;. RbsinebIeKKNnaFñwmCaRbePTTRmsamBaØ m:Um:g;bnÞúkTMnajGtibrmaGac over-
estimated ehIyFñwmGac overdesigned. b:uEnþkñúgkrNICaeRcIn m:Um:g;xül;GacmantémøtUc. RbsinebI
eKeRbItMNsamBaØ Specification TamTar[eKarBnUvlkçxNÐxageRkam³
         !> eTaHbICaFñwm ¬rt¦ minRtUv)anRTedayTRmsamBaØk¾eday k¾vaRtUvEtRTbnÞúkTMnajtamEtva
             GaceFVI)an.
         @> tMN nigGgát;EdlRtUv)anP¢ab; ¬Fñwm nigssr¦ RtUvmanlT§PaBGacTb;m:Um:g;xül;)an.
         #> tMNRtUvman inelastic rotational capacity RKb;RKan;EdleRKOgP¢ab; b¤TwkbnSarnwgmin
             RtUv)an overload eRkambnSMénbnÞúkTMnaj nigbnÞúkxül;.
         enAkñúgsovePAenH eyIgBicarNaEttMNBIrRbePTKW³ tMNsamBaØ (simple connection) Edl
KNnasRmab;bnÞúkTMnaj ¬CamYynwg lateral frame stability Edlpþl;[eday positive bracing
system¦ nigtMNrwg (rigid connection) EdlKNnasRmab; moment capacity rbs;FñwmFMCag 90% .
eyIg)anBicarNa simple connection enAkñúg framed nig seated beam connections rYcehIy dUcenH
eyIgnwgRtUvkarykcitþTukdak;eTAelI rigid connectionsvijmþg.
         ]TahrN_FmμtaCaeRcInEdleRbI moment connection RtUv)anbgðajenAkñúgrUbTI 8>30. Ca
TUeTA karepÞrm:Um:g;PaKeRcInRtUv)anbBa¢ÚntamsøabFñwm ehIy moment capacity k¾RtUv)aneLIg. tMN
enAkñúgrUbTI 8>30 a bgðajBIKMnitenH. EdkbnÞHEdlP¢ab;RTnugFñwmeTAssrKWRtUv)anpSarP¢ab;eTAnwg
ssrenAeragCag nigRtUv)ancab;b‘ULúgeTAnwgFñwmenAkardæan. CamYynwgkarerobcMEbbenH FñwmRtUv)an
Gacdak;enAelITItaMgy:agRsYleday[søabGacRtUv)anpSarP¢ab;eTAnwgssrenAkardæan. Plate
connection RtUv)anKNnaedIm,ITb;Tl;EtkmøaMgkat; nigTTYlRbtikmμrbs;Fñwm. Complete penetra-
T.Chhay                                  340                           Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
tion groove welds    P¢ab;søabFñwmeTAssr nigGacepÞrm:Um:g;esμInwg moment capacity rbs;søabFñwm.
vanwgrYmKñaCamYy moment capacity rbs;FñwmPaKeRcIn b:uEnþbrimaNrbs;karTb;RtUv)anpþl;[ eday
plate connection. ¬edaysar strain harderning full plastic moment capacity rbs;FñwmGac
RtUv)anbegáIteLIgtamry³søab¦. kareFVIkartP¢ab;søabTamTarfaEpñkd¾tUcrbs;RTnugFñwmRtUv)andk
ecjehIy “backing bar” RtUv)aneRbIenAelI søabmYyedIm,IGnuBaØat[karpSarTaMgGs;eFVIeLIgBIelI.
enAeBlEdlkarpSarBIxagelIRtCak; vanwgrYjCaTUeTARbEhl 1 / 8in. . bMlas;TItamTisbeNþayEdl
TTYl)anRtUv)anykmkKitsRmab;eRbIR)as; slotted bolt hole nigedayrwtbNþwgb‘ULúgeRkayeBlTwk
bnSarRtUv)anRtCak;. tMNRbePTenH eRbI column stiffenders EdlminRtUvkarCaTUeTAeT ¬emIlEpñk
8>7¦.
         Moment connection rbs;rUbTI 8>30 a k¾RtUv)anbgðaj recommended connection design
practice: RKb;eBlTaMgGs; karpSarKYrEtRtUv)aneFVIenAkñúgeragCag ehIykarcab;b‘ULúgKYreFVIenAkardæan.
karpSarenAeragCagmantémøefakCag niggayRsYlkñúgkarRtYtBinitü.
         sRmab; beam-to-column moment connections Ggát;CaEpñkrbs; plane frame ehIyRtUv)an
dak;dUcbgðajenAkñúgrUbTI 8>30 a EdlRTnugenAkñúgbøg;rbs;eRKagEdlkarBt;rbs;Ggát;nimYy²eFobeTA
nwgG½kSemrbs;va. enAeBlEdlFñwmRtUv)anP¢ab;eTAnwgRTnugrbs;ssrCaCagsøabrbs;ssr ¬Ca-
]TahrN_ enAkñúgeRKaglMhr¦ eKeRbItMNdUcEdlbgðajenAkñúgrUbTI 8>30 b. tMNenHRsedogKñaeTA
nwgGVIEdlbgðajenAkñúgrUbTI 8>30 a b:uEnþTamTarnUvkareRbI column stiffener edIm,IeFVIkartP¢ab;eTAnwg
søabFñwm.
         eTaHbICatMNEdlbgðajenAkñúgrUbTI 8>30 a CatMNsamBaØk¾eday k¾kartMeLIgrbs;faTamTar
nUvkRmitGt;»ntUcEdr. RbsinebIFñwmtUcCagkarrMBwgTukcenøaHrvagssr nigsøabFñwmGacbgáPaBlM)ak
kñúgkarpSar enAeBlxøHeKeRbI backing bar. Three-plate connection EdlbgðajenAkñúgrUbTI 8>30 c
minman handicap eT ehIyvamanGtßRbeyaCn_bEnßmEdlRtUv)anP¢ab;edayb‘ULúgy:agl¥enAkardæan.
Flange plate nig web plate RtUv)anpSarenAkñúgeragCageTAnwgsøabssr nigcab;b‘ULúgeTAFñwmRtUv)an
eFVIenAkardæan. edIm,Ipþl;[sRmab;karERbRbYlenAkñúgkm<s;Fñwm cm¶ayrvag flange plates RtUv)aneFVI
eLIgFMCagkm<s;Fmμtarbs;Fñwm b:uEnþRbEhl 3 / 8in. . KMlatenHRtUv)anbMeBjenAsøabxagelIkñúgeBl
dMeLIgCamYy shims/ Edl thin strip rbs;EdkedayRtUv)aneRbIsRmab;EktRmUvkarP¢ab;enARtg;tMN.
Shim GacCaRbePTmYykñúgcMeNamBIrRbePTKW conventional shim nig finger shim EdlGacs‘k
tMNcakp©it                                  341                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
eRkayeBlb‘ULúgRtUv)anP¢ab; dUcbgðajenAkñúgrUbTI 8>30 d. enAkñúgtMbn;EdlmantMbn;rBa¢ÜyFM tMN
EdlbgðajenAkñúgrUbTI 8>30 a RtUvkarkarKNnaBiess (FEMA, 1995).
       ]TahrN_ 8>10 bgðajBIkarKNnarbs; three-plate moment connect edayrYmbBa©ÚlTaMg
tRmUvkarsRmab;kartP¢ab;Ggát; Edlmanerobrab;eday AISC J5.
]TahrN_ 8>10³ KNna three-plate moment connection rbs;RbePTEdl)anbgðajrUbTI 8>31
sRmab;kartP¢ab;Fñwm W 21× 50 eTAsøabrbs;ssr W 14 × 99 . snμt;Fñwm set-back 1 / 2in. . karviPaK
eRKagbgðajfatMNRtUvEtepÞrm:Um:g;bnÞúkemKuN 210 ft. − kips nigkmøaMgkat;emKuN 33kips . RKb;bnÞH
EdkEdlpSareTAnwgssrCamYynwg electrode E70 XX nigkarP¢ab;b‘ULúgeTAFñwmCamYynwg bearing-
type bolts A325 . EdkTaMgGs;CaRbePTEdk A36 .
dMeNaHRsay³ sRmab; web plate ¬edayecalcMNakp©it¦ sakl,gb‘ULúgGgát;p©it 3 / 4in. . snμt;fa
eFμjsßitenAkñúgbøg;kmøaMgkat;. lT§PaBkmøaMgkat;TTwgrbs;b‘ULúgKW
          φFv Ab = 0.75(48)(0.4418) = 15.90kips
          cMnYnb‘ULúgEdlRtUvkar = 1533.90 = 2.08
T.Chhay                                        342                        Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                            Department of Civil Engineering
sakl,gb‘ULúg 3 RKab; nigkMNt;kRmas;bnÞHEdlTamTarsRmab; bearing. eRbIKMlat nigcm¶ay
eTARCugEKmenAkñúgrUbTI 8>32 a ehIyGgát;p©itrn§KW
                      1 3 1 13
          h=d+         = +  = in.
                     16 4 16 16
sRmab;RbehagEdlenAEk,rRCugEKmbMput
                   h         13 / 16
          Lc = Le −  = 1.5 −         = 1.094in.
                   2           2
                ⎛3⎞
          2d = 2⎜ ⎟ = 1.5in.
                ⎝4⎠
edaysar Lc < 2d / bearing strength KW
          φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.094)t (58) = 57.11tkips / bolt
sRmab;RbehagdéT
                                 13
          Lc = s − h = 3 −          = 2.188in. > 2d
                                 16
tMNcakp©it                                            343                                         T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                           NPIC
dUcenH φRn = φ (2.4dtFu ) = 0.75(2.4)⎛⎜⎝ 34 ⎞⎟⎠t (58) = 78.03tkips / bolt
edIm,IrkkRmas;EdlRtUvkardak; total bearing strength esμInwg applied load:
         57.11t + 2(78.30t ) = 33       b¤ t = 0.154in.
sRmab;RTnugFñwm (beam web) t w = 0.380in. > 0.154in.
edIm,IkMNt;kRmas;bnÞHEdkEdlRtUvkarsRmab;kmøaMgkat; cUrBicarNamuxkat;bBaÄrkat;tambnÞHEdk. BI
AISC J5, “Connecting Elements,”
                         [
      φRn = 0.90 0.60 Ag F y         ]                                       (AISC Equation J5-3)
          33 = 0.90[0.60(9t )(36 )]
          t = 0.189in.       ¬lub¦
dUcenHyk t = 1 / 4in.
sRmab;kartP¢ab; shear plate eTAnwgsøabssr TMhM fillet weld Gb,brmaKW 1 / 4in. . ¬edayQrelI
EpñkEdlRtUvP¢ab;EdlmankRmas;Rkas;Cag TMhM fillet weld Gb,brmaKW 5 / 16in. b:uEnþvaminRtUvkarFM
CagkRmas;rbs;EpñkEdlRtUvP¢ab;EdlesþIgCageT¦. enaH
       lT§PaBkñúgmYyÉktþaRbEvg = 0.707w(φFW ) = 0.707⎛⎜⎝ 14 ⎞⎟⎠(31.5)
                                         = 5.568kips / in.
lT§PaBkmøaMgkat;TTwgrbs; base metal KW
                         (
          tφFBM = t 0.54 F y =  )    1
                                     4
                                       (0.54)(36) = 4.86kips / in.   ¬lub¦
dUcenHRbEvgEdlcaM)ac;rbs; fillet weld 1 / 4in. KW
           33
               = 6.79in.
          4.86
karpSarCab;KñaenAelIRCugmçagrbs;bnÞHGacRKb;RKan; b:uEnþCaTUeTAeKRtUvpSarsgxag ehIyRtUv)anGnuvtþ
enATIenH.
        TTwgGb,brmarbs;bnÞHEdkGacRtUv)ankMNt;BIkarBicarNacm¶ayeTARCugEKm. bnÞúkEdlRtUv
)anRT ¬RbtikmμFñwm¦ KWmanTisbBaÄr dUcenHcm¶ayeTARCugEKmcaM)ac;eKarBtamtRmUvkarrbs; AISC
Table J3.4. RbsinebIeyIgsnμt;RCugEKmCa sheared edge cm¶ayeTARCugEKmGb,brmaKW 1 1 4 in. .
        CamYynwg beam setback 1 / 2in. nigcm¶ayeTARCugEKm 1 1 2 in. dUcEdl)anbgðajenAkñúgrUbTI
8>32 b TTwgrbs;bnÞHEdkKW
T.Chhay                                            344                             Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                             Department of Civil Engineering
          0.5 + 2(1.5) = 3.5in.ykbnÞHEdkTMhM 3 12 × 1 4
sRmab; flange plates, rkkmøaMgRtg;épÞb:HrvagsøabFñwm nigbnÞHEdk. BIrUbTI 8>33
          M = Hd      nig H = Md = 210      (12) = 121.0kips
                                          20.83
sakl,gb‘ULúg A325 Ggát;p©it 3 / 4in. . ¬edaysarb‘ULúgGgát;p©it 3 / 4in. RtUv)aneRCIserIssRmab;
shear connection dUcenHeyIgsakl,gTMhMb‘ULúgdUcKña¦. RbsinebIkmøaMgkat;TTwgb‘ULúglub cMnYnb‘U
LúgEdlRtUvkarKW
                      1 3 1 13
          h=d+         = +  = in.
                     16 4 16 16
sRmab;RbehagEdlenAEk,rRCugEKmCageK
                         h         13 / 16
          Lc = Le −        = 1.5 −         = 1.094in.
                         2           2
          2d = 2(3 / 4 ) = 1.5in.
edaysar Lc < 2d / bearing strength KW
          φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.094 )t (58) = 57.11tkips / bolt
sRmab;RbehagepSgeTot
                          13
          Lc = s − h = 3 −    = 2.188in. > 2d
                          16
                                        ⎛3⎞
dUcenH    φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟t (58) = 78.30tkips / bolt
                                        ⎝4⎠
edIm,IrkkRmas;EdlRtUvkar dak; total bearing strength [esμI applied load:
         2(57.11t ) + 6(78.30t ) = 121.0 b¤    t = 0.207in.
Flange plate TaMgBIrnwgRtUv)anKNnaCa tension connecting elements.
¬ebIeTaHbICabnÞHEdkmYyrgkmøaMgsgát;k¾eday kartP¢ab;lMGitecalnUvbBaðasißrPaBTaMgGs;¦.
tMNcakp©it                                        345                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                            NPIC
eKnwgkMNt;muxkat;Gb,brmaEdlRtUvkarsRmab;kugRtaMgTajenAelI gross nig net area. BI AISC
Equation J5-1,
          φRn = 0.90(Ag F y )
          Ag   EdlRtUvkar = 0.φ90RnF       =
                                                  H
                                                       =
                                                         121.0
                                               0.90 F y 0.90(36)
                                                                 = 3.735in.2
                                       y
BI AISC Equation J5-2,
          φRn = 0.75 An Fu
          EdlRtUvkar = 0.φ75RnF = 0.75HF = 0121
          An
                                             .75 (
                                                  .0
                                                  58 )
                                                       = 0.782in.2
                               u        u
sakl,gTTwgrbs;bnÞHEdk wg = 6.5in. ¬esμIeTAnwgTTwgsøabrbs;Fñwm¦. kMNt;kRmas;caM)ac;edIm,I
bMeBjtRmUvkar requirement.
       Ag = 6.5t = 3.735in.2 b¤     t = 0.575in.
KNnakRmas;EdlcaM)ac;edIm,IbMeBjtRmUvkar net area
                         (               ⎡
                                           )     ⎛ 7 ⎞⎤
          An = twn = t wg − ∑ d hole = t ⎢6.5 − 2⎜ ⎟⎥ = 4.750t
                                         ⎣       ⎝ 8 ⎠⎦
yk 4.750t = 2.782in.2 b¤ t = 0.586in. ¬lub¦
kRmas;k¾RtUvFMCagGVIEdlTamTarsRmab; bearing dUcenHvaRtUvCakRmas;Gb,brmaEdlGacTTYlyk
)an. sakl,gbnÞH 6 1 2 × 5 8 . bnÞHenHCa tension connecting element dUcenH net area rbs;vamin
GacelIsBI 0.85 Ag enAkñúgkarKNna (AISC J5.2):
              5⎡       ⎛ 7 ⎞⎤
          An = ⎢6.5 − 2⎜ ⎟⎥ = 2.969in.2
              8⎣       ⎝ 8 ⎠⎦
          0.85 Ag = 0.85(0.625)(6.5) = 3.453in.2 > 2.969in.2         (OK)
ykbnÞH 6 1 2 × 5 8
Epñkrbs;RkLaépÞsøabrbs;FñwmnwgRtUv)an)at;bg;edaysarRbehagrbs;b‘ULúg nig moment capacity
RtUv)ankat;bnßy. AISC B10 GnuBaØatkarkat;bnßyenHedIm,I[ecalenAeBl
          0.75Fu A fn ≥ 0.90 F y A fg                                          (AISC Equation B10-1)
Edl       A fg = gross flange area
               = b f ⋅ t f = 6.530(0.535) = 3.494in.2
          A fn = net flange area
T.Chhay                                              346                            Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                                        Department of Civil Engineering
                        (            )     ⎡         ⎛ 7 ⎞⎤
                  = t f b f − ∑ d h = 0.535⎢6.530 − 2⎜ ⎟⎥ = 2.557in.2
                                           ⎣         ⎝ 8 ⎠⎦
edayeRbI AISC Equation B10-1 eyIgTTYl)an
            0.75Fu A fn = 0.75(58)(2.557 ) = 111.2kips
            0.9 F y A fg = 0.9(36)(3.494) = 113.2kips > 111.2kips
edaysar AISC Equation B10-1 minRKb;RKan; flexural KYrRtUvQrelIRkLaépÞsøabRbsiT§PaB
(effective flange area)
                5 Fu
         A fe =      A fn
                6 Fy
                  5 ⎛ 58 ⎞
                 = ⎜ ⎟(2.557 ) = 3.433in.2                                               (AISC Equation B10-3)
                  6 ⎝ 36 ⎠
RkLaépÞenHminxusKñay:agxøaMgBI actual gross flange are 3.494in.2 dUcenH flexural strength eday
minRtUvEkERb.
cemøIy³ eRbItMNEdlbgðajenAkñúgrUbTI 8>34 ¬tRmUvkar column stiffener nwgRtUv)anBicarNaenAkñúg
Epñk 8>7¦*
*
    rUbTI 8>34 k¾bgðajBInimitþsBaØasMrab; bevel groove weld, edayeRbIenATIenHsMrab; beam flange plate-to-column connection
tMNcakp©it                                               347                                                      T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
8>7>      Column Stiffeners and other Reinforcement
          m:Um:g;PaKeRcInEdl)anepÞrBIFñwmeTAssrenAkñúgtMNrwgmanTRmg;Ca couple EdlpSMeLIgeday
kmøaMgTaj nigkmøaMgsgát;EdlmanenAkñúgsøabrbs;Fñwm. karGnuvtþn_kmøaMgcMNucEdlmantémøFMGac
TamTarkarBRgwgssr. sRmab;m:Um:g;GviC¢manEdldUckrNICamYybnÞúkTMnaj kmøaMgTaMgenHmanTisedA
dUcbgðajenAkñúgrUbTI 8>35 CamYynwgsøabxagelIbMputrbs;FñwmEdlbBa¢ÚnkmøaMgTajeTAssr ehIy
søabxageRkamEdlbBa¢ÚnkmøaMgsgát;.
          kmøaMgTaMgBIrRtUvbBa¢ÚneTARTnugssrCamYynwgkmøaMgsgát;EdlmaneRKaHfñak;Cagedaysar
stability problem. kmøaMgTajenAxagelIGacrMxansøabssr ¬rUbTI 8>35 c¦ EdlbegáItbnÞúkbEnßm
eTAelIkartP¢ab;edaypSarénsøabssreTAsøabFñwm. RbePTeRKOgBRgwg (stiffener) Edl)anbgðaj
)anBRgwgsøabssr. dUc)aneXIjy:agc,as; stiffener RtUv)anpSarP¢ab;eTAnwgRTnug nigsøab. Rbsin
ebIm:Um:g;EdlGnuvtþminpøas;bþÚrTisedA stiffener EdlTb;Tl;nwgkmøaMgsgát; ¬stiffener xageRkam¦ min
RtUvkarkarpSareT.
AISC Specification Requirements
        tRmUvkarrbs; AISC sRmab;karBRgwgRTnugssrRtUv)anerobrab;enAkñúg Chapter K, “strength
Design Considerations.”. sRmab;EpñkCaeRcIn karpþl;[enHQrenAelIkarviPaKedayRTwsþIEdlRtUv
)anEkERbedIm,I[RtUvnwglT§plrbs;karBiesaF. RbsinebIbnÞúkemKuNGnuvtþn_EdlRtUv)anepÞreday
søabFñwm b¤ flange plate FMCag design strength φRn sRmab;RKb;sßanPaBkMNt;Edl)anBicarNaTaMg
Gs; enaHeKRtUvEteRbI stiffener.
        edIm,IeCosvag local bending failure rbs;søabssr kmøaMgTajBIsøabFñwmdac;xatminRtUv
FMCag
                   (
          φRn = φ 6.25t 2f Fyf   )                                    (AISC Equation K1-1)
Edl       φ = 0.90
          tf = kRmas;rbs;søabssr
          F yf = yield stress rbs;søabssr
          sRmab;sßanPaBkMNt;rbs; local web yielding rgkugRtaMgsgát;
T.Chhay                                    348                              Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                                         Department of Civil Engineering
                     [
          φRn = φ (5k + N )F ywt w           ]                                              (AISC Equaton K1-2)
b¤ enAeBlEdlbnÞúkRtUv)anGnuvtþedaycm¶ayBIcugrbs;Ggát;EdlesμIkm<s;rbs;Ggát;
        φRn = φ [(2.5k + N )Fywt w ]                                  (AISC Equation K1-3)
Edl φ = 1.0
        k = cm¶ayBIépÞsøabxageRkArbs;ssreTAeCIgrbs; fillet EdlenAelIRTnug
         N = RbEvgrbs;bnÞúkGnuvtþn_ = kRmas;rbs;søabFñwm b¤ flange plate
         F yw = yield stress rbs;RTnugssr
        t w = kRmas;rbs;RTnugssr
eyIgk¾eRbI AISC Eqution K1-2 nig K1-3 in Section 5.13 edIm,IGegát web yielding enAkñúgFñwmEdl
rgbnÞúkcMcMNuc.
        edIm,IkarBar web crippling enAeBlEdlbnÞúksgát;RtUv)anbBa¢ÚneTAEtsøabmYy dUckñúgkrNI
ssrxageRkAEdlmanP¢ab;CamYyFñwmEtmçag enaHbnÞúkGnuvtþn_minRtUvFMCag design strength Edl[
daysmIkarmYykñúgcMeNamsmIkarxageRkam. ¬eyIgk¾Føab;)anerobrab;BI web crippling enAkñúg web
crippling enAkñúgEpñkTI 5>13¦ enAeBlEdlbnÞúkRtUv)anGnuvtþenAcm¶ayy:agtic d / 2 BIcugrbs;ssr
                                ⎡                      1.5 ⎤
                               ⎛N          ⎞⎛⎜ t w ⎞⎟      ⎥ F ywt f
          φRn = φ135t w2 ⎢1 + 3⎜           ⎟                                                (AISC Equation K1-4)
                         ⎢             ⎝ d ⎠⎜⎝ t f ⎟⎠      ⎥   tw
                                ⎢⎣                         ⎥⎦
Edl       φ = 0.75
          d=km<s;srubrbs;ssr
RbsinebIbnÞúkRtUv)anGnuvtþenAcugrbs;ssr
                           ⎡                       1.5 ⎤
                               ⎛N         ⎞⎛⎜ t w ⎞⎟     ⎥ Fywt f
          φRn = φ 68t w2 ⎢1 + 3⎜
                         ⎢
                                          ⎟
                                      ⎝ d ⎠⎜⎝ t f ⎟⎠     ⎥  tw
                                                                          sRmab;   N
                                                                                   d
                                                                                     ≤ 0.2
                           ⎣⎢                            ⎦⎥
                                                                                             (AISC Equation K1-5b)
                           ⎡                                   1.5 ⎤
                                     ⎛ N       ⎞⎛ t ⎞             ⎥ F ywt f
b¤        φRn = φ 68t w2 ⎢1 + ⎜ 4
                           ⎢         ⎝ d
                                         − 0.2 ⎟⎜ w ⎟
                                               ⎠⎜⎝ t f ⎟⎠         ⎥   tw
                                                                                   sRmab;   N
                                                                                            d
                                                                                              > 0.2
                           ⎢⎣                                     ⎥⎦
                                                                                              (AISC Equation K1-5b)
tMNcakp©it                                                      349                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
        kmøaMgsgát; backling rbs;RTnugRtUv)anGegátenAeBlEdlbnÞúkRtUv)anbBa¢ÚneTAsøabssr
TaMgBIr. bnÞúkEbbenHnwgekItmanenAssrxagkñμúgCamYynwgFñwmEdlP¢ab;eTAssrTaMgsgxag. Design
strength sRmab;sßanPaBkMNt;enHKW
                  ⎡ 4100t w
                          3
                            F yw ⎤
          φRn = φ ⎢              ⎥                                 (AISC Equation K1-8)
                  ⎢       h      ⎥
                  ⎣              ⎦
Edl       φ = 0.90
          h= km<s;RTnugssrBIeCIgrbs; fillet eTAeCIgrbs; fillet ¬rUbTI 8>36¦
         RbsinebIkartP¢ab;enAEk,rcugrbs;ssr ¬EdlRbsinebIbnÞúkRtUv)anGnuvtþenAcm¶ay d / 2 BI
cug¦ ersIsþg;Edl[eday AISC Equation K1-8 KYrRtUv)ankat;bnßyBak;kNþal.
         niyayedaysegçb edIm,IGegátPaBcaM)ac;sRmab; column stiffener eKRtUvRtYtBinitüsßanPaBkM
Nt;bIdUcxageRkam³
         !> Local flang bending (AISC Equation K1-1)
         @> Loacl web yielding (AISC Equation K1-2 or K1-3)
         #> Web crippling b¤kmøaMgsgát; buckling rbs;RTnug. ¬RbsinebIkmøaMgsgát;RtUv)anGnuvtþ
eTAelIsøabEtmYy eKRtUvRtYtBinitü web crippling [AISC Equation K1-4 b¤ K1-5]. RbsinebIkmøaMg
sgát;RtUv)anGnuvtþeTAelIsøabTaMgBIr eKRtUvRtYtBinitü compressive buckling rbs;RTnug [AISC
Equation K1-8]¦.
T.Chhay                                   350                             Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                             Department of Civil Engineering
        RbsinebI stiffener EdlRtUvkareday AISC Equation K1-2 sRmab; local web yielding,
eKGacrkRkLaépÞmuxkat;EdlRtUvkarsRmab; stiffener dUcxageRkam. snμt;faeKGacTTYl)an design
strength bEnßmBIRkLaépÞrbs; stiffener Ast Edl yield. dUcenHBI AISC Equation K1-2.
        φRn = φ [(5k + N )F ywt w + Ast Fyst ]
Edl Fyst Ca yield stress rbs; stiffener. dak;[GgÁxagsþaMrbs;smIkarenHesμInwgbnÞúkGnuvtþn_Edl
smÁal;eday Pbf nigedaHRsaysRmab; Ast eKTTYl)an
                     Pbf / φ − (5k + N )Fywt w
          Ast =
                                 F yst
                       Pbf − (5k + tb )Fywt w
                 =
                                 Fyst
                                                                                              ¬*>^¦
Edl φ = 1.0 nig tb KWkRmas;rbs;søabssr b¤ flange plate. smIkar 8>6 k¾GacRtUv)aneRbIedIm,IRtYt
Binitü local buckling yielding strength rbs;ssr. edaHRsayrk Ast RbsinebITTYl)anlT§pl
GviC¢man eKnwgminRtUvkar stiffener sRmab;sßanPaBenHeT.
        RbsinebIeKRtUvkar stifferner AISC K1-9 [nUvTMhMsmamaRtrbs;vadUcxageRkam³
            TTwgrbs; stiffener bUknwgkRmas;Bak;kNþalrbs;RTnugssrRtUvFMCagb¤esμInwgmYyPaKbIén
             z
            TTwgrbs;søabFñwm b¤ flange plate EdlbBa¢ÚnkmøaMgeTAssr b¤BIrUbTI 8>37
                t
             b+ w ≥ b
                 2
                      b
                       3
                                dUcenH      b
                                        b≥ b − w
                                             3
                                                t
                                                 2
            kRmas;rbs; stiffener dac;xatRtUvEtFMCagb¤esμInwgBak;kNþalkRmas;rbs;søabFñwm b¤
             z
            flange plate b¤
                       t
                 t st ≥ b
                        2
             z   pleFobTTwgelIkRmas;RtUvEt
                 t
                   b
                     ≤
                       250
                        F
                                ¬xñat IS¦          t st
                                                       b
                                                           ≤
                                                               95
                                                               Fy
                                                                    ¬xñat US¦
                  st         y
       eKRtUvkar Full-depth stiffener sRmab;krNI compression buckling b:uEnþeKGnuBaØat[eRbI
half-depth stiffener sRmab;sßanPaBkMNt;epSgeTot. dUcenHeKRtUvkar full-depth stiffener EtenA
eBlEdlFñwmRtUv)anP¢ab;eTAnwgssrTaMgsgxag.
tMNcakp©it                                       351                                               T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
                 sRmab;RKb;sßanPaBkMNt;TaMgGs; karsMerckñúgkarpSar stiffener P¢ab;eTAsøabKWQr
elIlkçxNÐxageRkam³
     z   enAelIxagEdlrgkmøaMgTaj eKRtUvpSar stiffener P¢ab;eTAnwgRTnug nigsøab.
     z   enAelIxagEdlrgkmøaMgsgát; stiffener RKan;EtRtUvkardak;EGbnwgsøabEtb:ueNÑaH EteKk¾Gac
         pSarvaP¢ab;eTAnwgsøab.
        Part 3 of the Manual, “Column Design,” mantémøefrEdlRtUv)anerobCataragEdlGaceFVI
karkMNt;karcaM)ac;sRmab; stiffener. kareRbIR)as;rbs;vaRtUv)anbgðajenAkñúg]TahrN_EdlmanenA
kñúg “General Notes” EtminRtUv)anbgðajenATIenHeT.
kmøaMgkat;enAkñúgRTnugssr        Shear in the Column Web
        karepÞrm:Um:g;EdlmantémøFMeTAssrGacbegáItkugRtaMgkmøaMgkat;FMenAkñúgRTnugssrenAkñúgRBM
Ednrbs;tMN. ]TahrN_ tMbn; ABCD enAkñúgrUbTI 8>38. eBlxøH eKehAtMbn;enHCa panel zone.
Net moment RtUv)anKit dUcenHRbsinebIFñwmRtUv)antP¢ab;eTARCugTaMgsgxagrbs;ssr plbUkBiC-
KNiténm:Um:g;begáIt web shear enH.
RbsinebIkmøaMgsøabFñwmRtUv)ansnμt;[eFVIGMeBIenAcm¶ay 0.95db BIKña Edl db Cakm<s;Fñwm enaHkmøaMg
søabnImYy²GacRtUv)anykCa
                M1 + M 2
          H=
                 0.95d b
         RbsinebIkmøaMgkat;ssrenAEk,r panel Ca Vu ehIymanTisedAdUcbgðaj kmøaMgkat;TTwgsrub
enAkñúg panel KW
                        M + M2
          P = H − Vu = 1
                         0.95d
                                − Vu                                            ¬*>&¦
                             b
T.Chhay                                     352                             Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
                           RtUv)an[enAkñúg AISC K1.7 Ca φRv Edl φ = 0.90 ehIy Rv Ca
          Web shear strength
GnuKmn_ eTAnwgbnÞúktamG½kSenAkñúgssr. enAeBlEdl Pu ≤ 0.4Py
          Rv = 0.60 F y d c t w                                    (AISC Equation K1-9)
enAeBlEdl Pu > 0.4Py /
                                ⎡      ⎛P     ⎞⎤
          Rv = 0.60 F y d c t w ⎢1.4 − ⎜ u    ⎟⎥                   (ASIC Equation K1-10)
                                ⎢⎣     ⎜ Py   ⎟⎥
                                       ⎝      ⎠⎦
Edl       Pu =  bnÞúktamG½kSenAkñúgssr
          Py = axial yield strength rbs;ssr = AF y
          A = RkLaépÞmuxkat;rbs;ssr edayrYmbBa©ÚlTaMgeRKOgBRgwg ¬]TahrN_/ doubler plates¦
          d c = TMhMssrtamTisFñwmsrub
          t w = kRmas;RTnugssr edayrYmbBa©ÚlTaMgbnÞHEdkEdlBRgwg
          F y = yield stress rbs;RTnugssr
        RbsinebIRTnugssrman shear strength minRKb;RKan; eKRtUvBRgwgva. eKGaceRbI double plate
EdlmankRmas;RKb;RKan;edIm,IpSarP¢ab;eTAnwgRTnug b¤ diagonal stiffener mYyKUr. kñúgkarGnuvtþeK
eRcIneRbI stiffener Cag.
tMNcakp©it                                         353                                   T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                         NPIC
                  k¾)anpþl;nUvsmIkaredIm,IenAeBlEdleKBicarNaBI frame stabality EdlrYmbBa©Úl
          AISC K1.7
TaMgkMhUcRTg;RTayrbs; panel zone. vaminRtUv)anerobrab;enATIenHeT.
]TahrN_ 8>11³ kMNt;faetItMNén]TahrN_ 8>10 RtUvkar stiffener b¤k¾ column web reinforce-
ment. snμt;fa Vu = 0 nig Pu / Py = 0.4 .
dMeNaHRsay³ BI]TahrN_ 8>10 flange force RtUv)anykesμInwg
          Pbf = H = 121.0kips
RtYtBinitü local flange bending CamYynwg AISC Equation K1-1:
                   (
          φRn = φ 6.25t 2f Fyf    )
                         [                    ]
               = 0.90 6.25(0.780)2 (36) = 123kips > 121kips        (OK)
RtYtBinitü local web yielding CamYynwg AISC Equation K1-2:
         φRn = φ [(5k + N )F ywt w ]
                     ⎡          5⎤
               = 1.0 ⎢5(1.438) + ⎥ (36)(0.485) = 136kips > 121kips        (OK)
                     ⎣          8⎦
RtYtBinitü web crippling CamYynwg AISC Equation K1-4:
                             ⎡                    1.5 ⎤
                               ⎛N     ⎞⎛⎜ t w ⎞⎟     ⎥ F ywt f
          φRn = φ135t w2 ⎢1 + 3⎜      ⎟
                         ⎢        ⎝ d ⎠⎜⎝ t f ⎟⎠     ⎥   tw
                             ⎣⎢                      ⎦⎥
                                   ⎡    ⎛ 5 / 8 ⎞⎛ 0.485 ⎞ ⎤ 36(0.780 )
                                                          1.5
               = 0.75(135)(0.485) ⎢1 + 3⎜
                                       2
                                                ⎟⎜       ⎟ ⎥
                                   ⎢⎣   ⎝ 14.16 ⎠⎝ 0.780 ⎠ ⎥⎦  0.485
               = 193kips > 121kips      (OK)
cemøIy³ eKminRtUvkar column stiffener eT.
        sRmab;kmøaMgkat;TTwgeNAkñúgRTnugssr BIsmIkar *>& nigedayecalkRmas;rbs; shim enA
kñúgkarKNnark db kmøaMgkat;TTwgemKuNenAkñúg column web panel zone KW
          P=
               (M 1 + M 2 ) − V
                                  u
                0.95d b
                     210(12)
             =                        − 0 = 120kips
               0.95[20.83 + 2(5 / 8)]
edaysar Pu = 0.4Py eRbI AISC Equation K1-9:
          Rv = 0.60 F y d c t w = 0.60(36 )(14.16 )(0.485) = 148.3kips
T.Chhay                                                   354                    Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                                Department of Civil Engineering
Design strength       KW
          φRv = 0.90(148.3) = 134kips > 120kips                        (OK)
cemøIy³ eKminRtUvkar column web reinforcement eT.
]TarhrN_ 8>12³ rUbTI 8>39 bgðajBI beam-to-column connection EdlepÞrm:Um:g;emKuN
142 ft − kips. m:Um:g;enHekIteLIgedaysarbnÞúkTMnagefr nigGefr. eKeRbIEdkRbePT A36 nig
electrode E 70 . cUreFVIkarGegát colum stiffener nigtRmUvkar web panel-zone reinforcement.
snμt;fa Vu = 0 nig Pu < 0.4Py .
dMeNaHRsay³ flange force KW
                       M        142(12)
          Pbf =             =              = 98.07kips
                    d b − tb 17.90 − 0.525
edIm,IRtYtBinitü flange bending eKeRbI AISC Equation K1-1:
                     (
          φRn = φ 6.25t 2f F yf          )
                           [                         ]
                = 0.90 6.25(0.560)2 (36) = 63.50kips < 98.07kips                (N.G.)
dUcenH eKRtUvkar stiffener edIm,IkarBar loacla flange bending.
edIm,IRtYtBinitü local web yielding eKeRbIsmIkar 8>6 CMnYs[kareRbI AISC Equation K1-2:
                    Pbf − (5k + tb )F ywt w
          Ast =
                                 F yst
                    98.07 − [5(1.062) + 0.525](36)(0.36)
                =                                        = 0.6236in.2
                                    36
edaysar Ast viC¢man dUcenHeKRtUvkar stiffener mYyKUrEdlman combined cross-sectional area
y:agtic 0.623in.2 .
RtYtBinitü web crippling strength edayeRbI AISC Equation K1-4:
                               ⎡                         1.5 ⎤
                               ⎛N            ⎞⎛⎜ t w ⎞⎟     ⎥ Fywt f
          φRn = φ135t w2 ⎢1 + 3⎜             ⎟
                         ⎢               ⎝ d ⎠⎜⎝ t f ⎟⎠     ⎥  tw
                               ⎣⎢                           ⎦⎥
                                   ⎡     ⎛ 0.525 ⎞⎛ 0.360 ⎞ ⎤ 36(0.560)
                = 0.75(135)(0.36)2 ⎢1 + 3⎜       ⎟⎜       ⎟1.5⎥
                                   ⎣     ⎝ 8.25 ⎠⎝ 0.560 ⎠ ⎦    0.360
                = 107.9kips > 98.07kips (OK)
     eKeRCIserIsTMhM stiffener edayQrelIlkçxNÐEdlpþl;[eday AISC Section K1-9,
ehIybnÞab;mkeKRtUvRtYtBinitüRkLaépÞmuxkat;EdlTTYl)an.
tMNcakp©it                                                       355                                  T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                       NPIC
          TTwgGb,brmaKW
               bf t    6.015 0.360
          b≥     − w =      −      = 1.825in.
               3   2     3     2
          RbsinebIeKminGnuBaØat[bnøay stiffener eTAhYsRCugrbs;søabssr TTwgGtibrmaKW
                         8.07 − 0.360
                    b≤                = 3.855in.
                               2
          kRmas;Gb,brmaKW
                    tb 0.525
                       =     = 0.2625in.
                     2   2
          sakl,g 3× 5 /16 ³
                           ⎛5⎞
                    Ast = 3⎜ ⎟ × 2stiffeners = 1.875in.2 > 0.6236in 2   (OK)
                           ⎝ 16 ⎠
          RtYtBinitüpleFobTTwgelIkRmas; (width-thickness ratio)
                    b       3
                         =      = 9.6
                    t st 5 / 16
                      95      95
                          =       = 15.8 > 9.6       (OK)
                       Fy      36
T.Chhay                                            356                         Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                                Department of Civil Engineering
edaysarEtkartP¢ab;enHmanEtmçag dUcenHeKminRtUvkar full-depth stiffeners eT. dUcenH
                     = 4.125in. yk 4 1 2 in.
          d 8.25
             =
           2      2
cemøIy³ eRbIEdkTMhM 3 × 5 /16 × 4 12 cMnYn 2 bnÞH. ¬kat;RcwbRCugEkgxagkñúgrbs;bnÞHEdkedIm,IeCos
vag fillet enARtg;kEnøgEdlsøab nigRTnugrbs;ssrCYbKña. kat;RcwbedaymMu 45o sRmab;TMhM
5 / 8in. ¦.
          KNnaTwkbnSarsRmab;P¢ab; stiffener eTARTnugssr
                   TMhMGb,brma = 163 in. (AISC Table J2.4, edayQrelIkRmas;RTnug)
          TMhMcaM)ac;sRmab;ersIusþg;KW
                          force resisted by stiffener
                    w=
                                0.707 L(φFW )
          BIsmIkar *>^ kmøaMgEdlRtUvTb;eday stiffener KW
                    Ast F yst = Pbf − (5k + tb )F ywt w
                                 = 98.07 − [5(1.062) + 0.525](36)(0.360 ) = 22.45kips
          RbEvgEdlGacpSarP¢ab; stiffener eTAnwgRTnugssrKW
                        ⎛      5⎞
                    L = ⎜ 4.5 − ⎟ × 2sids × 2stiffeners = 15.5in.
                        ⎝      8⎠
                                                                        ¬emIlrUbTI 8>40¦
                    w=
                               22.45
                        0.707(15.5)(31.5)
                                                           3
                                           = 0.0650in. < in.
                                                          16
                                                                     TMhMGb,brma
          ersIusþg;kmøaMgkat;rbs; base metal KW
                                                              ⎛5⎞
                    φRn = φFBM t = 0.54 Fy t st = 0.54(36)⎜        ⎟ = 6.075kips / in.
                                                              ⎝ 16 ⎠
          nig ersIusþg;TwkbnSarcaM)ac; ¬sRmab; stiffener mYy¦ = 0.0650(0.707)(31.5)(2)
                                                                  = 2.09kips / in. < 6.075kips / in. (OK)
cemøIy³ yk filler weld 3 /16in. .
          KNnaTwkbnSarsMrba;P¢ab; stiffener eTAnwgsøabssr
               TMhMGb,brma = 14 in. (AISC Table J2.4, edayQrelIkRmas;søab)
               lT§PaBTwkbnSarkñúg 1in. = 0.707⎛⎜⎝ 14 ⎞⎟⎠(31.5) = 5.538kips / in.
                                                < 0.54 Fy t st = 0.6075kips / in.        (OK)
tMNcakp©it                                          357                                               T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                         NPIC
                   RbEvgEdlmansRmab; = ⎛⎜⎝ 3 − 85 ⎞⎟⎠(2)(2) = 9.5in.
          TMhMcaM)ac;sRmab;ersIusþg;KW
                         force resisted by stiffener        22.45                   1
                   w=                                =                  = 0.106in. < in.
                               0.707 L(φFW )           0.707(9.5)(31.5)             4
cemøIy³ yk fillet weld 1/ 4in. . ¬m:Um:g;Gnuvtþn_EdlekIteLIgedaybnÞúkTMnaj ehIyEdlminGac
bþÚrTisedAGnuvtþn_)an dUcenHeKGacdak; stiffener Pa¢b;eTAnwgsøabssr Edl stiffener enHTb;søabrg
karsgát;rbs;FñwmedaymincaM)ac;pSar b:uEnþkrNIenHmin)anniyayenATIenHeT¦.
         RtYtBinitüRTnugssrsRmab;kmøaMgkat;TTwg. BIsmIkar *>&
          P=
               (M 1 + M 2 ) − V          142(12)
                                 u =               − 0 = 100.2kips
                 0.95d b               0.95(17.90)
          BI AISC Equation K1-9
                   Rv = 0.60 F y d c t w = 0.60(36 )(8.25)(0.360 ) = 64.15kips
          Design strength   KW
                   φRv = 0.90(64.15) = 57.74kips < 100.5kips (N.G.)
          eRbI AISC Equation edIm,IrkkRmas;RTnugEdlRtUvakar. edaHRsayrk t w edayKuNPaKyk
          nigPaKEbgeday φ
          t w = required doubler plate thickness
             = 0.625 − 0.360 = 0.265in.
       sakl,g td = 5 /16in. . TwkbnSarRtUvmanTMhM[RtUvKñanwgersIusþg;kmøaMgkat;énkRmas;caM)ac;
rbs; doubler plate. yk
T.Chhay                                           358                            Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                      Department of Civil Engineering
          φFBM t d = 0.707 w(φFW )
               φFBM t d      0.54(36 )(0.265)
b¤        w=
             0.707(φFW )
                           =
                               0.707(31.5)
                                              = 0.231in.
yk w = 1/ 4in.
BI AISC J2.2b, TMhMTwkbnSarGtibrmaKW
                  1  5 1 1
          td −      = − = in.                    (OK)
                 16 16 6 4
cemøIy³ double plate 5 /16in. nig fillet weld 1/ 4in
eRbI diagonal stiffener
eRbI full-depth horizontal stiffeners dUcbgðajenAkñúgrUbTI 8>41 ¬RKan;EtCaCMerIs¦.
kmøaMgkat;TTwgEdlTb;eday web reinforcement KW 100.2 − 57.74 = 42.46kips . RbsinebIkmøaMg
enHRtUv)anKitCakMub:Usg;kmøaMgtamG½kSedk P enAkñúg stiffener
          P cosθ = 42.46kips
                        ⎛ db ⎞
                             ⎟⎟ = tan −1 ⎛⎜
                                            17.90 ⎞
Edl       θ = tan −1 ⎜⎜
                                          ⎝
                                                    ⎟ = 65.26
                                                    ⎠
                                                              o
                        ⎝ c⎠
                          d                  8 . 25
                    42.46
          P=
                    (
                 tan 65.26 o     ) = 101.5kips
yk φRn = φAst Fy = 0.9 Ast (36) = 101.5kips
bnÞab;mk          Ast =
                          101.5
                         0.9(36)
                                 = 3.13in.2
eRbI stiffener BIr/ 3× 9 /16 enAsgxagRTnug
tMNcakp©it                                             359                                  T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                                NPIC
           Edlpþl;[ = 2(3)⎛⎜⎝ 169 ⎞⎟⎠ = 3.38in.2 > 3.13in.2 EdlRtUvkar
          Ast                                                                    (OK)
RtYtBinitüpleFobTTwgelIkRmas; (width-thickness ratrio):
           b           3            95
                 =          = 5.3 <     = 15.8          (OK)
          t st       9 / 16          36
KNnaTwkbnSar. RbEvgrbs; diagonal stiffener nImYy²KW
           dc     8.25
              =
          cosθ cos 65.26 o(       )
                           = 19.7in.
RbsinebIeKpSarenAelIépÞTaMgsgxagrbs; stiffener enaHRbEvgTwkbnSarKW
          L = 19.7(4 ) = 78.8in.
TMhMTwkbnSarEdlcaM)ac;sRmab;ersIusþg;KW
                       P            101.5
          w=                  =                  = 0.058in.
                 0.707 L(φFW ) 0.707(78.8)(31.5)
eRbITMhMGb,brma 1/ 4in. (AISC Table J2.4)
edaysarTMhMEdlcaM)ac;sRmab;ersIusþg;mantémøtUc eyIgnwgGegátemIllT§PaBkñúgkareRbITwknSarEdl
minCab;Kña. BI AISC J2.2b
        RbEvgGb,brma = 4w = 4⎛⎜⎝ 14 ⎞⎟⎠ = 1.0in. b:uEnþvaminRtUvtUcCag 1.5in. ¬1.5in. lub¦
lT§PaB nigKMlatrbs;RkuménTwkbnSarbYnKW
                                       ⎛1⎞
          4(0.707 )wL(φFw ) = 4(0.707 )⎜ ⎟(1.5)(31.5) = 33.41kips
                                       ⎝4⎠
          lT§PaBEdlcaM)ac;kñúg 1in. =
                                      101.5
                                      19.7
                                            = 5.152kips / in.
          KMlatEdlcaM)ac;rbs;TwkbnSar   =
                                          33.41
                                          5.152
                                                 = 6.48in.
          shear capacity of base metal = 0.54 Fy t w = 0.54(36 )(0.360 ) = 7.00kips / in.
          lT§PaBrbs;TwkbnSar = 0.707w(φFW ) = 0.707⎛⎜⎝ 14 ⎞⎟⎠(31.5)
                                      = 5.57kips / in. < 7.00kips / in.   (OK)
cemøIy³ eRbITwkbnSarminCab;Kña 1/ 4in.×1 12 in. EdlmanKMlatBImYyeTAmYy 6in. KitBIG½kS enAelIépÞ
nImYy²rbs; diagonal stiffener.
        dUcEdl)anbgðajBImun eKniymeRbIdiagonal stiffener Cag doubler plate b:uEnþsRmab;lkçN³
esdækic©eKKYrEteRbIvaCamYynwgmuxkat;ssrFM. témøBlkmμCamYynwg doubler plate nig stiffener TaMg
T.Chhay                                               360                               Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
Gs;GacnwgbEnßmtémøeRcIneTAelIsMPar³sRmab;ssrmuxkat;FM.
8>8>      End Plate Connection
          End plate connection  Ca beam-to-column nig beam-to-beam connection Edlmankar
eBjniym ehIyRtUv)aneKeRbIcab;taMgBIBak;kNþalTsvtSr_qñaM 1950 mkemøH. rUbTI 8>42 bgðajBI
end plate connection BIrRbePTKW³ tMNsamBaØ b¤tMNrgEtkmøaMgkat; (Type PR construction) nig
tMNrwg b¤tMNTb;m:Um:g; (Type FR construction). Rigid connection k¾RtUv)anehA mü:ageTotfa
extended end plate connection. eKalkarN_rbs;RbePTTaMgBIrKW bnÞHEdkEdlRtUv)anpSarP¢ab;enA
xagcugrbs;FñwmRtUv)ancab;P¢ab;eTAnwgssr b¤Fñwmedayb‘ULúg. tMNenHRtUvkarb‘ULúgticCagkartP¢ab;
epSgeTotEdlGaceFVI[kardMeLIgelOn.
        sRmab;tMNsamBaØ eKRtUvykcitþTukdak;kñúgkareFVI[manlkçN³ flexible RKb;RKan;edIm,IeFVI
[FñwmmanmMurgVilenAxagcug. eKGacTTYl)an flexibility enH RbsinebIbnÞHEdkmanTMhMtUc nigesþIg
ebIeRbobeFobCamYynwg tMNRbePT fully restrained. Manual of Steel Construction, in Part 9,
“Simple Shear Connections,” )anENnaMfa kRmas;RtUvsßitenAcenøaH 1 / 4in. nig 3 / 8in. edIm,I
TTYl)an flexibility. EpñkenHrbs; Manual k¾bgðajBIeKalkarN_ENnaM nig]TaheN_EdlrYmman
reaction capacities sRmab;bnSMCaeRcInénbnÞHEdk nigb‘ULúg.
        karKNna moment-resisting end plate connections RtUvkarkarkMNt;kRmas;bnÞH TMhMTwk
bnSar nigkarlMGitBIb‘ULúgCaedIm. karKNnaBITwkbnSar nigb‘ULúgCakarGnuvtþn_nUv traditional
analysis procedures. b:uEnþ karKNna kRmas;bnÞHKWQrelIlT§plrbs;karBiesaF nig statistical
research (Krishnamuthy, 1978). EpñkrgkarTajrbs;tMNKWmaneRKaHfñak; Éb‘ULúgenAEpñkrgkar
sgát;mannaTICaGñkrkSatMN[enARtg;G½kS. RbsinebImanm:Um:g;sgxag eKRtUvKNnaEpñkrgkar
TajTaMgsgxag. viFITUeTAKWxageRkam³
        !> kMNt;kmøaMgenAkñúgsøabrgkarTajrbs;Fñwm
        @> eRCIserIsb‘ULúgEdlcaM)ac;edIm,ITb;Tl;nwgkmøaMgenH nigteRmobva[manlkçN³sIuemRTI
           eFobnwgsøabrgkarTaj. RbsinebIm:Um:g;sßitenAsgxag eKRtUveFVIkartMerobdUcKñaenAelIEpñk
           rgkarsgát;Edr. b‘ULúgRtUvEtmancMnYnRKb;RKan;edIm,ITb;Tl;nwgkmøaMgkat;TTwgEdl)anmk
           BIRbtikmμFñwm.
tMNcakp©it                                 361                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
        #> cat;TukEpñkrbs;søabFñwm nigbnÞHEdkEdlenAek,reFVIkarCa tee-shape EdlrgbnÞúkTajEdl
           GnuvtþeTAelIRTnugrbs;va dUcbgðajenAkñúgrUbTI 8>43.
        $> eRCIserIsTTwg nigkRmas;rbs;søab tee enHedIm,IbMeBjtRmUvkar flexural dUcKñanwgviFI
           KNna tee hanger ¬emIlEpñk 7>8¦.
        %> RtYtBinitükmøaMgkat;enAkñúgbnÞHEdk.
        ^> KNnaTwkbnSar.
        Manual of Steel Construction (Volume II), bgðajbIviFIsaRsþKNnalMGitCamYynwg]Ta-
hrN_enAkñúg Part 10, “Fully Restrained (FR) Moment Connection”. viFIsaRsþkñúgkarKNnarbs;
vaRsedogKñanwgGVIEdl)anerobrab;xagelIedaymankarEksRmYlxøH eBlxøHeKehAvafa Split-tee
method (Krishnamurthy, 1978). GVIEdlxusKña KWCMhanTI $ sRmab;karKNnam:Um:g;Bt;enAkñúgbnÞH
Edk. Traditional analysis KitbBa©ÚlTaMg prying forces EdlmanniyayenAkñúgEpñkTI 7>8. sRmab;
viFIKNnanaeBlbc©úb,nñ kareRCIserIsb‘ULúg nigkRmas;bnÞHEdkminGaRs½ynwgkarBIcarNaBI prying
action eT. karKNnam:Um:g;KWQrelIkarsikSa statistical analysis of finite element Edlmankar
bBa¢ak;edaykareFVIBiesaFn_. CMhandMbUgenAkñúgviFIsaRsþKNnaKW KNnakmøaMgenAkñúgsøab gkarTaj
rbs;Fñwm.
T.Chhay                                  362                            Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
                    Mu
          Puf =
                   d −t f
          bnÞab;mk eKeRCIserIsb‘ULúgedIm,ITb;nwgkmøaMgTajenH ehIyeKtMerobvaCaBIrCYr[manlkçN³
sIuemRTIeFobnwgsøabrgkarTajrbs;Fñwm. eKRtUvbEnßmb‘ULúgy:agticBIrenARtg;søabrgkarsgát;sRmab;
tRmUvkarrbs;RbtikmμFñwm. cMnYnb‘ULúgEdlRtUvkaredIm,ITb;Tl;nwgRbtikmμFñwmnwgQrelI shear capacity
b¤k¾ slip-critical capacity rbs;b‘ULúg EdlGaRs½ynwgRbePTrbs;tMN. RbsinebItMNCa bearing-
type eKRtUvRtYtBinitüGnþrkmμénkmøaMgkat; nigkmøaMgTajenAkñúgb‘ULúg. eKmincaM)ac;eFVIkarGegátenH
sRmab; clip-critcal connection.
          m:Um:g;GtibrmaenAkñúg split –tee nwgekItmanenARtg; “load line”, muxkat; 1-1 EdlbgðajenA
kñúgrUbTI 8>43 KW
tMNcakp©it                                  363                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                          NPIC
          M t = F1s
Edl       F1 = kmøaMgkat;TTwg = P2uf
          s = cm¶ayBI load line eTAcMNucrbt; = e
                                              p
                                               2
          pe = p f − 0.25d b − 0.707 w
BIrUbTI 8>43/ p f Cacm¶ayBIG½kSb‘ULúgeTAsøabFñwm EdlCaTUeTAesμnwgGgát;p©itb‘ULúg db + 1/ 2in.
ehIy w CaTMhMTwkbnSar. eKehA p f Cacm¶ayb‘ULúg (bolt distance) ehIy pe Cacm¶ayb‘ULúg
RbsiT§PaB (effective bolt distance b¤ effective span). m:Um:g; M t EdlRtUv)anbMElgedayemKuN
α m edIm,ITTYl)anm:Um:g;RbsiT§PaB M eu
          M eu = α m M t
Edl                      (         )
          α m = C a Cb A f / Aw 1 / 3 ( pe / d b )1 / 4
          Ca =   cMnYnefrEdlTak;TgeTAnwglkçN³rbs;smÖar³rbs;b‘ULúg nigbnÞHEdk.
          Cb = b f / b p
          bf =   TTwgrbs;søabFñwm
          bp =   TTwgrbs;    end plate [Krishnamurthy (1978)          )anENnaMnUvTTwgRbsiT§PaBGtibrma
                 b f + 2w + t p    Edl    tp   CakRmas;rbs;   end   plate. Manual ENnaMTTwgCak;Esþg
              Gtibrma b f + 1in. ]
        A f = RkLaépÞsøabFñwm
        Aw = RkLaépÞRTnugFñwmEdlenAcenøaH fillet
       cMnYnefr Ca CaGnuKmn_EtnwglkçN³rbs;smÖar³ ehIyRtUv)anerobCataragsRmab;cMNat;fñak;
TUeTArbs; structural steel nig b‘ULúgersIusþg;x<s;. taragenHRtUv)anbgðajenAkñúg Table 10-1 enAkñúg
Part 10 én Manual. Table 10-2 [nUvtémø A f / Aw sRmab;rUbragFñwmEdlRtUv)aneRbICaTUeTA. enA
eBlEdleKKNnam:Um:g; M eu rYcehIy eKGacdak;va[esμInwg design strength enaHeKnwgGacrk
kRmas;bnÞHEdkGtibrma t p pre EdlcaM)ac;. sRmab;muxkat;ctuekaNEkgEdlekageFobnwgG½kStUc
(minor axis) enaH design strength KW
T.Chhay                                              364                          Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                           Department of Civil Engineering
                                          ⎛ b pt 2       ⎞
                                          ⎜      p req   ⎟
          φb M n = φb M p = φb ZF y = 0.90⎜              ⎟ Fy
                                          ⎜     4        ⎟
                                          ⎝              ⎠
eday[smIkarenHesμInwgm:Um:g;emKuN eKTTYl)ankRmas;bnÞHEdk
                 ⎛ b pt 2     ⎞
                 ⎜      p pre ⎟
          0.90⎜               ⎟ Fy = M eu
                 ⎜      4     ⎟
                 ⎝            ⎠
dUcenH    t p req =
                           4 M eu
                        0.90b p Fy
        eKGacP¢ab;søabrgkarTajrbs;FñwmeTAnwgbnÞHEdkeday full penetration groove weld b¤k¾
eday filler weld EdlpSarBT§½CMuvijsøabTaMgGs;. kmøaMgenAkñúgsøabTaMgGs;RtUv)anbegáItenAelIEpñk
rgkarTaj. eKKYrpSarRTnugenAépÞsgçagCamYynwg fillet welds EdlmanlT§PaBTb;Tl;nwgRbtikmμFmwñ .
eKRtUveKarBnUveKalkarN_ENnaMbEnßmxageRkamedIm,IbMeBjkarsnμt;sRmab;GnuvtþnUvviFIKNnaxagelI.
        !> TaMgbnÞHEdk nigEdkFñwmRtUvman yield stress dUcKñaKw Fy
        @> Ggát;p©itb‘ULúg db minRtUvFMCag 1 1 2 in. = 38mm
        #> b‘ULúgRtUvEtrgkarTajEdleKarBtam AISC Table J3.1.
        $> cm¶ayRCugEKmbBaÄrKYrmantémøRbEhl 1 3 4 db b:uEnþminKYrtUcCag 1 1 2 db
]TahrN_ 8>13³ KNna end plate connection sRmab;Fñwm W 18× 35 . tMNenHRtUvmanlT§PaBkñúg
karbBa¢Únm:Um:g;emKuN 173 ft − kips nigkmøaMgkat;TTwgemKuN      34kips   . eRbIEdk    A36   /   electrode
E70 XX nig slip-critical bolts A325 .
dMeNaHRsay³ kmøaMgsøabKW
                    Mu       173(12 )
          Puf =           =             = 120.2kips
                   d − t f 17.7 − 0.425
sakl,gb‘ULúgBIrCYrEdlkñúgmYyCYrmanBIrRKab;enAsøabxagelI nigb‘ULúgBIrRKab;enAsøabxageRka Edl
b‘ULúgTaMgGs;manR)aMmYyRKab;. Design strength rgkmøaMgTajsRmab;b‘ULúgmYyRKab;KW
          φRn = 0.75(90) Ab
ehIyRkLaépÞmuxkat;EdlcaM)ac;sRmab;b‘ULúgmYyKW
                  Required φRn 120.2 / 4
          Ab =                =           = 0.445in.2
                    0.75(90 )   0.75(90 )
tMNcakp©it                                      365                                               T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                         NPIC
cemøIy³ eRbIb‘ULúg A325 Ggát;p©it 7 / 8in. ¬ Ab = 0.6013in.2 ¦
eKGackMNt;kmøaMgkat;GtibrmaEdlRTedaytMNBIkarBicarNa slip-critical               strength    rbs;b‘ULúg
¬EdlnwgmantémøtUcCag shear strength¦. sRmab;b‘ULúgR)aMmYyRKab;
          φRstr = φ (1.13μTm N b N s ) = 1.0(1.13)(0.33)(39)(6)(1) = 87.3kips > 34kips     (OK)
¬eKmindwgkRmas;rbs;søabssr ehIyeKminTan;sÁal;kRmas;rbs; end plate dUcenHeKminGaceFVIkar
Gegát bearing strength enAeBlenH)aneT. b:uEnþ enAeBlEdlRKb;EpñkEdlRtUvtP¢ab;TaMgGs;
RtUv)anKNna enaHeKGacRtYtBinitü bearing strength¦. edaysarvaCa slip-critical connection
enaHeKminRtUvkar RtYtBiniüGnþrkmμénkmøaMgkat; nigkmøaMgTajeT.
cemøIy³ eRbIbU‘LúgR)aMmYy EdlbYnRtUv)antMerobsIuemRTIKñaeFobnwgsøabrgkarTaj nigBIreTotsßitenA
Rtg;søabrgkarsgát;.
        sRmab; flange weld RbEvgEdlGacpSar)anKW
          L = 2b f + 2t f − t w = 2(6.0 ) + 2(0.425) − 0.30 = 12.55in.
          TMhMTwkbnSarEdlRtUvkarKW
                     Puf                 120.2
          w=                   =                      = 0.4301in.
               0.707 L(φFw )       0.707(12.55)(31.5)
eTaHbICaeKminTan;sÁal;kRmas;rbs; end plate k¾eday k¾TMhMTwkbnSarGb,brmaEdl)anBI AISC
Table J2.4 minEdlFMCag 5 / 16in. dUcenH 0.43in. EdlRtUvkarsRmab;ersIusþg;nwgmantémøFMCag.
cemøIy³ eRbI fillet weld 7 /16in.
sRmab; end plate/ yk
                         1
          p f = db +       = 0.875 + 0.500 = 1.375in.
                         2
          pe = p f − 0.25d b − 0.707 w
                                           ⎛7⎞
              = 1.375 − 0.25(0.875) − 0.707⎜ ⎟ = 0.8470in.
                                           ⎝ 16 ⎠
sRmab;TTwgbnÞHEdk/ yk
          bq = b f + 1 = 6.00 + 1 = 7.00in.
                                ⎛ Puf ⎞⎛ pe ⎞ ⎛ 120.2 ⎞⎛ 0.8470 ⎞
bnÞab;mk           M t = F1s = ⎜⎜     ⎟⎜ ⎟ = ⎜
                                      ⎟               ⎟⎜        ⎟ = 25.45in. − kips
                                ⎝ 2 ⎠⎝ 2 ⎠ ⎝ 2 ⎠⎝ 2 ⎠
                   Ca = 1.36       (Table 10-1, Part 10 of the Manula)
T.Chhay                                          366                             Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                                           Department of Civil Engineering
                                      bf           6.00
                       Cb =                =            = 0.9258
                                      bq           7.00
                        Af
                                 = 0.504       (Table 10-2, Part 10 of the Manual)
                        Aw
                                                     1/ 3          1/ 4
                                     ⎛ Af ⎞                 ⎛ pe ⎞
                       α m = C a Cb ⎜⎜    ⎟
                                          ⎟
                                                            ⎜⎜    ⎟⎟
                                     ⎝ Aw ⎠                  ⎝ db ⎠
                                 = 1.36(0.9258)(0.504)1 / 3 (0.8470 / 0.875)1 / 4 = 0.9939
                       M eu = α m M t = 0.9939(25.45) = 25.29in. − kips
                                   4M eu          4(25.29)
                       t p req =            =                 = 0.668in.
                                 0.90b p Fy    0.90(7.00)(36)
cemøIy³ ykkRmas;bnÞHEdk 3 / 4in.
          TTwgbnÞHEdkRbsiT§PaBGtibrmaEdlENnaMeday Krishnamurthy (1978) KW
                                    ⎛7⎞ 3
          b f + 2 w + t p = 6.00 + 2⎜ ⎟ + = 7.62in. > 7.00                        (OK)
                                    ⎝ 16 ⎠ 4
RtYtBinitükmøaMgkat;. kmøaMgkat;enAkñúgbnÞHEdkKW
                  Puf        120.2
          F1 =           =         = 60.1kips
                    2          2
BI AISC J5, ersIusþg;kmøaMgkat;KW (shear strength) KW
                             (                 )                       ⎛
          φRn = 0.90 0.60 Ag Fy = 0.90(0.60)⎜ 7 × ⎟(36) = 102kips > 60.1kips
                                                                             3⎞
                                                                                                            (OK)
                                                                       ⎝     4⎠
edIm,ITTYl)an shear strength rbs;RTnugdUcKña ersIusþg;TwkbnSarEdlcaM)ac; ¬TwkbnSarBIrCYrEdlenA
sgçagRTnug¦ KW
          φvVn          103
                   =         = 5.819kips / in.
             d          17.7
TMhMTwkbnSarEdlRtUvkar
                   5.819 / 2
          w=                  = 0.131in.
                  0.707(31.5)
kMNt;TMhMTwkbnSarEdlcaM)ac;edIm,ITb;Tl;nwgkarBt;enAkñúgRTnug. enAeBlEdlm:Um:g;Bt;eFVIkardl;m:U
m:g;)øasÞic kugRtaMgenAkñúgRTnugesμInwg yield stress Fy ehIybnÞúkkñúgmYyÉktþaRbEvgrbs;TwkbnSarKW
              (                   )
          φb Fy × t w × 1 = 0.90(36 )(0.300 ) = 9.720kips / in.
bnÞúkkñúgmYyÉktþarbs;TwkbnSarmYyCYrKW 9.72 / 2 = 4.86kips / in. ehIyTMhMTwkbnSarEdlRtUvkarKW
tMNcakp©it                                                             367                                       T.Chhay
mhaviTüal½ysMNg;sIuvil                                                              NPIC
                  4.860
          w=               = 0.2182in. > 0.131in.
               0.707(31.5)
TMhMTwkbnSarGb,brmaKW 1/ 4in. (AISC Table J2.4, edayQrelIkRmas;rbs;bnÞHEdk).
cemøIy³ eRbI fillet weld 1/ 4in. ¬karKNnaRtUv)ansegçbenAkñúgrUbTI 8>44¦
Column Web Stiffener Consideration
       eKbegáIt AISC Equation K1-2 EdlkarBar web yeilding rbs;ssrenAkñúgtMN beam-to-
column connection enAeBlEdleKeRbI end plates. smIkarenHKWQrelIkarkMNt;kugRtaMgenAelImux
kat;rbs;RTnugEdlbegáIteLIgedaykRmas;rbs;va nigRbEvg tb + 5k dUcbgðajenAkñúgrUbTI 8>45 b.
eKnwgTTYl)anRkLaépÞFMCag enAeBlEdlbnÞúkRtUv)anbBa¢Úntamry³ end plate. RbsinebIeKKitTwk
bnSar beam flange-to-plate nigbnÞúkRtUv)ansnμt;EckedayCRmal 1 :1 tamry³bnÞHEdk RbEvgRTnug
EdlrgbnÞúknwgesμInwg tb + 2w + 2t p + 5k . edayQrelIkarsikSaRsavRCavedaykarBiesaF (Hendrick
and Murray, 1984) tYr 5k GacRtUv)anCMnYseday 6k Edlpþl;lT§plenAkñúgsmIkarxageRkamsRmab;
yielding strength rbs;RTnug³
                   [(
          φRn = φ 6k + tb + 2 w + 2t p F ywt w   )]
Edl       w=   TMhMTwkbnSar
T.Chhay                                           368                 Eccentric Connections
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
       elIsBIenH eKRtUveFVIkarGegátBI local flange bending ning web stability (web crippling b¤
compression buckling). Part 10 of the Manual maneKalkarN_ENnaMBIkarKit local flange
bending.
8>9> esckþIsnñidæan (Concluding Remarks)
        enAkñúgeyIgsgát;F¶n;elIkarKNna nigkarviPaKBIb‘ULúg nigTwkbnSareRcInCag connection
fitting dUcCa framing angle nig beam seats. kñúgkrNICaeRcIn karpþl;[sRmab; bearing enAkñúg
tMNedayb‘ULúg nig base metal/ nigsRmab;kmøaMgkat;enAkñúgtMNedayTwkbnSar nwgFananUvPaBRKb;
RKan;rbs;ersIusþg;rbs;EpñkTaMgenH. b:uEnþeBlxøH eKRtUvkarGegátkmøaMgkat;bEnßm. enAeBlxøHeTot eK
RtUvEtBicarNaBI direct tensiion nigm:Um:g;Bt;.
        Flexibility rbs;tMNCakarBicarNad¾sMxan;mYyeTot. sRmab; shear connection (simple
framing), EpñkEdlP¢ab;RtUvman flexible RKb;RKan;edIm,IGnuBaØat[tMNvileRkamGMeBIrbs;kmøaMg. b:uEnþ
tMNRbePT FR (rigid connections) KYrEtrwgRKb;RKan;EdlmMurgVilrbs;Ggát;EdlRtUv)anP¢ab;GacrkSa
nUvtémøGb,brma.
        CMBUkenHRKan;EtENnaMBIkarKNnatMNenAkñúgeRKOgbgÁúMEdkEtb:ueNÑaH edaymin)anniyaylMGit
Gs;esckþIeT. Blodgett (1966) KWCaRbPBB½t’mand¾manRbeyaCn_EdlniyaylMGitBItMNedaypSar.
eTaHbICavaRtUv)ane)aHBum<yUrbnþicEmn Etvapþl;nUvkarENnaMEdlmanRbeyaCn_CaeRcIn. dUcKña
Detailing for Stell Construction (AISC, 1983) CaRbPaBEdlmanB½t’manEdlmanGtßRbeyaCn_
sRmab;GñkKNna nigGñklMGitkartP¢ab;.
tMNcakp©it                                  369                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
                                   IX. eRKOgbgÁúMsmas
                               Composite Construction
9>1> esckþIepþIm (Introduction)
        eRKOgbgÁúMsmasCaeRKOgbgÁúMsMNg;EdlGgát;rbs;vapÁúMeLIgedaysmÖar³BIrRbePTKW EdkeRKag
nigebtugGarem:. niyay[xøIGgát;eRKOgbgÁúMsmaspSMeLIgedaysmÖar³BIr b¤eRcInRbePT. eRKOgbgÁúM
smasRtUv)anerobrab;enAkñúg AISC Chapter I, “Composite Members.”.
        Fñwmsmas (composite beam) GacmaneRcInTRmg;. FñwmsmasBIdMbUgRtUv)ancak;bgáb;kñúgeb
tugdUcbgðajenAkñúgrUbTI 9>1 a. vaCaCeRmIsmYyenAeBlEdleKRtUvkarkarBareRKOgbgÁúMEdkBIePøIg
(fireproofing) ehIymUlehtumYyeTotKWeKGacKitBIkarcUlrYmrbs;ersIusþg;ebtugeTAkúñgersIusþg;rbs;
Fñwm. naeBlbc©úb,nñenH eKmanviFIkarBarePøIgEdlmanlkçN³esdækic© nigTm¶n;Rsal dUcenHeKkRmcak;
bgáb;eRKOgbgÁúMEdkkñúgebtugeToteT. eKGacTTYl)an composite behavior edayP¢ab;FñwmEdkeTAnwg
kRmalebtugEdlvaRTEdleFVI[EpñkTaMgBIreFVIkarCamYyKña. enAkñúgRbB½n§kRmal b¤RbB½n§dMbUl Epñk
rbs;kRmalxNÐeFVIGMeBICamYynwgFñwmEdkedIm,IbegáItCaFñwmsmasEdlman rolled steel shape EdlenA
BIelIsøabxagelICasøabebtug ¬rUbTI 9>1 b¦.
        kareFVIkarrYmKñaenHGacRbRBwtþeTA)anRbsinebIeKkarBarkarrGiltamTisedk (horizontal
slippage) rvageRKOgbgÁúMTaMgBIr. eKGaceFVIdUcenH)an RbsinebIkmøaMgkat;tamTisedkenARtg;épÞb:H
RtUv)ankarBaredayeRKOgsRmab;P¢ab;EdleK[eQμaHfa shear connectors. eKOgsRmab;P¢ab;enHGac
Ca headed studs, spiral reinforcing steel b¤CaEdkrag channel shape tUc²RbEvgxøIRtUv)anpSar
P¢ab;eTAnwgsøabxagelIrbs;EdkFñwmeTAtamKMlatkMNt; edIm,Ipþl;nUvkarpSarP¢ab;CalkçN³emkanictam
ry³TMBk;enAkñúgebtugEdlrwgmaM ¬rUbTI 9>1 c¦. Stud CaRbePT shear connector EdleKniymeRbICag
eK eKGaceRbIvaelIsBImYyedImenARtg;TItaMgEtmYy RbsinebIsøabFñwmmanTMhMTUlayRKb;RKan; ¬vaGa
Rs½ynwgKMlatGnuBaØatEdlmanniyayenAkñúgkfaxNÐ 9>4¦. mUlehtumYyénPaBeBjniymrbs;
shear stud KWPaBgayRsYlkñúgkardMeLIgrbs;va.
        eKRtUvkarcMnYn shear connector RKb;RKan;edIm,IeFVI[FñwmeTACaFñwmsmaseBjelj (fully
composite beam). cMnYn shear conncter EdlticCagtRmUvkarnwgeFVI[ekItmanPaBrGilxøHrvag
eRKOgbgÁúMEdk nigebtug FñwmEbbenHeK[eQμaHfa FñwmsmasedayEpñk (partially composite).
T.Chhay                                  370                           Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
Partially composite beam         ¬EdlCak;Esþgman\T§iBlCag fully composite beam¦ RtUv)anbkRsay
enAkñúgEpñkTI 9>7.
         eRKOgbgÁúMsmasenAkñúgGKarPaKeRcInRtUv)anbegáIteLIgedaykRmalEdk (stell deck) EdleFVI
CaBum<sRmab;ebtugkRmal ehIyRtUv)anminRtUv)anykecjeRkayeBlebtugrwgmaM. kRmalEdkk¾cUl
rYmenAkñúgersIusþg;rbs;kRmal EteyIgmin)anBicarNaBIkarKNnakRmalEdkenATIenHeT. eKGaceRbI
kRmalEdkpñt;EdlrnUtmanTisEkg b¤RsbnwgTisrbs;Fñwm. enAkñúgRbB½n§kRmalFmμta rnUtEtgEtEkg
eTAnwgFñwmkRmal ehIyRsbeTAnwgrtEdlRTva. eKpSar Shear stud P¢ab;eTAnwgFñwmEdktamcenøaHrnUt
dUcenHKMlatrbs; stud tambeNþayFñwmRtUv)ankMNt;edaycMnYnpñt;rbs;rnUt. rUbTI 9>2 bgðajBI
kRmalxNÐEdlbegáIteLIgedaykRmalEdkEdlrnUtEkgeTAnwgFñwm.
         s<an highway PaKeRcInEdleRbIFñwmEdkCaFñwmsmas ehIyCaerOy²FñwmsmasCaCeRmIsEdl
eRKOgbgÁúMsmas                                 371                                         T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
manlkçN³esdækic©sRmab;sMNg;GaKar. eTaHbICaeKGaceRbI rolled steel beam EdlmanrUbragtUc
Cag manTm¶n;RsalCagenAkñúgeRKOgbgÁúMsmask¾eday k¾ GtßRbeyaCn_rbs;vaRtUv)ankat;bnßyeday
sartémøbEnßmén shear connector. eTaHbICay:agdUcenHk¾eday k¾GtßRbeyaCn_epSgeTotrbs;vaGac
eFVI[eRKOgbgÁúMsmasmankarTak;TajEdr. eKGaceRbIFñwmEdlrak;Cag ehIyPaBdabrbs;vanwgtUcCag
eRKOgbgÁúMFmμta (conventional noncomposite construction).
kugRtaMgeGLasÞicenAkñúgFñwmsmas Elastic Stresses in Compostie Beams
         eTaHbICa design strength rbs;FñwmsmasCaTUeTAQrelIlkçxNÐenAkar)ak;k¾eday k¾karyl;
dwgBIkareFVIkarCamYynwgbnÞúkeFVIkar (service load) mansar³sMxan;sRmab;mUlehtuCaeRcIn. eKEtgEt
eFVIkarGegátPaBdabrbs;eRKOgbgÁúMeRkamGMeBIrbs; service load ehIyenAkñúgkrNIxøH design strength
KWQrelIsßanPaBkMNt;én yield dMbUg.
         eKGacKNnakugRtaMgrgkarBt; (flexural stress) nigkugRtaMgrgkarkat; (shearing stress) enA
kñúgFñwmrbs; homogeneous material BIrUbmnþ
          fb =
                 Mc
                  I
                         ni g     fv =
                                       VQ
                                        It
         b:uEnþ edaysarFñwmsmasminEMmnCa homogeneous material dUcenHrUbmnþTaMgenHKμann½y.
edIm,IGaceRbIrUbmnþTaMgenH)an eKRtUvbMElgmuxkat;rbs;ebtug[eTACamuxkat;Edk. viFisaRsþenH
tRmUv[ strain rbs;EdkEdl)anRbDiteLIgBIebtugmantémødUcKñanwg strain rbs;EdkBitR)akd. rUbTI
9>3 bgðajBIkMNat;rbs;FñwmsmasCamYynwgdüaRkam stress nig strain. RbsinebIkRmalxNÐ
RtUv)anP¢ab;y:agl¥eTAnwg rolled steel shape enaH strain RtUvEtmanragdUcGVIEdl)anbgðaj EdlRsb
eTAnwg small displacement theory Edl)anniyayfa muxkat;EdlmanlkçN³erobesμImuneBlrgkar
Bt;enAEtrkSalkçN³erobesμIeRkayeBlrgkarBt;. b:uEnþ karBRgaykugRtaMgCalkçN³smamaRt
T.Chhay                                    372                           Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                                     Department of Civil Engineering
(linear stress distribution)  Edl)anbgðajmann½yEtcMeBaHFñwmTaMgLayNaEdlRtUv)ansnμt;faCa
homogeneous material. dMbUg eKRtUvtRmUv[ strain enAkñúgebtugRtg;RKb;cMNucTaMgGs;esμInwg strain
enAkñúgEdkCMnYsenARKb;cMNucenaH
         εc = εs       b¤ Efc = Efs
                                            c       s
nig         fs =
                   Es
                   Ec
                      f c = nf c                                                                           ¬(>!¦
Edl        m:UDuleGLasÞicrbs;ebtug
            Ec =
       n = s = pleFobm:UDul
          E
          Ec
AISC I2.2 [m:UDuleGLasÞicebs;ebtug              *
            Ec = w1c.5 f 'c (US)
                        (
            Ec = w1c.5 1.3 ⋅10 − 3   )   f 'c   (SI)
Edl        wc = Tm¶n;maDrbs;ebtug
          f 'c = ersIusþg;rgkarsgát;rbs;ebtugenA @*éf¶
         Tm¶n; normal-weight concrete mantémøRbEhl 145lb / ft 3 = 2320kg / m3
         eKGacbkRsaysmIkar (>! dUcxageRkam³ eKRtUvkarebtug n in.2 edIm,ITb;Tl;nwgkmøaMgdUcKña
EdlEdk 1in.2 GacTb;)an. edIm,IkMNt;RkLaépÞrbs;EdkEdlnwgTb;Tl;nwgkmøaMgdUcKñaEdlebtugGac
eFVI)an eKRtUvEckRkLaépÞebtugeday n . mann½yfaCMnYs Ac eday Ac / n . lT§plEdlTTYl)an
CaRkLaépÞbMElg (transformed area).
BicarNamuxkat;smasEdlbgðajenAkñúgrUbTI 9>4 a ¬karkMNt;TTwgsøabRbsiT§PaB b enA
eBlEdlFñwmCaEpñkrbs;RbB½n§kRmalnwgENnaMenAxagmux¦. edIm,IbMElgRkLaépÞebtug Ac [eTACa
RkLaépÞEdk eyIgRtUvEckvanwg n . viFId¾gayRsYlKWeKRtUvEckTTwgeday n ehIyrkSakRmas;[enA
dEdl. kareFVIdUcenHeKTTYl)an homogeneous steel section dUcbgðajkñúgrUbTI 9>4b. edIm,IKNna
kugRtaMg eyIgRtUvrkTItaMgG½kSNWtrbs;rUbragsmas ehIyKNnam:Um:g;niclPaBEdlRtUvKña. bnÞab;mk
eyIgGacKNna bending stresses CamYynwg flexural formula. enAEpñkxagelIbMputrbs;srésEdk
*
    The ACI Building Code (ACI, 1995) [témørbs; E c = w1c.5 (33) f ' c   KitCa   psi   b¤ Ec = w1c.5 (0.043)   f 'c   KitCa
N / mm 2
eRKOgbgÁúMsmas                                          373                                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
                             Myt
                    f st =
                             I tr
enAEpñkxageRkambMputrbs;Edk
                   Myb
          f sb =
                   I tr
Edl       M=   m:Um:g;Bt;Gnuvtþn_
         I st = m:Um:g;niclPaBeFobG½kSNWt ¬dUcKñanwgG½kSTIRbCMuTm¶n;rbs; homogeneous section¦
         yt = cm¶ayBIG½kSNWteTAEpñkxagelIbMputrbs;Edk
         yb = cm¶ayBIG½kSNWteTAEpñkxageRkambMputrbs;Edk
eKGackMNt;kugRtaMgenAkñúgebtugtamviFIdUcKña b:uEnþedaysarsmÖar³EdleyIgKitCaEdk enaHlT§pl
tUvEcknwg n ¬emIlsmIkar (>!¦ dUcenHeK)an
        témøGtibrmarbs; f c = nIM y
                                   tr
Edl y Cacm¶ayBIG½kSNWteTATItaMgx<s;bMputrbs;ebtug.
        dMeNIrkarKNnaenHmann½ysRmab;Etm:Um:g;Bt;viC¢man EdlkmøaMgsgát;enAxagelIeRBaHeKmin
KitersIusþg;rgkarTajrbs;ebtug.
]TahrN_ 9>1³ FñwmsmasmYypSMeLIgedayEdk A36 manrag W16 × 36 CamYynwgkRmalebtug
kRmas; 5in. nigTTwg 87in. enABIxagelIFñwm. ersIusþg;rbs;ebtugKW f 'c = 4000 psi . kMNt;kugRtaMg
GtibrmaenAkñúgEdk nigebtugEdlekItBIm:Um:g;Bt;viC¢man 160 ft − klips .
T.Chhay                                     374                            Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                 Department of Civil Engineering
dMeNaHRsay³ Ec = w1c.5           f 'c = 1451.5 4 = 3495ksi
          n=
                E s 29000
                Ec
                   =
                     3495
                          = 8 .3      yk n = 8
edaysarEtm:UDuleGLasÞicrbs;ebtugCatémøRbhak;RbEhl dUcenHeyIgGacyktémø n CatémøKt;
ehIyvanwgpþl;nUvPaBsuRkitRKb;RKan;. dUcenH
          b 87
           =   = 10.88in.
          n 8
rUbTI 9>5 bgðajBI transformed section.
       eKGackMNt;TItaMgrbs;G½kSNWtedayGnuvtþeKalkarN_m:Um:g;CamYynwgG½kSrbs;m:Um:g;enAEpñk
xagelIbMputrbs;kRmal. karKNnaRtUv)ansegçbenAkñúgtarag 9>1 ehIycm¶ayBITItaMgx<s;bMputrbs;
kRmaleTATIRbCMuTm¶n;KW
                ∑ Ay 273.1
          y=        =      = 4.202in.
                ∑ A 65.00
edayGnuvtþRTwsþIbTG½kSRsb nigedayerobCataragénkarKNnaenAkñúgtarag 9>2 eyIgTTYl)anm:Um:g;
niclPaBrbs; transformed section KW
eRKOgbgÁúMsmas                                   375                                   T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                      NPIC
           I tr = 1526in.4
kugRtaMgenATItaMgx<s;bMputrbs;EdkKW
           yt = y − t = 4.202 − 5.00 = −0.7980in.
Edl t CakRmas;rbs;kRmal
                     Myt (160 × 12 )(0.7980)
            f st =
                     Ltr
                         =
                                1526
                                             = 1.00ksi     ¬rgkarTaj¦
tarag 9>1
      eRKOgbgÁúM                         A                         y                 Ay
        ebtug                          54.40                   2.50                 136.0
          W 16 × 36                     10.6                  12.93                 137.1
                                       65.00                                        273.1
tarag 9>21
  eRKOgbgÁúM                 A                 y             I            d            I + Ad 2
    ebtug                  54.40             2.50          113.3        1.702           270.9
                            10.6             12.93         448          8.728             1255
  W 16 × 36
                                                                                       1525.9
¬TItaMgx<s;bMputrbs;EdksßitenABIxageRkamG½kSNWt dUcenH f st CakugRtaMTaj¦
kugRtaMgenATItaMgeRkambMputrbs;Edk³
           yb = t + d − y = 5 + 15.86 − 4.202 = 16.66in.
                     Myb (160 × 12 )(16.66 )
            f sb =
                     I tr
                          =
                               1526
                                             = 21.0ksi     ¬rgkarTaj¦
kugRtaMgenATItaMgx<s;bMputrbs;rbs;ebtugKW
                     M y (160 × 12 )(4.202 )
            fc =           =                 = 0.661ksi
                     nI tr   8 × 1526
RbsinebIeKsnμt;ebtugminmanersIusþg;Tb;karTaj enaHebtuEdlsßitenABIeRkamG½kSNWtminRtUv)anyk
mkKiteT. enaHragFrNImaRtrbs; transformed section xusBIragFrNImaRtedImEdl)ansnμt;. edIm,I
T.Chhay                                              376                    Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                           Department of Civil Engineering
TTYl)anlT§plsuRkit eKRtUveFVIkarKNnaTItaMgG½kSNWteLIgvijedayQrelIragFrNImaRtfμIenH.
eyagtamrUbTI 9>6 nigtarag 9>3 eyIgGacKNnaTItaMgfμIrbs;G½kSNWtdUcxageRkam³
                                     2
             ∑ Ay 5.44 y + 137.1
          y=     =
             ∑A    10.88 y + 10.6
            (                    )       2
          y 10.88 y + 10.6 = 5.44 y + 137.1
          5.44 y + 10.6 y − 137.1 = 0
          y = 4.140in.
m:Um:g;niclPaBrbs;RkLaépÞsmasEdleFVIeLIgvijenHKW
          I tr =
                    1
                      (10.88)(4.140)3 + 448 + 10.6(12.93 − 4.140)2 = 1524in.4
                    3
tarag 9>3
      eRKOgbgÁúM                             A                   y                         Ay
        ebtug                            10.88 y                y/2                     5.44 y
                                                                                                 2
        W 16 × 36                         10.6                 12.93                     137.1
ehIykugRtaMgKW
           f st =
                    (160 × 12)(5 − 4.140) = 1.08ksi   ¬rgkarTaj¦
                          1524
           f sb =
                  (160 × 12)(5 + 15.86 − 4.140)
                                                = 21.1ksi   ¬rgkarTaj¦
                              1524
           fc =
                 (160 ×12)(4.140) = 0.652ksi
                      8(1524)
PaBxusKñarvagkarviPaKTaMgBIrGacecal)an ehIykarKNnaTItaMgG½kSNWteLIgvijminmanRbeyaCn_eT.
eRKOgbgÁúMsmas                                     377                                               T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
cemøIy³ kugRtaMgGtibrmaenAkñúgEdkKW kugRtaMgrgkarTaj 21.1ksi ehIykugRtaMgGtibrmaenAkñúgeb
tugKW kugRtaMgrgkarsgát; 0.652ksi .
ersIusþg;Tb;nwgkarBt; Flexural strength
         enAkñugkrNICaeRcIn eKnwgTTYl)an nomial flecural strength enAeBlEdlmuxkat;EdkTaMg
mUl yield ehIyebtugEbkedaysarkmøaMgsgát;. karEbgEckkugRtaMgEdlRtUvKñaenAelImuxkat;smas
RtUv)aneKehAfa karEbgEcgkugRtaMg)aøsÞic (plastic stress distribution). AISC Specification [nUv
design strength sRmab;m:Um:g;Bt;viC¢manCa φb M n EdlRtUv)ankMNt;dUcxageRkam³
         !> sRmab;rUbragEdlman compact web ( h / t w ≤ 640 / Fy sRmab; US b¤
h / t w ≤ 1680 / F y sRmab; SI) emKuNersIusþg; φb = 0.85 ehIy M n RtUv)anTTYlBI plastic stress
distribution.
         @> sRmab;rUbragEdlman noncompact web ( h / t w > 640 / Fy sRmab; US b¤
h / t w > 1680 / F y sRmab; SI) φ b= 0.9 ehIy M n RtUv)anTTYlBI elastic stress distribution Edl
RtUvKñanwg yilding dMbUgrbs;Edk.
         rUbragTaMgGs;EdlmanenAkñúgtaragrbs; Manual Ca compact web dUcenHeKRtUveRbIlkçxNÐ
TImYysRmab;karedaHRsayFñwmsmas elIkElgEt built-up steel shapes. enAkñúgCMBUkenHeyIg
niyayEt compact shape b:ueNÑaH.
         enAeBlEdlFñwmsmaseTAdl;sßanPaBkMNt;)aøsÞic eKEbgEckkugRtaMgtamviFImYykñúgcMeNam
viFIbIEdlbgðajenAkñúgrUbTI 9>7. kugRtaMgebtugRtUv)anbgðajCakugRtaMgsgát;BRgayesμI 0.85 f 'c
EdlbnøayBITItaMgx<s;bMputrbs;kRmaleTACMerAEdlGactUcCag b¤esμInwgkRmas;kRmalsrub. karEbg
EckenHKW Whitney equivalent stress distribution EdlkugRtaMgpÁÜbRtUvKñanwgkugRtaMgpÁÜbrbs;karEbg
EckkugRtaMgBitR)akd (ACI, 1995). rUbTI 9>7 a bgðajBIkarEbgEckEdlRtUvKñanwg full tensil
yielding rbs;Edk nigkugRtaMgsgát;edayEpñkrbs;ebtug CamYynwgG½kSNWt)aøsÞic (PNA) enAkñúg
kRmalxNÐ. edayersIusþg;Tajrbs;ebtugmantémøtUc ehIyvamintUv)aneKKitkñúgkarKNnaeTenaH
KμankugRtaMgNa RtUv)anbgðajenAkEnøgEdlkugRtaMgTajmanGMeBIelIebtug. lkçxNÐenHeKeRbICaTUeTA
enAeBlEdlva man shear connectors RKb;RKan;edIm,ITb;Tl;nwgkarrGil KWedIm,IFananUvkareFVIkarCa
T.Chhay                                    378                           Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
eRKOgbgÁúMsmas. kñúgrUbTI 9>7 b bøúkkugRtaMgebtugRtUv)anbnøayeBj kRmas;rbs;kRmal ehIy
PNA sßitenAkñúgsøabrbs;FñwmEdk. dUcenHEpñkrbs;søabnwgrgkugRtaMgsgát; edIm,IbegáInkmøaMgsgát;
enAkñúgkRmalxNÐ. rUbTI 9>7 c bgðajBIlT§PaBTIbI Edl PNAsßitenAkñúgRTnug. cMNaMfa sRmab;
krNITaMgbIenH eKmincaM)ac;bnøaybøúkkugRtaMgebtugeBjkRmas;kRmaleT.
         kñúgkrNInImYy²EdlbgðajenAkñúgrUbTI 9>7 eyIgGacrk nominal moment capacity eday
KNnam:Um:g; couple EdlekIteLIgedaykmøaMgTajpÁÜb nigkmøaMgsgát;pÁÜb. eyIgGacTTYlva)aneday
eFVIplbUkm:Um:g;rbs;kmøaMgpÁÜbeFobnwgcMNucgayRsYlNamYy. edaysarkartP¢ab;rbs;FñwmEdkeTAnwg
kRmalebtug vaminmanbBaðaCamYynwg lateral torsional buckling enAeBlEdlebtugrwgmaM ehIyeK
TTYl)an composite action.
edIm,IkMNt;faetIeKRtUvykkrNINamkeRbI eKRtUvKNnakmøaMgsgát;pÁÜbNaEdltUcCageKkñúgcM eNam
         !> As Fy
         @> 0.85 f 'c Ac
         #> ∑ Qn
Edl As = RkLaépÞmuxkat;rbs;EdkFñwm
          Ac = RkLaépÞrbs;ebtug = tb ¬emIlrUbTI 9>7¦
         ∑ Qn = ersIiusþg;kmøaMgkat;srubrbs; shear connector
lT§PaBnImYy²bgðajBIkmøaMgkat;tamTisedkenARtg;épÞb:HrvagEdk nigebtug. enAeBlEdllT§PaBTI
mYylub eKeRbIEdkTaMgmUl ehIyeKGnuvtþkarEbgEcgkugRtaMgrbs;rUbTI 9>7 a. lT§PaBTIBIrRtUvKñanwg
ebtugEdllub ehIy PNA sßitenAkñúgEdk ¬rUbTI 9>7 b b¤ c¦. krNITIbIlubEtenAeBlEdleKeRbI
shear connector ticCagtRmUvkarsRmab; full composite behavior EdleFVI[ekItman partial
composite behavior. eTaHbICa partial composite action GacekItmanCamYynwgkRmalxNÐtan; b¤kM
ralxNÐEdlekItBI steel deck k¾eday k¾vaRtUv)anykmkniyayenAkñúgkfaxNÐ 9>7/ “Composite
Beams with Formed Steel Deck”.
eRKOgbgÁúMsmas                            379                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                               NPIC
]TahrN_ 9>2³ KNna design strength rbs;Fñwmsmasrbs;]TahrN_ 9>1. snμt;faeKman shear
connector  RKb;RKan;sRmab; full composite behavior.
dMeNaHRsay³ kMNt;kmøaMgsgát; C enAkñúgebtug ¬kmøaMgkat;tamTisedkenARtg;épÞb:Hrvagebtug
nigEdk¦. edaysarvaCa full composite action kmøaMgEdlmantémøtUcCagKW As Fy nig
0.85 f 'c Ac ³
          As F y = 10.6(36 ) = 381.6kips
          0.85 f 'c Ac = 0.85(4)(5 × 87 ) = 1479kips
T.Chhay                                        380                    Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                      Department of Civil Engineering
kmøaMgsgát;enAkñúgEdklub C = 381.6kips .
enHmann½yfaeKminRtUvkarkRmas;TaMgmUlrbs;ebtugedIm,IbegáItkmøaMgsgát;EdlRtUvkareT.
eKTTYl)an karEbgEckkugRtaMgenAkñúgrUbTI 9>8.
          eKk¾GacKNnakmøaMgsgát;rYmdUcxageRkam
          C = 0.85 f 'c ab
       enaHeyIg)an a = 0.85Cf ' b = 0.85381(4.)(687) = 1.290in.
                                 c
       kmøaMg C nwgsßitenAelITIRbCMuTm¶n;rbs;RkLaépÞrgkarsgát;enAkm<s; a / 2 BITItaMgx<s;bMput
rbs;kRmalxNÐ. kmøaMgTajpÁÜb T ¬esμInwg C ¦ nwgsßitenATIRbCMuTm¶n;rbs;RkLaépÞEdk. ékXñas;
rbs; couple RtUv)anbegáIteLIgeday C nig T KW
                d     a 15.86     1.290
          y=      +t − =      +5−       = 12.28in.
                2     2   2         2
Nominal strength        KWm:Um:g; couple b¤
          M n = Cy = Ty = 381.6(12.28) = 4686in.kips = 390.5 ft − kips
ehIy design strength KW
          φb M n = 0.85(390.5) = 332 ft − kips
cemøIy³ design strength = 332 ft − kips
eRKOgbgÁúMsmas                                   381                                        T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
        enAeBlEdlvaman full composite behavior ]TahrN_ 9>2 CaKMrUsRmab;lkçxNÐenH. karvi
PaKsRmab;krNI PNA EdlmanTItaMgsßitenAkñúgmuxkat;EdknwgRtUv)anrk enAeBlEdleKdwgfavaCa
partial composite action.
9>2> karsagsg;edaymankarTb; nigedayminmankarTb;
          Shored Versus Unshored Construction
        Tal;EtebtugrwgmaM nwgvaTTYl)annUv design strength rbs;va ¬y:agtic 75% énersIusþg;sgát;
enA 28 éf¶ f 'c ¦ enaHmanminmankareFVIkarCasmas (composite behavior) eT ehIyTm¶n;rbs;kRmal
dac;xatRtUv)anRTedaymeFüa)ayepSg². enAeBlEdlebtugrwgmaM vaGaceFVIkarCaeRKOgbgÁúMsmas
ehIykmøaMgGnuvtþn_bnþbnÞab;RtUv)anTb;Tl;edayFñwmsmas. RbsinebIFñwmEdkRtUv)anRTedaycnÞl;
RKb;RKan;tambeNþayRbEvgrbs;vamunnwgebtugRtUv)ancak; Tm¶n;rbs;ebtugRss;nwgRtUvRTedaycnÞl;
beNþaHGasnñeRcInCagedayEdkFñwm. enAeBlEdlebtugrwgmaM cnÞl;beNþaHGasnñRtUv)anruHerIecj
ehIyTm¶n;rbs;kRmalxNÐk¾dUcCabnÞúkbEnßmnwgRtUvRTedayFñwmsmas. b:uEnþRbsinebIeKmineRbIcnÞl;
rolled steel shape minRtwmEtRTTm¶n;pÞal;rbs;vab:ueNÑaHeT b:uEnþvaRtUvRTTm¶n;rbs;kRmalxNÐ nigBum<
kñúgeBlebtugeFVIkarrwgmaM. enAeBlEdleKTTYl)an composite behavior bnÞúkbEnßmTaMgbnÞúkefr
nigbnÞúkGefrnwgRtUvRTedayFñwmsmas. eyIgnwgBicarNalkçxNÐxusKñaedaylMGitdUcxageRkam.
KμancnÞl;³ muneBlebtugrwgmaM          Unshored: Before Concrete cures
          AISC I3.4  TamTarfa enAeBlEdleKmineRbIcnÞl; EdkFñwmEtÉgdac;xatRtUvEtmanersIusþg;
RKb;edIm,I Tb;Tl;nwgbnÞúkGnuvtþn_TaMgGs;munnwgebtugTTYl)an 75% énersIusþg;rbs;va. ersIusþg;Tb;
karBt; (flexural strength) RtUv)anKNnaedayviFIFmμta edayQrelI Charpter F of the Specifica-
tion ¬CMBUk 5 enAkñúgesovePAenH¦. edayGaRs½yeTAelIkarKNnarbs;va Bum<sRmab;kRmalebtug
Gacpþl; b¤minGacpþl; lateral support sRmab;EdkFñwm. RbsinebIvaminpþl;Ca lateral support sRmab;
EdkFñwmeT eKRtUvyk unbraced length Lb mkKit ehIy lateral-torsional buckling GaclubelI
flexural strength. RbsinebIeKmineRbIcnÞl;beNþaHGasnñeT EdkFñwmk¾GacRtUv)aneRbIedIm,ITb;Tl;nwg
bnÞúksagsg;bnÞab;bnSMEdr. edIm,IkarBarbnÞúkTaMgenH eKRtUvbEnßmbnÞúk 20lb / ft 2 = 1kN / m 2
(Hansell et al., 1978).
T.Chhay                                    382                            Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                          Department of Civil Engineering
KμancnÞl;³ eRkayeBlebtugrwgmaM Unshored: After Concrete cures
       eRkayeBleKTTYl)an composite behavior RKb;bnÞúkEdlGnuvtþCabnþbnÞab;TaMgGs;RtUv)an
RTedayFñwmsmas. b:uEnþ enAeBldac; RKb;bnÞúkTaMgGs;RtUv)anRTeday couple xagkñúg EdlRtUvKñanwg
karEbgEckkugRtaMgenAeBldac;. dUcenHmuxkat;smasRtUvEtmanersIusþg;RKb;RKan;edIm,IRTbnÞúkTaMgenH
EdlrYmbBa©ÚlTaMgbnÞúkEdlGnuvtþeTAelIFñwmEdkmunnwgebtugrwgmaM.
karsagsg;edayTl;                     Shored Construction
        kñúgkarsagsg;edayeRbIcnÞl; eKBicarNaEtFñwmsmas edaysareKminRtUvkar[EdkFñwmRT
GVIepSgBIbnÞúkpÞal;rbs;vaeT.
ersIusþg;kmøaMgkat;              Shear Strength
                  tRmUv[kmøaMgkat;TaMgs;RtUvTb;Tl;edayRTnugrbs;EdkFñwm Edlpþl;[enA kñúg
          AISC I3.6
Chapter F of the Specification.
]TahrN_ 9>3³ Edk W 12 × 50 eFVIkarrYmKñaCamYynwgkRmalxNÐebtugkRmas; 4in. . TTwgkRmal
xNÐRbsiT§PaBKW 72in. . eKmineRbIcnÞl; m:Um:g;Bt;EdlGnuvtþmkelIvamandUcteTA³ )anmkBITm¶n;Fñwm
 M beam = 13 ft − kips )anmkBITm¶n;kRmalxNÐ M slab = 77 ft − kips nigBIbnÞúkGefr
M L = 38 ft − kips . ¬enAkñúg]TahrN_enH eKminKitbnÞúksagsg;bEnßmeT¦. EdkEdleRbIKW A36
ehIy f 'c = 4000 psi . kMNt;faetI flexural rbs;FñwmenHRKb;RKan;b¤Gt;. snμt;favaCa full
composite action ehIyBum<pþl;Ca lateral suppoet dl;muxkat;EdkmuneBlebtugrwgmaM.
dMeNaHRsay³ muneBlebtugrwgmaM vamanEtbnÞúkGefrb:ueNÑaH ¬minmanbnÞúksagsg;enAkñúg]TahrN_
enHeT¦. dUcenHbnSMbnÞúk A4-1 lub ehIym:Um:g;emKuNKW
          M u = 1.4(M D ) = 1.4(13 + 77 ) = 126 ft − kips
BI beam design chart enAkñúg Part 4 of the Manual sRmab;Edk A36
          φb M n = 195 ft − kips > 126 ft − kips (OK)
eRkayeBlebtugrwgmaM FñwmsmasRtUvTb;Tl;nUvm:Um:g;emKuN
          M u = 1.2 M D + 1.6 M L = 1.2(13 + 77 ) + 1.6(38) = 168.8 ft − kips
kmøaMgsgát; C CatémøtUcCageKén
eRKOgbgÁúMsmas                                 383                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                     NPIC
          As F y = 14.7(36 ) = 529.2kips
b¤        0.85 f 'c Ac = 0.85(4 )(4 × 72) = 979.2kips
PNA    KWsßitenAkñúgebtug ehIy C = 529.2kips . BIrUbTI 9>8 km<s;rbs;bøúgkugRtaMgsgát;KW
                  C           529.2
          a=              =              = 2.162in.
               0.85 f 'c b 0.85(4 )(72 )
édXñas;m:Um:g;KW
               d     a 12.19     2.162
          y=     +t − =      +4−       = 9.014in.
               2     2   2         2
design moment       KW
φb M n = φb C y = 0.85(529.2 )(9.014 ) = 4055in.kips = 338 ft − kips > 168.8 ft − kips (OK)
cemøIy³ FñwmmanersIusþg;Bt; (flexural strength) RKb;RKan; .
        Cak;Esþg karsagsg;edayeRBIcnÞl;manRbsiT§PaBCagkarsagsg;EdlmineRbIcnÞl; edaysar
KmineRbImuxkat;EdkedIm,IRTGVIepSgeRkABIbnÞúkxøÜnva. kñúgsßanPaBxøH kareRbIR)as;cnÞl;Gac[eKRbI
R)as;muxkat;FñwmEdktUcCag. b:uEnþ eRKOgbgÁúMsmasCaeRcInminmaneRbIcnÞl;eT edaysartémøbEnßm
rbs;cnÞl; CaBiesséføBlkmμ cMNayGs;ticCagkarsnSMsMécelITm¶n;Edk.
9>3> TTwgsøabRbsiT§PaB                (Effect Flange Width )
        Epñkrbs;kRmalxNÐEdleFVIkarCaeRKOgbgÁúMsmasCamYynwgEdkFñwmCaGnuKmn_eTAnwgktþaCa
eRcIn EdlrYmmanRbEvgElVg nigKMlatFñwm. AISC I3.1 tRmUv[TTwgRbsiT§PaBrbs;kRmalxNÐenAelI
EpñknImYy²rbs;G½kSFñwmKWtémøEdltUcCageKkñúgcMeNam³
        !> mYyPaKR)aMbIénRbEvgElVg.
        @> mYyPaKBIrénKMlatFñwmEdlKitBIG½kSeTAG½kS.
        #> cm¶ayBIG½kSFñwmeTARCUgEKRmbs;kRmal.
lkçxNÐTIbIRtUv)anGnuvtþcMeBaHEtFñwmxagb:ueNaÑaH dUcenHsRmab;Fñwmxagkñúg TTwgRbsiT§PaBTaMgmUlRtUv
mantémøtUcCageKénmYyPaKbYnénRbEvgElVg b¤KMlatrbs;FñwmEdlKitBIG½kSeTAG½kS ¬edaysnμt;fa
FñwmmanKMlatesμ¦I .
T.Chhay                                        384                          Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                         Department of Civil Engineering
]TahrN_ 9>4³ RbB½n§kRmalEdlpSMeLIgedayEdkFñwm W 12 × 44 EdlmanKMlatBIKña 9 ft nigRT
kRmalebtugGarem:kRmas; 4.5in. . RbEvgElVgKW 30 ft . edaybEnßmBIelITm¶n;rbs;kRmal eKman
bnÞúkCBa¢aMgxNÐ 20 psf nigbnÞúkGefr 125 psf . EdkCaRbePT A36 ehIyersIusþg;rbs;ebtugKW
 f 'c = 4000 psi . cUreFVIkarGegátFñwmxagkñúgedayeKarBtam AISC Specificastion RbsinebIeKmineRbI
cnÞl;beNþaHGasnñ. snμt; full lateral support kñúgGMLúgeBlsagsg; ehIybnÞúksagsg;bEnßmKW
20 psf . eKpþl;nUv shear connector RKb;RKan;sRmab; full composite action.
dMeNaHRsay³ bnÞúkEdlGnuvtþmuneBlebtugrwgmaMrYmmanTm¶n;rbs;kRmalxNÐ
(4.5 / 12)(150) = 56.25 psf .¬eTaHbICa normal-weight concrete manTm¶n; 145 psf / EtebtugGarem:
RtUv)ansnμt;famanTm¶n; 150 psf ¦. sRmab;FñwmEdlmanKMlat 9 ft bnÞúkGefrKW
           56.25 × 9t            = 506lb / ft
            +   Tm¶n;Fñwm        = 44lb / ftt
                                   550lb / ft
bnÞúksagsg;KW 20(9) = 180lb / ft EdlRtUv)anKitCabnÞúkGefr. bnÞúk nigm:Um:g;emKuNKW
          wu = 1.2 wD + 1.6 wL = 1.2(550) + 1.6(180) = 948lb / ft
          M u = (0.948)(30 )2 = 106.6 ft − kips
                1
                8
BI load Factor Design Selection Table
          φb M n = φb M p = 258 ft − kips > 106.6 ft − kips     (OK)
eRkayeBlebtugrwgmaM bnÞúksagsg;minmaneFVIGMeBIeToteT EtbnÞúlCBa¢aMgxNÐeFVIGMeBIvijmþg ehIyva
RtUv)anKitCabnÞúkefr ¬emIl)TahrN_ 5>13¦³
          w part = 20(9 ) = 180lb / ft
          wD = 506 + 44 + 180 = 730lb / ft
bnÞúkGefrCa
          wL = 125(9 ) = 1125lb / ft
bnÞúkGefr nigm:Um:g;GefrKW
          wu = 1.2 wD + 1.6 wL = 1.2(730) + 1.6(1125) = 2676lb / ft
          M u = (2.676)(30 )2 = 301 ft − kips
                1
                8
eRKOgbgÁúMsmas                                  385                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                      NPIC
TTwgRbsiT§PaBCatémøEdltUcCageKkñúgcMeNam
          span 30(12)
              =       = 90in.
            4    4
       KMlatFñwm = 9(12) = 108in.
edaysareRKOgbgÁúMEdlRtUvKNnaCaFñwmxagkñúg lkçxNÐTIbIminGacGnuvtþ)an. yk b = 90in. CaTTwg
søabRbsiT§PaB. enaH tamkarbgðajenAkñúgrUbTI 9>9 kmøaMgsgát;RtUvEtCatémøEdltUcCageKkñúg
cMeNam
          As Fy = 13(36 ) = 468kips
b¤ 0.85 f 'c Ac = 0.85(4)(4.5)(90) = 1377kips
yk C = 468kips . BIrUbTI 9>9
                  C           468
          a=             =             = 1.529in.
              0.85 f 'c b 0.85(4 )(90)
              d        a               1.529
          y = + t − = 10.33 + 4.5 −           = 14.07in.
              2        2                  2
          φb M n = φb Cy = 0.85(468)(14.07 ) = 5595in. − kips = 466 ft − kips > 301 ft − kips (OK)
RtYtBinitükmøaMgkat;
              w L 2.676(30 )
          Vu = u =           = 40.1kips
               2      2
BItaragbnÞúkBRgayesμIemKuN (facored uniform load tables)
          φvVn = 141kips > 40.1kips
cemøIy³ FñwmBitCaeKarBtam AISC Specification.
T.Chhay                                       386                            Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                      Department of Civil Engineering
9>4>      Shear Connectors
        dUcEdleyIg)aneXIjrYcmkehIy kmøaMgkat;tamTisedkEdlekIteLIgcenøaHebtug nigEdkesμI
nwgkmøaMgsgát;enAkñúgebtug C . eyIgsMKal;kmøaMgkat;tamTisedkenHeday Vh . dUcenH Vh Catémø
EdltUcCageKkúñgcMeNam As Fy / 0.85 f 'c Ac b¤ ∑ Qn . RbsinebI As Fy b¤ 0.85 f 'c Ac lub vanwg
man full composite action ehIyeKRtUvkarcMnYn shear connectors cenøaHm:Um:g;sUnü nigm:Um:g;Gtibrma
KW
              V
         N1 = h
              Qn
                                                                                      ¬(>@¦
Edl Qn Ca nominal shear strength rbs; connector mYy². Connectors cMnYn N1 KYrRtUv)andak;
edaymanKMlatesμI²KñaelIRbEvgEdlvatRmUv. AISC Specification [smIkarsRmab;ersIusþg;TaMg
stud connector nig channel shear connector. dUcEdl)anbgðajBIdMbUg stud connector CaRbePT
EdleKniymeRbICageK ehIyeyIgBicarNaEtRbePTenH. sRmab; stud shear connector mYy
          Qn = 0.5 Asc           f 'c Ec ≤ Asc Fu             (AISC Equation I5-1)
Edl       Asc =  RkLaépÞmuxkat;rbs; stud
         f 'c = ersIusþg;rgkarsgát;enA 28 éf¶
        Ec = m:UDuleGLasÞicrbs;ebtug
        Fu = ersIusþg;rgkarTajrbs; stud
sRmab; stud EdleRbICa shear connector enAkñúgFñwmsmas ersIusþg;rgkarTaj Fu KW 60ksi . témø
Edl[eday AISC Equation I5-1 KWQrelIkarBiesaFn_ (Ollgaard, Stutter, and Fisher, 1971).
eKmineRbIemKuNersIusþg;sRmab; Qn eT flexural resistance factor φb )anKitsRmab;RKb;ersIusþg;Edl
manPaBminRbRktI.
        smIkar (>@ [cMnYn shear connector EdlRtUvkarenAcenøaHcMNucm:Um:g;sUnü nigcMNucm:Um:g;
Gtibrma. dUcenH sRmab;FñwmTRmsamBaØEdlRTbnÞb;BRgayesμI eKRtUvkar connector cMnYn 2N1
ehIy BYkvamanKMlatesμI²Kña. enAeBlmanbnÞúkcMcMNuc AISC I5-6 TamTar[dak; connector cMnYn
 N1 enA cenøaHbnÞúkcMcMNuc nigcMNucm:Um:g;sUnüEdlenAEk,redIm,IbegáItm:Um:g;EdlTamTarenARtg;bnÞúk.
EpñkenH RtUv)aneKsMKal;eday N 2 ehIytRmUvkarenHRtUv)anbgðajenAkñúgrUbTI 9>10. cMNaMfacMnYn
shear connector srubminTTYl\T§iBlBItRmUvkarenHeT.
eRKOgbgÁúMsmas                                      387                                     T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                            NPIC
tRmUvkarepSg²sRmab; Headed Struds (AISC I5)
Miscellaneous Requirements for Headed Studs (AISC I5)
              z    Ggát;p©itGtibrma = 2.5 × kRmas;rbs;EdkFñwm
              z    RbEvgGb,brma = 4 × Ggát;p©it stud
              z    KMlattambeNþayGb,brma ¬BIG½kSeTAG½kS¦ = 6 × Ggát;p©it stud
              z    KMlattambeNþayGtibrma ¬BIG½kSeTAG½kS¦ = 8 × kRmas;kRmalxNÐ
              z    KMlattamTTwgGb,brma ¬BIG½kSeTAG½kS¦ = 4 × Ggát;p©it stud
              z    lateral cover Gb,brma = 1in. = 25mm ¬minmankarkMNt;sRmab; vertical cover
                   Gb,brma¦
          AWS Structural Code (AWS 1996)          rayCabBa¢InUvGgát;p©it stud sþg;darCa 1/ 2 / 5 / 8 /
3 / 4 / 7 / 8 / nig 1in. . edaypÁÚrpÁgGgát;p©itenHCamYynwgRbEvgGb,brmaEdltRmUveday AISC eyIg
TTYl)anTMhM stud FmμtaKW 1/ 2 × 2 / 5 / 8 × 2 1 2 / 3 / 4 × 3 / 7 / 8 × 3 12 nig 1× 4 ¬b:uEnþ eKk¾GaceRbI
stud EdlEvgCagenHEdr¦.
]TahrN_ 9>5³ KNna shear connectors sRmab;RbB½n§kRmalenAkñúg]TahrN_ 9>4.
dMeNaHRsay³ segçbTinñn½yEdl)anTTYlBI]TahrN_ 9>4³
          W 21× 44   / Edk A36
          f 'c = 4000 psi
T.Chhay                                         388                               Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
      kRmas;kRmalxNÐ t = 4.5in.
      RbEvgElVg = 30 ft
BI]TahrN_ 9>4 kmøaMgkat;tamTisedk Vh EdlRtUvKñanwg full composite action KW
          Vh = C = 468kips
sakl,g stud 1/ 2 × 2 . Ggát;GnuBaØatGtibrmaKW
          2.5t f = 2.5(0.450 ) = 1.125in. > 0.5in.                                   (OK)
RkLaépÞmuxkat;rbs; shear connector mYyKW
                   π (0.5)2
          Asc =                  = 0.1963in.2
                       4
RbsinebIeyIgsnμt;ebtugCaebtugTm¶n;Fmμta (normal-weight concrete) m:UDuleGLasÞicrbs;ebtugKW
          Ec = w1c.5 f 'c = (145)1.5 4 = 3492ksi
BI AISC Equation I5-1 ersIusþg;rgkmøaMgkat;rbs; connector mYyKW
          Qn = 0.5 Asc           f 'c Ec ≤ Asc Fu
                = 0.5(0.1963) 4(3492 ) = 11.60kips
          Asc Fu = 0.1963(60 ) = 11.78kips > 11.60kips      yk Qn = 11.60kips
ehIy KMlattambeNþayGb,brmaKW 6d = 6(0.5) = 3in.
         KMlattamTTwgGb,brmaKW 4d = 4(0.5) = 2in.
         KMlattambeNþayGtibrmaKW 8d = 8(4.5) = 36in.
cMnYn stud EdlRtUvkarenAcenøaHcugFñwm nigkNþalFñwmKW
              V    468
          N1 = h =     = 40.3
              Qn 11.60
ykcMnYnGb,brma 41 sRmab;Bak;kNþalFñwm b¤cMnYnsrub 82 . RbsinebIenARtg;muxkat;nImYy²eKeRbI
stud cMnYnmYy KMlatEdlcaM)ac;KW
            30(12)
         s=
              82
                    = 4.4in.  yk s = 4in.
sRmab;muxkat;mYyeRbI stud BIrRKab;
            30(12)
         s=
             82 / 2
                    = 8.8in.  yk s = 8.5in.
eRKOgbgÁúMsmas                                      389                                   T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
kartMerob stud mYyNak¾manlkçN³RKb;RKan; ehIyKMlatmYyNak¾sßitenAcenøaHEdnkMNt;TabbMput
nigEdnkMNt;x<s;bMput. kartMerob stud RtUv)anbgðajenAkñúgrUbTI 9>11. eTaHbICakartMerobenHRtUvkar
shear connector eRcInCagtRmUvkark¾eday EteKgayRsYlkñúgkarTTYl)anKMlattamtRmUvkar.
cemøIy³ eRbI stud cMnYn 86 edImEdlmanTMhM 1/ 2in. × 2in. tMerobdUcbgðajkñúgrUbTI 9>11.
9>5> karKNnamuxkat; (Design)
        CMhandMbUgkñúgkarKNnamuxkat;rbs;RbB½n§kRmalxNÐKWCakareRCIserIskRmas;rbs;kRmal
xNÐ eTaHbIvaCakRmaltan; b¤kRmalrnUt ¬Edl)anBI steel deck¦ k¾eday. kRmas;CaGnuKmn_eTAnwg
KMlatFñwm nigbnSMCaeRcInénkRmas;kRmal nigKMlatFñwmEdlRtUvkarkarGegát dUcenHeKnwgGacrk)an
nUvRbB½n§kRmal EdlmanlkçN³esdækic©bMput. karKNnakRmalxNÐminRtUv)anelIkykmkniyay
enAkñúgesovePAenHeT b:uEnþeyIgsnμt;faeyIgsÁal;kRmas;kRmalxNÐ nigKMlatFñwm. edaykareFVIsnμt;
EbbenH eyIgGacGnuvtþnUvCMhanxageRkamedIm,IbMeBjnUvkarKNnaRbB½n§kRmalxNÐ EdlKμancnÞl;.
        !> kMNt;m:Um:g;emKuNEdleFVIGMeBImun nigeRkayebtugrwgmaM
        @> eRCIserIsmuxkat;EdkFñwmsakl,g
        #> KNna design strength rbs;EdkFñwm nwgeRbobeFobvaCamYynwgm:Um:g;emKuNEdleFVIGMeBI
           muneBlebtugrwgmaM. eKRtUvyk unbraced length mkKit RbsinebIBum<min)anpþl;Ca lateral
           support RKb;RKan;. RbsinebImuxkat;EdkFñwmenHminRKb;RKan; eKRtUvsakl,gmuxkat;
           FMCagenH.
        $> KNna design strength rbs;muxkat;smas nigeRbobeFobvaeTAnwgm:Um:g;emKuNsrub. Rb
           sinebImuxkat;smasminRKb;RKan; eRCIserIsmuxkat;EdkFñwmepSgeTotsRmab;sakl,g.
T.Chhay                                    390                           Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
        %> RtYtBinitüersIusþg;rgkmøaMgkat; (shear strength) rbs;EdkFñwm.
        ^> KNna shear connectors³
                a. KNna Vh / kmøaMgkat;tamTisedkenARtg;épÞb:Hrvagebtug nigEdk.
                b. EckkmøaMgenHeday Qn ¬ersIusþg;rgkmøaMgkat;rbs; connector eTal¦ edIm,I
                    TTYl)ancMnYn chear connector srubEdlRtUvkar. cMnYn connector enHnwgpþl;nUv
                    full composite action. RbsinebIeKcg;)an partial composite behavior eKGac
                    kat;bnßycMnYn connectors enH ¬manbkRsayenAkñúgEpñkTI 9>7¦
        &> RtYtBinitüPaBdab ¬RtUv)anbkRsayenAkñúgEpñkTI 9>6¦
        kargard¾sMxan;enAkñúgdMeNIrkar trial-and-orror Edl)anerobrab;xagelIenHKWkareRCIserIsmux
kat;EdkFñwmsakl,g. rUbmnþEdlnwg[nUvRkLaépÞcaM)ac; ¬b¤Gacniyaymü:ageTotKWTm¶n;EdlRtUvkar
elIRbEvgÉktþa¦ GacekIteLIg)an RbsinebIeKsnμt;km<s;Fñwm. edaysnμt;vaeFVIkarCaeRKOgbgÁúMsmas
TaMgRsug (full composite action) ehIy PNA sßitenAkñúgkRmalxNÐ ¬Edlmann½yfa EdkFñwmlub
ehIyvaCakrNIEdleKeRcInCYbRbTHCageK¦ eyIgGacsresr design strength ¬edayeyageTAelI
rUbTI 9>12¦ Ca
                                  (
          φb M n = φb (Ty ) = φb As Fy y     )
edaydak;[ design strength esμInwgm:Um:g;emKuN ehIyedaHRsayrk As eyIgTTYl)an
      φb As F y y = M u     nig As = φ MFu y
                                                  b y
b¤        As =
                          Mu
                 φb Fy (d / 2 + t − a / 2)
                                                                            ¬(>#¦
eRKOgbgÁúMsmas                                   391                                      T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
eKk¾GacsresrsmIkar (># vaCaTm¶n;CagkarsresrCaRkLaépÞ. edaysarRbEvg 1 ft manmaD
 As / 144 ft 3 ehIyEdkeRKOgbgÁúMmanTm¶n;maD 490lb / ft 3
         w = s (490 ) = 3.4 As lb / ft ¬sRmab; As KitCa in.2 ¦
                A
               144
BIsmIkar (># dUcenHTm¶n;Edl)a:n;sμankñúgmYy ft KW
         w=
                    3.4 M u
               φ F (d / 2 + t − a / 2)
                                       lb / ft                     ¬(>$¦
                b y
Edl M u KitCa in. − kips / Fy KitCa ksi / ehIy d / t nig a KitCa in. . eKGaceRbIsmIkar (># b¤
(>$ edIm,IeRCiserIsmuxkat;sakl,g. smIkarTaMgBIrTamTarnUvkm<s;Edlsnμt; nigkar)a:n;sμan a / 2 .
dUcenH CaTUeTAbøúkkugRtaMgmankm<s;tUcNas; kRmitlMeGogkñúgkarKNna a / 2 nwgman\T§iBltictYc
elItémøEdl)anKNna As . eKsnμt; a / 2 = 1.0 .
        RbsinebIeKeRbIsmIkar (>$ ehIyeKsnμt; nominal depth d enaHeKGaceFVIkareRCIserIsrUbrag
sakl,g)any:aggayRsYl. kareRbIsmIkarenHk¾pþl;nUvkarKNnaTm¶n;FñwmedaypÞal;.
]TahrN_ 9>6³ RbEvgElVgrbs;RbB½n§kRmalKW 30 ft ehIyKMlatFñwmKW 10 ft edayKitBIG½kSeTAG½kS.
eRCIserIs rolled steel shape nig shear connector EdlcaM)ac;edIm,ITTYl)ankareFVIkarCaeRKOgsmas
TaMgRsugCamYynwgkRmalxNÐebtugGarem:kRmas; 3.5in. . bnÞúkbEnßmEdlmanGMeBIelIkRmalxNÐrYm
manbnÞúkCBa¢aMgxNÐ 10 psf nigbnÞúkGefr 55 psf . ersIusþg;ebtugKW f 'c = 4000 psi nigEdkEdleRbI
CaRbePT A36 . snμt;faFñwmman full lateral support kñúgGMLúgeBlsagsg; ehIymanbnÞúksagsg;
20 psf .
dMeNaHRsay³ bnÞúkEdlRtUvRTmuneBlebtugrwgmaMKW
        kRmalxNг (3.5 /12)(150) = 43.75 psf
        Tm¶n;kñúg 1 ft : 43.75(10) = 437.5lb / ft
        bnÞúksagsg;³ 20(10) = 200lb / ft
 ¬Tm¶n;FñwmnwgRtUvKitenAeBleRkay¦
        bnÞúkEdlRtUvRTeRkayeBlebtugrwgmaMKW
          w part = 10(10 ) = 100lb / ft
          wD = wslab + w part = 437.5 + 100 = 537.5lb / ft
T.Chhay                                      392                         Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                              Department of Civil Engineering
          wL = 55(10 ) = 550lb / ft
          wu = 1.2 wD + 1.6 wL = 1.2(0.5375) + 1.6(0.550) = 1.525kips / ft
          M u = (1.525)(30)2 = 171.6 ft − kips
                1
                8
sakl,gkm<s; d = 16in. . BIsmIkar (>$ Tm¶n;FñwmEdl)anKNnaKW
                       3.4 M u                3.4(171.6 × 12)
          w=                             =                           = 21.8lb / ft
                φb Fy (d / 2 + t − a / 2) 0.85(36)(16 / 2 + 3.5 − 1)
sakl,g W16 × 26 . RtYtBinitüFñwmEdkedayminmancnÞl;sRmab;bnÞúkEdlGnuvtþmuneBlebtugrwgmaM
¬Tm¶n;rbs;kRmalxNÐ Tm¶n;rbs;Fñwm nigbnÞúksagsg;¦
          wu = 1.2(0.4375 + 0.026 ) + 1.6(0.200) = 0.8762kips / ft
          M u = (0.8762)(30)2 = 98.6 ft − kips
                1
                8
BI Load Factor Design Selection Table
          φb M n = φb M p = 119 ft − kips > 98.6 ft − kips           (OK)
eRkayeBlebtugrwgmaM nigeRkayeBlEdleKTTYl)an composite behavior
          wD = wslab + w part + wbeam = 0.4375 + 0.100 + 0.016 = 0.5535kips / ft
          wu = 1.2 wD + 1.6 wL = 1.2(0.5535) + 1.6(0.550) = 1.544kips / ft
          M u = (1.544)(30)2 = 174 ft − kips
                1
                8
muneBlKNna design strength rbs;muxkat;smas dMbUgeyIgRtUvkMNt;TTwgsøabRbsiT§PaB. sRmab;
Fñwmxagkñúg TTwgRbsiT§PaBCatémøtUcCageKkñúgcMeNam
         span 30(12)
           4
               =
                    4
                        = 90in.       b¤ KMlatFñwm = 10(12) = 120in.
yk b = 90in. . sRmab; full composite behavior kmøaMgsgát;enAkñúgebtugenA ultimate
¬esμInwgkmøaMg kat;tamTisedkenARtg;épÞb:Hrvagebtug nigEdk¦ CatémøEdltUcCageKkñúgcMeNam
          As Fy = 7.68(36) = 276.5kips
b¤ 0.85 f 'c Ac = 0.85(4)(90)(3.5) = 1071kips
yk C = Vh = 276.5kips . km<s;bøúkkugRtaMgsgát;enAkñúgkRmalxNÐKw
                    C          276.5
          a=               =            = 0.9036in.
                0.85 f 'c b 0.85(4)(90)
ehIyédXñas;rbs; internal resisting couple KW
eRKOgbgÁúMsmas                                    393                                               T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                       NPIC
               d     a 15.69         0.9036
          y=     +t − =      + 3.5 −        = 10.89in.
               2     2   2              2
design flexural strength     KW
          φb M n = φb (Cy ) = 0.85(276.5)(10.89) = 2550in.kips = 213 ft − kips > 174 ft − kips   (OK)
RtYtBinitükmøaMgkat;
              w L 1544(30)
          Vu = u =         = 23.2kips
               2     2
BI factored uniform load tables
          φvVn = 76.3kips > 23.2kips     (OK)
cemøIy³ eRbI W 16 × 26
       eKRtUvkarm:UDuleGLasÞicrbs;ebtugedIm,IKNna shear connector. BI]TahrN_ 9>5/
Ec = 3492ksi sRmab;ebtugFmμtaCamYynwg f 'c = 4000 psi . sakl,g stud 1 / 2 × 2in.
¬ Asc = 0.1963in.2 ¦
       Ggát;p©itGtibrma = 2.5t f = 2.5(0.345) = 0.8625in. > 0.5in. (OK)
BI AISC Equation I5-1/ ersIusþg;rgkmøaMgkat;rbs; connector mYyKW
          Qn = 0.5 Asc    f 'c Ec ≤ Asc Fu
               = 0.5(0.1963) 4(3492 )
               = 11.60kips
          Asc Fu = 0.1963(60) = 11.78kips > 11.60kips
dUcenHyk Qn = 11.60kips
cMnYn stud EdlRtUvkarenAcenøaHcugFñwm nigkNþalElVgKW
              V
         N1 = h =
                    276.5
              Qn 11.60
                          = 23.8        eRbI 24 sRmab;Bak;kNþalFñwm b¤Casrub 48
nig KMlattambeNþayGb,brmaKW 6d = 6(0.5) = 3in.
         KMlattamTTwgGb,brmaKW 4d = 4(0.5) = 2in.
         KMlattambeNþayGtibrmaKW 8t = 8(3.5) = 28in.
RbsinebIeKeRbI stud mYysRmab;muxkat;nImYy² KMlatRbhak;RbEhlKW
               30(12)
          s=          = 7.5in.
                 48
KMlatenHsßitenAcenøaHEdnx<s;bMput nigEdnTabbMput dUcenHvabMeBjlkçxNÐ.
T.Chhay                                        394                            Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
cemøIy³ ykkarKNnaEdlbgðajenAkñúgrUbTI 9>13.
9>6> PaBdab (Deflections)
         edaysarm:Um:g;niclPaBrbs;muxkat;bMElg (transformed section) FM dUcenHPaBdabrbs;Fñwm
smasnwgtUcCagFñwmFmμta. b:uEnþ eKGacTTYl)anm:Um:g;niclPaBFMenHEteRkayeBlebtugrwgmaMEt
b:ueNÑaH. PaBdabEdlekIteLIgedaysarbnÞúkGnuvtþn_muneBlebtugrwgmaMRtUv)anKNnaCamYynwgm:Um:g;
niclPaBrbs;FñwmEdk. PaBdabbEnßmnwgekIteLIgenAeBlEdlFñwmrgnUvbnÞúkefrdUcCa Tm¶n;rbs;CBa¢aMg
xNÐ enAeRkayeBlebtugrwgmaM. tMbn;m:Um:g;viC¢man ebtugnwgrgkmøaMgsgát;Cab;rhUt ehIyrgnUv)atuPUt
EdleKsÁal;faCa creep. Creep CakMhUcRTg;RTayEdlekIteLIgeRkamGMeBIrbs;bnÞúksgát;. eRkay
eBlekItmankMhUcRTg;RTaydMbUg kMhUcRTg;RTaybEnßmnwgekItmaneLIgedayGRtayWtelIry³eBld¾
Evg. \T§iBlenAelIFñwmsmasKWkarekIneLIgnUvkMeNag EdlbNþal[PaBdabtambBaÄrekIneLIgEdr.
eKGackMNt;EtPaBdabry³eBlyUr (long-term deflection) edayeRbIbec©keTsEdleKniymeRbI.
bec©keTsenHKWeRbImuxkat;ebtugEdl)ankat;bnßyenAkñúgmuxkat;bMElg dUcenHeKnwgTTYl)anm:Um:g;
niclPaBtUcCagmun ehIyeKnwgTTYl)anPaBdabFMCagmun. muxkat;Edl)ankat;bnßyRtUv)anKNna
edayeRbI 2n b¤ 3n CMnYs[pleFobm:UDulCak;Esþg n . enAkñúgesovePAenH eyIgeRbI 2n . PaBdab
EdlekIneLIgeday creep minRtUv)anENnaMeday AISC Specification eT.
         sRmab;karsagsg;edayKμancnÞl; eKmanm:Um:g;niclPaBbIxusKñasRmab;KNna long-term
deflection.
        !> eRbI I s / m:Um:g;niclPaBrbs; rolled steel shape
            sRmab;PaBdabEdlekIteLIgedaysarbnÞúkGnuvtþn_muneBlebtugrwgmaM.
eRKOgbgÁúMsmas                            395                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
          @> eRbI I tr / m:Um:g;niclPaBrbs; transfored section EdlKNnaCamYynwg b / n sRmab;PaB
             dab EdlekIteLIgedaybnÞúkGefr nigsRmab;PaBdabdMbUg (initial deflection) EdlekIt
             edaybnÞúkefrEdlGnuvtþeRkayeBlebtugrwgmaM.
          #> eRbI I tr EdlKNnaCamYynwg b / 2n sRmab; long-term deflection EdlekIteLIgedaysar
             bnÞúkGefrEdlGnuvtþeRkayeBlebtugrwgmaM.
]TaheN_ 9>7³ KNnaPaBdabPøam² (immediate deflection) nig long-term deflection sRmab;Fñwm
enAkñúg]TahrN_ 9>4.
dMeNaHRsay³ segçbTinñn½yBI]TahrN_ 9>4³
        W 21× 44 / Edk A36
        kRmas;kRmalxNÐ t = 4.5in. ehIyTTwgRbsiT§PaBKW b = 90in.
          f 'c = 4000 psi
      bnÞúkGefrEdlGnuvtþmuneBlebtugrwgmaMKW wD = 550lb / ft ¬kRmalxNÐbUknwgFñwm¦
      bnÞúksagsg;KW wconst = 180lb / ft
      bnÞúkGefrKW wL = 125(9) = 1125lb / ft
      bnÞúkCBa¢aMgxNÐKW w part = 20(9) = 180lb / ft
PaBdabPøam²³
      sRmab;FñwmbUknwgkRmalxNÐ w = 550lb / ft
                  5wL4      5(0.55 / 12)(30 × 12)4
          Δ1 =            =                        = 0.41in.
                 384 EI s     384(29000)(843)
          sRmab;bnÞúksagsg; w = 180lb / ft
                  5wL4      5(0.18 / 12)(30 × 12)4
          Δ2 =            =                        = 0.1342in.
                 384 EI s     384(29000)(843)
       PaBdabPøam²srubKW Δ1 + Δ 2 = 0.41 + 0.1342 = 0.544in.
       sRmab;PaBdabEdlenAsl; eKRtUvkarm:Um:g;niclPaBrbs;muxkat;bMElgBIrKW I tr CamYynwg
TTwgkRmalxNÐbMElg b / n nig I tr CamYynwgTTwgkRmalxNÐbMElg b / 2n . sRmab;ebtugTm¶n;
FmμtaEdlman f 'c = 4000 psi / Ec = 3492ksi nigpleFobm:UDulKW
T.Chhay                                         396                      Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                              Department of Civil Engineering
          n=
                E s 29000
                Ec
                   =
                     3492
                               yk n = 8
                          = 8 .3
sRmab;PaBdabrbs;muxkat;smasEdlminTak;Tgnwg creep TTwgRbsiT§PaBKW
          b 90
           =   = 11.25in.
          n 8
rUbTI 9>14 bgðajBImuxkat;bMElgEdlRtUvKña. karKNnasRmab;TItaMgG½kSNWt nigm:Um:g;niclPaB
RtUv)ansegçbenAkñúgtarag 9>4.
PaBdabdMbUgEdlbNþalBITm¶n;CBa¢aMgxNÐKW
                  5w part L4         5(0.180 / 12)(30 × 12)4
          Δ3 =                   =                           = 0.0441in.
                   384 EI tr           384(29000)(2566)
PaBdabEdlbNþalBIbnÞúkGefrKW
                  5wL L4 5(1.125 / 12)(30 × 12)4
          Δ4 =              =                    = 0.2755in.
                  384 EI tr   384(29000)(2566)
tarag 9>4
     eRKOgbgÁúM                  A            y             Ay        I        d        I + Ad 2
       ebtug                   50.62         2.25       113.9       85.43    2.571         420
     W 12 × 44                 13.00        14.83       192.8        843     10.01        2146
                           63.62                      306.7                             2566in.4
      ∑ Ay 306.7
y=        =      = 4.821
      ∑ A 63.62
eRKOgbgÁúMsmas                                        397                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                          NPIC
PaBdabry³eBlyUrEdlbNþalBI creep. eRbITTwgkRmalxNÐbMElg
          b   90
            =     = 5.625in.
          2n 2(8)
muxkat;bMElgRtUv)anbgðajenAkñúgrUbTI 9>15. karKNnaTIRbCMuTm¶n;nwg m:Um:g;niclPaBRtUv)ansegçb
enAkñúgtarag 9>5. edayehAm:Um:g;niclPaBenHCa I 'tr eyIgGacKNnaPaBdabry³eBlyUrEdlekIt
eLIgeday creep KW
                  5w part L4       5(0.180 / 12)(30 × 12)4
          Δ5 =                 =                           = 0.0504in.
                  384 EI 'tr         384(29000)(2245)
tarag 9>5
     eRKOgbgÁúM                A            y             Ay        I     d          I + Ad 2
       ebtug               25.31           2.25       56.95      42.71   4.269         504
     W 12 × 44             13.00          14.83       192.8       843    8.311         1741
                         38.31                      249.8                            2245in.4
     ∑ Ay 249.8
y=       =      = 6.519
     ∑ A 38.31
cemøIy³ xageRkamenHCakarsegçbrbs;PaBdab
          PaBdabPøam²munTTYl)an composite behavior
          Δ1 + Δ 2 = 0.4100 + 0.1342 = 0.544in.
          PaBdabry³eBlxøICamYynwgCBa¢aMgxNÐedayKμanbnÞúkGefr
T.Chhay                                             398                          Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
          Δ1 + Δ 3 = 0.4100 + 0.0441 = 0.454in.
          PaBdabry³eBlxøIedaybEnßmbnÞúkGefr
          Δ1 + Δ 3 + Δ 4 = 0.4100 + 0.0441 + 0.2755 = 0.730in.
          PaBdabry³eBlEvgedayKμanbnÞúkGefr
          Δ1 + Δ 5 = 0.4100 + 0.0504 = 0.460in.
          PaBdabry³eBlEvgedaymanbnÞúkGefr
          Δ1 + Δ 4 + Δ 5 = 0.4100 + 0.2755 + 0.0504 = 0.736in.
      edaysarbnÞúkefrEdlGnuvtþeRkayeBlebtugrwgmaMmantémøtUc PaBdabEdl)anBI creep
mantémøtUcenAkñúg]TahrN_enH.
9>7> FñwmsmasCamYynwgkRmalBum<Edk (Composite Beams with Formed Steel Deck)
        kRmalxNÐenAkñúgsMNg;eRKagEdkRtUv)anpÁúMeLIgkñúgTRmg;kRmalEdkrnUt (ribbed steel
deck) EdlRtUv)anTukenAnwgkEnøgedIm,I[vakøayeTACaEpñkrbs;eRKOgbgÁúM. eTaHbICamankrNIelIk
Elgk¾eday k¾rnUtrbs;bnÞHEdkRtUv)andak;[EkgnwgFñwmkRmal ehIyRsbeTAnwgrtEdlRTFñwmenaH.
rUbTI 9>16 bgðajBIrnUtEdlmanTisEkgnwgFñwm. eKdMeLIg shear stud enAelIFñwmsmasEdlman
kRmalrnUt tamviFIdUcKñanwgkardMeLIg shear srud enAelIFñwmsmasEdlKμankRmalrnUt. eKcat;Tukfa
karP¢ab;Kñarvag         deck         eTAnwgFñwmEdkpþl;nUvTRmxag       (lateral        support)
sRmab;FñwmEdkmuneBlebtugrwgmaM. karKNna nigkarviPaKFñwmsmasCamYynwg formed steel deck
mansar³sMxan;dUcKñanwgkrNIFñwm                       smasCamYynwgkRmalEdlmankRmalesμIEdr
EtxageRkamCakrNIelIkElgmYycMnYn³
        !> eKminKitebtugenAkñúgrnUt ¬EdlenABIeRkamEpñkxagelIrbs; deck¦ enAeBlrnUtTaMgenaH
            EkgnwgFñwm (AISC I3.5b). enAeBlrnUtRsbnwgFñwm ebtugenAkñúgrnUtenaHRtUv)anKitbBa©Úl
            eTAkñúgkarkMNt;lkçN³muxkat; ehIyRtUv)anbBa©ÚleTAkñúgkarKNna Ac .
        @> lT§PaBrbs; shear connector GacRtUv)ankat;bnßy
        #> CaTUeTA eKminGacTTYl)an full composite behavior eT. mUlehtuKWfa KMlatrbs; shear
            connector RtUv)ankMNt;edayKMlatrbs;rnUt ehIyeKminGaceRbIRKb;cMnYn connector Edl
eRKOgbgÁúMsmas                               399                                         T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
            RtUvkar. eTaHbICaeKGaceRbI partial composite design edayKμan formed steel deck k¾
            eday k¾vaRtUv)anelIkykmkniyayenATIenH BIeRBaHPaKeRcInvaRtUvkar formed steel deck.
            tamBitvaminEmnCaKuNvibtþieT EtvaCaCeRmIsxagEpñkesdækic©.
       FñwmsmasPaKeRcInCamYynwg formed steel deck CakRmalFñwmEdlmanrnUtEkgnwgFñwm ehIy
eyIgnwgniyayEtkñúgkrNIenH. tRmUvkarcaM)ac;EdlGnuvtþenAeBlrnUtmanTisRsbeTAnwgFñwmRtUv)an
bgðajenAkñúg AISC I3.5 c.
lT§PaBEdlkat;bnßyrbs; shear connectors
Reduced Capacity of Shear connector
      edayBwgEp¥kelIkarBiesaF AISC I3.5b tRmUv[KuN shear strength rbs; shear connector
Qn eTAnwgemKuNkat;bnßyenAeBlEdlrnUtEkgeTAnwgFñwm³
          0.85   ⎛ wr    ⎞ ⎡⎛ H s   ⎞       ⎤
                 ⎜⎜      ⎟⎟ ⎢⎜⎜     ⎟⎟ − 1.0⎥ ≤ 1.0          (AISC Equation I3-1)
           Nr     ⎝ hr    ⎠ ⎣⎝ hr    ⎠      ⎦
Edl       Nr = cMnYn stud kñúgmYyrnUtRtg;kEnøgEdlkat;KñaCamYynwgFñwm ¬EdlkMNt;RtwmbIenAkñúgkar
              KNna¦
         wr = TTwgmFümrbs;rnUt
         hr = km<s;rbs;rnUt
         H s = RbEvgrbs; stud EdlkñúgkarKNnavaminRtUvFMCag (hr + 3) .
TMhMTaMgenHRtUv)anbgðajenAkñúgrUbTI 9>17.
T.Chhay                                               400                 Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
Partial Composite Action
          kareFVIkarCaeRKOgbgÁúMsmasedayEpñk (partial composite action) ekItmaneLIgenAeBlEdl
vaminman shear connector RKb;RKan;edIm,IkarBarPaBrGilrvagebtug nigEdkFñwm. TaMgebtug nigEdk
minGaceFVIkardl; strength rbs;vaeBjeljeT ehIykmøaMgsgát;RtUv)ankMNt;RtwmkmøaMgGtibrma
¬EdlCaersIusþg;rbs; shear connector ∑ Qn ¦ EdlGacbBa¢ÚnkmøaMgkat;tamépÞb:HrvagEdk nigebtug.
rMlwkfa C CatémøEdltUcCageKkñúgcMeNam As Fy / 0.85 f 'c Ac nig ∑ Qn .
          CamYynwg partial composite action CaTUeTAG½kSNWt)aøsÞic (PNA) sßitenAñúgmuxkat;Edk. TI
taMgenHnwgeFVI[karviPaKersIusþg;mankarBi)akCagTItaMgrbs; PNA EdlsßitenAkñúgkRmalxNÐbnþic
EteKalkarN_cMbgKWdUcKña.
          enAeBlEdleKeFVI elastic analysis k¾dUcCaenAeBlEdleKKNnaPaBdab eKRtUveFVIkar KNna
m:Um:g;niclPaBrbs; partially composite section. eKGaceRbIExSekag parabolic transition BI I s
¬sRmab;EtEdkFñwm¦ eTA I tr ¬sRmab; fully composite section¦ )an (Hansell et al., 1978).
xageRkam CasmIkarEdlnwgpþl;nUvlT§plRbhak;RbEhlsRmab;m:Um:g;niclPaBRbsiT§PaBEdlbgðaj
eday Commentary to the AISC Specification³
          I eff = I s + ∑ Qn / C f (I tr − I s )                   (AISC Equation C-I3-6)
Edl C f CakmøaMgsgát;enAkñúgebtugsRmab; fully composite condition ¬témøEdltUcCageKkñúg
cMeNam As Fy nig 0.85 f 'c Ac ¦. edaysarEt ∑ Qn CakmøaMgsgát;Cak;EsþgsRmab;krNI partially
eRKOgbgÁúMsmas                                     401                                   T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
composite   enaHpleFob ∑ Qn / C f CacMENkrbs; compositeness Edlman. RbsinebIpleFobenH
tUcCag 0.25 enaHeKminKYreRbI AISC Equation C-I3-6 (Hansell et al., 1978).
         eKminGacTTYl)anersIusþg;EdkeBjenAkñúg partially composite beam eT dUcenHvaTamTar
nUvmuxkat;EdkFñwmFMCag muxkat;EdkFñwmsRmab; fully composite behavior. b:uEnþ vaRtUvkar shear
connector ticCag ehIytémørbs;EdkFñwm nig shear connectors ¬EdlrYbbBa©ÚlTaMgtémødMeLIg¦
RtUv)anKitcUleTAkñúgkarviPaKEpñkesdækic©. enARKb;eBlEdl fully composite beam manlT§PaB
Tb;Tl;FM ¬EdleKEtgEtCYbRbTHkrNIEbbenH¦ eKGaceFVIkarkat;bnßycMnYn shear connector Edl
eFVI[FñwmkøayCa partially composite beam.
tRmUvkarepSg²                Miscellaneous Requirements
       xageRkamCatRmUvkarEdl)anBI AISC Section I3.5 a nig b. GVIEdlnwgerobrab;xageRkamCa
tRmUvkarbEnßmBIelIGVIEdl)anerobrab;BIcxagedIm³
    - km<s;rnUtGtibrma hr = 3in. = 75mm
    - TTwgmFümGb,brmarbs;rnUt wr = 2in. = 50mm b:uEnþtémørbs; wr EdleRbIenAkñúgkar
        KNnaminKYrFMCag clear width rbs;EpñkxagelIbMputrbs; deck eT.
    - kRmas;kRmalGb,brmaenABIelIEpñkx<s;bMputrbs; deck = 2in. = 50mm .
    - Ggát;p©it stud Gtibrma = 3 / 4in. . karTamTarsRmab; formed steel deck enHCakarbEnßmBI
        elIGgát;p©itGtibrma 2.5t f .
    - km<s;Gb,brmarbs; stud BIelIEpñkx<s;bMputKW 1 1 2 in.
    - KMlattambeNþayGtibrmarbs; shear stud = 36in. = 915mm
    - eKRtUvP¢ab; deck eTAnwgsøabFñwmedayKMlatmin[FMCag 18in = 460mm eday stud b¤ eday
        spot weld. kareFVIEbbenHedIm,IkarBar uplift.
Tm¶n; deck nigTm¶n;kRmal            Slab and Deck Weight
      edIm,IsRmYldl;karKNnaTm¶n;kRmal eyIgeRbIkRmas;rbs;kRmalTaMgmUledayvas;BI)at
rbs; deck eTAépÞxagelIrbs;kRmalxNÐ. eTaHbICaviFIenH)a:n;sμanmaDebtugelIsk¾eday Etvaman
T.Chhay                                  402                           Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                 Department of Civil Engineering
suvtßiPaB. sRmab;Tm¶n;maDebtugGarem: eyIgeRbITm¶n;ebtugmaDsuT§bUkbEnßm 5 pcf = 80kg / m3 .
CaTUeTA edaysarkRmalxNÐenAelI formed steel deck CaebtugEdlBRgwgedayEdktic ¬eBlxøHeRbI
welded wire mesh CMnYs[kareRbI reinforcing bar¦ karbEnßm 5 pcf = 80kg / m 3 sRmab;EdkBRgwg
GacmantémøFM b:uEnþ deck manTm¶n;cenøaHBI 2 psf = 9.6kg / m 2 eTA 3 psf = 14.5kg / m 2 .
        eKGaceRbIvFImü:ageTot edayKitplbUkrvagkRmas;kRmalEdlenABIelI deck Edlx<s;CageK
CamYynwgBak;kNþalkm<s;rbs;rnUtCakRmas;ebtugkñúgkarKNnaTm¶n;rbs;kRmal. CaTUeTA kñúgkar
Gnuvtþ eKGacrkplbUkrvagTm¶n;kRmal nig deck enAkñúgtaragEdlpþl;[edayeragcRkplit deck.
]TahrN_ 9>8³ kRmalxNÐRTedayFñwmEdleRbI formed steel deck EdlbgðajenAkñúgrUbTI 9>18 Ca
mYynwgkRmalebtugGarem:EdlkRmas;srubKW 4.75in. . rnUt deck EkgnwgFñwm. RbEvgElVgKW 30 ft
ehIyFñwmmanKMlatBIKña 10 ft edayKitBIG½kSeTAG½kS. EdkeRKOgbgÁúMCaRbePTEdk A36 ehIyersIusþg;
rbs;ebtugKW f 'c = 3000 psi . Tm¶n;rbs;kRmal nig deck KW 50 psf . Tm¶n;GefrKW 40 psf nigTm¶n;
CBa¢aMgKW 10 psf . kñúgkarsagsg;enH eKminmaneRbIcnÞl;beNþaHGasnñeT ehIyTm¶n;sagsg;KW 20 psf .
         !> eRCIserIs W shape
         @> KNna shear connector
         #> RtYtBinitüPaBdab. PaBdabry³eBlyUrsrubGnuBaØatGtibrmaKW 1/ 240 énRbEvgElVg.
dMeNaHRsay³ !> KNnaFñwm
eRCIserIsrUbragsakl,gedayQrelI full composite behavior
        kRmalxNг 50(10) = 500lb / ft
        CBa¢aMgxNг 10(10) = 100lb / ft
        bnÞúkGefr³ 40(10) = 400lb / ft
eRKOgbgÁúMsmas                           403                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                              NPIC
          wu = 1.2wD + 1.6wL = 1.2(0.5 + 0.1) + 1.6(0.4) = 1.360kips / ft
          M u = (1.36)(30)2 = 153 ft − kips
                1
                8
edaysnμt;fa d = 16in. / a / 2 = 1in. nigsnμt;Tm¶n;rbs;FñwmBIsmIkar (>$³
                      3.4M u                   3.4(153 × 12)
          w=                            =                            = 17.4lb / ft
               φb Fy (d / 2 + t − a / 2) 0.85(36)(16 / 2 + 4.75 − 1)
sakl,g W 16 × 26 . RtYtBinitüersIusþg;rgkarBt;muneBlebtugrwgmaM
     bnÞúksagsg;³ 20(10) = 200lb / ft
          wu = 1.2wD + 1.6wL = 1.2(0.5 + 0.026) + 1.6(0.4) = 0.9512kips / ft
          M u = (0.9512)(30)2 = 107 ft − kips
                1
                8
W 16 × 26   Ca compact section sRmab; A36 nigedaysar steel deck nwgpþl; lateral support
RKb;RKan; dUcenH nominal strength M n esμInwgersIusþg;m:Um:g;)aøsÞic M p .
BI Load Factor Design Selection Table
          φb M p = 119 ft − kips > 107 ft − kips (OK)
eRkayeBlebtugrwgmaM bnÞúkemKuNsrubEdlRtUvRTedayFñwmsmas EdlRtUv)anEksRmYledaysar
Tm¶n;rbs;EdkFñwmKW
          wu = 1.2(0.5 + 0.026 + 0.1) + 1.6(0.4) = 1.391kips / ft
ehIym:Um:g;emKuNKW
          Mu =
                  1
                    (1.391)(30)2 = 156 ft − kips
                  8
TTwgkRmalxNÐRbsiT§PaBrbs;muxkat;smasRtUvEtmantémøtUcCageKkñúgcMeNam
       span 30(12)
         4
            =
                4
                    = 90in.       b¤ KMlatFñwm = 10(12) = 120in.
yk b = 90in. . sRmab; fully composite action kmøaMgsgát; C enAkñúgebtugKWCatémøtUcCageKkñúg
cMeNam
          As Fy = 7.68(36) = 276.5kips
b¤        0.85 f 'c Ac = 0.85(3)[90(4.75 − 1.5)] = 745.9kips
T.Chhay                                            404                               Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                             Department of Civil Engineering
EdleKKitEtebtugenAelIEpñkx<s;bMputrbs; deck ¬dUcbgðajenAkñúgrUbTI 9>19¦ b:ueNÑaHsRmab;smIkar
TIBIrxagelI. CamYynwg C = 276.5kips km<s;rbs;karBRgaykugRtaMgsgát;enAkñúgebtugKW
                   C           276.5
          a=               =            = 1.205in.
                0.85 f 'c b 0.85(3)(90)
édXñas;m:Um:g;rbs; internal resisting couple KW
                d     a 15.69          1.209
          y=      +t − =      + 4.75 −       = 11.99in.
                2     2   2              2
ehIy design strength KW
                      0.85(276.5)(11.99)
          φb M n =                       = 235 ft − kips > 156 ft − kips     (OK)
                             12
RtYtBinitükmøaMgkat;
              w L 1.391(30 )
          Vu = u =           = 20.9kips
               2      2
BI factored uniform load tables
          φvVn = 76.3kips > 20.9kips       (OK)
cemøIy³ !> eRbI W16 × 26
        @> Shear connectors
edaysarFñwmenHmanersIusþg;m:Umg: ;FMKYrsm eKGac[vaeFVIkarCa patial composite behavior. dMbUg
eyIgRtUvrkcMnYn shear connector caM)ac;sRmab; full composite behavior nwgbnÞab;mkkat;bnßycMnYn
conntector. sRmab; fully composite beam/ C = Vh = 276.5kips .
sakl,g stud 3 4 × 3in. ¬ Asc = 0.4418in 2 ¦mYyenARtg;muxkat;mYy³
        Ggát;p©itGtibrma = 2.5t f = 2.5(0.345) = 0.8625in.
        b¤ 34 in. lub
eRKOgbgÁúMsmas                                   405                                               T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                                  NPIC
          Ggát;p©itCak;Esþg = 34 in. (OK)
          KNnaemKuNkat;bnßyersIusþg;rbs; stud
          Nr = 1
          km<s;rbs; stud BIelIEpñkx<s;bMputrbs; deck = 3 − 1.5 = 1.5in. = témøGnuBaØat           (OK)
BI AISC Equation I3-1,
       emKuNkat;bnßy = 0.N85 ⎛⎜⎜ wh r ⎞⎟⎟⎡⎢⎛⎜⎜ Hh s ⎞⎟⎟ − 1.0⎤⎥ ≤ 1.0
                                    r ⎝ r ⎠ ⎣⎝     r ⎠       ⎦
                                 0.85 ⎛ 2.25 ⎞⎛ 3       ⎞
                             =        ⎜      ⎟⎜   − 1.0 ⎟ = 1.275 > 1.0
                                 1.0 ⎝ 1.5 ⎠⎝ 1.5       ⎠
eKminRtUvkarkat;bnßyersIusþg; stud eT. sRmab;             f 'c = 3000 psi   m:UDuleGLasÞicrbs;ebtugKW
          Ec = w1c.5 f 'c = 1451.5 3 = 3024ksi
BI AISC Equation I5-1, ersIusþg;rgkmøaMgkat;rbs; connector mYyKW
          Qn = 0.5 Asc     f 'c Ec ≤ Asc Fu
               = 0.5(0.4418) 3(3024 ) = 21.04kips
          Asc Fu = 0.4418(60) = 26.51kips > 21.04kips
dUcenHyk Qn = 21.04kips
cMnYnrbs; stud EdlRtUvkarenAcenøaHcugrbs;Fñwm nigkNþalElVgKW
              V    276.5
          N1 = h =       = 13.1
              Qn 21.04
yk 14 sRmab;Bak;kNþalFñwm dUcenHsrub 28 .
        CamYy stud mYysRmab;rnUtmYy KMlatKW 6in. ehIycMnYnGtibrmaENnaMKW
                 30(12)
                        = 60 > 28 EdlTamTar
                   6
        ebIeKeRbI stud mYysRmab;ral;BIrrnUt dUcenHeKRtUvkarva 30 edIm EdlenAEtCacMnYneRcIn.
Rbsin ebIeKeRbI stud mYysRmab;ral;bIrnUt enaHKMlatnwgkøayCa 3(6) = 18in. ehIycMnYnrbs; stud
nwg 30(12)/18 = 20 EdlvatUcCagtRmUvkarsRmab; full composite action. b:uEnþ vaman flexural
strength FM dUcenH partial composite action GacnwgRKb;RKan;.
sakl,g stud 20 edIm sRmab;FñwmmYy dUcenH N1 Edlpþl;[ = 20 / 2 = 10
          ∑ Qn = 10(21.04)
T.Chhay                                             406                                Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                               Department of Civil Engineering
                  = 210.4kips < 276.5kips
dUcenH C = Vh = 210.4kips
edaysar C tUcCag As Fy dUcenHEpñkxøHrbs;muxkat;EdkFñwmRtUvrgkmøaMgsgát; ehIyG½kSNWt)aøsÞic
KWsßitenAkñúgmuxkat;Edk.
        edIm,IviPaKkrNIenH dMbUgeyIgRtUvkMNt;faetI PNA sßitenAelIsøabxagelI b¤sßitenAelIRTnug.
RbsinebI PNA sßitenA)atrbs;søabxagelI enaHtYsøabTaMgmUlnwgrgkmøaMgsgát; ehIykmøaMgsgát;pÁÜb
EdlbgðajenAkñúgrUbTI 9>20 KW
          Pyf = b f t f F y = 5.5(0.345)(36) = 68.31kips
kmøaMgsuT§EdlRtUvepÞrenARtg;épÞb:HrvagEdk nigebtugKW
                                   (              )
          T − C s = T − Pyf = As Fy − Pyf − Pyf = 276.5 − 2(68.31) = 139.9kips
EdlvatUcCagkmøaMgTajsuT§Cak;Esþg 210.4kips dUcenHsøabxagelIminRtUvkarrgkmøaMgsgát;eBj
kRmas;søabrbs;vaeT. enHmann½yfa PNA sßitenAkñúgsøab. BIrUbTI 9>21 kmøaMgkat;tamTisedkEdl
RtUvepÞrKW
                                       (                )
                          T − C s = As F y − b f t ' Fy − b f t ' F y = Vh
          276.5 − 2[5.5t ' (36)] = 210.4
edayKNnarkkm<s;énkmøaMgsgát;enAkñúgsøab eyIgTTYl)an
          t ' = 0.1669in.
eRKOgbgÁúMsmas                                        407                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                          NPIC
kmøaMgTajpÁÜbnwgeFVIGMeBIenAelITIRbCMuTm¶n;rbs;RkLaépÞBIeRkam PNA. muneBleyIgKNna moment
strength eKRtUvkMNt;TItaMgTIRbCMuTm¶n;sin. karKNnacm¶ayBITItaMgx<s;bMputrbs;EdkFñwm y RtUv)an
segçbenAkñúgtarag 9>6.
tarag 9>6
       eRKOgbgÁúM                       A                       y           Ay
          W 16 × 36                               7.68      15.69 / 2 = 7845       60.25
            søab             − 0.1669(5.50 ) = − 0.918     0.1669 / 2 = 0.0834     − 0.08
            srub                                  6.762                            60.17
             ∑ Ay 60.17
      y=         =      = 8.898in.
             ∑ A 6.762
km<s;rbs;bøúkkugRtaMgsgát;enAkñúgebtugKW
                     C          210.4
           a=               =            = 0.9168in.
                 0.85 f 'c b 0.85(3)(90)
édXñas;sRmab;kmøaMgsgát;rbs;ebtugKW
                    a                  0.9168
            y+t −     = 8.819 + 4.75 −        = 13.11in.
                    2                     2
édXñas;m:Um:g;sRmab;kmøaMgsgát;enAkñúgEdkKW
                 t'           0.1669
            y−      = 8.819 −        = 8.736in.
                 2               2
Kitm:Um:g;eFobkmøaMgTaj nigedayeyagtamrUbTI 9>20 eyIgTTYl)an nominal strength³
T.Chhay                                           408                            Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                            Department of Civil Engineering
          M n = C (13.11) + C s (8.736)
                = 210.4(13.11) + 0.1669(5.50)(36)(8.736) = 3047in. − kips = 253.9 ft − kips
Design strength       KW
          φb M n = 0.85(253.9) = 216 ft − kips > 156 ft − kips     (OK)
eKRtUvP¢ab; deck eTAnwgsøabFñwmedayKMlat 18in. dUcenHeKminRtUvkar spot weld edIm,IkarBar uplift
eT.
cemøIy³ @> eRbI shear connector dUcbgðajenAkñúgrUbTI 922.
          #> PaBdab
          muneBlebtugrwgmaM
                    wD = wslab + wbeam = 0.500 + 0.026 = 0.526kips / ft
                           5wD L4 5(0.526 / 12)(30 × 12 )4
                    Δ1 =            =                      = 1.098in.
                           384 EI s   384(29000 )(301)
          PaBdabEdlbNþalmkBIbnÞúksagsg;KW
                            5wconst L4 5(0.200 / 12)(30 × 12 )4
                    Δ2 =              =                         = 0.418in.
                             384 EI s    384(29000 )(301)
          PaBdabsrubmuneBlebtugrwgmaMKW
                    Δ1 + Δ 2 = 1.098 + 0.418 = 1.52in.
       sRmab;PaBdabEdlekItmaneRkayeBlebtugrwgmaM eKRtUvkarm:Um:g;niclPaBrbs;muxkat;
bMElgBIrKW I tr CamYynwgTTwgkRmalbMElg b / n nig I tr CamYynwgTTwgkRmalbMElg b / 2n .
       pleFobm:UDulKW
                     E
                 n= s =
                     E
                         29000
                          3024
                                = 9. 6      yk n = 10
                            c
eRKOgbgÁúMsmas                                   409                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                        NPIC
          sRmab;PaBdabrbs;muxkat;smasEdlBak;B½n§nwg creep TTwgRbsiT§PaBKW
                    b 90
                     =   = 9in.
                    n 10
        rUbTI 9>23 bgðajBImuxkat;bMElgEdlRtUvKña. karKNnaTItaMgG½kSNWt nigm:Um:g;niclPaB
RtUv)anbgðajenAkñúgtarag 9>7.
tarag 9>7
     eRKOgbgÁúM                A           y              Ay      I     d          I + Ad 2
       ebtug               29.25        1.625        47.53     25.75   2.282         178
     W 16 × 26              7.68        12.60        96.77     301     8.693         881
          srub           36.93                      144.30                         1059in.4
     ∑ Ay 144.3
y=       =      = 3.907in.
     ∑ A 36.93
      edaysareKeRbI partial composite action dUcenHeKRtUvkareRbIm:Um:g;niclPaBbMElgEdlkat;
bnßy. BI AISC Equation C-I3-6 m:Um:g;niclPaBRbsiT§PaBKW
           I eff = I s + ∑ Qn / C f (I tr − I s )
                 = 301 + 210.4 / 276.5 (1059 − 301) = 962.2in.4
          PaBdabEdlekIteLIgedaysarbnÞúkGefrKW
                   5wL L4      5(0.400 / 12)(30 × 12)4
          Δ3 =               =                         = 0.2613in.
                  384 EI eff    384(29000)(962.2)
     PaBdabEdlbNþalmkBIbnÞúkefrEdlGnuvtþeRkayeBlebtugrwgmaMKYrQrelIm:Um:g;niclPaBbM
ElgEdlTTYlCamYynwg 2n RbesIrCagCamYynwg n . dUcenH eRbITTwgkRmalbMElg
           b   90
             =       = 4.5in.
           2n 2(10 )
          BIrUbTI 9>24 nig tarag 9>8 m:Um:g;niclPaBbMElgKW
           I 'tr = 920.4in.4
T.Chhay                                             410                        Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                         Department of Civil Engineering
tarag 9>8
     eRKOgbgÁúM                   A         y             Ay    I         d        I + Ad 2
       ebtug                 14.62       1.625       23.76     12.87    3.780        221.8
      W 16 × 26                  7.68    12.60       96.77     301      7.195        698.6
         srub              22.30                    120.53                         920.4in.4
      ∑ Ay 120.5
y=        =      = 5.405in.
      ∑ A 22.30
          m:Um:g;niclPaBRbsiT§PaBEdleyIgnwgehAfa I 'eff KW
          I 'tr = I s + ∑ Qn / C f (I 'tr − I s )
                = 301 + 210.4 / 276.5 (920.4 − 301) = 841.3in.4
          PaBdabry³eBlyUrEdlbNþalBIbnÞúkefrEdlGnuvtþeRkayeBlebtugrwgmaMKW
                  5(0.100 / 12)(30 × 12)4
          Δ4 =                            = 0.0747in.
                    384(29000)(841.3)
          PaBdabsrubKW
          Δ1 + Δ 3 + Δ 4 = 1.098 + 0.2613 + 0.0747 = 1.43in.
                 30(12)
nig        L
          240
              =
                   240
                         = 1.50in. > 1.43in.    (OK)
cemøIy³ #> PaBdabGacTTYlyk)an.
eRKOgbgÁúMsmas                                      411                                        T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                                         NPIC
9>8> taragsRmab;karviPaK nigkarKNnaFñwmsmas
          Tables for Composite Beam Analysis and Design
          enAeBlG½kSNWt)aøsÞicsßitenAkñúgmuxkat;Edk karKNna flexural strength Gacnwgmankar
lM)ak. eK)anbegáItrUbmnþedIm,IsRmYldl;karKNnaenH (Hansell et al., 1978) b:uEnþtaragEdlbgðaj
enAkñúg Part 5 of the manual manPaBgayRsYlCag. eKmantaragBIrKW³ design strengths rbs;bnSM
énrUbragepSg²CamYynwgkRmalsRmab; Fy = 36ksi ≈ 250MPa nigsRmab; Fy = 50ksi ≈ 350MPa
nig taragénm:Um:g;niclPaB “lower bound” sRmab;bnSMdUcKña.
          Design strength table EdlmaneQμaHfa “Composite Beam Selection Table,” GaceRbI)an
sRmab;EtrUbragEdlman compact web nigersIusþg; shear connector srub ∑ Qn ≥ 0.25 As Fy ¬Edn
kMNt;EdlENnaMTabCageKsRmab; partially composite beams¦
          eK[ersIusþg;KNna (design strength) φM n sRmab;TItaMgrbs; PNA 7 EnøgdUcbgðajenA
kñúgrUbTI 9>25³ Epñkx<s;bMputrbs;søabxagelI/ EpñkTabbMputrbs;søabxagelI/ bITItaMgEdlmanKMlat
esμI²KñaEdlsßitenAkñúgsøabxagelI/ nigBIrTItaMgenAkñúgRTnug*. TItaMg PNA TabCageK ¬nIv:U &¦ RtUvnwg
EdkkMNt;EdlENnaMTabCageK ∑ Qn = 0.25 As Fy . PNA TItaMg ^ RtUvnwg ∑ Qn EdlsßitenAcenøaH
TItaMg & nigTItaMg %.
     edIm,IeRbItaragsRmab;viPaKFñwmsmas dMbUgrkEpñkrbs;taragEdlRtUvnwgrUbragEdk
ehIyGnuvtþ dUcxageRkam³
*
   nimitþsBaØa φM RtUv)aneKeRbIenAkñúgtaragsRmab; design strength of composite shapes, nig φ M RtUv)aneRbIsRmab; design
               n                                                                          b   p
strength of steel shape alone. emKuNRtUv)ansMKal;edayviFIBIrepSgKñaBIeRBaHvamantémøBIrepSgKña.
T.Chhay                                               412                                     Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
         !> eRCIserIs ∑ Qn . enHCakarkMNt;rbs; Manual sRmab;kmøaMgsgát; C EdlCatémøtUcCag
            eKén As Fy / 0.85 f 'c Ac nigersIusþg;rbs; shear connector srub ¬EdleyIgehAfa
            ∑ Qn ¦.
         @> eRCIserIs Y 2 cm¶ayBITItaMgx<s;bMputrbs;EdkFñwmeTAkmøaMgsgát;pÁÜbenAkñúgebtugEdl
             KNnaCa
                                 a
                    Y2 = t −
                                 2
            TMhMenHRtUv)anbgðajenAkñúgrUbTI 9>26.
         #> Gan φM n RbsinebIcaM)ac;eKRtUveFVI interpolation
         sRmab;karKNna eKGacbBa©Úl φM n EdlTamTareTAkñúgtarag ehIyeKGacGaceRCIserIsEdk
Fñwm nig ∑ Qn . eKGacRtUvkartémø Y 2 dUcenHeKRtUvsnμt;km<s;rbs;karBRgaykugRtaMgsgát;rbs;
ebtug ehIyeKGaceFVIkarKNnaeLIgvijeRkayeBlEktRmUv. Manual [nUvsmIkarsRmab;)a:n;sμan
Tm¶n;Fñwm EtRbsinebIeKeRbItarag eKminRtUvkarsmIkarenaHeT.
         taragk¾[pgEdrnUvtémø φb M p EdlGacRtUvkarsRmab;RtYtBinitüFñwmEdlKμancnÞl;kñúg GMLúg
eBlebtugrwgmaM ehIy Y1 Cacm¶ayBITItaMgx<s;bMputrbs;EdkFñwmeTA PNA.
]TahrN_ 9>9³ KNna design strength rbs;FñwmsmasenAkñúg]TahrN_ 9>1 nig 9>2 edayeRbI
taragenAkñúg Part 5 of the Manual.
dMeNaHRsay³ BI]TahrN_ 9>1 FñwmsmaspSMeLIgedayEdk W 16 × 36 CamYynwgkRmalxNÐEdlman
kRmas; t = 5in. nigTTwgRbsiT§PaB b = 87in. . ersIusþg;sgát;enA @* éf¶rbs;ebtugKW f 'c = 4000 psi .
       kmøaMgsgát;enAkñúgebtugCatémøtUcCageKén
eRKOgbgÁúMsmas                                413                                          T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
          As Fy = 10.6(36) = 381.6kips
b¤        0.85 f 'c Ac = 0.85(4 )(5 × 87 ) = 1487kips
          yk C = 381.6kips . km<s;rbs;bøúkkugRtaMgsgát;
                  C           381.6
          a=              =              = 1.290in.
               0.85 f 'c b 0.85(4 )(87 )
          cm¶ayBITItaMgx<s;bMputrbs;EdkeTAkmøaMgsgát; C KW
                     a      1.290
          Y2 = t −     = 5−       = 4.36in.
                     2        2
      bBa©ÚleTAkñúgtaragCamYynwg ∑ Qn = 382kips nig Y 2 = 4.36 . edayeFVI interpolation eyIg
TTYl)an
          φM n = 332 ft − kips
edayepÞógpÞat;CamYynwglT§plenAkñúg]TahrN_ 9>2 eyIgeXIjfavamantémødUcKña. karKNnatam
rUbmnþ nigedayeRbItaragTTYl)anlT§plRsedogKña enAeBlEdl PNA sßitenAkñúgmuxkat;EdkFñwm.
cemøIy³ Design strength = 332 ft − kips
       taragsRmab;m:Um:g;niclPaB lower bound EdlsMKal;eday I LB pþl;nUvkar)a:n;sμanm:Um:g;
nicl PaBrbs;muxkat;bMElgmanlkçN³suvtßiPaBsRmab;FñwmdUcKñaEdlmanenAkñúg design strength
table. karsnμt;d¾cMbgkñúgkareFVItaragenHKWfamanEtRkLaépÞebtugEdlTb;Tl;nwgm:Um:g;eTEdlman
RbsiT§PaBkñúgkarKNnam:Um:g;niclPaB. kmøaMgenAkñúgebtugKW C = ∑ Qn nig RkLaépÞénmuxkat;
bMElgEdlRtUvKñaKW
                             ∑ Qn             ∑ Qn
          Ac =                              =
                 stress in transformed area    Fy
edIm,ICakarsRmYlteTAeTotkñúgkarKNna eKecalm:Um:g;niclPaBrbs;ebtugeFobnwgG½kSTIRbCMuTm¶n;.
edIm,IbgðajBIviFIsaRsþenH eKnwgyktémømYyenAkñúgtaragmkbMEbkenAkñúg]TahrN_ 9>10.
]TahrN_ 9>10³ karKNnapþl;nUvlT§plCa W16 × 31 CamYynwg ∑ Q        n   = 241kips   ¬TItaMg PNA
3¦ Y 2 = 4in. nig Fy = 36ksi . KNnam:Um:g;niclPaB lower bound.
dMeNaHRsay³ RkLaépÞebtugEdlRtUv)aneRbIKW
T.Chhay                                         414                      Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
                   ∑ Qn 241
          Ac =         =    = 6.694in.2
                    Fy   36
muxkat;bMElgEdlRtUvKñaRtUv)anbgðajenAkñúgrUbTI 9>27 ehIykarKNnaRtUv)ansegçbenAkñúgtarag
9>9. kMNt;TItaMgTIRbCMuTm¶n; Kitm:Um:g;eFobG½kSenA)atrbs;muxkat;Edk.
tarag 9>9
     eRKOgbgÁúM                   A       y           Ay    I        d        I + Ad 2
       ebtug                   6.694    19.88    133.1      -       6.88        316.9
     W 16 × 31                   9.12   7.94      72.4     375      5.06        608.5
         srub                  15.81             205.5                        925.4in.4
      ∑ Ay 205.5
y=        =      = 13.00in.
      ∑ A 15.81
      m:Um:g;niclPaBBItaragm:Um:g;niclPaB lower bound KW I LB = 925in.4 edayepÞógpÞat;CmYynwg
lT§plEdl)anKNna.
cemøIy³ I     LB   = 925in.4
]TahrN_ 9>11³ eFVIkarKNna]TahrN_ 9>8 eLIgvijCamYynwgCMnYyrbs;taragenAkñúg Part 5 of the
Manual    .
dMeNaHRsay³ !> KNnaFñwm
          BI]TahrN_ 9>8 M u = 153 ft − kips ¬edayminKitbBa©ÚlTm¶n;Fñwm¦.
          edaysnμt;fa a = 2in. eyIgTTYl)an
eRKOgbgÁúMsmas                                  415                                       T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
                      a         2
           Y2 = t −     = 4.75 − = 3.75in.
                      2         2
       BI Composite Beam Selection Table, ral;karbnSMénEdkFñwm/ ∑ Qn nig Y 2 Edlpþl;nUv
design strength FMCag 153 ft − kips KWCaFñwmsakl,gEdlGacTTYlyk)an. lT§PaBBIrnwgRtUv)an
segçbenAkñúgtarag 9>10.
tarag 9>10
                                                                       φM n (ft-kips)
           rUbrag               TItaMg PNA          ∑ Qn (kips)
                                                                  ¬edayeFVI interpolation¦
          W 16 × 26                 7                  69.1                 160
          W 14 × 22                 3                  159                  159
       Edk W 14 × 22 CarUbragEdlRsalCag b:uEnþedaysar ∑ Qn FMCag vanwgRtUvkar shear
connector eRcInCag ¬GaceRcInCagBIrdg¦. sRmab;mUlehtuenH sakl,g W 16 × 26 . KNna Y 2
eLIgvij³
                    C        ∑ Qn          69.1
           a=             =           =             = 0.3011in.
               0.85 f 'c b 0.85 f 'c b 0.85(3)(90 )
                     a        0.3011
           Y 2 = t − = 4.75 −         = 4.60in.
                     2            2
¬Edl b = 90in. KW)anmkBI]TarhN_ 9>8¦
           φM n = 164.4 ft − kips
        BI]TahrN_ 9>8/ M u = 156 ft − kips CamYynwgkarKitbBa©ÚlTm¶n;Fñwm . vanwgtUcCag design
strength 164.4 ft − kips dUcenHkareRCIserIsenHGacTTYlyk)an. dUcKñaBI]TahrN_ 9>8 TaMg
flexural strength kñúgeBlsagsg; nig shear strength KWRKb;RKan;sRmab; W 16 × 26 .
cemøIy³ !> eRbI W16 × 26 .
        @> Shear connector
        dMbUg sakl,g stud 3 / 4 × 3in. . cMnYnrbs; strud EdlRtUvkarKW
                       ∑ Qn
                 N1 =
                        Q
                            =
                               69.1
                              21.04
                                     = 3 .3     yk 4 sRmab;Bak;kNþalFñwm dUcenHsrubKW 8 edIm
                            n
T.Chhay                                       416                        Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                         Department of Civil Engineering
          Stud 8    edImRtUvnwgKMlat
                    30(12 )
                            = 45in.
                      8
        KMlatenHFMCagKMlatGnuBaØatGtibrma 36in. dUcenHeKRtUveRbI stud eRcInCagenH. RbsinebI
eKdak; stud ral; 6 rnUtmþg KMlatnwgesμInwg 36 ehIycMnYn stud srubKW
                    30(12 )
                            = 10,     N1 = 5
                     36
          kmøaMgkat;EdlRtUvKñaEdlRtUvepÞrKW
                    ∑ Qn = 5(21.04 ) = 105.2kips
          edIm,IgayRsYlkñúgkareRbItarag eyIgnwgyktémø ∑ Qn = 104kips enaH
                            104
                    a=               = 0.4532in.
                        0.85(3)(90 )
                                 0.4532
                    Y 2 = 4.75 −         = 4.523in.
                                    2
          BI Composit Beam Selection Table, design strength KW
                    φM n = 182 ft − kips > 156 ft − kips   (OK)
cemøIy³ @> eRbI stud 3 / 4 × 3in. cMnYn 10 edIm edayKMlatesμI²Kña. edIm,IkarBar uplift eFVI spot weld
ral;KMlat 18in. ¬sßitenAcenøaH stud¦.
       #> PaBdab
       BI]TahrN_ 9>8 PaBdabrbs;EdkFñwmmuneBlTTYl)an composite behavior KW
               Δ1 = 1.098in. ¬edayminKitbnÞúksagsg;¦
       sRmab;PaBdabEdlekIteLIgeRkayeBlebtugrwgmaM eKGaceRbIm:Um:g;niclPaB lower bound
Edl)anBItarag. eRbI W 16 × 26 CamYynwg ∑ Qn = 104kips ¬PNA TItaMg ^¦ nig Y 2 = 4.523in.
                    I LB = 623in.4
       vaminmankarEbgEckm:Um:g;niclPaBsRmab;karKNnaPaBdabbEnßmEdlekIteLIgedaysar
creep. b:uEnþ m:Um:g;niclPaB lower bound mantémøtUcCagm:Um:g;niclPaBmuxkat;bMElgCak;Esþg
ehIy\T§iBlTaMgmUlKWnwgpþl;nUvPaBdabFMCagkar)a:n;sμan. RbsinebIbnÞúkefrry³eBlyUrtUc
eKGaceRbIm:Um:g;niclPaB lower bound.
                    w = wD + wL = 0.100 + 0.400 = 0.500kips / ft
eRKOgbgÁúMsmas                                   417                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                       NPIC
          ehIyPaBdabEdlRtUvKñaKW
                           5wL4       5(0.500 / 12 )(30 × 12 )4
                   Δ2 =             =                           = 0.5044in.
                          384 EI LB     384(29000 )(623)
          PaBdabsrubKW
                   Δ1 + Δ 2 = 1.098 + 0.5044 = 1.602in.
          PaBdabGnuBaØatGtibrmaKW
                    L    30(12 )
                       =         = 1.500in. < 1.602in.       (N.G.)
                   240    240
         kñúgkarKNna Rtg;cMNucenH eyIgmanCeRmIsBIr³ ¬!¦
KNnaPaBdabEdlmanPaBsuRkitCageday eRbImuxkat;bMElg b¤¬@¦ eRCIserIskarbnSMrvagEdkFñwm nig
shear connector CamYynwgm:Um:g;niclPaB lower bound. edaysareKalbMNgrbs;]TahrN_enHcg;
bgðajBIkareRbItarag eyIgnwgeRCIserIsCeRmIsTI @.
         KNnam:Um:g;niclPaB lower bound EdlRtUvkar. PaNdabEdlekItBIkRmalxNÐ nigTm¶n;Fñwm
nwgminpøas;bþÚr dUcenHPaBdabGnuBaØatGtibrmaEdlekIteLIgedaysarbnÞúkEdlGnuvtþeRkayeBlebtug
rwgmaMKW
                   Δ 2 Gtibrma = 1.50 − Δ1 = 1.50 − 1.098 = 0.4020in.
                               4
         BI Δ 2 = 3845wLEI
                               LB
         I LB EdlRtUvkarKW
                             5wL4      5(0.500 / 12 )(30 × 12 )4
                   I LB ≥            =                           = 782in.4
                            384 EΔ 2    384(29000 )(0.4020 )
        sRmab; W 16 × 26 CamYynwg PNA # nig Y 2 = 4.5in. / m:Um:g;niclPaB lower bound KW
I LB = 804in.4 . BI Composite Design Selection Table, sRmab; PNA # kmøaMgkat;tamTisedkKW
                   ∑ Qn = 208kips
          edIm,ITTYltémøRtwmRtUv Y 2 nig I LB dMbUgKNnaTItaMgrbs;kmøaMgsgát;enAkñúgebtug
                           ∑ Qn         208
                   a=              =             = 0.9063in.
                       0.85 f 'c Ac 0.85(3)(90 )
                            a         0.9063
                   Y 2 = t − = 4.75 −        = 4.30in.
                            2            2
          BItaragm:Um:g;niclPaB lower bound edayeFVI interpolation
T.Chhay                                           418                         Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
                    I LB = 788in.4 > 782in.4     (OK)
        cMnYnrbs; shear connector EdlRtUvkarKW
                      ∑ Qn
                 N1 =
                       Qn
                            =
                               208
                              21.04
                                    = 9. 9    yk 10 sRmab;Bak;kNþalFñwm b¤srub 20 edIm
        edaysarKMlatrbs;rnUt deck, stud mYysRmab;ral;rnUt 3 sRmab;KMlat 18in. nwgpþl;nUv
stud 20 edIm.
cemøIy³ #> edIm,IbMeBjtRmUvkarPaBdab begáIncMnYn stud BI 10 eTA 20 dak;mYyenAkñúgral;rnUt 3 .
       ]TahrN_ 9>11 bgðajplRbeyaCn_rbs;tarag. CaBiess composite Beam Selection
Table sRmYlkarKNna partially composite beam Edl PNA sßitenAkñúgmuxkat;EdkFñwm.
9>9> FñwmCab;           (Continuous Beams)
         sRmab;FñwmTRmsmBaØ cMNucénm:Um:g;sUnüenARtg;TRm. cMnYn connector EdlRtUvkarenAcenøaH
TRm nigcMNucEdlmanm:Um:g;GtibrmaKWcMnYnBak;kNþaléncMnYnsrubRtUvkar. sRmab;FñwmCab; cMNucrbt;
k¾CacMNucénm:Um:g;sUnüEdr nigCaTUeTAeKRtUvkar connector 2N1 sRmab;ElVgnImYy². rUbTI 9>28 a
bgðajBIRbePTFñwmCab; nigtMbn;EdlRtUvkar shear connector. enAtMbn;m:Um:g;GviC¢man kRmalebtug
nwgrgkmøaMgTaj dUcenHvanwgKμanRbsiT§PaB. enAkñúgtMbn;enH vanwgminman composite behavior Edl
eyIgRtUvBicarNaenaHeT. RbePT composite behavior EtmYyKt;EdlGacmanKWenAcenøaHFñwmEdk nig
EdkBRgwgtambeNþayenAkñúgkRmal. muxkat;FñwmsmasEdlRtUvKñaRtUv)anbgðajenAkñúgrUbTI 9>28 b.
RbsinebIeK eRbIKMnitenH eKRtUvpþl;nUvcMnYn shear connector RKb;RKan;edIm,ITTYlnUvdWeRkénPaBCab;
rvagEdkFñwm nigEdkBRgwg.
         AISC Specification in Section I3.2 pþl;nUvCeRmIsBIrsRmab;m:Um:g;GviC¢man.
         !> edayQrEtelIersIusþg;rbs;EdkFñwmb:ueNÑaH.
         @> edayrYmbBa©ÚlTaMgEdkBRgwgenAkñúgmuxkat;smasRtUvRbQmnwglkçxNÐxageRkam³
                a. EdkFñwmRtUvEt compact nigman latereal support RKb;RKan;
                b. eKRtUvEtdak; shear connector enAtMbn;m:Um:g;GviC¢man ¬cenøaHcMNucm:Um:g;sUnü
                    nigcMNucm:Um:g;GviC¢manGtibrma¦
eRKOgbgÁúMsmas                                 419                                        T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                 NPIC
                  c.  EdkBRgwgenAkñúgTTwgRbsiT§PaBRtUvEtmanRbEvgbgáb;RKb;RKan; ¬TMBk;¦
         ersIusþg;rbs;muxkat;smasKYrEtQrelIkarBRgaykugRtaMg)aøsÞicCamYynwg φb = 0.85 .
         RbsinebIeKKit composite behavior AISC I5.2 tRmUv[ykkmøaMgkat;tamTisedkEdl
RtUv)anepÞrrvagcMNucénm:Um:g;GviC¢manGtibrma nigcMNucm:Um:g;sUnümantémøtUcCageKkñúgcMeNam
 Ar Fyr nig ∑ Qn Edl
          Ar = RkLaépÞrbs;EdkBRgwgenAkñúgTTwgRbsiT§PaBrbs;kRmal
          Fyr = yield stress rbs;EdkBRgwg
ersIusþg;bEnßmEdlTTYlBIkarbBa©ÚlEdkBRgwgmantémøNas; b:uEnþeBlxøHeKeRbI cover plate enAkñúg
tMbn;m:Um:g;GviC¢man.
T.Chhay                                   420                           Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
9>10> ssrsmas                   (Composite Columns)
        ssrsmasRtUv)anEbgEckCaBIrTRmg;KW EdkbMBgTIbmUl b¤RCugEdlbMeBjedayebtug b¤
rolled steel shape dak;enAkñúgebtugCamYynwgEdkBRgwgbBaÄr nigEdkkgTTwgdUcenAkñúgssrebtug
BRgwgedayEdk. rUbTI 9>29 bgðajBITRmg;TaMgBIrenH.
         karviPaKssrsmasRtUv)aneFVIeLIgkñúgviFIdUcKñasRmab;Ggát;rgkarsgát;eRKOgbgÁúMEdkFmμtaEdr
edayeRbIsmIkardUcKñaBI AISC Charpter E b:uEnþCamYynwgtémø Fy / E nig r EdlRtUv)anEkERbedIm,I
TTYllT§plEdlTTYl)anBIkarBesaF nigkarKNnaRtUvKña. munBicarNasmIkar AISC sRmab;témø
TaMgenH eyIgRtUvRtYtBinitüBIeKalkarN_rbs;smIkarsin. RbsinebIeKFananUvsßanPaBlMnwg eKKitfa
ersIusþg;rbs;Ggát;smasrgkarsgát;CaplbUkénersIsu þg;tamG½kSrbs;EdkFñwm/ EdkBRgwg nigebtug.
vaRtUv)aneKehAfa squash load ehIyRtUv)an[eday
          Pn = As Fy + Ar Fyr + 0.85 f 'c Ac                                ¬(>%¦
Edl As = RkLaépÞmuxkat; rolled steel shape
          Ar = RkLaépÞmuxkat;srubrbs;EdkBRgwgbBaÄr
          Fyr = yield stress rbs;EdkBRgwg
          Ac = RkLaépÞmuxkat;rbs;ebtug
         srésEdkBRgwgCaeBlbc©úb,nñCaRbePT deformed EdlépÞrbs;vamansac;lanecjEdlCYy
begáItPaBs¥itrvaEdk nigebtug)anl¥. RkLaépÞmuxkat; Ar EdlRtUv)aneRbIkñúgkarKNnaCa nominal
area EdlKitfaRkLaépÞrbs;EdkrelagEdlmanTm¶n;kñúgmYyÉktþaRbEvgdUcKñanwg deformed bar.
tarag 9>11 bgðajBI nomial diameter nigRkLaépÞsRmab;TMhMEdksþg;darEdlkMNt;eday ASTM
(1996) nig ACI (1995).
         edIm,ITTYl)ankugRtaMgsrub EckbnÞúkEdlTTYl)anBIsmIkar 9>5 edayRkLaépÞrbs;EdkFñwm³
eRKOgbgÁúMsmas                             421                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                               NPIC
                             Fyr
          Pn
          As
             = Fmy = Fy + Ar
                             As
                                            A
                                 + 0.85 f 'c c
                                            As
                                                                        ¬(>^¦
témørbs; Fmy EdlTTYlBIsmIkar (>^ ¬enAeBlEdleRbICMnYs[témø Fy enAkñúgsmIkarGgát;rgkar
sgát;¦ [lT§pll¥sRmab;EdkbMBg;TIbmUl b¤RCugEdlbMeBjedayebtugEdlebtugsßitenAkñúg steel
shape. ¬EdkBRgwgbBaÄrminRtUv)aneRbICamYynwgEdkbMBg;TIbmUl b¤RCug (concrete-filled pipe or
tube) eT dUcenH Ar GacniwgmantémøsUnüsRmab;ssrsmasRbePTenH¦.
      tarag 9>11
            elxEdk                  Ggát;Edk                    RkLaépÞmuxkat;
                                        in.                    mm       in.2                 mm2
                 3                         0.375                 9.50          0.11             71.00
                 4                         0.500                12.70          0.20            129.00
                 5                         0.625                15.87          0.31            200.00
                 6                         0.750                19.05          0.44            283.87
                 7                         0.875                22.23          0.60            387.10
                 8                         1.000                25.40          0.79            509.70
                 9                         1.128                28.65          1.00            645.16
                 10                        1.270                32.26          1.27            819.35
                 11                        1.410                35.81          1.56           1006.45
                 14                        1.693                43.00          2.25           1451.61
                 18                        2.257                57.33          4.00           2580.64
      sRmab;eRKOgbgÁúMEdkEdkbgáb;kñúgebtug vaminmanEdkhMuB½T§vaeT ehIy structural stability
Reseach Council (SSRC, 1979) ENnaMfaemKuNkat;bnßyersIusþg; ACI code (ACI, 1995) Edl
mantémø 0.7 RtUv)anGnuvtþeTAelItYénEdkBRgwg nigebtugénsmIkar (>^ dUcxageRkam³
                          Fyr
       Fmy = Fy + 0.7 Ar
                          A
                                              A
                              + 0.7(0.85) f 'c c
                                              A
                                                                                  ¬(>&¦
                                 s                         s
                               Fyr                  Ac
               = Fy + 0.7 Ar         + 0.595 f 'c
                               As                   As
       edIm,IkarBar\T§iBl slenderness eKRtUvEktRmUvPaBrwgRkajkñúgkarBt;rbs;Ggát;Edl
smamaRt eTAnwgbrimaN EI / L . karEktRmUvenHRtUv)aneFVIeLIgedayEkERbtémørbs; E
dUcxageRkam³
                                A
        E m = E + constant × Ec c
                                As
                                                                                  ¬(>*¦
Edl E = m:UDuleGLasÞicrbs;EdkeRKOgbgÁúM
T.Chhay                                              422                              Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                         Department of Civil Engineering
          Ec =m:UDuleGLasÞicrbs;ebtug
eTaHbICaPaBrwgRkaj (stiffeness) smamaRteTAnwgm:Um:g;niclPaB pleFobRkLaépÞsRmab;ssr
smaspþl;lT§pll¥CagpleFobm:Um:g;niclPaB (SSRC, 1979). témøefrenAkñúgsmIkar 9>8 KWesμInwg
0.4 sRmab;EdkTIbmUl b¤RCugEdlbMeBjedayebtugEdlbgðajBIPaBGnuBaØaténPaBrwgRkajrbs;
ebtug 40% nig 0.2 sRmab;EdkeRKOgbgÁúMEdlbgáb;kñúgebtug (encased shape).
        kaMniclPaBrbs;muxkat;smasKWFMCagkaMniclPaBrbs;muxkat;EdkeRKagbgÁúM nigrbs;ebtug.
viFIEdlsuvtßiPaBKWRtUveRbIkaMniclPaBEdlmantémøFMénkaMniclPaBrbs;muxkat;EdkeRKOgbgÁúM b¤kaM
niclPaBénmuxkat;ebtug EdleKGacykesμInwg 0.3 dgénvimaRtNamYyrbs;muxkat;enAkñúgbøg;
buckling. edaykMNt;kaMniclPaBrbs;muxkat;smasCa rm enaHeKTTYl)an
          rm = r ≥ 0.3b
Edl       r=  kaMniclPaBrbs;muxkat;EdkeRKOgbgÁúMenAkñúgbøg; buckling
          b = vimaRtrbs;muxkat;ebtuenAkñúgbøg; buckling
tRmUvkarrbs; Specification
                        sRmab;ssrsmasmansar³sMxan;dUcKñaeTAnwgGVIEdlerobrab;xagelI. eK
          AISC provisions
eRbI Equation E2-1 nig E2-3 BI Chapter E of the specification edIm,IkMNt; design strength b:uEnþ
témørbs; Fy / E nig r RtUv)anEksRmYl. eKRtUvBwgEp¥kelIsmIkar (>^ nig (>& edIm,IeFVIkarEk
sRmYltémøTaMgenH. BI AISC Section I2.2, témøEksRmYlrbs; Fy KW
          Fmy = Fy + c1 Fyr ( Ar / As ) + c2 f 'c ( Ac / As )            (AISC Equation I2-1)
Edltémøefr c1 nig c2 RtUv)anKitsRmab;PaBxusKñarvag encased sectoon nig concrete-filled pipes
and tubes:
                nig c2 = 0.85 sRmab; pipes and tubes
          c1 = 1.0
       c1 = 0.7 nig c2 = 0.6 sRmab; encased shapes
témøEdlEksRmYl AISC E KWdUcKñaeTAnwgGVIEdl[edaysmIkar (>* b¤
          E m = E + c3 Ec ( Ac / As )                                    (AISC Equation I2-2)
Edl       c3 = 0.4 sRmab; pipes and tubes
          c4 = 0.2 sRmab; encased shapes
eRKOgbgÁúMsmas                                     423                                         T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
AISC I2.2    kMNt;témø rm [esμIeTAnwgGVIEdl[edaysmIkar (>(
          rm = r ≥ 0.3b
edIm,I[ssrsmasmanlkçN³RKb;RKan; eKRtUvBinitüemIlnUvkarkMNt;xageRkamEdl[eday AISC
I2.1³
       !> EdkeRKOgbgÁúMRtUvEtmany:agtic 4% énRkLaépÞmuxkat;srub b¤Ggát;rgkarsgát;eFVIkardUc
           ssrebtugGarem:CaCageFVIkardUcssrsmas.
       @> Encased sections RtUvEteKarBtamlkçxNÐlMGitxageRkam³
           a. eKRtUvEteRbITaMgEdlbBaÄr nigEdkkg. KMlatrbs;EdkkgminRtUvFMCagBIrPaKbI én
               vimaRttUcCageKrbs;ebtug. RkLaépÞmuxkat;rbs;Edkem nigEdkkgminRtUvtUcCag
               0.007in.2 / in. b¤ 0.18mm 2 / mm énKMlatEdk.
           b. vaRtUvEtmankRmas;ebtugkarBarEdky:agtic 1.5in. ≈ 38mm sRmab;Edkkg
               nigEdkbBaÄr.
           c. EdkbBaÄrEdlRTbnÞúk (load-carrying longitudinal reinforcement) RtUvEtCab;enA
               framed level. EdkbBaÄrsRmab;Tb;ebtugGacpþac;enARtg; framed level.
       #> ersIusþg;rbs;ebtug f 'c RtUvEtsßitenAcenøaH 3ksi ≈ 21MPa nig 8ksi ≈ 55MPa sRmab;eb
           tugTm¶n;Fmμta ¬minmanlT§plBiesaFn_sRmab; f 'c FMCag 55MPa eT¦ nigy:agticbMput
           4ksi ≈ 28MPa sRmab;ebtugTm¶n;Rsal.
       $> kñúgkarKNna Yield stress rbs;EdkeRKOgbgÁúM nigEdkBRgwgbBaÄrminRtUvFMCag 55ksi
           ≈ 380 MPa eT. karkMNt;RtUv)anTTYlBIkarBicarNa local stability. enAeBlEdlEdk
           eRKOgbgÁúMhMuB½T§edayebtug vanwgminman local stability eT. ebtugnwgGachMuB½T§Edk)an
           RKb;RKan;ebIvaminmankarpÞúHépÞebtug (spall). RbsinebIeKsnμt;[ebtugman spall enAeBl
           ebtugman strain 0.0018 enaHkugRtaMgEdkRtUvKñaenAkñúgEdkKW
                   Fmax = ε max E = 0.0018(29000 ) = 52.2ksi
             EdlRtUv)anKitCatémøkMNt;Rtwm 55ksi .
          %> edIm,IkarBar local buckling enAkñúg pipes b¤ tubes EdlbMeBjedayebtug kRmas;rbs;
             pipes b¤ tubes minRtUvtUcCag
T.Chhay                                       424                         Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                            Department of Civil Engineering
                     t = b F y / 3E      sRmab;muxkat;ctuekaNEdlmanTTwgxageRkA b
            b¤       t=D         Fy / 8 E sRmab;muxkat;rgVg;EdlmanGgát;p©itxageRkA D
]TahrN_ 9>12³ Ggát;rgkarsgát;smasEdlman W 12 ×136 RtUv)andak;enAkñúgssrebtugEdlman
TMhM 20 × 22in. dUcbgðajenAkñúgrUbTI 9>30. eKeRbIEdk #10 bYnedImCaEdkbBaÄr nigEdk #3 CaEdk
kgEdlmanKMlat 13in. edayKitBIG½kSeTAG½kS. Edkman yield stress Fy = 50MPa ehIyeKeRbI
EdkBRgwgRbePT Grade 60. ersIusþg;rbs;ebtugKW f 'c = 5ksi . KNna design strength
sRmab;RbEvg RbsiT§PaB 16 ft sRmab;G½kSTaMgBIr.
cemøIy³ eKkMNt;témøEksRmYl F nig E Edl)anBI AISC Equation I2-1 nig I2-2. témøEdl
                                         my       m
RtUvkarsRmab;smIkarTaMgenHKW³
        Fyr = 55ksi témøEdlkMNt;eday AISC I2.1
          Ar = 4(1.27 ) = 5.08in.2
          Ac = net area     rbs;ebtug = 20(22) − As − Ar = 440 − 39.9 − 5.08
                 = 395.0in.2
sRmab;     f 'c = 5ksi
          Ec = w1c.5 f 'c = (145)1.5 5 = 3904ksi
BI AISC Equation I2-1, yield stress EdlEksRmYlKW
                             ⎛A ⎞              ⎛A ⎞
          Fmy = Fy + c1 Fyr ⎜⎜ r ⎟⎟ + c2 f 'c ⎜⎜ c ⎟⎟
                             ⎝ As ⎠            ⎝ As ⎠
                              ⎛ 5.08 ⎞            ⎛ 395 ⎞
              = 50 + 0.7(55)⎜        ⎟ + 0.6(5)⎜         ⎟ = 84.60ksi
                              ⎝ 39.9 ⎠            ⎝ 39.9 ⎠
eRKOgbgÁúMsmas                                        425                                         T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                               NPIC
BI AISC Equation I2-2, m:UDuleGLasÞicEdlEksRmYlKW
                           ⎛A           ⎞
                                        ⎟⎟ = 29000 + 0.2(3904 )⎛⎜
                                                                  395 ⎞
          E m = E + c3 Ec ⎜⎜ c                                         ⎟ = 36730ksi
                           ⎝ As          ⎠                      ⎝ 39.9 ⎠
kaMniclPaBEdlRtUv)aneRbIenAkñúgsmIkarGgát;rgkarsgát;én AISC Cahpter E GacCa r sRmab;Edk
eRKOgbgÁúM b¤ 0.3b edayykmYyNaEdlmantémøFMCag. enAkñúg]TahrN_enH buckling nwgekIteLIg
eFobnwgG½kS y rbs;Ggát; dUcenH r sRmab;muxkat;KW ry = 3.16in . enAkñúgbøg; buckling
        0.3b = 0.3(20 ) = 6in. ¬lub¦
        dUcenH rm = 6in. . eKGacKNna design strength
dUcKñasRmab;Ggát;rgkarsgát;FmμtaedayeRbI témøEksRmYl Fmy / Em nig rm CMnYs[ Fy / E nig
r
                  KL          Fmy       16(12 ) 84.60
          λc =                      =                 = 0.4888 < 1.5
                 rmπ          Em         6π     36730
          Fcr = (0.658)λc Fmy = (0.658)(0.4888) (84.60) = 76.55ksi
                        2                      2
nominal strength         KW
          Pn = As Fcr = 39.9(76.55) = 3054kips
ehIy design strength KW
          φc Pn = 0.85(3054) = 2600kips
cemøIy³ design compressive strength KW 2600kips
taragsRmab;viPaK nigKNna                                  Tables for Analysis and Design
                            mantaragEdlsRmYly:agxøaMgdl;karviPaK nigkarKNnassrsmas.
          Part 5 of the Manual
taragTaMgenHmanlkçN³RsedogKñanwg column strength table enAkñúg Part 3 of the Manual. eK
[ axial compressive design strength CaGnuKmn_eTAnwgRbEvgRbsiT§PaBsRmab; concrete-filled
pipes and tubes nigsRmab; encased W-shapes. sRmab; encased column Edkem nigEdkkgEdlbM
eBjtRmUvkar AISC RtUv)anrab;bBa©Úl. eK[témø rmx / rmy sRmab;krNITaMgenaHEdl K x L ≠ K y L .
T.Chhay                                                 426                           Composite Construction
viTüasßanCatiBhubec©keTskm<úCa                                         Department of Civil Engineering
]TahrN_ 9>13³ Ggát;rgkarsgát;EdlmanRbEvg 18 ft RtUvRTnUvbnÞúkeFVIkar (service load) srub
1000kips    EdlpSMeLIgedaycMENkesμIKñaénbnÞúkefr nigbnÞúkGefr. Ggát;enHmanTRm pinned enAcug
TaMgsgçag CamYynwgTRmbEnßmenAkm<s;Bak;kNþaltamG½kSexSay. eRbItaragenAkñúg Part 5 of the
Manual edIm,IeRCIserIsEdk W EdlmanrUbragkaerEdlbgáb;kñúgebtug (square encased W-shape)
CamYynwgRkLaépÞebtugEdltUcCageKEdlGaceFVIeTA)an. eRbIEdk A36 Edksrés grade 60 nig
 f 'c = 3.5ksi .
dMeNaHRsay³ bnÞúktamG½kSemKuNKW
          Pu = 1.2(500) + 1.6(500) = 1400kips
tamkarGegátelItaragbgðajfa sRmab; f 'c = 3.5ksi nigtémøén rmx / rmy ERbRbYlBI 1.0 eTA 1.22
EdltémøPaKeRcInesμInwg 1.0 . edaysar
           KxL
               = 2 > 1.22
           KyL
KxL     nwglub. snμt;fa rmx / rmy = 1.0 rYcbBa©ÚleTAkñúgtaragCamYynwg
                    KxL      18
          KL =             =    = 18 ft
                  rmx / rmy 1.0
taragxageRkambgðajBICeRmIsEdlGaceFVI)an
  TMhMmuxkat;ebtug     EdkeRKOgbgÁúM             rmx / rmy     φc Pn
        18×18                    W10×112              1.0    1450kips
        20×20                    W12×87               1.0    14250kips
eTaHbICassr 20×20 RtUvkarEdkeRKOgbgÁúMtUcCagk¾eday EtlkçxNÐtRmUv[ykTMhMebtugGb,brma
dUcenHeyIgeRCIserIs 18×18.
cemøIy³ eRbIssrmuxkat; 18×18 CamYynwg W10×12 Edksrés #8 bYnedIm Edkkg #3 edayKMlat
         12in.. KitBIG½kSeTAG½kS.
eRKOgbgÁúMsmas                                  427                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
                                       X. rtEdkbnÞH
                                      Plate Girder
10>1> esckþIepþIm (Introduction)
         CaTUeTA plate girder RtUv)aneKKitCa flexural member Edlmuxkat;rbs;vaRtUv)anpÁúMeLIg
eday plate elements. AISC cat;TukFñwmxusBI plate girder edayQrelI web slenderness. Plate
girder CaFñwmFMTaMgElVg nigmuxkat; Edlmuxkat;FMenHCavi)akmkBIElVgEvg. RbsinebIeKminman hot-
rolled steel shape FMRKb;RKan;sRmab;ElVg nigkardak;bnÞúkEdl[ CaTUeTACeRmIsTImYyKWeKeRbI rolled
shape CamYynwg cover plate bEnßmenAelIsøabmYy b¤enAelIsøabTaMgBIr. RbsinebICeRmIsenHminGac
pþl;ersIusþg;m:Um:g;RKb;RKan; muxkat;EdlmanlkçN³RtUvkarBitR)akdGacRtUv)anplitBI plate elements.
b:uEnþRbsinebIElVgmanRbEvgEvg enaHkm<s; nigTm¶n;rbs; built-up girder GacnwgFM eBlenaHeKGac
eRbICeRmIsepSgeTot dUcCa truss.
T.Chhay                                   428                                    Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
         muxkat;rbs; plate girder GacmaneRcInTRmg;. rUbTI 10>1 bgðajBIlT§PaBrbs;muxkat; plate
girder xøH. TRmg;Fmμtarbs; plate girder KWRTnugeTalCamYYynwgsøabBIresμIKña EdlRKb;EpñkTaMgGs;
P¢ab;KñaedaykarpSar. muxkat;RbGb;EdlmanRTnugBIr nigsøabBIrCa torsionally superior shape nig
GacRtUv)aneRbIenAeBlEdleKRtUvkar unbraced length FM. Hubrid girder CaRbePTrtEdlEdksøab
manersIusþg;FMCagEdkRTnug ehIyeBlxøHk¾RtUv)aneKeRbIR)as;.
         muneBlEdlkarpSarRtUv)aneRbITUlMTUlay kartP¢ab;eRKOgpÁúMrbs;muxkat;KWCakarBicarNacMbg
kñúgkarKNna plate girder. RKb;tMNTaMgGs;RtUv)aneFVIeLIgedayeRbIrIev dUcenHeKminmanviFIedIm,IP¢ab;
søabeTARTnugedaypÞal;eT. eKRtUvbBa©Úlmuxkat;bEnßmedIm,IepÞrbnÞúkBIeRKOgbgÁúMmYyeTAeRKOgbgÁúMmYy
eTot. bec©keTsFmμtakñúgkartP¢ab;KWkareRbIEdkEkgmYyKUedaydak;xñgTl;xñgedIm,IP¢ab;søabeTART
nugdUcbgðajenAkñúgrUbTI 10>1 b. RbsinebIeKRtUvkar web stiffener EdkEkgmYyKUk¾RtUv)aneRbI
sRmab;eKalbMNgenH. edIm,IeCosvagkarRbqaMgKñarvag stiffener angle nig flang angle eKRtUvbEnßm
filler plate eTAelIRTnug dUcenH stiffener GacXøatBI lange angle dUcbgðajenAkñúgrUbTI 10>1 c. Rb
sinebIeKRtUvkarmuxkat;ERbRbYl eKGaceRbI cover plate EdlmanRbEvgepSgKñamYy b¤eRcInP¢ab;eTAnwg
søabedarIev. eTaHbICaeKGaceRbI cover plate CamYynwg welded plate girder k¾eday k¾viFId¾samBaØ
CageKKWkareRbInUv flange plate EdlmankRmas;epSgKña EdlpSar end-to-end enATItaMgepSgKñatam
beNþayrbs; girder. eKGacemIleXIjy:agc,as;fa welded plate girder KWl¥Cag riveted pr bolted
girder edayKitelIPaBgayRsYl nigRbsiT§PaB. eyIgBicarNaEt I-shaped welded plate girder
enAkñúgCMBUkenH.
         munnwgBicarNaBItRmUvkarCak;lak;rbs; AISC Specification sRmab; plate girder eyIgcaM)ac;
RtYtBinitükñúgviFITUeTAbMputBIPaBxusKñarbs; plate girder nig rolled beam Fmμta. eTaHbICaeyIg)an
sikSaBI flexural member enAkñúgCMBUk 5, “Beams” k¾eday k¾ plate girder mantRmUvkar flexural
strength nig shear strength BiessepSg.
10>2> karBicarNaTUeTA        (General Considerations)
      bBaðad¾FMkñúgkarKNnaeRKOgbgÁúMEdkKWkarpþl;nUv local stability b¤lMnwgsRmab;eRKOgbgÁúMTaMg
mUl. edaysar standard hot-rolled structural shapes manlkçN³smamaRtdUcenHbBaða local
rtEdkbnÞH                                   429                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
stability RtUv)ankat;bnßy b¤RtUv)ankat;bnßydl;kMritGb,brma. b:uEnþenAeBlEdleKeRbI plate girder,
designer RtUvEtKitBIktþaCaeRcInEdlPaKeRcIn rolled shape minmanbBaðak¾eday. RTnugesþIg nig
x<s;begáItnUvbBaðaCaeRcInenAeBlEdlcapÁúMCamYynwg plate girder edayrYmbBa©ÚlTaMg local instability.
karyl;dwgBIeKalkarN_rbs; AISC provions sRmab; plate girder TamTarnUvcMeNHdwgBI stability
theory CaBiess plate stability. b:uEnþenAkñúgesovePAenHbgðajEteKalkarN_tRmUvkarrbs; Specifi-
cation nigkarGnuvtþrbs;vaEtb:ueNÑaH. RbsinebImankarcab;GarmμN_ nigcg;EsVgyl;bEnßm Guide to
stability Criteria for Metal Structures (Johnston, 1976) CacMNucsRmab;cab;epþImd¾l¥ ehIy
Buckling Strength of Metal Structures (Bleich, 1952) nig Theory of Elastic stability
(Timoshenko and Gere, 1961) nwgpþl;nUvmUldæanRKwHén stability theory.
         Plate girder QrelIersIusþg;EdlmaneRkayeBlRTnug buckle dUcenH flexural strength PaK
eRcInnwgekItBIsøab. sßanPaBkMNt;EdlRtUvBicarNaKWsøabrgkarTaj yield nigsøabrgkarsgát;
buckle. søabrgkarsgát;Edlrg buckle GacmanTRmg; vertical buckling enAkñúgRTnug b¤ flange
local buckling (FLB) b¤vaGacekIteLIgedaysar lateral-torsional buckling (LTB).
         enAkñúgRTnug girder TItaMgEdlmankmøaMgkat;FMeRcInEtsßitenAEk,rTRm nigenARtg; b¤enAEk,r
G½kSNWt. bøg;emnwgeRTteFobeTAnwgG½kSbeNþayrbs;Ggát; ehIykugRtaMgemCakmøaMgTaj Ggát;RTUg
b¤kmøaMgsgát;Ggát;RTUg. kmøaMgTajGgát;RTUgminbegáItbBaðaeT EtkmøaMgsgát;Ggát;RTUg bNþal[RTnug
buckle. bBaðaenHGaceCosvag)antambIrebob³ (1) eKGaceFVI[pleFobkm<s;elIkRmas; (depth-to-
thickness ratio) rbs;RTnugmantémøtUclμmEdlGaclubbM)at;bBaðaenH)an (2) eKGaceRbI web
stiffeners edIm,IbegáItCa panel edIm,IbegáIn shear strength b¤ (3) eKGaceRbI web stiffeners edIm,I
begáItCa panel EdlTb;Tl;nwgkmøaMgsgát;Ggát;RTUgtamry³ tension field action. rUbTI 10>2 bgðaj
BIKMnitén tension field action. enAcMNucEdlCitekItman buckling RTnug)at;bg;lT§PaBrbs;vakñúg
karTb;Tl;kmøaMgsgát;Ggát;RTUg ehIykugRtaMgenH)anpøas;bþÚreTA stiffeners xag nigsøab. Stiffener
Tb; Tl;nwgbgÁúMkmøaMgsgát;Ggát;RTUgbBaÄr ehIysøabTb;Tl;nwgbgÁúMkmøaMgedk. eKRtUvkar[RTnug
Tb;Tl;nwgkmøaMgTajGgát;RTUg dUcenHeTIbmanBakü tension-field action. kareFVIkarenHmanlkçN³
dUcKñanwg pratt truss EdlGgát;RTnugbBaÄrRTkmøaMgsgát; Ggát;RTnugGgát;RTUgRTkmøaMgTaj dUcbgðaj
kñúgrUbTI 10>2 b. edaysarCak;Esþg tension field ekItman)anluHRtaEtRTnugcab;epþIm buckling
T.Chhay                                    430                                     Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
dUcenH vaGaccUlrYmenAkñúgersIusþg;kmøaMgkat;rbs;RTnug)anluHRtaEtRTnug buckling sin. ersIusþg;
srubnwg pSMeLIgedayersIusþg;muneBl buckling nigersIusþg;eRkayeBl buckling EdlTTYlBI tension
field action.
        RbsinebI unstiffened web minmanlT§PaBGacTb;Tl;nwgkmøaMgkat;Gnuvtþn_ enaHeKRtUveRbI
stiffener EdlmanKMlatesμI²KñaedIm,IbegáIn tension field action. muxkat;EdlRtUvkar stiffener
RtUv)aneKehAfa intermidate stiffener manTMhMtUcBIeRBaHeKalbMNgdMbUgrbs;vaKWpþl;nUv stiffener
RbesIrCagkarTb;Tl;kmøaMgGnuvtþn_edaypÞal;.
        eKGacRtUvkar stiffener bEnßmenARtg;cMNucbnÞúkcMcMNucsRmab;eKalbMNgkarBarRTnugBIbnÞúk
sgát;edaypÞal;. stiffener enHRtUv)aneK[eQμaHfa bearing stiffener ehIyvaRtUvEtsmamaRtedIm,I
Tb;Tl;bnÞúkGnuvtþn_. vak¾GaceFVIkarCa intermidate stiffener kñúgeBlCamYyKñapgEdr. rUbTI 10>3
bgðajBI bearing stiffener EdlpSMeLIgedaybnÞHctuekaNEkgBIrenAsgxagRTnug girder. bnÞHEdk
bEnßmRtUv)ankat;biutenARCugxagkñúgTaMgelI nigeRkamedIm,IeCosvagTwkbnSar flange-to-web. Rbsin
rtEdkbnÞH                                 431                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
ebIeKsnμt; stiffener [Tb;Tl;bnÞúkGnuvtþn_srub P edaysuvtßiPaB ¬karsnμt;ecalnUvkarcUlrYmrbs;
RTnug¦ enaHeKGacsresr bearing stress Rtg;épÞb:HCa
                  P
          fp =
                 A pb
Edl Apb = projected bearing area = 2at ¬emIlrUbTI 10>3¦
b¤eKGacsresr bearing load CMnYs[kareRbI bearing stress Ca
          P = f p A pb                                                           ¬!0>!¦
        elIsBIenH stiffener mYyKUCamYynwgRTnugEdlmanRbEvgxøIRtUv)anKitCassrEdlmanRbEvg
RbsiT§PaBtUcCagkm<s;rbs;RTnug ehIyRtUv)anGegátedayeRbI Specification provision dUcGgát;rg
karsgát;déTeTotEdr. muxkat;enHRtUv)anbgðajenAkñúgrUbTI 10>4. CaTUeTA ersIusþg;sgát;KYrQrelIkaM
niclPaBeFobG½kSkñúgbøg;rbs;RTnug EdlPaBKμanlMnwgeFobnwgG½kSemd¾éTRtUv)ankarBaredayRTnug
xøÜnÉg.
        sßanPaBkMNt;EdlTTYl)anBIkarGnutþrbs;bnÞúkcMcMNuceTAelIsøabxagelIrbs;RTnug yielding,
RTnug crippling (buckling) ehIy sidesway buckling. Sidesway web buckling ekItmanenAeBl
kmøaMgsgát;enAkñúgRTnugbgá[søabrgkarTaj buckle tamTTwg. )atuPUtenHGacekItmanenAeB Edl
søabminmanlT§PaBRKb;RKan;RbqaMgnwgclnaeTAvijeTAmkrbs; stiffener b¤ lateral bracing.
T.Chhay                                   432                                    Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
        TwkbnSarsRmab;kartP¢ab;eRKOgbgÁúMrbs; plate girder RtUv)anKNnadUcKñanwgkarKNnatMN
pSardéTeTotEdr. TwkbnSar flang-to-web RtUvEtTb;Tl;nwgkmøaMgkat;tamTisedkenARtg;épÞb:Hrvag
eRKOgbgÁúMBIr. kmøaMgkat;Gnuvtþn_enH RtUv)aneKehAfa shear flow EdlCaTUeTARtUv)anKitCakMlMagkñúg
mYyÉktþaRbEvgrbs; girder edIm,IGacTb;Tl;edayTwkbnSar. BICMBUk 5 shear flow EdlQrelI
elastic behavior RtUv)an[eday
                  VQ
            f =
                  Ix
Edl Q Cam:Um:g;TImYyénRkLaépÞrvagbøg;kmøaMgkat;tamTisedk nigépÞénmuxkat;xageRkAeFobnwgG½kS
NWt. smIkarxagenHCasmIkar %>^ sRmab;kugRtaMgkmøaMgkat;EdlKuNedayTTwgrbs;bøg;kmøaMgkat;.
edaysarEtCaTUeTAkmøaMgkat;Gnuvtþn_ERbRbYl dUcenHRbsinebIeKeRbIkarpSaredayEdlminCab; enaH
KMlatrbs;vanwgERbRbYleTAtamenaHEdr.
10>3> tRmUvkarrbs; AISC (AISC Requirments)
      tRmUvkarsRmab; plate girder RtUv)anbriyayenAkñúg Chapter 6 of the AISC Speciffication
ehIy Appendix G manniyayBIeKalbMNgkñúgkarGnuvtþrbs; plate girder.
      eTaHCa flexural member RtUv)ancat;cMNat;fñak;Ca beam b¤ plate girder k¾eday k¾vaenAEtCa
GnuKmn_eTAnwg web slendernedd h / t w Edl h Cakm<s;rbs;RTnugcenøaHépÞxagkñúgrbs;søab nig t w
CakRmas;rbs;RTnug. RbsinebI h / t w < 2550 / f yf ¬xñat IS ¦ h / t w < 970 / f yf ¬xñat US¦
rtEdkbnÞH                                  433                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
Ggát;RtUv)ancat;cMNat;fñak;Ca beam ehIyeKRtUvGnuvtþkarpþl;[rbs; AISC Chapter F edaymin
KitfaGgát;enHCa bult-up BI plate b¤Ca hot-rolled shape. RbsinebI h / t w > 2550 / f yf ¬xñat IS¦
Ggát;RtUv)ancat;cMNat;fñak;Ca plate girder ehIyeKRtUvGnuvtþkarpþl;[rbs; AISC Chapter G. dUc
enH flexural member Edlman slender web Edl slenderness RtUv)ankMNt;enAkñúg AISC Chapter
B RtUv)anKitCa plate girder. cMNaMfa enAeBlEdleKeRbI hybrid girder témøkMNt;rbs; h / t w KW
QrelI Fyf yield stress rbs;søab. mUlehtuKWfa lMnwgrbs;RTnugRbqaMgnwg flexural buckling KWGa
Rs½ynwg strain enAkñúgsøab (Zahn, 1987).
         edIm,Ibgáa vertical buckling rbs;søabeTAkñúgRTnug AISC Appendix G2 )an[nUvEdnkMNt;
x<s;bMputsRmab;pleFobTTwgelIkRmas; (width-thickness ratio) ht w . témøEdlkMNt;enHCa
GnuKmn_eTAnwg aspect ratio a / h rbs; girder plate EdlCapleFobKMlatrbs; intermediate
stiffener elIkm<s;RTnug ¬emIlrUbTI 10>5¦³
         sRmab; a / h ≤ 1.5 /
                  t
                   h
                     ≤
                         2000
                          F
                               ¬xñat US¦
                                                t
                                                 h 5250
                                                    ≤
                                                       F
                                                            ¬xñat IS¦ (AISC Equation A-G1-1)
                    w       yf                          w   yf
          sRmab; a / h > 1.5 /
                    h
                   tw
                      ≤
                              14000
                          Fyf ( Fyf + 16.5)
                                               ¬xñat US¦
                    h
                   tw
                      ≤
                             96530
                                 (
                          Fyf Fyf + 114   )
                                              ¬xñat IS¦             (AISC Equation A-G1-2)
Edl a Ca clear distance rvag stiffeners.
T.Chhay                                           434                              Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                          Department of Civil Engineering
10>4> ersIusþg;rgkarBt;              (Flexural Strength)
                                 rbs; plate girders KW φb M n / Edl φb = 0.90 . Norminal
          Design flexural strength
flexural strength M n KWQrenAelIsøabrgkarTaj yielding b¤k¾søabrgkarsgát; buckling. eKGac
kMNt; Bucling strength rbs;søabrgkarsgát;eday flang local buckling (FLB) b¤k¾ lateral-
torsional buckling (LTB). Vertical buckling rbs;søabrgkarsgát;eTAkñúgRTnugRtUv)andkecjBI
karBicarNaedaysarkarkMNt;Edl[eday AISC Equation A-G1-2 nig A-G1-2 (Cooper,
Galambos, and Ravindra, 1978).
Tension Flange Yielding
          BICMBUk 5/ kugRtaMgBt;GtibrmaenAkñúg flexural member EdlekageFobeTAnwgG½kSxøaMgrbs;va
KW
                   M
            fb =
                   Sx
Edl S x Cam:UDulmuxkat;eGLasÞic (elastic section modulus) eFobG½kSxøaMg. sresrsmIkarm:Um:g;
Bt;CaGnuKmn_eTAnwgm:UDulmuxkat; nigkugRtaMg eKTTYl)an
       M = S x fb                                                             ¬!0>@¦
AISC Appendix G2 [ nominal flexural strength EdlQrelIsøabrgkarTajEdl yield Ca
          M n = S xt Re Fyt                                                  (AISC Equation A-G2-1)
Edl       S xt = elastic section modulus         EdlsMedAelIxagEdlrgkarTaj
            emKuN hybrid girder
          Re =
       Fyt = yield stress rbs;søabrgkarTaj
emKuN hybrid girder Re esμInwg 1.0 sRmab; nonhybrid girder. sRmab; hybrid girder
            12 + (Aw / A f )(3m − m 3 )
       R =                              ≤ 1 .0
             e
                                 (
                        12 + 2 Aw / A f    )
Edl       Aw =  RkLaépÞrbs;RTnug ≤ 10 A f
          A f = RkLaépÞrbs;søabrgkarsgát;
          m = Fyw / Fyf      ¬karkMNt;enHKWsRmab;sßanPaBkMNt;rbs;søabrgkarTaj yield.
               sRmab;søabrgkarsgát; eKk¾eRbIemKuN hybrid girder Edr Et m RtUv)ankMNt;epSg¦.
rtEdkbnÞH                                             435                                       T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
Compression Flange Buckling
                                EdlRtUvnwgsøabrgkarsgát; buckling k¾QrelIsmIkar !0>@ Edr.
          Nominal flexural strength
BI AISC Appendix G2, ersIusþg;enHRtUv)ansresrCa
           M n = S xc RPG Re Fcr                                        (AISC Equation A-G2-2)
Edl        S xc = m:UDulmuxkat;eGLasÞicsMedAelIxagEdlrgkarsgát;
            RPG = emKuNkat;bnßyersIusþg;edIm,IkarBar elastic web buckling
            Fcr = kugRtaMgeRKaHfñak;enAkñúgsøabrgkarsgát;EdlQrelI LTB b¤ FLB
            Re = emKuN hybrid girder ¬EdlKitedaysmIkardUcKñasRmab;søabrgkarTaj yield b:uEnþ
                  m = Fyw / Fcr ¦.
           emKuNkat;bnßyersIusþg;rbs; plate girder RPG RtUv)aneday
                                      ⎛ h         ⎞
            RPG = 1 −
                             ar       ⎜ − 970 ⎟ ≤ 1.0 ¬xñat US¦        (AISC Equation A-G2-3)
                        1200 + 300a ⎜ t
                                   r  ⎝ w      F ⎟
                                             cr ⎠
                                      ⎛ h 2550 ⎞
           RPG    = 1−
                            ar        ⎜ −
                       1200 + 300a r ⎜⎝ t w
                                                 ⎟ ≤ 1.0
                                            Fcr ⎟⎠
                                                           ¬xñat IS¦    (AISC Equation A-G2-3)
Edl        a = Aw / A f ≤ 10
             cm¶ayBIrdgBITIRbCMuTm¶n;eTAépÞxagkñúgrbs;søabrgkarsgát; ¬ hc = h sRmab; girder
           hc =
             Edl mansøabesμIKña¦
       kugRtaMgeRKaHfñak; Fcr KWQrelI lateral-torsional buckling b¤ flange local buckling.
AISC Specification eRbInimitþsBaØa λ / λ p nig λr edIm,IedaHRsayCamYynwg slanderness para-
meter sRmab;sßanPaBkMNt;TaMgBIr ehIyeKeRbInUvsMnMuénsmIkarxageRkamsRmab;edaHRsay Fcr .
smIkarRtUv)anbgðajenATIenHkñúgTRmg;BnøatbnþicbnþÜckñúgbMNgbBa¢ak;BIkarpþl;[. sRmab; lateral
torsional buckling eKeRbI slenderness énEpñkrbs;tMbn;sgát;rbs; girder dUcenH
               Lb
           λ=                                                           (AISC Equation A-G2-7)
               rT
           λp =
                  300
                   Fyf
                           ¬xñat US¦       λp =
                                                   792
                                                    Fyf
                                                            ¬xñat IS¦   (AISC Equation A-G2-8)
           λr =
                    756
                     Fyf
                           ¬xñat US¦       λr =
                                                  1985
                                                   Fyf
                                                            ¬xñat IS¦   (AISC Equation A-G2-9)
T.Chhay                                           436                               Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                               Department of Civil Engineering
Edl Lb Ca unbraced length nig rT CakaMniclPaBeFobG½kSexSaysRmab;Epñkénmuxkat;Edlman
søabrgkarsgát; nigmYyPaKbIénRTnugEpñkrgkarsgát;. sRmab; girder sIuemRTIDub TMhMenHesμImYyPaK
R)aMmYyénkm<s;RTnug. ¬emIlrUbTI 10>6¦ enaH³
        RbsinebI λ ≤ λ p / kar)ak;KWekIteLIgedaysar yielding
                       Fcr = Fyf                                               (AISC Equation A-G2-4)
          RbsinebI λ p < λ ≤ λr / kar)ak;KWekIteLIgedaysar inelastic LTB nig
                                    ⎡ 1 ⎛ λ − λp      ⎞⎤
                       Fcr = Cb Fyf ⎢1 − ⎜            ⎟⎥ ≤ Fyf                 (AISC Equation A-G2-5)
                                         ⎜            ⎟⎥
                                    ⎣⎢ 2 ⎝ λr − λ p   ⎠⎦
Edl Cb RtUv)an[eday AISC Equation F1-3.
      RbsinebI λ > λr / kar)ak;nwgekIteLIgedaysar elastic LTB nig
                               C PG
                       Fcr =                                                   (AISC Equation A-G2-6)
                                 λ2
Edl       C PG = 286000Cb                                                      (AISC Equation A-G2-10)
          sRmab;søabrgkarsgát;          EdlQrelI
                                        buckling                  flange local buckling    pleFobTTwgelI
kRmas; (width-thickness ratio) nigEdnkMNt;rbs;vaKW³
                bf
          λ=                                                                   (AISC Equation A-G2-11)
                2t f
          λp =
                       65
                       Fyf
                                 ¬xñat US¦    λp =
                                                       170
                                                        Fyf
                                                                 ¬xñat IS¦     (AISC Equation A-G2-12)
rtEdkbnÞH                                             437                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                              NPIC
          λr =
                   230
                  Fyf / k c
                              ¬xñat US¦   λp =
                                                      605
                                                     Fyf / k c
                                                                 ¬xñat IS¦        (AISC Equation A-G2-13)
 Edl kc = 4 / h / t w /       0.35 ≤ k c ≤ 0.763
enaH³ RbsinebI λ ≤ λ p / kar)ak;nwgekIteLIgedaysar yielding nig
                   Fcr = Fyf                                                      (AISC Equation A-G2-4)
          RbsinebI λ p < λ ≤ λr / kar)ak;nwgekIteLIgedaysar inelastic FLB nig
                                ⎡ 1 ⎛ λ − λp       ⎞⎤
                   Fcr = Cb Fyf ⎢1 − ⎜             ⎟⎥ ≤ Fyf                       (AISC Equation A-G2-5)
                                ⎢⎣ 2 ⎜⎝ λr − λ p   ⎟⎥
                                                   ⎠⎦
Edl       Cb = 1.0
          RbsinebI λ > λr / kar)ak;ekIteLIgedaysar elastic FLB nig
                           C PG
                   Fcr =                                                          (AISC Equation A-G2-6)
                              λ2
Edl C PG = 26200kc                                              (AISC Equation A-G2-14)
karKNna flexural strength RtUv)anbgðajenAkñúg]TahrN_ 10>1/ cMNuc (a).
10>5> ersIusþg;kmøaMgkat;                 (Shear Strength)
                             rbs; plate girder KW φvVn Edl φv = 0.9 . Shear strength Ca Gnu-
          Design shear strength
Kmn_eTAnwgpleFobkm<s;elIkRmas; (depth-to-thickness ratio) rbs;RTnug nigKMlatrbs; interme-
diate stiffener. Shear capacity manbgÁúMersIusþg;BIr³ ersIusþg;muneBl buckling nigersIusþg;eRkay
eBl buckling. ersIusþg;eRkayeBl)ak;sMGageTAelI tension field action EdlGacmanlT§PaB
begáItedaysarvtþmanrbs; intermediate stiffener. RbsinebIminmanvtþman stiffener b¤k¾manKMlat
q¶ayBIKñaeBk vak¾minGacman tension field action ehIy shear capacityGacmanEtersIusþg;muneBl
buckling. Nominal shear strength Edl[eday AISC Appendix G3 mandUcxageRkam³
        sRmab; th ≤ 187 Fkv          ¬xñat US¦ th ≤ 491 Fkv                  ¬xñat IS¦
                     w              yf                           w           yf
                   Vn = 0.6 Aw Fyw                                                (AISC Equation A-G3-1)
          sRmab; th > 187          kv
                                   Fyf
                                          ¬xñat US¦               h
                                                                 tw
                                                                          k
                                                                    > 491 v
                                                                          Fyf
                                                                                        ¬xñat IS¦
                     w
T.Chhay                                            438                                        Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                                        Department of Civil Engineering
                                       ⎛         1 − Cv                     ⎞
                    Vn = 0.6 Aw Fyw ⎜⎜ Cv +                                 ⎟
                                                                            ⎟⎟            (AISC Equation A-G3-2)
                                       ⎜     1.15 1 + (a / h )2
                                       ⎝                                     ⎠
          Edl       kv = 5 +
                                 5
                             (a / h )2
                       =5        RbsinebIa
                                         h
                                           >3                                             (AISC Equation A-G3-4)
                                                               2
                                             a ⎡ 260 ⎤
                          =5     RbsinebI     >⎢           ⎥
                                             h ⎣ (h / t w )⎦
AISc Equation A-G3-1   [nUv shear strength enAeBlEdlKμanvtþman tension-field action ehIy
kar)ak;rbs;RTnugKWedaysar yielding. AISC A-G3-2 rab;bBa©Úl tension-field action. eKk¾Gac
sresr AISC Equation A-G3-2 Ca
                                                        1 − Cv
          Vn = 0.6 Aw FywCv + 0.6 Fyw
                                                   1.15 1 + (a / h )2
GgÁTImYyenAkñúgsmIkarxagelIenHCa web shear buckling strength ehIyGgÁTIBIrCa post-buckling
strength. emKuN Cv CapleFob critical web buckling stress elI web shear yield stress
ehIyRtUv)ankMNt;dUcxageRkam³
        sRmab; 187 Fkv ≤ th ≤ 234 Fkv (US) 491 Fkv ≤ th ≤ 614 Fkv (IS)
                                 yf     w               yf                       yf   w            yf
                 187 k v / Fyf                               491 k v / Fyf
          Cv =                              (US)     Cv =                        (IS) (AISC Equation A-G3-5)
                        h / tw                                     h / tw
          sRmab; th > 234             kv
                                      Fyf
                                                     (US)
                                                                h
                                                               tw
                                                                  > 614
                                                                        kv
                                                                        Fyf
                                                                            (IS)
                      w
                    44000k v                                  303380k v
          Cv =                              (US)     Cv =                        (IS) (AISC Equation A-G3-6)
                  (h / t w )
                           2
                               Fyw                           (h / t w )2 Fyw
          dMeNaHRsayrbs; AISC Equation A-G3-1 nig A-G3-2 RtUv)ansRmYledaytaragEdl[
enAkñúg Numerical Values section of the Specification. Tables 9-36 nig 10-36 Tak;Tgnwg)a:ra:
Em:RténsmIkarTaMgBIrenHsRmab;Edk A36 ehIy Tables 9-50 nig 10-50 sRmab;EdkEdlman yield
stress 50ksi ≈ 345MPa . eyIgnwgniyaylMGitBIkareRbIR)as;tarag TaMgenHenAkñúg]TahrN_xagmux.
          Tension field minGacekItmaneBjenAkñúg panel xagcugeT. eKGacdwgy:agc,as;edaycat;
TukbgÁúM tension field tamTisedkEdlbgðajenAkñúgrUbTI 10>7. bgÁúMtamTisbBaÄrRtUv)anTb;eday
rtEdkbnÞH                                                    439                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                    NPIC
          .
stiffener Tension field    enAkñúg panel CD RtUv)anrkSalMnwgeday tension field enAkñúg panel BC .
dUcenH panel xagkñúgRtUv)anf<k;Cab;eday panel EdlenAEk,r. b:uEnþ panel AB minmankarf<k;enAxag
eqVgeT. eTaHbICakarf<k;Gacpþl;[eday stiffener xagcugEdlKNnaedIm,ITb;Tl;karBt;EdlekItBI
tension field k¾eday k¾vamineFVIkarCakarf<k;Edr. edaysar tension field minekItmanenAeBjkm<s;
RTnug dUcenH internal stiffener k¾RbQmnwgkarBt;xøHEdlekItBI tension field EdllyecjenAkñúg
panel EdlenAEk,r b:uEnþm:Um:g;Bt;enHminsMxan;eT. dUcenHkarf<k;Cab;sRmab; panel BC RtUv)anpþl;
[enAxageqVgeday beam-shear panel RbesIrCag tension field panel Edl)anbgðaj. dUcenH
nominal shear strength KWdUcKñanwg flexural member EdlKμan tension-fiels panel
          Vn = 0.6 Aw FywCv                                           (AISC Equation A-G3-3)
         cMNaMfasmIkarxagelIenHCaGgÁTImYyrbs; AISC Equation A-G3-2. Tension-field action
minRtUv)anGnuBaØatsRmab; hybrid girder b¤enAeBl a / h > 3 b¤enAeBl a / h > [260 /(h / t w )]2 ¬Edl
krNIxageRkayTaMgBIrenHRtUvKñanwg kv = 5 ¦. dUcenH AISC Equation A-G3-3 GnuvtþenAkñúgsßanPaB
TaMgenH.
         AISC G4 erobrab;faeKminRtUvkar intermediate stiffener enAeBl h / t w ≤ 418 / Fyw
¬xñat US¦ b¤ h / t w ≤ 1097 / Fyw EdlTaMgenHGacbgðajdUcxageRkam. enAeBlEdlKμan interme-
diate stiffener a / h > 3 nig k v = 5 [
                 187 5 / Fyw          418 / Fyw
          Cv =                    =                 (US)
                         h / tw         h / tw
                 187 13 / Fyw         1097 / Fyw
          Cv =                    =                 (IS)
                         h / tw          h / tw
ehIy nominal shear strength
T.Chhay                                           440                                Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                                                 Department of Civil Engineering
          Vn =
                                 [
                 0.6 Aw Fyw 418 / Fyw               ]   (US)       Vv =
                                                                                       [
                                                                          0.6 Aw Fyw 1097 / Fyw          ] (IS)
                             h / tw                                                   h / tw
dUcenHenAeBlEdl t / hw ≤ 418 /                     Fyw (US) h / t w ≤ 1097 / Fyw (IS)
          Vv ≥ 0.6 Aw Fyw
b:uEnþsmIkarenHRtUvnwgEdnkMNt;x<s;bMput (shear yielding) dUcenHsBaØaFMCagRtUv)andkecj eK)an
          Vv = 0.6 Aw Fyw                                                                           (AISC Equation A-G3-1)
EdlCa nominal strength enAeBlEdl h / t w ≤ 187 kv / Fyw (US) h / t w ≤ 491/ kv / Fyw                                    (IS)
      RbsinebIeKminKit tension-filed action eTenaH eKTTYl)an shear strength BI AISC
Appendix F2 dUcxageRkam³
      sRmab; th ≤ 187 Fkv (US) th ≤ 491 Fkv (IS)
                      w                   yw                 w            yw
                    Vv = 0.6 Fyw Aw                                                                 (AISC Equation A-F2-1)
          sRmab; 187        kv
                               <
                                 h
                            Fyw t w
                                    ≤ 234
                                          kv
                                          Fyw
                                              (US)                             491
                                                                                     kv
                                                                                     Fyf
                                                                                         ≤
                                                                                            h
                                                                                           tw
                                                                                              ≤ 614
                                                                                                    kv
                                                                                                    Fyf
                                                                                                        (IS)
                                               187 k v / Fyw
                    Vv = 0.6 Fyw Aw                                (US)                             (AISC Equation A-F2-2)
                                                    h / tw
                                               491 k v / Fyw
                    Vv = 0.6 Fyw Aw                                (IS)
                                                     h / tw
          sRmab; th > 234              kv
                                       Fyf
                                                        (US)
                                                                    h
                                                                   tw
                                                                      > 614
                                                                            kv
                                                                            Fyf
                                                                                (IS)
                      w
                                 26400k v
                    Vv = Aw                             (US)                                        (AISC Equation A-G3-6)
                                     (h / t w )2
                                     182k v
                    Vv = Aw                             (IS)
                                 (h / t w )2
segçbmk nominal shear strength RtUv)ankMNt;dUcxageRkam
      !> kMNt; aspect ratio a / h
      @> kMNt; kv nig Cv
      #> sRmab;RKb; panel rbs; hybrid girder nigsRmab; panel xagcugrbs; nonhybrid girders:
             RbsinebI th ≤ 187 Fkv (US)           t
                                                   h
                                                     ≤ 491
                                                              kv
                                                              F
                                                                   (IS)
                                      w                 yw                     w               yw
                                 Vv = 0.6 Fyw Aw
rtEdkbnÞH                                                        441                                                   T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                       NPIC
                  RbsinebI th > 187     kv
                                        Fyw
                                            (US)
                                                               h
                                                              tw
                                                                 > 491
                                                                       kv
                                                                       Fyw
                                                                           (IS)
                            w
                          Vv = 0.6 Fyw AwCv
             sRmab; panel d¾éTeTotrbs; nonhybrid girder Edlman tention-field action:
                RbsinebI th ≤ 187 Fkv (US)           t
                                                      h
                                                         ≤ 491
                                                               F
                                                                kv
                                                                     (IS)
                            w             yw                  w             yw
                          Vv = 0.6 Fyw Aw
                  RbsinebI th > 187     kv
                                        Fyw
                                            (US)
                                                               h
                                                              tw
                                                                 > 491
                                                                       kv
                                                                       Fyw
                                                                           (IS)
                            w
                                           ⎛          1 − Cv           ⎞
                          Vv = 0.6 Fyw Aw ⎜⎜ Cv +                      ⎟
                                                                       ⎟⎟
                                           ⎜      1.15 1 + (a / h )2
                                           ⎝                            ⎠
             RbsinebIeKmineRbI tension-field action eKnwgGnuvtþ provisions of Appendix F2:
                 RbsinebI th ≤ 187 Fkv (US)              t
                                                          h
                                                            ≤ 491
                                                                    F
                                                                     kv
                                                                         (IS)
                            w             yw                  w             yw
                         Vv = 0.6 Fyw Aw
                  RbsinebI 187   kv
                                    <
                                      h
                                 Fyw t w
                                         ≤ 234
                                               kv
                                               Fyw
                                                            k
                                                   (US) 491 v ≤
                                                            Fyf
                                                                 h
                                                                tw
                                                                   ≤ 614
                                                                         kv
                                                                         Fyf
                                                                             (IS)
                                              187 k v / Fyw
                         Vv = 0.6 Fyw Aw                      (US)
                                                  h / tw
                                              491 k v / Fyw
                         Vv = 0.6 Fyw Aw                      (IS)
                                                  h / tw
                  RbsinebI th > 234     kv
                                        Fyf
                                                     (US)
                                                               h
                                                              tw
                                                                 > 614
                                                                       kv
                                                                       Fyf
                                                                           (IS)
                            w
                                   26400k v
                         Vv = Aw                     (US)
                                   (h / t w )2
                                    182k v
                         Vv = Aw                     (IS)
                                   (h / t w )2
            karkMNt; shear strength RtUv)anbgðajenAkñúg]TahrN_ 10>1 cMNuc (b).
Intermediate Stiffeners
T.Chhay                                           442                               Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                      Department of Civil Engineering
        RbsinebIeKRtUvkar intermediate stiffener edIm,ITTYl shear strength RKb;RKan;enAeBlEdl
eKeRbI tension-field action RkLaépÞmuxkat;Gb,brmarbs; stiffener eTal b¤KURtUv)an[eday AISC
Appendix G4 KW
                  Fyw ⎡                                   ⎤
                       ⎢0.15Dht w (1 − Cv )
                                             Vu
          Ast =                                  − 18t w2 ⎥ ≥ 0       (AISC Equation A-G4-1)
                  Fyst ⎣                    φvVn          ⎦
Edl       Ast =   RkLaépÞmuxkat;srubrbs; stiffener EdlRtUvkarenAeBlEdleKeRbI tension-field
                  action
                            rbs; stiffener
          Fyst = yield stress
          D = GnuKmn_énTRmg;rbs; stiffener
             = 1.0 sRmab; stiffener KU ¬EdkEkg b¤EdkbnÞH¦
             = 1.8 sRmab; stiffener EdkEkgeTal
             = 2.4 sRmab; stiffener EdkbnÞHeTal
eKRtUvkarRkLaépÞEdlkMNt;eday AISC Equation A-G4-1 edIm,ITb;Tl;nwgbgÁúMkmøaMgbBaÄrrbs;
kmøaMgsgát;Ggát;RTUgenAkñúg panel. Table 10-36 nig 10-50 enAkñúg Numerical Values section of
the Specification Edl[nUv shear strength EdlQrelI tension-field action ehIyk¾[pg
EdrnUvRkLaépÞ stiffener EdlcaM)ac;edaysMEdgCaPaKryénRkLaépÞRTnugsRmab;témøepSg²rbs;
 a / h nig h / t w .
         m:Um:g;niclPaBGb,brmarbs; stiffener EdlKiteFobnwgG½kSenAkñúgbøg;rbs;RTnug ¬b¤sRmab;
stiffener eTaleFobnwgépÞrbs; stiffener Edlb:HnwgRTnug¦ RtUv)an[enAkñúg AISC Appendix F2.3
KW
          I st = at w3 j
Edl       j=
                 2.5
                         − 2 ≥ 0.5                                    (AISC Equation A-F2-4)
               (a / h )2
eTaHbICa intermediate stiffener minRtUv)anKNnaCaGgát;rgkarsgát;k¾eday k¾karkMNt;pleFobTTwg
elIkRmas;sRmab;eCosvag local buckling GacRtUv)aneRbIkñúgkarkMNt;smamaRtrbs;muxkat;
stiffener. Table B5.1 nig AISC B5 minmankarENnaMsRmab; plate girder stiffener eT. EdnkMNt;
pleFob TTwgelIkRmas;sRmab; outstanding legs rbs;EdkEkgKUEdlCab;RtUv)aneRbIenATIenH
rtEdkbnÞH                                         443                                       T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                     NPIC
          b   95                 b 250
            =             (US)     =           (IS)
          t    Fy                t   Fy
        Tal;EtvaeFVIkarCa bearing stiffener ebImindUecñaHeT intermediate stiffener minRtUv)anTamTar
[RTsøabrgkarTajeT dUcenHRbEvgrbs;vaGaceBlxøHmanRbEvgxøICagkm<s;RTnug h ehIyeKGac
eCosvagnUvbBaðaplitEdlbNþalmkBIkardak;[RtUvKña. eyagtam Appendix F2.3 of the speci-
fication RbEvgrbs; stiffener KYrEtsßitenAkñúgEdnkMNt;Edlcm¶ayrvagTwkbnSarEdltP¢ab; stiffener
eTARTnug nigTwkbnSarEdltP¢ab;RTnugeTAsøabrgkarTaj. cm¶ayenHRtUv)ansMKal;eday c enAkñúgrUb
TI 10>8 KYrEtsßitenAcenøaHbYneTAR)aMmYydgénkRmas;RTnug.
        karkMNt;smamaRtmuxkat;rbs; intermediate stiffener edayk,Ünrbs; AISC minTamTarkar
KNnakmøaMgNamYyeT b:uEnþkmøaMgRtUvEtepÞrBI stiffener eTARTnug ehIykartP¢ab;KYrEtRtUv)anKNna
sRmab;kmøaMgenH. Basler (1961) ENnaM[eRbI shear flow
                         Fy3
          f = 0.045h
                         E
                                                                          ¬!0>#¦
        Intemittent fillet weld Gb,brmaTMngCaRKb;RKan; (Salmon and John, 1996). manEtkar
ENnaMBI AISC enAkñúg Appendix F2.3 eTEdlTamTar clear distance cenøaH fillet wled EdlminCab;
min[FMCag 16t w b¤ 10in. ≈ 25cm .
10>6> GnþrGMeBIénkarBt; nigkmøaMgkat;         (Interaction of Flexural and Shear)
        CaTUeTA kugRtaMgRtg;cMNucmYykñúgRTnugrbs; plate girder KWCabnSMénkmøaMgkat; nigm:Um:g;Bt;Ca
mYynwgkugRtaMgG½kSemFMCagbgÁúMkugRtaMgdéTeTot. CaTUeTA kugRtaMgEdlbnSMenaHminmanbBaðaeT Rb
sinebIminman tension-field action eRBaHGnþrGMeBIénkmøaMgkat; nigm:Um:g;Bt;RtUv)anecalkñúgkrNIenH.
RbsinebIman tension field, kugRtaMgTajGgát;RTUgnwgeTAdl;kMritx<s;bMput ehIykarbnSMkugRtaMg
T.Chhay                                      444                                      Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                              Department of Civil Engineering
RtUv)anBicarNa. AISC TamTarfaGnþrGMeBIRtUvKitenAeBlman tension field CamYynwgkmøaMgkat; nig
m:Um:g;Bt;
           0.6φVn ≤ Vu ≤ φVn nig 0.75φM n ≤ M u ≤ φM n
Edl φ = 0.90 . vaRtUvEtbMeBjsmIkarGnþrGMeBIxageRkam
           Mu         V
               + 0.625 u ≤ 1.375                                              (AISC Equation A-G5-1)
          φM n        φVn
karRtYtBinitüsRmab;GnþrGMeBIrbs;m:Um:g;Bt; nigkmøaMgkat;RtUv)anbgðajenAkñúg]TahrN_ 10>1 cMNuc
(C).
10>7>     Bearing Stiffeners
       eKRtUvkar bearing stiffener enAeBlRTnugminmanersIusþg;RKb;RKan;sRmab;sßanPaBkMNt;Na
mYyén web yielding, web crippling, b¤ sidesway web buckling. sßanPaBkMNt;TaMgenHRtUv)an
bgðajenAkñúg Charpter K of the Specification (“Concentrated Forces, Ponding, and Fatigue”).
sRmab; web yielding, design strength rbs;RTnugKW φRn Edl φ = 1.0 nigenAeBlEdlbnÞúksßitenA
cm¶ayesμInwgkm<s; girder BIxagcug
          Rn = (5k + N )Fywt w                                                (AISC Equation K1-2)
enAeBlEdlbnÞúksßitenAcm¶aytUcCagkm<s; girder BIxagcug
          Rn = (2.5k + N )Fywt w                                              (AISC Equation K1-3)
Edl        cm¶ayBIépÞxageRkArbs;søabeTAeCIgrbs; fillet enAelIRTnug ¬sRmab; rolled beam¦
          k=
           b¤eTA eCIgrbs;TwkbnSar ¬sRmab; welded girger¦
       N = RbEvgrbs; bearing rbs;bnÞúkcMcMNucEdlvas;tamTisrbs;G½kSbeNþayrbs; girder
           ¬mintUcCag k sRmab;Rbtikmμcug¦
¬eyIg)anerobrab;BIsßanPaBkMNt;enHenAkñúgCMBUk 5 rYcehIy¦.
       sRmab; web crippling emKuNrsIusþg; φ = 0.75 nigenAeBlbnÞúksßitenAy:agticcm¶ayBak;
kNþalkm<s; girder BIcug
                         ⎡                    1.5 ⎤
                             ⎛     N ⎞⎛⎜ t w ⎞⎟       Fywt f
          Rn = 135t w2 ⎢1 + 3⎜
                         ⎢
                                     ⎟
                                 ⎝ d ⎠⎜⎝ t f ⎟⎠
                                                  ⎥
                                                  ⎥    tw
                                                               sRmab;   N
                                                                        d
                                                                          ≤ 0 (AISC Equation K1-4)
                         ⎣                        ⎦
rtEdkbnÞH                                                445                                        T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                                NPIC
enAeBlbnÞúksßitenAcm¶aytUcCagkm<s;rbs; girder BIcugrbs; girder
                         ⎡                         1.5 ⎤
                           ⎛           ⎞⎛ t ⎞               Fywt f
          Rn = 68t w2 ⎢1 + ⎜ 4
                         ⎢
                               N
                             ⎝ d
                                 − 0.2 ⎟⎜ w ⎟
                                       ⎠⎜⎝ t f ⎟⎠
                                                      ⎥
                                                      ⎥          tw
                                                                      sRmab;   N
                                                                               d
                                                                                 > 0 (AISC Equation K1-5b)
                         ⎣                            ⎦
Edl       d= srubrbs; girder
        t f = kRmas;rbs;søab girder
¬eyIgk¾)anerobrab;BIsßanPaBkMNt;enHenAkñúgCMBUk 5¦
        eKRtUvkar bearing stiffeness edIm,IbgáarEt sidesway web buckling eRkamsßanPaBkMNt;
mYycMnYnEtb:ueNÑaH. eKRtUvRtYtBinitü sidesway web buckling enAeBlEdlsøabrgkarsgát;minTb;
RbqaMgnwgclnaeTAsøabrgkarTaj. Design strength KW φRn / Edl φ = 0.85 .
        RbsinebIsøabRtUv)anTb;min[vil
               C r t w3 t f ⎡       ⎛ h / tw ⎞ ⎤
                                              3
          Rn =              ⎢1 + 0.4⎜        ⎟ ⎥                                     (AISC Equation K1-6)
                  h2 ⎢              ⎜ l /bf ⎟ ⎥
                            ⎣       ⎝        ⎠ ⎦
[smIkarxagelIenHminRtUvkarRtYtBinitüeTRbsinebI (h / t w ) / (l / b f ) > 2.3 ]
       RbsinebIsøabRtUv)anGnuBaØat[vil
               C r t w3 t f ⎡ ⎛ h / t w ⎞ ⎤
                                         3
          Rn =              ⎢0.4⎜       ⎟ ⎥                                          (AISC Equation K1-7)
                  h 2 ⎢ ⎜⎝ l / b f ⎟⎠ ⎥
                            ⎣              ⎦
[smIkarxagelIenHminRtUvkarRtYtBinitüeTRbsinebI (h / t w ) / (l / b f ) > 1.7 ]
Edl Cr = 960000 enAeBlEdl M u < M y Rtg;TItaMgrbs;kmøaMg
             = 480000 RbsinebImindUecñaHeT
         l = unbraced rbs;søabEdlFMCageK
         eTaHbICaeKeFVIsmamaRtRTnugedIm,ITb;Tl;edaypÞal;nUvbnÞúkcMcMNuck¾eday k¾CaTUeTAeKenAEt
dak; bearing stiffener. RbsinebIeKmineRbI stiffener Rtg;kEnøgbnÞúkcMcMNucmanGMeBInImYy²enaH eKmin
caM)ac;RtYtBinitüsßanPaBkMNt; web yielding, web crippling nig sidesway web buckling eT.
         Bearing strength rbs; stiffener RtUv)an[enAkñúg AISC J8 Ca φRn Edl φ = 0.75 nig
          Rn = 1.8 Fy A pb                                                           (AISC Equation J8-1)
smIkarenHKWdUcKñanwgsmIkar !0>! Edlman bearing strength                   f p = 1.8 Fy   .
T.Chhay                                                    446                                   Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
          AISC K1.9   TamTar[eRbI full-depth bearing stiffener CaKU ehIyviPaKvaCassrrgbnÞúk
tamG½kSdUckarENnaMxageRkam³
       !> muxkat;rbs;Ggát;rgbnÞúktamG½kSpSMeLIgeday stiffener plate nigRtUv)andak;sIuemRTItam
           beNþayrbs;RTnug ¬emIlrUbTI 10>4¦. RbEvgenHminGacFMCag 12 dgénkRmas;RTnugeT
           sRmab; stiffener xagcug b¤ 25 dgénkRmas;RTnugeT sRmab; stiffener xagkñúg.
       @> RbEvgRbsiT§PaBKYrykesμInwg 0.75 dgénRbEvgCak;Esþg Edl KL = 0.75h .
Gnuvtþkarpþl;[EdlmanenAkñúg AISC Chapter E.
       AISC K1.9 [pgEdrnUvlkçxNÐbEnßmxageRkamsRmab; bearing stiffeners.
     z pleFobTTwgelIkRmas;RtUvbMeBjtRmUvkarxageRkam³
          b   95                        b 250
            ≥                    (US)     ≥        (IS)
          t    Fy                       t   Fy
     z   TwkbnSarEdltP¢ab; stiffener eTARTnugKYrmanlT§PaBedIm,IepÞrkmøaMgkat;TTwgEdlmintémø
         esμIKña. Cavi)ak eKGacKNnaTwkbnSar[RTbnÞúkcMcMNucTaMgmUl.
karviPaK bearing stiffener RtUv)anbgðajenAkñúg]TahrN_ 10>1 cMNuc (d).
]TahrN_ 10>1³ Plate girder Edl)anbgðajenAkñúgrUbTI 10>9 RtUv)anGegátedayeKarBtam AISC
Speciffication . bnÞúkCabnÞúkeFVIkarEdlmanpleFobbnÞúkGefrelIbnÞúkefresμInwg 3 . bnÞúkBRgayKW
4kips / ft edayrYmbBa©ÚlTaMgTm¶n;rbs; girder. søabrgkarsgát;man lateral support enARtg;cug nig
Rtg;cMNucEdlbnÞúkmanGMeBI. søabrgkarsgát;RtUv)anTb;nwgkarvilenARtg;cMNucxagelI. eK)andak;
bearing stiffener dUcbgðajRtg;cug nigRtg;bnÞúkcMcMNucmanGMeBI. eKRcibEKmrbs; stiffener 1in. Rtg;
EKmxagkñúgTaMgelI nigeRkam edIm,IeCosTwkbnSar flange-to-web. vaminman intermediate stiffener
eT ehIyEdkEdleRbITaMgGs;CaRbePTEdk A36 . edaysnμt;faTwkbnSarKWRKb;RKan; cUrRtYtBinitü
          a.   flexural strength
          b.   shear strength
          c.   flexural-shear interaction
          d.   bearing stiffener
rtEdkbnÞH                                        447                                      T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                      NPIC
dMeNaHRsay³ rUbTI 10>10 bgðajdüaRkambnÞúk/ düaRkamkmøaMgkat;TTwg nigdüaRkamm:Um:g;Bt;edayQr
elIbnÞúkemKuN. epÞógpÞat;témøEdl)anbgðajRtUv)anTuk[GñkGanCaGñkKit.
         CMhandMbUgenAkñúgkarviPaKKWkMNt;faetIGgát;enHRtUvnwgkarkMNt;rbs; AISC Ca palte girder b¤Gt;
           h    63
             =      = 168
          tw 3 / 8
           970     970
                =       = 161.7
            Fyf     36
edaysar h / t w > 970 / Fyf dUcenH flexural member enHCa plate girder ehIyeKGacGnuvtþkar
pþl;[rbs; AISC Appendix G.
        RTnugRtUvEtbMeBj slenderness limitation rbs; AISC G1. témøkMNt;én h / t w GaRs½yeTA
nwg aspect ratio a / h . sRmab; plate girder enH bearing stiffener mannaTICa intermediate
stiffener ehIy
          a 12(12)
            ≈      = 2.286
          h   63
pleFobenHCatémøRbhak;RbEhlBIeRBaH a minR)akdCa 12 ft eT. enAkñúg panel xagkñúg 12 ft
CaKMlat stiffener EdlKitBIG½kSeTG½kSRbesIrCag clear spacing. sRmab; panel xagcug a KWtUcCag
12 ft edaysarEt double stiffener enARtg;TRm.
T.Chhay                                      448                                      Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
          edaysar a / h FMCag 1.5 AISC A-Equation A-G1-2 lub³
                14000           14000                h
                            =               = 322 >    = 168
                  (              )
                                                                     (OK)
             Fyf Fyf + 16.5   36(36 + 16.5)         tw
     a. Flexural strength
          Flexural strengthnwgRtUv)ankMNt;eday strength rbs;søabrgkarTaj b¤rbs;søabkarsgát;.
          kñúgkrNImYyNak¾eday eKRtUvkarm:Dulmuxkat;eGLasÞic (elastic section modulus). eday
          sarPaBsIuemRTI
                      S xt = S xc = S x
          karKNnasRmab; I x m:Um:g;niclPaBeFobG½kSxøaMgRtUv)ansegçbenAkñúgtaragTI 10>1. eKmin
          Kitm:Um:g;niclPaBrbs;søabnImYy²eFobnwgG½kSTIRbCMuTm¶n;rbs;vaeT BIeRBaHvamantémøtUceFob
          nwgGgÁdéT. m:UDulmuxkat;eGLasÞicKW
                             I x 40570
                      Sx =      =      = 1248in.3
                              c   32.5
rtEdkbnÞH                                       449                                        T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                            NPIC
          tarag 10>1
             eRKOgbgÁúM             A                I              d         I + Ad 2
               RTnug                -             7814              -          7814
               søab                 16              -              32         16380
               søab                 16              -              32         16380
                                                                              40574
          eKnwgRtUvkar hybrid girder factor Re sRmab; tension flange strength nig compression
          flange strength. edaysar girder enHCa nonhybrid dUcenH
                   Re = 1.0
          BI AISC Equation A-G2-1, tension flange strength EdlQrelI yielding KW
                   M n = S xt Re Fyt = 1248(1.0)(36) = 44930in. − kips = 3744 ft − kips
          Compression flange buckling strength           Edl[eday AISC Equation A-G2-2:
                   M n = S xc RPG Re Fcr
          Edl critical buckling stress Fcr KWQrelI lateral-torsional buckling b¤ flange local
          buckling. edIm,IRtYtBinitü lateral-torsional buckling, eyIgRtUvkarkaMniclPaB rT . BIrUbTI
          10>11
                   Iy =
                           1
                             (1)(16)3 + 1 (10.5)(3 / 8)3 = 341.4in.4
                          12           12
                   A = 16(1.0) + 10.5(3 / 8) = 19.94in.2
                           Iy       341.4
                   rT =         =         = 4.138in.
                            A       19.94
          Unbraced length     rbs;søabrgkarsgát;KW         12 ft   ehIy   slenderness parameter   sRmab;
          lateral-torsional buckling KW
                       Lb 12(12 )
                   λ=      =        = 34.80
                       rT    4.138
                          300    300
                   λp =        =       = 50
                           Fyf     36
T.Chhay                                           450                                      Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                              Department of Civil Engineering
          edaysar λ < λ p / Fcr = Fyf = 36ksi
                                          RtUv)anKNnarYcehIysRmab; flange local buckling.
                    Critical buckling stress Fcr
          Slenderness parameter EdlTak;TgKW
                           bf          16
                    λ=            =           =8
                          2t f        2(1.0 )
                                 65    65
                    λp =             =     = 10.83
                                 Fyf    36
          mþgeTot/ edaysar λ < λ p dUcenH Fcr = Fyf = 36ksi
                 edIm,IKNnaemKuNkat;bnßyersIusþg;rbs; palte girder RPG eKRtUvkartémørbs; ar
                            Aw 63(3 / 8) 23.62
                    ar =       =          =    = 1.477 < 10
                            Af   16(1.0 )   16
          BI AISC Equation A-G2-3
                                        ar    ⎛ hc           ⎞
                    RPG = 1 −                 ⎜ − 970 ⎟ ≤ 1.0
                                              ⎜ tw
                                   1200 + 300ar         Fcr ⎟⎠
                                              ⎝
                                      1.477         ⎛        970 ⎞
                            = 1−                    ⎜⎜168 −       ⎟⎟ = 0.9943
                                 1200 + 300(1.477 ) ⎝          36 ⎠
          témøenHesÞIrEtesμInwg 1.0 edaysar flexural member enHesÞIrEtminGaccat;cMNat;fñak;Ca
          plate girder ehIyvaxiteTArkcMNat;fñak;Ca beam. BI AISC Equation A-G2-2, nominal
          flexural strength sRmab;søabrgkarsgát;KW
                    M n = S xc RPG Re Fcr = 1248(0.9943)(1.0 )(36 )
rtEdkbnÞH                                            451                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                             NPIC
                                                 = 44670in. − kips = 3723 ft − kips
          lT§plenHtUcCag nominal strength sRmab;søabrgkarTajbnþicbnþÜc dUcenHvalub. Design
          strength KW
                   φb M n = 0.90(3723) = 3350 ft − kips `
          BIrUbTI 10>10 m:Um:g;emKuNGtibrmaKW
                   M u = 3168 ft − kips < 3350 ft − kips                      (OK)
cemøIy³ a. Flexural strength KWRKb;RKan;.
     b. Shear strength
          Shear strength  CaGnuKmn_eTAnwg web slenderness ratio h / t w nig aspect ratio a / h .
          dMbUgeyIgRtUvkMNt;faetIeKGaceRbI tension-field action enAkñúgtMbn;epSgBIenA end panel b¤
          Gt;. eKGaceRbIva)anenAeBlEdl a / h tUcCag 3.0 nigtUcCag
                               2
                   ⎡ 260 ⎤         ⎡ 260 ⎤
                                            2
                   ⎢           ⎥ = ⎢⎣ 168 ⎥⎦ = 2.395
                   ⎣ (h / t w )⎦
          témøRbhak;RbEhlrbs; a / h KW 2.286 dUcenHeKGaceRbI tension-field action )an.
          kMNt; kv nig Cv . BI AISC Equation A-G3-4
                                   5                  5
                   kv = 5 +               = 5+                  = 5.957
                              (a / h )2           (2.286)2
          KNna Cv
                          kv        5.957
                   187        = 187       = 76.07
                          Fyw         36
                          kv        5.957
                   234        = 234       = 95.19
                          Fyw         36
          edaysar h / t w = 168 > 234            k v / Fyw   / enaHeKGackMNt; Cv BI AISC Equation A-G3-6
                            44000k v             44000(5.957 )
                   Cv =                      =                     = 0.2580
                          (h / t w )
                                   2
                                       Fyw        (168)2 (36)
          edaysar h / t w > 187 kv / Fyw / eKnwgeRbI AISC A-G3-2 EdlKit tension-field action
          edIm,IKNna nominal strength ¬elIkElg panel xagcug¦
                                    ⎛          1 − Cv                 ⎞
                   Vn = 0.6 Aw Fyw ⎜⎜ Cv +                            ⎟
                                                                      ⎟
                                    ⎝      1.15 1 + (a / h )2         ⎠
T.Chhay                                                   452                                 Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                                  Department of Civil Engineering
                                           ⎡             1 − 0.2580          ⎤
                         = 0.6(23.62 )(36 )⎢0.2580 +                         ⎥ = 263.6kips
                                           ⎢         1.15 1 + (2.286 )2      ⎥
                                           ⎣                                 ⎦
         Design shear strength         KW
                    φvVn = 0.90(263.6) = 237kips
         BIrUbTI 10>10 kmøaMgkat;emKuNGtibrmaenAkñúgRtg;cm¶aymYyPaKbYnBITRmrbs; girder KW
         102kips dUcenH shear strength KWRKb;RKan;Rtg;kEnøgEdleKGnuBaØat[eRbI tension –field
         action.
                   sRmab; panel xagcug tension-field action minRtUv)anGnuBaØat ehIyeKRtUvkMNt;
         shear strength BI AISC Equation A-G3-3:
                    Vn = 0.6 Aw FywCv = 0.6(23.62 )(36 )(0.2580) = 131.6kips
          Design strength         KW
                    φvVn = 0.90(131.6) = 118kips
         kmøaMgkat;emKuNGtibrmaenAkñúg panel xagcug KW
                    Vu = 234kips > 118kips                (N.G.)
         eKmanCeRmIsBIrsRmab;begáIn shear strength KWedaykat;bnßy web slenderness¬edaybegáIn
         kRmas;rbs;va¦ b¤kat;bnßy aspect ratio rbs; panel xagcugnImYy²edaybEnßm intermediate
         stiffener. Stiffener RtUv)anbEnßmenAkñúg]TahrN_enH. karkat;bnßy web slenderness
         edIm,ITTYl)an shear strength RKb;RKan;GaceFVI[ flexural member enHcUleTAkñúgcMNat;fñak;
         Ca beam EdleFVI[karviPaKpøas;bþÚrTaMgRsug.
                  eKkMNt;TItaMgrbs; intermediate stiffener TImYytamviFIdUcteTA³ dMbUg[ shear
         strength BI AISC Equation A-G3-3 esμInwg shear strength EdlRtUvkar ehIyedaHRsayrk
         témø Cv EdlRtUvkar. bnÞab;mkkMNt kv BI Equation A-G3-6 nigbnÞab;mkeTotkMNt; a / h
         BI Equation A-G3-4. edayeFVIdUckarerobrab;xagelIeyIgTTYl)an
                    φvVn = φv (0.6 Aw FywCv )                                       (AISC Equation A-G3-3)
                                   φvVn                    234
                    Cv =                      =                          = 0.5096
                           φv (0.6 Aw Fyw )       0.9(0.6 )(23.62 )(36 )
                                 44000k v
                    Cv =
                            (h / t w )2 Fyw
rtEdkbnÞH                                              453                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                           NPIC
                          Cv (h / t w )2 Fyw       0.5096(168)2 (36 )
                   kv =                        =                      = 11.77
                               44000                    44000
                                 5
                   kv = 5 +                                                     (AISC Equation A-G3-4)
                              (a / h )2
                   a         5          5
                     =            =           = 0.8594
                   h       kv − 5   11.77 − 5
          KMlat stiffener EdlRtUvkarKW
                   a = 0.8594h = 0.8594(63) = 54.1in.
       eTaHbICa a RtUv)ankMNt;Ca clear spacing k¾eday eyIgnwgKitvaedaysuvtßiPaBCaKMlatBIG½kS
       eTAG½kS ehIydak; intermediate stiffener TImYyenAcm¶ay 54in. BIcugrbs; girder. kardak;
       enHnwgpþl;[nUv design strength mantémøRbhak;RbEhl kmøaMgkat;emKuNGtibrma 234kips .
       eKminRtUvkar stiffener bEnßmeT edaysarkmøaMgkat;emKuNenAxageRkA panel xag cugtUcCag
       design strength 237 kips .
               eKGacsRmYlkarkMNt;KMlat stiffener edayeRbItaragenAkñúg Numerical Value
       section of the Specification. eyIgnwgbgðajbec©keTsenHenAkñúg]TahrN_ 10>2.
cemøIy³ b. Shear strength KWRKb;RKan;. bEnßm intermediate stiffener mYycm¶ay 54in. BIcugrbs;
       girder nImYy²
     c. Flexural shear interaction
          eKRtUvRtYtBinitü flexural-shear interaction enAeBlEdlman tension field ¬EdleRkABI
          panel xagcug¦ nigenAeBlEdlbMeBllkçxNÐTaMgBIrxageRkam.
          !> kmøaMgkat;TTwgsßitenAcenøaH
                   0.6φVn ≤ Vu ≤ φVn
                  sRmab; girder enH kmøaMgkat;TTwgeRkABI panel xagcugKW
                   0.6(237 ) ≤ Vu ≤ 237
                          142 ≤ Vu ≤ 237
          @> m:Um:g;Bt;emKuNsßitenAcenøaH
                   0.75φM n ≤ M u ≤ φM n
                  sRmab; girder enH
                   0.75(3350) ≤ M u ≤ 3350
T.Chhay                                                454                                  Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                             Department of Civil Engineering
                            2510 ≤ M u ≤ 3350
                tamkarGegátelIrUbbgðajfavaminmanbnSMénkmøaMgkat; nigm:Um:g;Bt;EdlbMeBjlkç-
        xNÐTaMgenHeT.
cemøIy³ c. eKminRtUvkarRtYtBinitü flexural-shear interaction eT.
     d. Bearing stiffener
          eKpþl;nUv bearing stiffener enARtg;bnÞúkcMcMNucmanGMeBInImYy² dUcenHeKminRtUvkarRtYtBinitü
          karpþl;[rbs; AISC Chapter K sRmab; web yielding, web crippling b¤ sidesway web
          buckling eT. sRmab; bearing stiffener enAxagkñúg nigenAelITRm
                    b 7.5
                      =    = 10.0
                    t 0.75
                     95    95
                         =     = 15.8 > 10.0        (OK)
                      Fy    36
          sRmab; bearing stiffener xagkñúg dMbUgKNna bearing strength. BIrUbTI 10>12
                     A pb = 2at = 2(7.5 − 1)(0.75) = 9.750in.2
          BI AISC Equation J8-1,
                    Rn = 1.8Fy APb = 1.8(36 )(9.750 ) = 631.8kips
                    φRn = 0.75(631.8) = 474kips > 60kips            (OK)
rtEdkbnÞH                                         455                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                              NPIC
          RtYtBinitüersIusþg;rbs; stiffener CaGgát;rgkarsgát;. eyagtamrUbTI 10>12 eyIgGaceRbIRb
          EvgRTnug 9.375in. Edl[RkLaépÞmuxkat;sRmab;ssr
                   A = 2(0.75)(7.5) + (3 / 8)(9.75) = 14.77in.2
          m:Um:g;niclPaBrbs;RkLaépÞenHeFobnwgG½kSenAelIRTnugKW
                    I = ∑(I + Ad 2 )
                         9.375(3 / 8)3    ⎡ 0.75(7.5)3            ⎛ 7 .5 3 / 8 ⎞ ⎤
                                                                                2
                     =                 + 2⎢            + 7.5(0.75)⎜     +      ⎟ ⎥ = 227.2in.
                                                                                              4
                             12           ⎢⎣   12                 ⎝ 2     2 ⎠ ⎥⎦
          ehIykaMniclPaBKW
                          I   227.2
                   r=       =       = 3.922in.
                          A   14.77
          Slenderness ratio     KW
                   KL Kh 0.75(63)
                      =   =       = 12.05
                    r   r   3.922
          BI AISC Table 3-36 enAkñúg Numerical Values section of the Specification,
                   φc Fcr = 30.37ksi
          nig φc Pn = φc Fcr A = 30.37(14.77) = 449kips > 60kips (OK)
          BIrUbTI 10>13/ sRmab; bearing stiffener enARtg;TRm design bearing strength KW
                   φRn = φ (1.8Fy A pb ) = 0.75(1.8)(36)[4(6.5)(0.75)] = 948kips > 234kips (OK)
          RtYtBinitü stiffener-web assembly CaGgát;rgkarsgát;. eyagtamrUbTI 10>13 m:Um:g;nicl
          PaBeFobG½kSenAkñúgbøg;rbs;RTnugKW
                   I = ∑(I + Ad 2 )
                         4.5(3 / 8)3    ⎡ 0.75(7.5)3            ⎛ 7.5 3 / 8 ⎞ ⎤
                                                                             2
                     =               + 4⎢            + 7.5(0.75)⎜    +      ⎟ ⎥ = 454.3in.
                                                                                           4
                            12          ⎢⎣   12                 ⎝ 2    2 ⎠ ⎥⎦
          ehIyRkLaépÞ nigkaMniclPaBKW
                   A = 4.5(3 / 8) + 4(0.75)(7.5) = 24.19in 2
          nig      r=
                          I
                          A
                            =
                                     454.3
                                     24.19
                                           = 4.334in.
T.Chhay                                            456                                         Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                      Department of Civil Engineering
          Slenderness ration     KW
                     Kh 0.75(63)
                        =        = 10.90
                      r   4.334
          BI AISC Table 3-36, φc Fcr = 30.41kips . Design strength KW
                    φc Pn = φc Fcr A = 30.41(24.19) = 736kips > 234kips (OK)
cemøIy³ d. Bearing stiffener KWRKb;RKan;.
10>8> kaKNnamuxkat; (Design)
        kic©kardMbUgkñúgkarKNna plate girder KWkarkMNt;TMhMrbs;RTnug nigsøab. RbsinebIeKRtUvkar
GBaØtiCam:Um:g;niclPaB eKRtUveRCIserIsykviFIbMErbMrYlTMhMsøabedayeRbI cover plate b¤kRmas;rbs;
søabmanTMhMxusKñaenATItaMgepSgKñatambeNþayrbs; girder. karsMercedayeRbI intermediate
stiffener BIeRBaHvaCH\T§iBldl;kRmas;RTnug. RbsinebIeKRtUvkar bearing stiffener dac;xateKRtUvEt
KNnava. cugeRkay bgÁúMepSg²RtUv)antP¢ab;edaykarKNnaTWkbnSary:agRtwmRtUv. xageRkamCa
CMhankñúgkarKNna³
        !> eRCIserIskm<s;srub
rtEdkbnÞH                                     457                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                       NPIC
             Girder  EdlmansmamaRtl¥RtUvmankm<s;esμInwg 1/10 eTA 1/12 énRbEvgElVg. karkMNt;
             rbs; building code elI depth-to span ration b¤PaBdabGacman\T§iBlelIkkareRCIserIs.
          @> eRCIserIsTMhMRTnugsakl,g
             eKGacKNnakm<s;RTnugedaydkkRmas;søabTaMgBIrBIkm<s;srubEdl)aneRCIserIs. Cak;
             Esþg dMNak;kalénkarKNnaenH eKRtUvEt)a:n;sμankRmas;søab. eKGacrkkRmas;RTnug
              t w edayeRbIkarkMNt;xageRkam³
                      h   2000                       h   5250
                        =              (US)            =          (IS)      (AISC Equation A-G1-1)
                     tw    Fyf                      tw    Fyf
             sRmab; a / h > 1.5
                      h           14000
                        =
                                   (            )
                                                         (US)               (AISC Equation A-G1-2)
                     tw        Fyf Fyf + 16.5
                      h           96530
                        =
                                   (           )
                                                         (IS)
                     tw        Fyf Fyf + 114
          #> )a:n;sμanTMhMsøab
             eKGac)a:n;sμanRkLaépÞsøabEdlRtUvkarBIrUbmnþFmμtaEdlbMEbkdUcxageRkam. yk
             I x = I web + I flanges
                        t w h 3 + 2 A f y 2 ≈ t w h 3 + 2 A f (h / 2 )2
                      1                       1
                 ≈
                     12                      12
            Edl A f = muxkat;RkLaépÞrbs;søabmYy
                 y = cm¶ayBIG½kSNWteGLasÞiceTATIRbCMuTm¶n;rbs;søab
            karcUlrYmrbs;m:Um:g;niclPaBénsøabnImYy²eFobnwgG½kSTIRbCMuTm¶n;rbs;vaRtUv)anecalenA
            kñúgsmIkar !0$>. eKGac)a:n;sμanm:UDulmuxkat;
                              I x t w h 3 / 12 2 A f (h / 2 )
                                                             2
                                                                t h2
                     Sx =        ≈            +                = w + Af h
                               c      h/2           h/2           6
            RbsinebIeyIgsnμt;karKNnayktam compression flange buckling eyIgk¾Gacrkm:UDul
            muxkat;BI AISC Equation A-G2-2:
                     M n = S xc RPG Re Fcr
                                Mn        M u / φb
                     S xc =             =
                              RPG Re Fcr RPG Re Fcr
T.Chhay                                                458                              Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                       Department of Civil Engineering
             Edl M u Cam:Um:g;Bt;emKuNGtibrma. eday[m:UDulmuxkat;EdlRtUvkaresμInwgtémøRb
             hak;RbEhl eyIg)an
                     Μ u / φb   t h2
                               = w + Af h
                    RPG Re Fcr    6
             nig    Af =
                               Mu
                         φb hRPG Re Fcr
                                         t h
                                        − w
                                          6
             RbsinebIeyIgsnμt;fa RPG = 1.0 / Re = 1.0 nig Fcr = Fy muxkat;EdlRtUvkarrbs;søab
             mYyKW
                              Mu    A
                    Af =           − w
                            0.9hFy   6
             Edl Aw CaRkLaépÞRTnug. enAeBlEdleKkMNt;RkLaépÞsøamEdlRtUvkarrYcehIy eRCIs
             erIsTTwg nigkRmas;. RbsinebIeKeRbIkRmas;kñúgkar)a:n;sμankm<s;RTnug dUcenHeKmincaM)ac;
             eFVIkarEktRmUvkm<s;RTnugeT. Rtg;cMNucenH eKGacKNnaTm¶n;)a:n;sμanrbs; girder, ehIy
             eKRtUvkMNt; M u nig A f eLIgvij.
          $> RtYtBinitü bending strength rbs;muxkat;sakl,g.
          %> RtYtBinitükmøaMgkat;
             RbsinebIeKBicarNa end panel b¤RbsinebIeKmineRbI intermediate stiffener eTenaH eK
             Gacrk shear strength BI AISC Equation A-G3-3 Edl[ersIusþg;edayKμanvtþman rbs;
             tension field. eKk¾GaceRbI Table 9-36 b¤ 9-50 enAkñúg Numerical Values section of
             the Specification sRmab;karKNnaenHEdr. RbsinebIeKmineRbItarag eKGackMNt;KMlat
             Intermediate dUcxageRkam³
             a. [ shear strength EdlRtUvkaresμInwg shear strength Edl[eday AISC Equation
                  A-G3-3 ehIyedaHRsayrktémø Cv EdlRtUvkar.
             b. edaHRsayrk k v BI AISC Equation A-G3-5 b¤ A-G3-6
             c. edaHRsayrktémø a / h BI AISC Equation A-G3-4. RbsinebIeKeRbI tension-fieal
                  action eKGaceRbI trial-and-error approach b¤ AISC Table 10-36 b¤ 10-50 edIm,I
                  TTYl a / h EdlRtUvkar. RkLaépÞmuxkat;EdlRtUvkarrbs; stiffener EdlsMEdgCaPaK
                  ryénRkLaépÞRTnugk¾RtUv)an[enAkñúgtaragsRmab;témøxøHén h / t w nig a / h .
rtEdkbnÞH                                      459                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
                 eRCIserIsTMhM stiffener sakl,gEdlbMeBjRkLaépÞtRmUvkar ehIyRtYtBinitüm:Um:g;ni-
                 clPaBtRmUvkarrbs; AISC Appendix F.3.
          ^> RtYtBinitüGnþrGMeBIénkmøaMgkat; nigm:Um:g;Bt;
          &> RtYtBinitü web resistance sRmab;bnÞúkcMcMNuc (web yielding, web crippling nig web
            sidesway buckling)
             RbsinebIeKRtUvkar bearing stiffener eKRtUvGnuvtþviFIsaRsþKNnaxageRkam³
             a. sakl,gTTwgEdlRCugEKmrbs; stiffener enAEk,rEKmrbs;søab nigkRmas;EdlbMeBj
                tRmUvkar width-thickness ratio
                           b   95                b 250
                             ≤     (US)            ≤    (IS)
                           t    Fy               t   Fy
             b. KNnaRkLaépÞmuxkat;EdlRtUvkarsRmab; bearing strength. eRbobeFobRkLaépÞenH
                CamYynwgRkLaépÞsakl,g nigeFVIkarKNnaeLIgvijRbsinebIcaM)ac;.
            c. RtYtBinitü stiffener-web assembly CaGgát;rgkarsgát;.
          *> KNnaTwkbnSar flange-to-web, TwkbnSar stiffener-to-web nigkartP©ab;epSgeTot
            ¬flange segment, web splices>>>¦
]TahrN_ 10>2³ KNna plate girder TRmsamBaØEdlmanRbEvg 60 ft nigRTbnÞúkeFVIkardUcEdl)an
bgðajenAkñúgrUbTI 10>14 a. km<s;rbs; plate girder GnuBaØatGtibrmaKW 65in. . eRbIEdk A36 nig
electrode E70 XX ehIysnμt;fa girder enHman lateral support Cab;. cug girder manTRmRbePT
bearing ehIyminRtUv)an frame.
dMeNaHRsay³ bnÞúkemKuNedayminKitTm¶n; girder RtUv)anbgðajenAkñúgrUbTI 10>14b.
        kMNt;km<s;srub
                   Span length 60(12 )
                              =        = 72in.
                       10       10
                   Span length 60(12 )
                              =        = 60in.
                       12       12
          eRbIkm<s;GnuBaØatGtibrma 65in.
                  sakl,gkRmas;søab t f = 1.5in. nigkm<s;RTnug
                   h = 60 − 2(1.5) = 62in.
T.Chhay                                      460                                   Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                                Department of Civil Engineering
         edIm,IkMNt;kRmas;RTnug dMbUgRtYtBinitütémøkMNt;rbs;         h / tw   . sRmab;    flexural member
         EdlmanlkçN³Ca plate girder
                     h   970    970
                       ≥      =     = 161.7
                    tw    Fyf    36
                             h    62
                    tw ≤        =      = 0.383in.
                           161.7 161.7
          BI AISC Equation A-G1-1 nig A-G1-2:
                 sRmab; a / h. ≤ 1.5
                                  h   2000 2000
                                    ≤      =    = 333.3
                                 tw    Fyf   36
                                         62
                                 tw ≥         = 0.186in.
                                        333.3
                    sRmab; a / h > 1.5
                                  h          14000           14000
                                    ≤                    =               = 322.0
                                 tw          (
                                          Fyf Fyf + 16.5   )
                                                           36(36 + 16.5)
                                         62
                                 tw ≥         = 0.192in.
                                        322.0
rtEdkbnÞH                                             461                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                 NPIC
                 sakl,g web plate 14 × 62 . kMNt;TMhMsøabEdlRtUvkar. BIrUbTI 10>14 b m:Um:g;
          Bt;emKuNGtibrmaKW
                             186.4(60 ) 4.04(60 )2
                   Mu =                +           = 4614 ft − kips
                                 4          8
          BIsmIkar !0>% RkLaépÞsøabEdlRtUvkarKW
                               Mu     A
                   Af =              − w
                             0.90hFy   6
                               4614(12 )      62(1 / 4 )
                         =                  −            = 24.98in.2
                             0.90(62 )(36 )      6
          KNnaTm¶n; girder
                  RkLaépÞRTnug³ 62(1/ 4) = 15.5in.2
                  RkLaépÞsøab³ 2(24.98) = 49.96in.2
                  srub                               65.46in.2
                   Tm¶n;³ 65144.46 (490) = 222.7lb / ft yk 250lb / ft
          m:Um:g;Bt;EktRmUvKW
                   M u = 4614 +
                                        (1.2 × 0.250)(60)2    = 4749 ft − kips
                                                8
          ehIyRkLaépÞsøabEdlRtUvkarKW
                               4749(12 )    62(1 / 4)
                   Af =                   −           = 25.79in.2
                             0.90(62)(36)      6
          RbsinebIenArkSaTukkRmas;søabsnμt; enaHTTwgRtUvkarrbs;vaKW
                             Af       25.79
                   bf =           =         = 17.2in.
                             tf        1 .5
       sakl,g flange plate 1 12 ×18 . rUbTI 10>15 bgðajBImuxkat;sakl,g ehIyrUbTI 10>16
bgðajBIdüaRkamkmøaMgkat; nigdüaRkamm:Um:g;Bt;sRmab;bnÞúkemKuN EdlrYmbBa©ÚlTaMgTm¶n; girder Rb
hak;RbEhl 250lb / ft .
T.Chhay                                                 462                       Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
         RtYtBinitü flexural strength rbs;muxkat;sakl,g. BIrUbTI 10>15 m:Um:g;niclPaBeFobG½kS
         rbs;karBt;KW
rtEdkbnÞH                                  463                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
                   Ix    =
                           (1 / 4)(62)3
                                        + 2(1.5)(18)(31.75)2 = 59400in.4
                                  12
          ehIym:UDulmuxkat;eGLasÞicKW
                           I x 59400
                   Sx =       =      = 1828in.3
                            c   32.5
          karRtYtBinitüén AISC Equation A-G2-1 nig A-G2-2 bgðajfasRmab; nonhybrid girder
          Edlmanmuxkat;sIuemRTI enaH flexural strength nwgmingaylubeday tension flange
          yielding dUcenH eKRtUvEtGegátEt compression flange buckling b:ueNÑaH. elIsBIenH
          edaysarEt girder enHman lateral support Cab; eKk¾mincaM)ac;BicarNaBI lateral-torsional
          buckling Edr. sRmab;sßanPaBkMNt; én flange local buckling
                          bf           18
                   λ=             =          =6
                          2t f        2(1.5)
                                 65    65
                   λp =              =     = 10.83
                                 Fyf    36
          edaysarEt λ < λ p /
                   Fcr = Fyf = 36ksi
          eKRtUvkartémøxageRkamsRmab;kMNt;emKuNkat;bnßyersIusþg; RPG ³
                          ⎛1⎞
                   Aw = 60⎜ ⎟ = 15.5in.2
                          ⎝4⎠
                   A f = 18(1.5) = 27in.2
                           Aw 15.5
                   ar =       =    = 0.5741 < 10
                           Af   27
                    h   62
                      =     = 248
                   t w 1/ 4
          BI AISC Eqution A-G2-3/
                                        ar  ⎛ h            ⎞
                   RPG = 1 −                ⎜ − 970 ⎟
                                            ⎜ tw
                                   1200 + 300a r      Fcr ⎟⎠
                                            ⎝
                                     0.5741       ⎛         970 ⎞
                          = 1−                    ⎜⎜ 248 −      ⎟⎟ = 0.9639
                               1200 + 300(0.5741) ⎝          36 ⎠
          BI AISC Equation A-G2-2/ nominal flexural strength KW
                   M n = S xc RPG Re Fcr
T.Chhay                                              464                           Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                             Department of Civil Engineering
                           = 1828(0.9639)(1.0 )(36 ) = 63430in. − kips = 5386 ft − kips
          ehIy design sstrength KW
                    φb M n = 0.9(5286) = 4757 ft − kips > 4749 ft − kips (OK)
         RtYtBinitü shear strength. kmøaMgkat;GtibrmamantémøGtibrmaenARtg;TRm
         b:uEnþeKminGaceRbI vaenA end panel. eyIgnwgeRbI Table 9-36 enAkñúg Numerical Values
         section of the Spec-sification edIm,ITTYl)anTMhM end panel EdlRtUvkar.
         eKRtUvbBa©ÚleTAkñúgtaragCamYynwg h / t w = 248in. nig
                    φvVn         223.4
                            =          = 14.41ksi
                      Aw         15.5
         témøenHTamTar a / h < 0.5 ehIyvasßitenAeRkAtémørbs;taragEdlbBa¢ak;faeKminRtUvkar
         kRmas;RTnugeT. sakl,gRTnug 516 × 62
                     h   62
                       =       = 198.4
                    t w 5 / 16
                           ⎛5⎞
                    Aw = 62⎜ ⎟ = 19.38in.2
                           ⎝ 16 ⎠
                    φvVn 223.4
                         =        = 11.5ksi
                     Aw    19.38
         BI AISC Table 9-36/ sRmab; h / t w = 198 nig a / h = 0.6 témørbs; φvVn / Aw Edl)aneFVI
         interpolation rYcKW 11.5ksi . dUcenH yk a / h = 0.6 nig
                    a = 0.6h = 0.6(62 ) = 37.2in.
         eTaHbICacm¶ay a EdlRtUvkarCa clear spacing k¾eday k¾kareRbIcm¶ayBIG½kSeTAG½kSman
         lkçN³samBaØCag nigsuvtßiPaBCagbnþicbnþÜc. ykcm¶ay 36in. BIG½kSrbs; bearing
         stiffener xagcugeTAG½kSrbs; intermediate stiffener.
                 munnwgeFVIkarviPaK shear strength/ kMNt;\T§iBlénkarpøas;bþÚrkRmas;RTnug.
                 dMbUg kMNt;Tm¶n; girder
                RkLaépÞRTnug³ 62(5 /16) = 19.38in.2
                RkLaépÞsøab³ 2(1.5)(18) = 54.00in.2
                srub                                73.38in.2
                 Tm¶n;³ 73144.38 (490) = 250lb / ft             ¬dUcKñanwgkarsnμt;BImun¦
rtEdkbnÞH                                           465                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                            NPIC
          bnÞab;mk           Ix    =
                                     (5 / 16 )(62 )3
                                                     + 2(1.5)(18)(31.75)2 = 60640in.4
                                      12
                                  I x 60640
                             Sx =    =       = 1866in.3
                                   c    32.5
                                  A    19.38
                             ar = w =        = 0.7178 < 10
                                  Af     27
          BI AISC Equation A-G2-3/
                                        ar   ⎛ hc 970 ⎞
                   RPG = 1 −                 ⎜ −           ⎟
                                             ⎜ tw
                                   1200 + 300ar       Fcr ⎟⎠
                                             ⎝
                                      0.7178        ⎛        970 ⎞
                           = 1−                     ⎜198.4 −     ⎟⎟ = 0.9814
                                1200 + 300(0.7178) ⎜⎝         36 ⎠
          Nominal flexural strength        KW
                   M n = S xc RPG Re Fcr
                          = (1866 )(0.9814 )(1.0 )(36 ) = 65930in. − kips = 5494 ft − kips
          Design strength     KW
                   φb M n = 0.90(5494) = 4944 ft − kips
       eTaHbICaersIusþg;enHFMCagtRmUvkarbnþicbnþÜck¾eday vanwgTUTat;CamYynwgTm¶n;rbs; stiffener
       nig eRKOgbgÁúMdéTeTotEdleyIgmin)anKit.
cemøIy³ eRbIRTnug 516 × 62 nigsøab 1 12 ×18 dUcbgðajenAkñúgrUbTI 10>17.
       kMNt;KMlat intermediate stiffener EdlRtUvkarsRmab; shear strength BIeRkA end panel.
       enA cm¶ay 36in. BIcugxageqVg kmøaMgkat;KW
                                    ⎛ 36 ⎞
                   Vu = 223.4 − 4.34⎜ ⎟ = 210.4kips
                                    ⎝ 12 ⎠
                   φvVn 210.4
                         =       = 10.86ksi
                    Aw     19.38
          eKk¾GaceRbI tension-field action BIeRkA end panel dUcenHeKeRbI AISC Table 10-36.
          sRmab; h / t w = 200 nig a / h = 1.6
                   φvVn
                           = 11.2ksi > 10.86ksi        (OK)
                     Aw
          eRbI a / h = 1.6 enaH
                   a = 1.6h = 1.6(62 ) = 99.2in.
T.Chhay                                              466                                     Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                        Department of Civil Engineering
         cMNaMfaminmantémøNaRtUv)an[enAkñúgtaragenAeBlEdl h / t w = 200 nig a / h = 1.6 eT.
         mUlehtuKWfa tension-field action minRtUv)anGnuBaØatenAeBlEdl
                                     2
                     a ⎡ 260 ⎤
                                               2
                                       ⎛ 260 ⎞
                      >⎢           ⎥ = ⎜     ⎟ = 1.69
                     h ⎣ (h / t w )⎦   ⎝ 200 ⎠
         sRmab;mUlehtuenH KMlat stiffener Gtibrma 99.2in nigGnuvtþsRmab;EpñkenAsl;rbs;
         girder b:uEnþedIm,ITTYl)anKMlatesμIcenøaH end panel eKRtUveRbIKMlatBIG½kSeTAG½kS 81in.
         dUcbgðajkñúgrUbTI 10>18. CamYynwgKMlatEdlkat;bnßyenH
                     a 81
                      =   = 1.306
                     h 62
         edIm,IKNna shear strength EdlRtUvKña eKbBa©Últémø a / h = 1.3 nig h / t w = 200 eTAkñúg
         Table 10-36. edayeFVI interpolation eKTTYl)an
                    φvVn
                            = 12.6
                      Aw
          nig       φvVn = 12.6 Aw = 12.6(19.38) = 244.2kips
rtEdkbnÞH                                       467                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
                    muxkat;rbs; intermediate stiffener KWQrelIlkçxNÐbI³ (1) RkLaépÞGb,brma/ (2)
          m:Um:g;niclPaBGb,brma nig (3) pleFobTTwgelIkRmas;Gb,brma.
                 RkLaépÞEdlRtUvkarsRmab; stiffener KUKWCaGnuKmn_én h / t w nig a / h ehIyeKGac
          rkva)anBI AISC Table 10-36 edayeFVI interpolatrion.
                 sRmab; a / h = 1.3 nig h / t w = 200 /
                  Ast = 2.3% énRkLaépÞrbs;RTnug
                         = 0.023(19.38) = 0.556in.2
          BI AISC Equation A-F2-4/
                           2 .5
                   j=                − 2 ≥ 0 .5
                         (a / h )2
                            2.5
                     =                − 2 = −0.534
                         (1.306)2
          edaytémørbs; j < 0.5 dUcenHeRbI            j = 0.5
          m:Um:g;niclPaBEdlRtUvkarKW
                   I st = at w3 j = 81(5 / 16 )3 (0.5) = 1.24in.4
          eRbItémøGtibrmarbs; b / t
                     95    95
                         =     = 15.8
                      Fy    36
          sakl,g plate 14 × 4 cMnYnBIr
                   b   4
                     =    = 16 ≈ 15.8 (OK)
                   t 1/ 4
                                   ⎛1⎞
                   Ast   Edl[KW2(4)⎜ ⎟ = 2.0in.2 > 0.446in.2
                                   ⎝4⎠
                                                                    (OK)
T.Chhay                                               468                           Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                             Department of Civil Engineering
          BIrUbTI 10>19 nigRTwsþIbTG½kSRsb eyIg)an
                   I st = ∑(I × Ad 2 )
                          ⎡ 0.25(4)3                        ⎤
                         =⎢          + 0.25(4)(2 + 5 / 32)2 ⎥ × 2 = 11.97in.4 > 1.24in.4      (OK)
                          ⎢⎣ 12                             ⎥⎦
         edIm,IkMNt;RbEvgrbs; stiffener dMbUgkMNt;cm¶ayrvag stiffener-to-web weld nig web-to-
         flange weld ¬emIlrUbTI 10>8¦
                     cm¶ayGb,brma = 4t w = 4⎛⎜⎝ 165 ⎞⎟⎠ = 1.25in.
                    cm¶ayGtibrma = 6t w = 6⎛⎜⎝ 165 ⎞⎟⎠ = 1.875in.
       RbsinebIeyIgsnμt;TMhM flange-to-web weld 516 in. nigcm¶ayrvagTwkbnSar 1.25in. RbEvg
       Rbhak;RbEhlrbs; stiffener KW
                 h − TMhMTwkbnSar − 1.25 = 62 − 0.3125 − 1.25 = 60.44in.      yk 60in.
cemøIy³ eRbI plate 14 in.× 4in.× 5 ft sRmab; intermesiate stiffener.
       RtYtBinitüGnþrGMeBIrbs;m:Um:g;Bt; nigkmøaMgkat; EdlRtUvkarsRmab;EtkEnøgNaEdlRtUvkar
       tension field. témørbs;kmøaMgkat;EdlRtUveFVIkarGegátKW
                 0.6φVn ≤ Vu ≤ φVn       b¤ 0.6(244.2) ≤ Vn ≤ 244.2
                                                          146.5 ≤ Vn ≤ 244.2
          témørbs;m:Um:g;Bt;EdlRtUvRtYtBinitüKW
rtEdkbnÞH                                         469                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                      NPIC
                   0.75φM n ≤ M u ≤ φM n            b¤      0.75(4944) ≤ M u ≤ 4944
                                                                   3708 ≤ M u ≤ 4944
          BIrUbTI 10>16/ Vu = 146.5kips enAeBlEdl
                   223.4 − 4.3x = 146.5kips
          Edl x = cm¶ayBIcugxageqVgrbs; girder = 17.72 ft
          enARtg;TItaMgdUcKña m:Um:g;Bt;KW
                                           4.34(17.72)2
                   M u = 223.4(17.72) −                 = 3277 ft − kips
                                                 2
          enAkñúgtMbn;EdlkmøaMgkat;FMCag 146.5kips m:Um:gBt;tUcCag 3708 ft − kips dUcenHeKmin
          caM)ac;BicarNaGnþrGMeBIénm:Um:g;Bt; nigkmøaMgkat;eT.
                   eKnwgdak; bearing stiffener Rtg;TRm nigRtg;kNþalElVg. edaysarvaman stiffener
          enARtg;kEnøgbnÞúkcMcMNucmanGMeBInImYy² dUcenHeKminRtUvkarGegátPaBFn;rbs;RTnugeTAnwg
          bnÞúkTaMgenHeT. RbsinebImindak; stiffener eTenaH eKRtUvkarBarRTnugBI yielding nig
          crippling. edIm,IeFVIdUcenH eKRtUvkarRbEvg bearing N RKb;RKan;EdlTamTareday AISC
          Equation K1-2 rhUtdl; K1-5. Sidesway web buckling minmanCasßanPaBkMNt;Edl
          GacekItmaneT BIeRBaH girder enHman lateral support Cab; ¬EdleFVI[ unbraced length
          l = 0 nig (h / t w )(l / b f ) > 2.3 ¦.
                   sakl,gTTwg stiffener b = 8in. . TTwgsrubnwgesμI 2(8) + 5 /16 = 16.31in. EdltUc
          CagTTwgsøab 18in. bnþic. BI AISC K1.9
                                                    b Fy 8 36
                    b
                    t
                      ≤
                         95
                           F
                                        b¤       t≥
                                                     95
                                                        =
                                                           95
                                                               = 0.505in.
                            y
                  sakl,g stiffener 3 4 × 8 BIr. snμt; web-to-flange weld 516 in. nig cutout enAkñúg
          stiffener 1 2 in. . RtYtBinitü stiffener enARtg;TRm. Bearing strength KW
                   φRn = 0.75(1.8Fy A pb )
                         = 0.75(1.8)(36 )(0.75)(8 − 0.5) × 2 = 547 kips > 223.4kips
          RtYtBinitü stiffener Cassr. RbEvgrbs;RTnugEdleFVIkarCamYynwg stiffener plate edIm,IbegáIt
          CaGgát;rgkarsgát;KWesμInwg 12 dgénkRmas;RTnugsRmab; end stiffener (AISC K1.9). dUc
T.Chhay                                          470                                   Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                          Department of Civil Engineering
         Edl)aneXIjenAkñúgrUbTI 10>20 RbEvgenHKW 12(5 /16) = 3.75in. . edaysar stiffener RtUv
         manTItaMgenARtg;kNþalénRbEvgenH/ cMNucTRm ¬TItaMgrbs;Rbtikmμrbs; girder¦ RtUvEtman
         témøRbhak;RbEhlnwg 3.75 / 2 = 1.875in. BIcugrbs; girder. dUcEdlbgðajenAkñúgrUbTI
         10>21 b:uEnþQrelIkarKNnaenAelIRbEvgsrubrbs;RTnug 3.75in eKnwgTTYl)an
                            ⎛3⎞ ⎛ 5 ⎞
                    A = 2(8)⎜ ⎟ + ⎜ ⎟(3.75) = 13.17in.2
                            ⎝ 4 ⎠ ⎝ 16 ⎠
                       3.75(5 / 16 )3    ⎡ 0.75(8)3             5 ⎞ ⎤
                                                                   2
                                                       ⎛ 3 ⎞⎛
                    I=                + 2⎢          + 8⎜ ⎟⎜ 4 + ⎟ ⎥ = 271.3in.4
                            12           ⎢⎣ 12         ⎝ 4 ⎠⎝  32 ⎠ ⎥⎦
                          I      271.3
                    r=       =         = 4.539in.
                          A      13.17
                     KL Kh 0.75(62)
                        =      =          = 10.24
                      r     r     4.539
          BI AISC Table 3-36/ φc Fcr = 30.43ksi . Design strength KW
                    φc Pn = φc Fcr A = 30.43(13.17 ) = 401kips > 223.4kips        (OK)
        edaysarbnÞúkenAkNþalElVgtUcCagRbtikmμ eRbI stiffener dUcKñaenAkNþalElVg
cemøIy³ eRbI plate 3 4 × 8 BIrsRmab; bearing stiffener.
rtEdkbnÞH                                       471                                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                      NPIC
          Rtg;cMNucenH RKb;eRKOgpÁúMrbs; girder TaMgGs;RtUv)ankMNt;TMhM. \LÚveyIgRtUveFVIkarsikSaBI
          kartP¢ab;. eKeRbI electroce E70 XX Edlman design strength φFw = 31.5ksi .
                  sRmab;karpSarsøabeTAnwgRTnug (flange-to-web weld) KNnakmøaMgkat;TTwgenARtg;
          kEnøgCYbKñarvagsøab nigRTnug³
                  témøGtibrmarbs; Vu = 223.4kips
                  Q = RkLaépÞsøab × 31.75 ¬emIlrUbTI 10>17¦
                         = 1.5(18)(31.75) = 857.2in.3
                   I x = 60640in.4
                                             .4(857.2)
                  témøGtibrmarbs; VIu Q = 22360640     = 3.158kips / in.
                                     x
          TMhMTwkbnSarGb,brma w sRmab;kRmas;bnÞHEdkEdlRtUvpSarKW 516 in. .
          RbsineKpSarminCab; RbEvgTwkbnSarGb,brmarbs;vaKW³
                   Lmin = 4 × w ≥ 1.5in.
                           ⎛5⎞
                        = 4⎜ ⎟ = 1.25in.
                           ⎝ 16 ⎠
                                                        dUcenHyk 1.5in
          sakl,g fillet weld 516 in. ×1 12 in.
               lT§PaBkñúg 1in. = 0.707 × w × φFW × 2
                                     = 0.707(5 / 16)(31.5)(2 ) = 13.92kips / in.
          lT§PaBTb;kmøaMgkat;rbs; base metal
T.Chhay                                            472                                Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                             Department of Civil Engineering
                                        [ (           )] (   ⎛5⎞
                                                                    )
                    t (φFBM ) = t 0.90 0.60 Fy = t 0.54 Fy = ⎜ ⎟(0.54)(36)
                                                             ⎝ 16 ⎠
                                     = 6.075kips / in. < 13.92kips / in.
          eRbIersIusþg;TwkbnSarsrub 6.075kips / in. . ersIusþg;TwkbnSarmYyKURbEvg 1.5in.
                    6.075 × 1.5 = 9.112kips
          edIm,IkMNt;KMlat/ yk
                    9.112 Vu Q
                         =
                      s    Ix
          Edl s CaKMlatEdlKitBIG½kSeTAG½kSrbs;TwkbnSarKitCa in. ehIy
                          9.112      9.112
                    s=             =       = 2.89in.
                         Vu Q / I x 3.158
         edayeRbIKMlatBIG½kSeTAG½kS 2.75in. eyIgnwgTTYl)an clear spacing 2.75 − 1.5 = 1.25in. .
         AISC Specification [nUvKMlatminCab;GnuBaØatGtibrmarbs; fillet weld sRmab;karGnuvtþ
         enAkñúg Section B10, “Proportions of Beams and Girders”. karpþl;[sRmab; built-up
         compression members (AISC E4) nig built-up tension members (AISC D2) RtUv)aneK
         eRbIsRmab;kartP¢ab;søabrgkarsgát; nigsøabrgkarTaj. sRmab;karsgát;
                  d≤
                      127t
                        F
                                b:uEnþminRtUvFMCag 12in.
                                 y
         sRmab;karTaj
                    d ≤ 24t    b:uEnþminRtUvFMCag 12in.
         Edl d = clear spacing KitCa in.
               t = kRmas;rbs;bnÞHEdlRtUvpSarEdlesþIgCageKenAkñúg built-up shape
         edayGnuvtþkarkMNt;TaMgenH eyIg)an
                    127t 127(1.5)
                        =         = 31.8in. > 12in.
                     Fy     36
                    24t = 24(1.5) = 36in. > 12in.
         dUcenH Clear spacing GnuBaØatGtibrmaKW 12in. ehIy clear spacing EdlRtUvkar 1.25in. KW
         RKb;RKan;.
rtEdkbnÞH                                                 473                                      T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
                  eTaHbICaeKeRbIKMlatBIG½kSeTAG½kS 2.75in. sRmab;RbEvgTaMgmUlrbs; girder k¾eday
          k¾eKGacbegáInKMlatenHRtg;kEnøgNaEdlkmøaMgkat;tUcCagtémøGtibrma 223.4kips . eyIg
          nwg GegátKMlatbIepSgKña
                  !> KMlattRmUvkarEdlCitCageK 2.75in.
                  @> KMlatBIG½kSeTAG½kSGnuBaØatGtibrma 12 + 1.5 = 13.5in.
                  #> Intermediate spacing 5in.
          enAeBleyIgeRbIKMlat 5in.
                  Vu Q 9.112
                    Ix
                        =
                            s
                                  b¤     Vu =
                                               9.112
                                                Qs
                                                     Ix =
                                                           9.112
                                                          857.2(5)
                                                                   (60640) = 128.9kips
          eyagtamrUbTI 10>16 nig[ x Cacm¶ayBITRmxageqVg eKTTYl)an
                   Vu = 223.4 − 4.34 x = 128.9kips
                   x = 21.77 ft
          enAeBleKeRbIKMlat 13.5in.
                          9.112 I x 9.112(60640)
                   Vu =            =             = 47.75kips
                             Qs      857.2(13.5)
        rUbTI 10>16 bgðajfaminmankmøaMgkat;EdlmantémøtUcEbbenHeT dUcenHeKminGaceRbIKMlat
        Gtibrma)aneT.
cemøIy³ eRbI fillert weld 516 in.×1 12 in. sRmab; flange-to-web weblds CamYynwgKMlatdUcbgðaj
        enAkñúgrUbTI 10>22.
T.Chhay                                       474                                  Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                                      Department of Civil Engineering
         sRmab; intermediate stiffener welds:
         TMhMTwkbnSarGb,brma = 163 in. ¬edayQrelIkRmas; t w = 516 in. nig t = 14 in. ¦
         RbEvgGb,brma = 4⎛⎜⎝ 163 ⎞⎟⎠ = 0.75in. < 1.5in. yk 1.5
         lT§PaBrbs;TwkbnSarkñúg 1in. sRmab;TwkbnSar 4 ¬ 2 sRmab; stiffener plate mYy¦
                         ⎛3⎞
                    0.707⎜ ⎟(31.5)(4) = 16.70kips / in.
                         ⎝ 16 ⎠
         lT§PaBkmøaMgkat;rbs; base metal KW 6.075kips / in. ¬emIlkarKNnaxagelIsRmab;
         t = 516 in. ¦
                  BIsmIkar !0>3 kmøaMgkat;EdlRtUvKW
                     f = 0.045h
                                         Fy3
                                                = 0.045(62)
                                                               (36)3   = 3.539kips / in.
                                          E                    29000
         eRbITwkbnSardac;. lT§PaBrbs;TwkbnSar 4 EdlmYy²manRbEvg 1.5in.
                    1.5(6.075) = 9.112kips
         [ersIusþg;kmøaMgkat;kñúg 1in. esμInwgersIusþg;EdlRtUvkar eKTTYl)an
                  9.112
                    s
                         = 3.539kips / in.          b¤ s = 2.57in.
         BI AISC Appendix F2.3 clear spacing Gtib,rmaesμInwg 16 dgkRmas;RTnug b:uEnþminFMCag
         10in. b¤
                              ⎛5⎞
                    16t w = 16⎜ ⎟ = 5in.
                              ⎝ 16 ⎠
         eRbIKMlatBIG½kSeTAG½kS 2.5in. Edl clear spacing EdleKTTYl)anKW
                    2.5 − 1.5 = 1in. < 5in. (OK)
cemøIy³ eRbI fillet welds        3    sRmab; intermediate stiffeners
                                     16 × 1 2
                                           1
         EdlmanKMlatdUcbgðajenAkñúgrUbTI 10>23.
         sRmab; bearing stiffener welds³
         TMhMGb,brma 165 in. ¬edayQrelIkRmas; t w = 516 in. nig t = 3 4 in. ¦
         RbEvgGb,brma = 4⎛⎜⎝ 165 ⎞⎟⎠ = 1.25in. < 1.5in. yk 1.5
rtEdkbnÞH                                                475                                                T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                       NPIC
          eRbITwkbnSarBIrsRmab; stiffener mYy dUcenHsrubmanTwkbnSar 4 . dUcKñanwg intermediate
          stiffener ersIusþg;kmøaMgkat;rbs; base metal 6.075kips / in. nwgkMNt;ersIusþg;rbs;TwkbnSar
          b¤ 9.112kips sRmab;TwkbnSarRbEvg 1.5in. .
                  sRmab; end bearing stiffener bnÞúkEdlGnuvtþkñúg 1in. KW
                         reaction             223.4
                                         =           = 3.662kips / in.
                 length avaible for weld 62 − 2(0.5)
        BI  9.112
              s
                  = 3.662  eK)an  s = 2.49in.
cemøIy³ eRbI fillet weld 316 ×1 12 sRmab;    bearing stiffener   TaMgGs; EdlKMlatRtUv)anbgðajenA
        kñúgrUb TI 10>24.
         Edl)anKNnaenAkñúg]TahrN_enHminmanlkçN³esdækic©eT. lT§PaBepSgeTotKW girder
     Girder
EdlmanRTnugesþIgCag ehIyeKeRbI intermediate eRcInCag nigmYyeTotKW girder EdlmanRTnugRkas;
Cag ehIyGt;eRbI intermediate stiffener. ktþaEdlb:HBal;dl;lkçN³esdækic©rYmmanTm¶n; ¬maDrbs;
T.Chhay                                        476                                      Plate Girders
viTüasßanCatiBhubec©keTskm<úCa                                  Department of Civil Engineering
EdkEdlRtUvkar¦ nigtémøkñúgkartMeLIg. eTaHbICa girder Edlman intermedaite EtgEtRtUvkarEdk
tick¾eday k¾karbnSMenHGacbEnßmedaytémøénkardMeLIgEdr. kRmas;søabk¾eKGacykmkBicarNa
pgEdr. CeRmIsTaMgenHsuT§EtsnSMsMécTm¶n; b:EnþeKk¾RtUvBicarNaBItémøkñúgkartMeLIgEdr. viFIEdleK
GnuvtþedIm,ITTYl)annUvkarKNnaEdlmanlkçN³esdækic©KWkarsikSaCeRmIseRcIn ehIyeFVIkareRbob
eFobtémørbs;va edayeRbIkar)a:n;sμansMPar³ nigtémøénkartMeLIg. Design of Welded Structures
(Blodgett, 1996) pþl;nUvsMNUmBrEdlmanRbeyaCn_CaeRcInsRmab;karKNna welded plate girder
EdlmanlkçN³esdækic©.
rtEdkbnÞH                                 477                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                     NPIC
                     Appendix A. karKNna nigkarviPaKedaylkçN³)aøsÞic
                                        Plastic Analysis and Design
A  >1> esckþIepþIm         (Introduction)
         eyIg)anENnaMBIKMniténkar)ak;eday)aøsÞic (plastic collapse) enAkñúgkfaxNÐ 5>2/“ kug
taMgBt; nigm:Um:g)aø; sÞic” . kar)ak;rbs;eRKOgbgÁúMnwgekIteLIgenAeBlbnÞúkbegáItsnøak;)aøsÞicRKb;RKan;
edIm,IbegáItCa mechanism EdlnwgeFVI[manPaBdabedayminmankarekIneLIgbnÞúk. enAkñúgFñwmEdl
kMNt;edaysþaTic eKRtUvkarEtsnøak;)aøsÞicmYyEtb:ueNÑaH. dUcbgðajenAkñúgrUbTI A>1 snøak;nwgekIt
manenAkEnøgNaEdlmanm:Um:g;Gtibrma ¬krNIenHKWenAkNþalElVg¦. enAeBlEdlm:Um:g;Bt;mantémø
FMRKb;RKan;edIm,IeFVI[muxkat;TaMgmUl yield/ enaHvaminGacTb;nwgkarekIneLIgrbs;m:Um:g;EfmeTot ehIy
snøak;)aøsÞick¾RtUv)anbegáIteLIg. snøak;)aøsÞicenHRsedogKñanwgsnøak;FmμtaEdr EtxusRtg;fasnøak;
)aøsÞicmanlT§PaBTb;nwgm:Um:g;xøH EdldUcKñay:agxøaMgnwg rusty hinge.
lT§PaBm:Um:g;)aøsÞic (plastic moment capacity) EdlsMKal;eday M p Cam:Um:g;Bt;EdlekIt
manenARtg;snøak;)aøsÞic. vamantémøesμInwgm:Um:g;Tb;xagkñúgEdlekItBIkarEbgEckkugRtaMgEdlbgðaj
enAkñúgrUbTI A>1 c EtmanTisedApÞúyKña. eKGackMNt;m:Um:g;)aøsÞicenAeBlEdleKsÁal; yield stress
nigrUbragmuxkat; dUcbgðajenAkñúgrUbTI A>2. RbsinebIkarEbgEckkugRtaMgenAkñúglkçxNÐ)aøsÞiceBj
RtUv)anCMnYsedaykmøaMgsmmUlsþaTicBIrEdlmantémødUcKña nigTisedApÞúyKña enaHvanwgbegáIt couple.
GaMgtg;sIueténkmøaMgnImYy²esμInwgplKuNrvag yield stress nigBak;kNþalRkLaépÞmuxkat;srub.
m:Um:g;EdlbegáIteday couple xagkñúgenHKW
                         A
          M p = Fy         a = Fy Z x
                         2
Edl A CaRkLaépÞmuxkat;srub/ a CacMgayrvagTIRbCMuTm¶n;énRkLaépÞBak;kNþalBIr nig Z x Cam:U
Dulmuxkat;)aøsÞic. emKuNsuvtßiPaBcenøaHsßanPaB yielding dMbUg nigsßanPaB)aøsÞiceBjRtUv)ansM
EdgenAkñúgm:UDulmuxkat;. BIrUbTI A>1 b eKGacsresrm:Um:g;EdlbegáIt yield dMbUg
                          M p Fy Z x Z x
       M y = Fy S x nig         =       =
                          M       F S
                                   y      S
                                          y x    x
pleFobenHCatémøefrsRmab;rUbragmuxkat;EdlsÁal; nigRtUv)aneKehAfa emKuNrUbrag. sRmab;Fñwm
EdlKNnaeday allowable stress theory vaCargVas;én reserve capacity ehIymantémømFüm 1.12
sRmab; W-shapes.
T.Chhay                                              478                                Appendix A
viTüasßanCatiBhubec©keTskm<úCa         Department of Civil Engineering
]bsm<½n§ A                       479                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
        enAkñúgFñwm b¤eRKagsþaTicminkMNt; eKRtUvkarsnøak;)aøsÞiceRcInCagmYyedIm,IbegáIt collapse
mechanism. snøak;TaMgenHnwgRtUv)anbegáIttamlMdab;lMeday eTaHbICaeKmincaM)ac;dwgBIlMdab;k¾eday.
eKnwgBicarNakarviPaKrcnasm<½n§sþaTicminkMNt;eRkayBIkarBiPakSatRmUvkarrbs; Specification.
A   >2>   AISC Requirements
          AISC Specification GnuBaØat[eRbI plastic analysis and design enAeBleRKOgbgÁúMenArkSa
PaBlMnwgTaMg local nigTaMgmUlRtg;cMNuc plastic collapse. edaysareKtRmUv[Fñwm b¤eRKagrgnUvPaB
dabFMenAeBlEdlsnøak;)aøsÞicRtUv)anbegáIt eKRtUvkar lateral bracing CaBiess.
       edIm,IkarBar local buckling, AISC B5.2 TamTarfaGgát;man compact cross-sectional
shape Edl λ ≤ λ p sRmab;TaMgRTnug nigsøab. sRmab;Ggát; I-shaped shape dUcCa W nig S-shapes
pleFobTTwgelIkRmas;EdlkMNt;BI Table B5.2 KW
           bf          65             bf         170
                  ≤           (US)           ≤           (IS)
           2t f        Fy             2t f        Fy
nig        h
          tw
             ≤
               640
                Fy
                              (US)
                                       h 1680
                                      tw
                                         ≤
                                           Fy
                                                         (IS)
        edIm,IkarBar lateral buckling, AISC F1.2d kMNt; unbraced length Gtibrma Lb Rtg;TItaMg
snøak;)aøsÞicCa L pd EdlsRmab; I-shaped member
                      3600 + 2200(M 1 / M 2 )
          L pd =                              ry         (US)       (AISC Equation F1-17)
                               Fy
                      24820 + 15170(M 1 / M 2 )
          L pd =                                ry       (IS)
                                Fy
enAkñúgsmIkarenH M 1 Cam:Um:g;EdltUcCagenARtg;cugén unbraced length nig M 2 CamU:m:g;EdlFMCag.
pleFob M 1 / M 2 KwviC¢manenAeBlEdl M 1 nig M 2 Bt;Ggát;[mankMeNagDub nigmantémø
GviC¢manenAeBlEdlvabegáItkMeNageTal.
        sRmab; compact shape Edlman lateral bracing RKb;RKan; eKGacyk M n esμInwg
 M p sRmab; eRbIenAkñúg plastic analysis. b:uEnþ AISC F1.2d kMNt;faenAkñúgtMbn;EdlekItman
snøak;)aøsÞiccug eRkay nigenAkñúgtMbn;EdlminEk,rsnøak;)aøsÞiceKRtUveRbIviFIFmμtaedIm,IkMNt; M n .
        AISC Specification provision epSgeTotEdlTak;Tgnwg plastic analysis and design
mandUcxageRkam.
T.Chhay                                                480                          Appendix A
viTüasßanCatiBhubec©keTskm<úCa                                       Department of Civil Engineering
          A5.1                    RtUv)anGnuBaØatsRmab;Et Fy ≤ 65ksi .
                    Plastic analysis
         C2.2      kmøaMgtamG½kSEdlbegáItedaybnÞúkTMnajemKuN nigbnÞúktamTisedkemKuNminRtUvFM
                   Cag 0.75φc Ag Fy .
         E1.2      sRmab;ssr slenderness parameter λc minRtUvFMCag 1.5K Edl K CaemKuNRbEvg
                   RbsiT§PaB.
A >3> karviPaK          (Analysis)
        RbsinebIvaGacman collapse mechanism eRcInCamYy dUcCaFñwmCab;EdlbgðajenAkñúgrUbTI
A>3 eKGacrk)annUv collapse mechanism EdlRtwmRtUv ehIyviPaKCamYynwgCMnYyénRTwsþIeKalcMnYn
bIrbs; plastic analysis Edl[enATIenHedayKμankarRsaybBa¢ak;.
          !>   Lower-bound theorem (static theorem):         RbsinebIeKGacrk)annUvkarEbgEckm:Um:g;
                d¾mansuvtßiPaB ¬Edlm:Um:g;mYytUcCag b¤esμInwg M p RKb;kEnøg¦ ehIyvaGacTTYlbnÞúk
                edaysþaTic ¬lMnwgRtUv)anbMeBj¦ bnÞab;mkbnÞúkEdlRtUvKñaRtUvtUcCag b¤esμI collapse
                load.
]bsm<½n§ A                                    481                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                   NPIC
          @>   Upper-bound theorem (kinetic theorem):   bnÞúkEdlRtUvnwg mechanism snμt;RtUvEtFM
            Cag b¤esμInwg collapse load. Cavi)ak RbsinebIeKGegát mechanism EdlGacmanTaMg
            Gs; mechanism mYyNaEdlRtUvkarbnÞúktUcCageKCa mechanism EdlRtwmRtUv.
        #> Uniqueness theorem: RbsineKmankarEbgEckm:Um:g;EdlGacTTYlyk)anedaysþaTic
            nigmansuvtßiPaB EdlenAkñúgenaH snøak;)aøsÞicRKb;RKan;begáIt collapse mechanism enaH
            bnÞúkEdlRtUvKñaCa collapse load EdlRbsinebI mechanism bMeBjTaMg upper-boud
            theorem nig lower-bound theorem vaCa mechanism EdlRtwmRtUv.
karviPaKEdlQrelI lower-bound theorem RtUv)aneKehAfa equilibrium method ehIyRtUv)an
bgðajenAkñúg]TahrN_ A>1.
]TahrN_ A>1³ rkbnÞúkcugeRkay (ultimate load) sRmab;FñwmEdlbgðajenAkñúgrUbTI A>4a eday
equilibrium method       rbs; plastic analysis. snμt;eKeRbI continuous lateral support nig EdlRb
ePT A36 .
dMeNaHRsay³ Edk A36 muxkat; W 30 × 99 Ca comapact shape ehIyCamYynwg continuous lateral
support,   tRmUvkar lateral bracing KWRKb;RKan; dUcenHeKGacTTYlyk plastic analysis.
T.Chhay                                       482                                     Appendix A
viTüasßanCatiBhubec©keTskm<úCa                                    Department of Civil Engineering
          dMNak;karénkardak;bnÞúkelIFñwmBI working load eTAdl; collapse load RtUv)anKUsbBa¢ak;enA
kñúgrUbTI A>4a-d. enAeBl working load muneBl yielding ekIteLIgRKb;TIkEnøg karEbgEckm:Um:g;Bt;
RtUv)anbgðajenAkñúgrUbTI A>4a CamYynwgm:Um:g;GtibrmaEdlekItmanRtg;TRmbgáb;. enAeBlEdlbnÞúk
ekIneLIgbnþicmþg² yielding cab;epþImekItmanRtg;TRm enAeBlEdlm:Um:g;Bt;eTAdl; M y = Fy S x . enA
eBlEdlbnÞúkekIneLIgkan;EtFM vanwgekItmansnøak;)aøsÞickñúgeBldMNalKñaenARtg;cugnImYy² enAeBl
Edl M p = Fy Z x . enARtg;kRmiténkardak;bnÞúkenH eRKOgbgÁúMenAmansißrPaBenAeLIy FñwmRtUv)an
ERbkøayeTACasþaTickMNt;edaykarekItmansnøak;)aøsÞicBIr. Mechanism nwgekIt)anEtenAeBlEdl
ekItmansnøak;)aøsÞicTIbI. vaGacekItmanenAeBlEdlm:Um:g;viC¢manGtibrmamantémø M p . edayGa
Rs½ynwg uniqueness theorem/ bnÞúkEdlRtUvKñaCa collapse load BIeRBaHkarEbgEck m:Um:g;KWsuvtßiPaB
ehIyGacTTYlyk)anedaysþaTic.
          enARKb;dMNak;kalénkardak;bnÞúk plbUkénéldac;xaténm:Um:g;viC¢man nigm:Um:g;GviC¢manGti-
brmaKW wL2 / 8 . enAeBl collapse, plbUkenHkøayeTACa
                                              16M p
           M p + M p = wu L2 b¤
                       1
                                         wu =
                       8                        L2
eKRtUvEteRbobeFobbnÞúkemKuNCamYynwgersIusþg;emKuN dUcenHeKeRcIneRbI φb M p Cag M p enAkñúg
smIkarBIxagedIm. b:uEnþedIm,IrkSanimitþsBaØa[manlkçN³samBaØ eyIgeRbI M p enARKb;]TahrN_
TaMgGs;rhUtdl;CMhancugeRkayeTIbeyIgCMnYs φb M p eTAkñúgsmIkar. lT§plEdlRtwmRtUv sRmab;
]TahrN_enHKW
                     16φb M p
          wu =
                        L2
sRmab; W 30 × 99
                                 36(312)
          M p = Fy Z x =                 = 936 ft − kips
                                   12
ehIy φb M p = 0.9(936) = 842.4 ft − kips
eKk¾GacTTYltémørbs; φb M p edaypÞal;BI Load Factor Design Selection Table enAkñúg Part 4 of
the Manual.
                     16(842.4 )
cemøIy³ w    u   =
                       (30)2
                                  = 15.0kips / ft
]bsm<½n§ A                                           483                                  T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                          NPIC
]TahrN_ A>2³RbsinebIFñwmenAkñúg]TahrN_ A>1 minman continuous lateral support cUrkMNt;TItaMg
EdlRtUvBRgwg.
dMeNaHRsay³ snøak;)aøsÞicenAxagcugekIteLIgkñúgeBldMNalKña ehIymuneBlsnøak;enAkNþalElVg
ekIteLIg. dUcenHeKKYrEtRtYtBinitü unbraced length GtibrmaedayeFobeTAnwgcug ¬snøak;cugeRkay
EdlekIteLIgmintRmUvkar bracing sRmab; plastic analysis eT¦.
       edayeFobnwgsnøak;enAcugxageqVg snμt;facMNucBRgwgKWenAkNþalElVg. kñúgkrNIenH M 1 =
 M 2 = M p dUcenHFñwmmankMeNagDub ¬m:Um:g;TaMgBIrmansBaØadUcKña¦ dUcenH M 1 / M 2 = +1 BI AISC
Equation F1-17, unbraced length GtibrmaKW
                   3600 + 2200(M 1 / M 2 )      3600 + 2200(1.0 )
          L pd =                           ry =                   (2.10) = 338.3in. = 28.2 ft
                            Fy                         36
cMNaMfa FñwmenHesÞIrEtRKb;RKan;edayminRtUvkar lateral bracing.
        CamYynwg lateral mYyTl;enAkNþalElVg
          L p = 15 ft < 28.2 ft    (OK)
Unbraced length       EdlRtUvBicarNarYmKWrYbbBa©ÚlTaMgsnøak;enAkNþalElVg. vaminmantMbn;Edlmin
enACab;nwgsnøak;)aøsÞiceT dUcenHvaminRtUvkarkarKNna design strength eT.
cemøIy³ eRbI lateral brace mYyenAkNþalElVg.
          Mechanism method         KWQrelI    upper-bound theorem nigRtUvakrGegátRKb; collapse
mechanism EdlGacekItman. Collapse mechanism NaEdlRtUvkarbnÞúktUcCageKnwglub eyIy
bnÞúkEdlRtUvKñaCa collapse laod. eKRtUvGnuvtþeKalkarN_rbs; virtual work sRmab;viPaK
mechanism nImYy². Mechanism snμt;RtUvrgnUv virtual displacement RsbeTAtamclnaEdlGac
ekItmanrbs; mechanism ehIyeK[kmμnþxageRkA nigkmμnþxagkñúgesμIKña. bnÞab;mkeKGacrkTMnak;
TMngrvagbnÞúk niglT§PaBTb;m:Um:g;)aøsÞic M p . bec©keTsenHRtUv)anbgðajenAkñúg]TahrN_ A>3 nig
A>4.
]TahrN_ A>3³ FñwmCab;EdlRtUv)anbgðajenAkñúgrUbTI A>5 man compact cross section Edlman
design strength φb M p = 1040 ft − kips      . eRbI mechanism method edIm,Irk collapse load Pu .
snμt; continuous lateral support.
T.Chhay                                         484                                         Appendix A
viTüasßanCatiBhubec©keTskm<úCa                                   Department of Civil Engineering
dMeNaHRsay³ eKman failure mechanism sRmab;FñwmenHBIry:ag. dUcEdlbgðajenAkñúgrUbTI A>5
vamanlkçN³RsedogKñaEdlkMNat;Ggát;nImYy²rgnUv rigid-body motion. edIm,IGegát mechanism
enAkñúgElVg AB dak; vitual rotation θ Rtg; A. karvilEdlRtUvKñaenARtg;snøak;)aøsÞicRtUv)anbgðaj
enAkñúgrUbTI A>5b ehIybMlas;TItamTisQrébnÞúkKW 10θ . BIeKalkarN_rbs; virtual work
         kmμnþxageRkA = kmμnþxagkñúg
          P(10θ ) = M p (2θ ) + M pθ
¬vaminmankmμnþxagkñúgenARtg; A eT eRBaHvaminmansnøak;)aøsÞic¦
       collapse load KW
                 3M p
          Pu =
                   10
Mechanism    sRmab;ElVg AB manlkçN³xusKñabnþic³ RKb;snøak;TaMgbICasnøak;)aøsÞic. Virtual work
xagkñúg nig virtual work xageRkAkñúgkrNIKW
]bsm<½n§ A                                 485                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                          NPIC
          2 Pu (15θ ) = M pθ + M p (2θ ) + M pθ
enaH Pu = 152 M p
lT§PaBTIBIrenHRtUvkarbnÞúktUcCag dUcenHvaCa mechanism EdlRtwmRtUv. Collapse load Edlnwg
TTYl)anedayeRbI φb M p CMnYs[ M p
cemøIy³ P  u   =
                    2
                   15
                      φb M p = (1040) = 139kips
                               2
                              15
]TahrN_ A>4³ kMNt; collapse load P sRmab; rigid frame EdlbgðajenAkñúgrUbTI A>6. Ggát;
                                           u
nImYy²rbs;eRKagKW W 21×147 Edlman Fy = 50ksi . snμt; lateral support Cab;.
T.Chhay                                           486                        Appendix A
viTüasßanCatiBhubec©keTskm<úCa                                          Department of Civil Engineering
dMeNaHRsay³ W 21×147 Ca compact shape sRmab; F           y   = 50ksi   nigman lateral support Cab; dUc
enHvabMeBjlkçxNÐkñúgkareRbIR)as; plastic analysis.
        dUcbgðajenAkñúgrUbTI A>6 eKman failure mode cMnYnbIsRmab;eRKagenH³ Fñwm mechanism enA
kñúgGgát; BC / sway mechanism nigmYyeTotCabnSMén mechanism BIrdMbUg. eyIgcab;epþImkarviPaK
mechanism nImYy²edaydak; virtual rotation θ enARtg;snøak;mYy ehIysresrsmIkarCaGnuKmn_
eTAnwgmMuenH.
        Virtual displacement rbs;Fñwm mechanism RtUv)anbgðajenAkñúgrUbTI A>6 b. BIsmPaBén
kmμnþxageRkA nigkmμnþxagkñúg
                                 ⎛5 ⎞        ⎛2 ⎞
          Pu (10θ ) = M pθ + M p ⎜ θ ⎟ + M p ⎜ θ ⎟
                                 ⎝3 ⎠        ⎝3 ⎠
EdleKeRbI M p CMnYs[ φb M p . edaHRsayrk Pu
          Pu = 0.3333M p
RbsinebIeKminKit axial strain enAkñúgGgát; BC / sway mechanism nwgxUcRTg;RTaydUcbgðaj
enAkñúgrUbTI A>6 c CamYynwgbMlas;TItamTisedkdUcKñaRtg; B nig C . Cavi)ak muMrgVilénRKb;snøak;
TaMgGs;KWlkçN³RsedogKña³
          Pu (15θ ) = M p (4θ ) b¤   Pu = 0.2667 M p
BIrUbTI A>6d/ eKalkarN_én virtual work sRmab; combined mechanism [
                                             ⎛5 ⎞        ⎛2      ⎞
          Pu (15θ ) + Pu (10θ ) = M pθ + M p ⎜ θ ⎟ + M p ⎜ θ + θ ⎟ + M pθ
                                             ⎝3 ⎠        ⎝3      ⎠
          Pu = 0.2133M p     ¬lub¦
cemøIy³ Collapse load sRmab;eRKagKW Pu = 0.2133φb M p = 0.2133(1400) = 299kips
        cMNaMfa vamancMNucdUcKñaxøHrvagviFIénkarviPaKTaMgBIr. eTaHbICa equilibrium method min
RtUvkarBicarNaRKb; mechanism k¾eday k¾vaRtUvkar[eyIgdwgBI mechanism enAeBlEdlkarEbg
Ecgm:Um:g;snμt;RsbeTAnwg mechanism mYy. viFITaMgBIrRtUvkarkarsnμt; failure mechanism b:uEnþenA
kñúg equilibrium method eKRtUvRtYtBinitükarsnμt;nImYy²sRmab;suvtßiPaB nigkarEbgEck m:Um:g;Edl
GacTTYlyk)anedaysþaTic ehIyvaminRtUvkarkarGegátRKb; mechanism eT.
]bsm<½n§ A                                    487                                               T.Chhay
mhaviTüal½ysMNg;sIuvil                                                              NPIC
A >4> karKNnamuxkat; (Design)
        dMeNIrkarénkarKNnaKWRsedogKñanwgkarviPaKEdr EtvaxusKñaRtg;faGBaØatEdlRtUvrkCalT§
PaBm:Umg;)aøsÞicEdlRtUvkar M p . eKsÁal; collapse load EdlTTYl)anBIkarKuN service load nwgem
KuNbnÞúk.
]TahrN_ A>4³ FñwmCab;bIElVgdUcbgðajenAkñúgrUbTI A>7 RtUvRTnUv gravity service load. bnÞúknI-
mYy²pSMeLIgedaybnÞúkefr 25% nigbnÞúkGefr 75% . eKeRbI cover plate enAkñúgElVg BC nig CD
edIm,ITTYl)an moment strength dUcEdl)anbgðaj. snμt; continuous lateral support nigeRCIs
erIsrUbragEdksRmab;RbePT A36 .
T.Chhay                                  488                                     Appendix A
viTüasßanCatiBhubec©keTskm<úCa                                       Department of Civil Engineering
dMeNaHRsay³ Collapse load EdlTTYl)anedaykarKuN service load edayemKuNbnÞúksmRsb.
sRmab; service load 45kips
          Pu = 1.2(0.25 × 45) + 1.60(0.75 × 45) = 67.5kips
sRmab; service load 75kips
          Pu = 1.2(0.25 × 75) + 1.60(0.75 × 75) = 85.5kips
eKRtUvGegát      mechanism bIEdlman mechanism mYyenAelIElVgmYy. rUbTI A>7 c-e bgðajBI
mechanism nImYy²eRkayBIrgnUv virtual displacement. enAeBlEdlsnøak;)aøsÞicekIteLIgenARtg;
TRmEdlGgát;nImYy²minmanersIusþg;esμIKña vanwgekIteLIgenAeBlEdlm:Um:g;Bt;esμInwglT§PaBm:Um:g;)aø-
sÞic rbs;Ggát;EdlexSayCag.
        sRmab;ElVg AB
                kmμnþxageRkA = kmμnþxagkñúg
                67.5(5θ ) = M p (2θ + θ )      b¤ M p = 112.5 ft − kips
        sRmab;ElVg BC
                85.5(10θ ) = M pθ + 2M p (2θ ) + M pθ
                                                 5
                                                 3
                                                             b¤ M p = 128.2 ft − kips
        sRmab;ElVg CD
                85.5(10θ ) = M p (θ + 2θ + θ )
                             5
                             3
                                                       b¤ M p = 128.2 ft − kips
Upper-bound theorem RtUv)anbkRsaydUcxageRkam³ témøénm:Um:g;)aøsÞicEdlRtUvKñanwg mechanism
Edlsnμt;KWtUcCag b¤esμInwgm:Um:g;)aøsÞicsRmab; collapse load. dUcenH mechanism EdlTamTar
lT§PaBm:Um:g;FMCageKCa mechanism EdlRtwmRtUv. Mechanism TaMgBIrcugeRkaymantémø M p
dUcKña ehIyGacnwgekIteLIgkñúgeBldMNalKña. CaTUeTAersIusþg;EdlRtUvkarCa design strength Edl
RtUvkar dUcenH
          φb M p = 128.2 ft − kips
BI   Load Factor Design Selection Table,          rUbragEdlRsalCageKKW W 16 × 31 Edlman      design
strength θ b M p = 146 ft − kips
          sakl,g W 16 × 31 ehIyRtYtBinitükmøaMgkat; ¬eyagtamrUbTI A>8¦
          sRmab;ElVg AB
                    ∑ M B = V A (10 ) − 67.5(5) + 128.2 = 0
]bsm<½n§ A                                       489                                         T.Chhay
mhaviTüal½ysMNg;sIuvil                                                               NPIC
                   V A = 20.93kips
                   VB = 20.93 − 67.5 = −46.57 kips
          sRmab;ElVg BC
                                               ⎛5⎞
                   ∑ M B = − M p + 85.5(10 ) + ⎜ ⎟ M p − VC (20) = 0
                                               ⎝3⎠
                        85.5(10) + (2 / 3)M p 855 + (2 / 3)(128.2)
                   VC =                       =                    = 47.02kips
                                 20                     20
                   VB = 85.5 − 47.02 = 38.48kips
          sRmab;ElVg CD
                   ∑ M C = − M p + M p + 85.5(10) − VD (20) = 0
                            5     5
                            3     3
                   VD = 42.75kips = VC
        dUcenH kmøaMgkat;TTwgGtibrma VC KW)anmkBIElVg BC b¤esμIKña 47.02kips .
        BItaragbnÞúkBRgayesμIemKuNenAkñúg Part 4 of the Manual, shear design strength rbs;
W 16 × 31 KW
          φvVn = 84.9kips > 47.02kips              (OK)
cemøIy³ eRbI W 16 × 31 .
A >5> karsnñidæan        (Conclusion Remark)
        karviPaKén mechanism EdlrgbnÞúkBRgaybgðajBIPaBsμúKsμajbEnßmeTotEdlmin)anerob
rab;enATIenH. bBaðaCak;EsþgenAkñúg plastic analysis or design rYmbBa©ÚlnUvkardak;bnÞúkEbbenH
y:agCak;Esþg. elIsBIenH eKKYrGegátGnþrGMeBIén\T§iBlrbs;kmøaMgtamG½kS nigm:Um:g;Bt;sRmab;Ggát;
EdlrgTaMgkmøaMgtamG½kS nigm:Um:g;Bt; dUcenA rigid frame enAkñúg]TahrN_ A>4 .
        cMeBaHviFIviPaKEdlmanlkçN³TUeTAdUcCa equilibrium method manniyayy:aglMGitenAkñúg
the plastic methods of structural analysis (Neal, 1977). ehIyvamanrUbmnþEdlmanlkçN³
sμúKsμajsRmab; mechanism method eTotpg. CamYynwgviFIenH EdleKsÁal;faCa method of
inequalities eKGackMNt; mechanism EdlRtwmRtUveday linear programming technique eday
pÞal;. eKGaceRbI plastic design FmμtasRmab;KNnaeRKOgbgÁúMPaKeRcIn b:uEnþCaTUeTA mechanism
method EdlbgðajenAkñúg]bsm<½n§enHKWRKb;RKan;ehIy.
T.Chhay                                       490                                 Appendix A
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
                 Appendix B. karKNnaeRKOgbgÁúMEdkedayQrelIkugRtaMgGnuBaØat
                         Structural Steel Design Based on Allowable Stress
B >1> esckþIepþIm     (Introduction)
        PaBxusKñacMbgrvag allowable stress design nig loads and resistance factor design KW
emKuNsuvtßiPaB. * enAkñúg LRFD eKGnuvtþemKuNbnÞúkeTAelIbnÞúk nigemKuNersIusþg;eTAelIersIusþg;.
elIsBIenH témørbs;emKuNbnÞúkGaRs½ynwgRbePTrbs;bnÞúk nigkarbnSMbnÞúk. enAkñúg allowable
stress design (ASD) eKeRbIEtemKuNsuvtßiPaBmYyKt; ehIyvaRtUv)anGnuvtþeTAelIkugRtaMgEdlman
enAkñúgsßanPaBkMNt;. sßanPaBkMNt;rbs; ASD KWRsedogKñasRmab; LEFD KW yielding, fracture
nig buckling. eKalkarN_rbs; allowable stress analysis and design KWmandUcteTA³
kugRtaMgenAkñúg sßanPaBkMNt;RtUv)anEckCamYynwgemKuNsuvtßiPaBedIm,ITTYl)ankugRtaMgGnuBaØat
ehIykugRtaMg Gb,brmaEdlekIteLIgeday service load dac;xatminRtUvFMCagkugRtaMgGnuBaØatenH
eT. ]TahrN_ sRmab;kmøaMgTajtamG½kS
                    P
             ft =     ≤ Ft                                                   (B.1)
                    A
Edl           kugRtaMgTajKNna
             ft =
         P = bnÞúkTajtamG½kSeFVIkar
         Ft = kugRtaMgTajGnuBaØat
kugRtaMgTajGnuBaØatGacCaplEckrvag yield stress CamYynwgemKuNsuvtßiPaB b¤CaplEckrvag
ultimate tensile stress CamYynwgemKuNsuvtßiPaBepSgeTot. eyIgnwgerobrab;BIGgát;rgkarTajlMGit
enAkñúgEpñk B>2.
        eKeRbI ASD sRmab;eRKOgbgÁúMEdkmuneBlEdlmankarENnaMBI LRFD Specification enAkñúgqñaM
1989. kare)aHBum<elIkcugeRkayrbs; ASD Specification (AISC, 1989b) ehIynig Manual of
steel Construction (AISC, 1989a) RtUv)anpSBVpSayenAkñúgqñaM 1989. karerobcMÉksarrbs;Éksar
TaMgBIrxagelImanlkçN³RsedogKñanwgkarerobcMÉksarrbs; LRFD Edr. eKEbgEck Specification
*
    snμt;faeyIgsÁal; nigyl;BI AISC LRFD Specification nig Manual
]bsm<½n§ B                                                 491                             T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                 NPIC
CaCMBUk ¬]TahrN_ “Chapter D, Tension members”¦ ehIy Manual RtUv)anEbgEckCaEpñk ¬dUcCa
“Part 2, Beam and Girder Design”¦. enAkñúg Specification mankarENnaM eday Commentary.
         nimitþsBaØaenAkñúgsmIkar B.1 manlkçN³RsedogKñaeTAnwgkareRbIR)as;enAkñúg Specification.
eKeRbIGkSr f sRmab;kugRtaMgEdlKNnaCak;Esþg nigeKeRbIGkSr F sRmab;kugRtaMgGnuBaØat.
snÞsSn_R)ab;BIRbePTkugRtaMg.
         edaysar]bsm<½n§enHRKan;EtCaesckþIENnaM dUcenHeyIgminRtUvkareRbIelxEpñkrbs; AISC
Specification b¤elxsmIkareT. smIkarenAkñúg]bsm<½n§enHykecjBI Specification EtelxsmIkar
RtUv)andak;eTAedayxøÜneyIg. elIsBIenH enAeBlEdleyIgeRbIBakü Specification b¤ Manual enA
kñúg]bsm<½n§enH )ann½faeyIgeRbI allowable stress elIkElgEtmankarENnaM.
         Ggát;CaeRcInénkarKNnaeRKOgbgÁúMEdkKWRsedogKñasRmab; ASD nig LRFD. ]TahrN_ net
area sRmab;Ggát;rgkarTajKWdUcKña rYmbBa©ÚlTaMg s 2 / 4 g sRmab; staggered holed ¬karteRmob
rn§qøas;¦ nigemKuN U sRmab; shear leg ¬eTaHbICa ASD Specification eRbItémømFümrbs; U
nigdak;smIkarsRmab; U enAkñúg Commentary k¾eday k¾eKeRbIGVIEdlmanenAkñúg LRFD
Specification Edr¦. niymn½yrbs; compact member, noncompact member nig slender member
KWdUcKña b:uEnþ LRFD Specication cugeRkaymankarEklMGeRcIn. CaTUeTA enAeBlmanPaBminRtUvKña
rvag ASD nig LRFD provision eKKYredaHRsayedayQrelI LRFD Specification eRBaHvaTan;
sm½ykal.
         eTaHCavaminmanemKuNbnÞúkenAkñúg allowable stress design k¾eday eKenAEtGacKitbnÞúk
sMxan;epSg²enAkñúgkarbnSMbnÞúkEdr. ]TahrN_ CaTUeTAeKeRbIbnSMbnÞúksRmab;eRKOgbgÁúMdMbUldUct
eTA³ D + S / D + W / D + (S / 2) + W nig D + S + (W / 3) . elIsBIenH Specification GnuBaØat
[ allowable stress ekIneLIgmYyPaKbIenAeBleKrab;bBa©ÚlbnÞúkxül; nigbnÞúkrBa¢ÜydI. Building
code CaeRcInk¾mankarpþl;EbbenHEdr.
         ASD Manual k¾mantarag nigdüaRkamCaeRcInRsedogKñanwg LRFD Manual Edr. eyIgnwg
elIkykEttarag b¤düaRkamNaEdlsMxan;mkbkRsayenAkñúgkarENnaMd¾segçbenH.
T.Chhay                                    492                                      Appendix B
viTüasßanCatiBhubec©keTskm<úCa                                     Department of Civil Engineering
B >2> Ggát;rgkarTaj (Tension members)
        BIsmIkar B.1 kugRtaMgTajtamG½kSEdlKNnaKW ft = P / A . Allowable stress KWQrelI
sßanPaBkMNt; yielding nig fracture EdleRKaHfñak;CageK. sRmab; yielding rbs; gross section
kugRtaMgGnuvtþn_KW
                    P
             ft =                                                            (B.2)
                    Ag
Edl Ag Ca gross cross-sectional area. The factor of safety sRmab;sßanPaBkMNt;enHKW 5 / 3
ehIykugRtaMgGnuBaØatKW
                    Fy           Fy
          Ft =               =         = 0.6 Fy                              (B.3)
                    F .S .       5/3
sRmab; fracture rbs; net section
                    P
             ft =                                                            (B.4)
                    Ae
Edl Ae Ca effective net area. emKuNsuvtßiPaBKW 2.0 EdllT§plrbs;kugRtaMgGnuBaØatKW
                    Fu    F
          Ft =           = u = 0.5 Fu                                        (B.5)
                    F .S   2
]TahrN_ B>1³ RtYtBinitükugRtaMgenAkñúgGgát;rgkarTajEdlbgðajenAkñúgrUbTI B>1 EdlekItBIbnÞúk
eFIVkar 50kips . eKeRbIEdkRbePT A36 nigb‘ULúgGgát;p©it 7 8 in. .
dMeNaHRsay³ BIsmIkar B.2 nig B.3 kugRtaMgGnuvtþn_enAelI gross section KW
                    P   50
             ft =     =     = 20.2ksi
                    Ag 2.48
]bsm<½n§ B                                        493                                      T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                      NPIC
ehIykugRtaMgGnuBaØatKW
          Ft = 0.5Fy = 0.60(36 ) = 21.6ksi > 20.2ksi   (OK)
kugRtaMgenAelI net area KW
          An = Ag − (thickness × hole diameter )
                      3⎛ 7 1⎞
              = 2.48 − ⎜ + ⎟ = 2.105in.2
                      8⎝8 8⎠
RbsinebIeyIgeRbItémømFüm U enaH effective net area KW
          Ae = UAn = 0.85 An = 0.85(2.105) = 1.789in.2
sRmab;smIkar B.4 nig B.5
                P     50
          ft =    =        = 27.9ksi
               Ae 1.789
          Ft = 0.50 Fu = 0.50(58) = 29ksi > 27.9ksi    (OK)
cemøIy³ Ggát;KWmanlkçN³RKb;RKan;.
B >3> Ggát;rgkarsgát; (Compression members)
       kugRtaMgenAkñúgGgát;Edlrgkarsgát;tamG½kSKW
                          P
                   fa =
                          Ag
        kugRtaMgGnuBaØat EdlsMKal;eday Fa RtUv)anTTYledayEck critical buckling load CamYy
nwgemKuNsuvtßiPaB. emKuNsuvtßiPaBsRmab;ssreGLasÞic (slender column) mantémøefr ehIyem
KuNsRmab;ssr inelastic mantémøERbRbYl. enAkñúg ASD ersIusþg;rgkarsgát;RtUv)ansresrCa
GnuKmn_én slenderness ratio KL / r b:uEnþenAkñúg LRFD ersIusþg;CaGnuKmn_eTAnwg λc =
(KL / rπ ) Fy / E . enAkñúgtMbn;eGLasÞic kugRtaMgeRKaHfñak;KWplEckrvag Euler buckling load
nwgRkLaépÞ b¤
                Pcr π EAg
                      2
                                       π 2E
          Fcr =    =          ÷    =
                Ag   ( )
                     KL / r 2
                                Ag
                                     (KL / r )2
                                                                                        (B.6)
sRmab;tMbn; elastic EdnsmamaRtRtUv)ansnμt;esμInwg F    y   /2   eKnwgeRbIsmIkarEdl)anBIkarBiesaFdUc
xageRkamCMnYs[ tangent modulus formula³
T.Chhay                                      494                                        Appendix B
viTüasßanCatiBhubec©keTskm<úCa                                       Department of Civil Engineering
                   ⎡ (KL / r )2 ⎤
          Fcr = Fy ⎢1 −         ⎥                                                       (B.7)
                   ⎣⎢   2Cc2 ⎦⎥
Edl Cc témørbs; KL / r EdlRtUvKñanwgkugRtaMg Fy / 2 . smIkar B.7 bgðajBIExS)a:ra:bUlEdlb:H
nwgExSekag Euler enARtg; KL / r = Cc ehIyb:HeTAnwgbnÞat;edkenARtg; KL / r = 0 . eyIgGacrk
smIkarsRmab; Cc edayEpñkxagsþaMrbs;smIkar B.6 esμInwg Fy / 2 ³
             Fy         π 2E           π 2E
                  =                =
             2        (KL / r )2       Cc2
                                   2π 2 E
eyIgTTYl)an            Cc =
                                    Fy
                                                                                        (B.8)
munnwgkarGnuvtþemKuNsuvtßiPaB ersIusþg;ssrelItMbn;     slenderness   eBj RtUv)anbgðajedayRkaPic
enAkñúgrUbTI B>2.
       edIm,ITTYlnUvkugRtaMgsgát;GnuBaØat eyIgEcksmIkar B.6 nig B.7 CamYynwgemKuNsuvtßiPaB.
emKuNsuvtßiPaBsRmab;ssreGLasÞicKW 23 /12 . sRmab;ssr inelastic eKeRbIemKuNEdlERbRbYl
dUcxageRkam³
                       5 3(KL / r ) (KL / r )3
          F .S . =       +         −
                       3   8Cc        8Cc3
]bsm<½n§ B                                       495                                         T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                     NPIC
smIkarenHmantémø 5 / 3 enAeBl KL / r = 0 ¬dUcKñasRmab; yielding rbs;Ggát;rgkarTaj¦ ehIy
témø 23 /12 enAeBl KL / r = Cc ¬RbEhl 15% eRcInCag 5 / 3 ¦. edayEcksmIkarersIusþg;CamYy
emKuNsuvtßiPaBEdlsmRsb eyIgTTYl)ankugRtaMgGnuBaØatdUcxageRkam³
       sRmab; KL / r < Cc
                      ⎡ (KL / r )2 ⎤
                   Fy ⎢1 −         ⎥
                      ⎢⎣   2Cc2 ⎥⎦
          Fa =                                                                         (B.9)
               5 3(KL / r ) (KL / r )3
                 +         −
               3      8Cc       8Cc3
          sRmab; KL / r > Cc
                   π 2E           23   12π 2 E
          Fa =                ÷      =                                                 (B.10)
                 (KL / r )2       12 23(KL / r )2
sRmab;Ggát;Edlmanmuxkat; slender eKRtUveFVIkarkat;bnßykugRtaMgGnuBaØatedIm,IKitBIlT§PaBEdl
GacekItman local buckling. eKTTYl emKuNkat;bnßyenHBI appendix EdlmanenAkñúg Specifica-
tion.
]TahrN_ B>2³ kMNt;bnÞúkeFVIkarGnuBaØat P sRmab;Ggát;rgkarsgát;EdlbgðajenAkñúgrUbTI B>3.
dMeNaHRsay³ RtYtBinitüemIlfaetIGgát;CaGgát;Edlmanmuxkat;           slender  b¤Gt;. pleFobTTwgelI
kRmas;sRmab;Ggát;rgkarsgát;Edl[enAkñúg              ASD Specification   manlkçN³dUcKñaenAkñúg LRFD
Specification:
T.Chhay                                             496                                 Appendix B
viTüasßanCatiBhubec©keTskm<úCa                                                  Department of Civil Engineering
             bf
          2t f
                  = 6 .4               ¬BI properties table EdlmanenAkñúg Manual¦
             95    95
                 =     = 15.8 > 6.4           (OK)
              Fy    36
           h
             = 25.3
          tw
           253 253
               =      = 42.2 > 25.3           (OK)
            Fy     36
kugRtaMgKW f a = P / Ag dUcenHbnÞúkEdlRtUvKñaKW             P = f a Ag   ehIybnÞúksgát;GnuBaØtKW   Fa Ag   . BI
smIkar B.8
                       2π 2 E   2π 2 (29000 )
          Cc =                =               = 126.1
                        Fy            36
pleFob slenderness GtibrmaKW
             KL KL KL 1.0(20 )(12)
                =      =    =      = 96.77
              r   rmin   ry   2.48
lT§plEdlTTYl)antUcCag Cc dUcenHeKGacrk Fa BIsmIkar B.9:
                           ⎡ (KL / r )2 ⎤                ⎡ (96.77 )2 ⎤
                        Fy ⎢1 −         ⎥             36 ⎢1 −       2⎥
          Fa =             ⎣⎢   2Cc2 ⎦⎥
                                              =          ⎣⎢ 2(126.1) ⎦⎥        = 13.38ksi
                   5 3(KL / r ) (KL / r )3        5 3(96.77 ) (96.77 )3
                     +         −                   +         −
                   3   8Cc        8Cc3            3 8(126.1) 8(126.1)3
cemøIy³ P = F A    a    g   = 13.38(21.8) = 292kips
Design Aids
          ASD manual  man column design aids EdlmanTRmg;RsedogKñaenAkñúg LRFD Manual.
kñúgcMeNam aids TaMgenHPaKeRcInCataragsRmab;bnÞúktamG½kSGnuBaØat. enAeBleKbBa©ÚlRbEvg
RbsiT§PaB KL niglT§PaBRTbnÞúkeFVIkarEdlTamTareTAkñúgtarag eKGacrk)annUvmuxkat;Edlman
lT§PaBRKb;RKan;)any:agelOn. dUcKñanwg LRFD column load table Edr eKKYeRbIRbEvgRbsiT§PaB
 K y L eFobnwgkaMniclPaBGb,brma ry . müa:geToteKGacbBa©Úl K x L / (rx / ry ) .
        enAeBlEdleKrkemKuNRbEvgRbsiT§PaB K BI Jackson-Mooreland alignment chart eK
]bsm<½n§ B                                            497                                               T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                  NPIC
Gac GnuvtþemKuNkat;bnßy stiffness RbsinebIssrCa inelastic enAeBl)ak; (KL / r < Cc ) .
Manual k¾pþl;taragsRmab;karcg;)anenHEdr.
B >4> Fñwm (Beams)
         kugRtaMgBt;GtibrmaenAkñúg homogeneous beam EdlminmankugRtaMgeRkABIEdnsmamaRt
RtUv)an[eday flexural formula³
                 Mc M       M
          fb =      =     =
                  I   I /c S
Edl       M=  m:Um:g;Bt;GtibrmaenAkñúgFñwm
         c = cMgayBIG½kSNWteTAsréseRkAeKbMput
         I = m:Um:g;niclPaBeFobG½kSBt;
         S = m:UDulmuxkat;eGLasÞic
karBN’nakñúgEpñkenHRtUv)ankMNt;Rtwm hot-rolled I nig H-shaeped cross section EdlrgkarBt;
eFobG½kSEkgeTAnwgRTnug ¬G½kS x ¦.
        kugRtaMgBt;GnuBaØatRtUv)ansMKal;eday Fb nigQrelIsßanPaBkMNt;dUcteTA³ yilding, local
buckling b¤ lateral-torional buckling. enAkñúg ASD eKnwgmanPaBgayRsYlRbsinebI eKbMEbkFñwm
CaBIrKW³ FñwmEdlmanTRmxag (laterally supported beam) nigFñwmEdlminmanTRmxag (laterally
unsupported beam). RbsinebIFñwmman lateral support RKb;RKan; kugRtaMgGnuBaØatnwgQrelI
yielding kñúgkrNImuxkat; compact ehIyvanwgQrelI local buckling kñúgkrNImuxkat; uncompact.
kugRtaMgBt;GnuBaØatsRmab; laterally unsupported beams nwgQrelI lateral-torsional buckling.
Lateral support
eKKitfaFñwmEdlman                      man lateral support RKb;RKan;edIm,IkarBar
                          unbraced length Lb                                            lateral-
torsional buckling enAeBlEdl Lb ≤ Lc Edl Lc CatémøtUcCageKkñúgcMeNam
                 76b f         20000
          Lc =            ≤
                   Fy         (        )
                              d / A f Fy
                                               (US)                              (B.12)
                 200b f            137900
          Lc =            ≤
                   Fy             (        )
                                  d / A f Fy
                                               (IS)
T.Chhay                                               498                         Appendix B
viTüasßanCatiBhubec©keTskm<úCa                                      Department of Civil Engineering
      eyIgeRbIlkçxNÐenHedIm,IkMNt;cMNat;fñak;rbs;FñwmfaCa      laterally supported    b¤   laterally
unsupported.
Laterally Supported Beams
RbsinebI laterally supported beam GacrgkugRtaMgdl;cMnuc yield edayKμan local buckling enaHem
KuNsuvtßiPaBKW 5 / 3 ehIykugRtaMgGnuBaØatKW
                  Fy           Fy
          Fb =             =         = 0.60 Fy
                  F .S .       5/3
lkçxNÐenHRtUvnwgrUbragEdlmanpleFobTTwgelIkRmas;sßitenAEdnkMNt;x<s;bMputsRmab; noncom-
pactness Edl b f / 2t f = 95 / Fy (US) b¤ b f / 2t f = 250 / Fy (IS). ¬EdnkMNt;enHxusKña
BIEdnkMNt;rbs; LRFD b:uEnþeKeRbIvaenATIenH edaysarvaminTak;TgenAkñúgsmIkar AISC sRmab;
ASD¦. RbsinebImuxkat;enH compact eKGacTTYllkçxNÐ)aøsÞiceBjedayKμan local buckling
ehIyeKGnuBaØat[bEnßm 10% sRmab;kugRtaMgGnuBaØat. dUcenHkñúgkrNIenH kugRtaMgGnuBaØatKW
                       (
          Fb = 1.10 0.60 Fy = 0.66 Fy)
sRmab; noncompact shape, AISC eRbI linear transition cenøaH 0.6Fy nig 0.66Fy
edayQrelItémø b f / 2t f . RKb; hot-rolled I- and H-shapes TaMgGs;enAkñúg Manual man compact
web. kugRtaMg GnuBaØatsRmab;krNIenH[enAkúñsmIkarxageRkam³
                  ⎛              bf                 ⎞
          Fb = Fy ⎜ 0.79 − 0.002                 Fy ⎟
                  ⎜              2t f               ⎟
                  ⎝                                 ⎠
rUbTI B>4 bgðajBITMnak;TMngrvagpleFoTTwgelIkRmas;CamYynwgkugRtaMgGnuBaØatsRmab; laterally
supported beams. eKedaHRsay slender shape enAkñúg appendix EdlmanenAkñúg Specification
b:uEnþvaminman hot-rolled I- and H-shapes enAkñúg Manual Ca slender eT.
          kugRtaMgsRmab; laterally supported beam mandUcxageRkam³
          RbsinebIrUbragCa compact
                    Fb = 0.66 Fy                                                       (B.13)
          RbsinebIrUbragCa noncompact
                            ⎛              bf              ⎞
                    Fb = Fy ⎜ 0.79 − 0.002              Fy ⎟                           (B.14)
                            ⎜              2t f            ⎟
                            ⎝                              ⎠
]bsm<½n§ B                                              499                                 T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                NPIC
Laterally Unsupported Beams
       ersIusþg;rbs; lateral unsupported beam KWQrelIsßanPaBkMNt;rbs; lateral-torsional
buckling. enAkñúg ASD, sßanPaBenHmanBIry:agKW³ uniform warping nig nonuniform warping.
Uniform warping KWmanlkçN³eGLasÞic ehIysßanPaBkMNt;KW
                   0.65 E
          fu =                                                                    (B.15)
                  Lb d / A f
Edl       d=  km<s;srubrbs;Fñwm
          A f = RkLaépÞrbs;søabrgkarsgát;
cMENk nonuniform warping GacCa inelastic b¤k¾eGLasÞic. sRmab;eGLasÞic warping, failure
stress KW
                     π 2E
          f nu =
                   (Lb / ry )2
                                                                                  (B.16)
sRmab; inelastic warping, eKeRbIsmIkarEdl)anmkBIkarBiesaFEdlmanlkçN³RsedogKñanwg
smIkarsRmab;Ggát;rgkarsgát;
          f nu
                  10 ⎡
                 = Fy ⎢1 −
                                 (
                           Lb / ry   )2 ⎤⎥                                        (B.17)
                   9  ⎢⎣    2C 2        ⎥⎦
Edl       C=     témøGtibrmarbs; Lb sRmab; nonuniform warping Ca inelastic ¬RbsinebI Lb > C /
                 warping Ca elastic¦
                       E
            = 3π
                     5 Fy
T.Chhay                                      500                                   Appendix B
viTüasßanCatiBhubec©keTskm<úCa                                Department of Civil Engineering
Buckling stressEdl[edaysmIkar B.15-B.17 RtUv)ankMNt;RtwmEdnx<s;bMputrbs; Fy . rUbTI B.5
bgðajBI uniform warping stress CaGnuKmn_eTAnwg Lb nigrUbTI B.6 bgðajBI nonuniform warping
stress.
       edIm,ITTYl)ansmIkar AISC sRmab;kugRtaMgBt;GnuBaØatEdlQrelI lateral-torsional
buckling, eKRtUveFVIkarEktRmUveTAelIsmIkarEdl)anerobrab;BImundUcteTA³
       !> eKRtUvEck failure stress TaMgGs;CamYynwgemKuNsuvtßiPaB 5 / 3
       @> eKCMnYskaMniclPaB ry eday rT EdlCakaMniclPaBeFobG½kSexSaysRmab; cMENkrbs;
           muxkat;Edlmansøabrgkarsgát; nigmYyPaKbIénEpñksgát;rbs;RTnug. témøenHminCaxusKña
           BI ry EdlmanenAkñúgtaragrbs; ASD Manual eT.
       #> RKb;smIkarTaMgGs;RtUv)ansresredaymanpleFob Lb / rT
]bsm<½n§ B                              501                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                            NPIC
       $> emKuN Cb RtUv)anKitbBa©ÚlsRmab;bMErbMrYlrbs;m:Um:g;Bt;elI unbraced length ¬smIkar
           warping KWQrelIm:Um:g;BRgayesμI¦
       %> eTaHbICa lateral-torsional buckling strength RtUv)anbMEbkecjBIbgÁúM uniform nig
           nonuniform warping k¾eday k¾ AISC eRbIbgÁúMNaEdlmantémøFMCag.
       eKGacsegçbsmIkar AISC sRmab;kugRtaMgBt;GnuBaØatsRmab; laterally unsupported beam
dUcxageRkam³
sRmab; Lr b < 102000
                   F
                      Cb
                              (US)
                                      Lb
                                      r
                                         <
                                            703300Cb
                                               F
                                                           (IS)
           T             y                    T              y
          Fb = 0.60 Fy
sRmab;     102000Cb Lb
              Fy
                   ≤
                     rT
                        ≤
                          510000Cb
                             Fy
          yktémøEdlFMCageKkñúgcMeNam
               ⎡ 2 Fy (Lb / rT )2 ⎤
          Fb = ⎢ −                  ⎥ Fy ≤ 0.60 Fy (US)          (inelastic nonuniform warping)       (B.18)
               ⎢⎣ 3 1530000Cb ⎥⎦
                ⎡ 2 Fy (Lb / rT )2 ⎤
          Fb = ⎢ −                   ⎥ Fy ≤ 0.60 Fy              (IS)
                ⎢⎣ 3 10550000Cb ⎥⎦
nig       Fb =
               12000Cb
                 Lb d / A f
                            ≤ 0.60 Fy               (US)         (uniform warping)           (B.19)
                 82750Cb
          Fb =              ≤ 0.60 Fy                 (IS)
                 Lb d / A f
sRmab;    Lb
          rT
             >
               510000Cb
                  Fy
                                     (US)
                                             Lb
                                             rT
                                                >
                                                  3516500Cb
                                                      Fy
                                                                        (IS)
          yktémøFMCageKkñúgcMeNam
                 170000Cb
          Fb =                  ≤ 0.60 Fy    (US)     (elastic nonuniform warping) (B.20)
                 (Lb / rT )2
                 1172150Cb
          Fb =                   ≤ 0.60 Fy   (IS)
                  (Lb / rT )2
nig       Fb =
                 12000Cb
                 Lb d / A f
                            ≤ 0.60 Fy                 (US)       (uniform warping)           (B.19)
                 82750Cb
          Fb =              ≤ 0.60 Fy                 (IS)
                 Lb d / A f
T.Chhay                                             502                                       Appendix B
viTüasßanCatiBhubec©keTskm<úCa                                            Department of Civil Engineering
          ASD                   [nUvsmIkarsRmab; Cb EdlxusBI Cb Edl[eday LRFD
                    Specification
Specification b:uEnþeKGaceRbImYyNak¾)an. cMNaMfa eTaHbICa flexural strength Edleyagtam
LRFD KWsmamaRtedaypÞal;eTAnwg Cb k¾eday k¾vaminEmnCakrNIsRmab; allowable stress Edl
[edaysmIkar B.18 - B.20 Edr. vamankarsμúKsμajxøHkñúgkarKNna allowable stress rbs;Fñwm.
Shear
          kugRtaMgkmøaMgRtUv)anKNnaedayykbnÞúkkmøaMgkat;eFVIkarGtibrmaEcknwgRkLaépÞRTnug.
                               V    V
                        fv =     ≈
                               Aw t w d
        kugRtaMgkmøaMgkat;KWQrelI           shear yielding   ehIyRtUv)anykesμInwgBIrPaKbIénkugRtaMgTaj
GnuBaØatelI gross section.
                    Fv =
                               2
                               3
                                     2
                                       (       )
                                 Ft = 0.60 Fy = 0.40 Fy
                                     3
                                                                                             (B.21)
]TahrN_ B>3³ eKeRbI W 16 ×100 sRmab;FñwmTRmsamBaØEdlrgbnÞúkBRgayesμIehIyman                        lateral
bracing  EtenAxagcugrbs;va. RbsinebIeKeRbIEdkRbePT A36 kMNt;m:Um:g;Bt;eFVIkarGtibrmaEdlFñwm
enHGacTb;)ansRmab;ElVgEdlmanRbEvg (a) 10 ft (b) 15 ft nig (c) 40 ft .
dMeNaHRsay³ dMbUg kMNt; Lc
BIsmIkar B.12
          76b f         76(10.42)
                   =              = 132in = 11 ft
              Fy            36
              20000                 20000
                        =                        = 336.0in = 28 ft
          (         )
             d / A f Fy           16.97
                                            (36)
                               10.42(0.985)
eKyktémøEdltUcCageK dUcenH Lc = 11.0 ft
   a) sRmab;ElVgEdlmanRbEvg 10 ft
                    Lb = 10 ft < Lc
          dUcenHFñwmCa laterally supported beam.
]bsm<½n§ B                                           503                                          T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                 NPIC
          eday W 16 ×100 Ca compact shape sRmab;Edk A36 / kugRtaMgGnuBaØatEdl)anBIsmIkar
          B.13 KW
                   Fb = 0.66 Fy = 0.66(36 ) = 23.76ksi
          kugRtaMgBt;GtibrmasRmab;m:Um:g; M Edl[edaysmIkar B.11 KW f b = M / S dUcenHm:Um:g;
          GtibrmaEdlekIteLIgenAeBlkugRtaMg f a esμInwgkugRtaMgGnuBaØat Fb
                   M = Fb S = 23.76(175) = 4158in. − kips = 346 ft − kips
cemøIy³ a) m:Um:g;Gtibrma = 346 ft − kips
     b)   sRmab;ElVgEdlmanRbEvg 15 ft
                   Lb = 15 ft > Lc = 11.0 ft
          dUcenHFñwmCa laterally unsupported beam.
                   rT = 2.81in. ¬témøenHRtUv)an[enAkñúg properties table enAkñúg ASD Manual¦
                   Lb 15(12 )
                      =       = 64.06
                   rT   2.81
          sRmab;FñwmTRmsamBaØrgbnÞúgBRgayesμIEdlman lateral bracing enAxagcug/ Cb = 1.14 ¬Edl
          KNnaCamYynwg LRFD Specification equation b:uEnþeKk¾GaceRbIvaCamYynwg ASD equation
          pgEdr¦. kMNt;EdnkMNt;sRmab; Lb / rT
                     102000Cb   102000(1.14)
                              =              = 56.8
                        Fy          36
                     510000Cb   510000(1.14)
                              =              = 127
                        Fy          36
          edaysar 56.8 < Lb / rT < 127 eKeRbIsmIkar B.18 nig B.19
                        ⎡ 2 Fy (Lb / rT )2 ⎤
                   Fb = ⎢ −                  ⎥ Fy ≤ 0.60 Fy
                        ⎢⎣ 3 1530000Cb ⎥⎦
                         ⎡2       36(64.06)2 ⎤
                      =⎢ −                      ⎥36 = 20.95ksi
                         ⎢⎣ 3 1530000(1.14)⎥⎦
          b¤       Fb =
                        12000Cb
                          Lb d / A f
                                     ≤ 0.60 Fy
                                        12000(1.14)
                         =                                       = 45.97ksi
                             (15 × 12)(16.97 ) / (10.42 × 0.985)
          lT§plxagelImantémøFMCag 0.60Fy = 0.60(36) = 21.6ksi . dUcenHyk
T.Chhay                                              504                            Appendix B
viTüasßanCatiBhubec©keTskm<úCa                                                Department of Civil Engineering
                    Fb = 0.60 Fy = 21.6ksi
          m:Um:g;Bt;GtibrmaKW
                    M = Fb S = 21.6(175) = 3780in.kips = 315 ft − kips
cemøIy³ b) m:Um:g;Gtibrma = 315 ft − kips
     c)    sRmab;ElVgEdlmanRbEvg 40 ft
                     Lb 40(12)           510000Cb
                        =      = 170.8 >          = 127
                     rT   2.81              Fy
          eRbIsmIkar B.19 nig B.20:
                           170000Cb          170000(1.14)
                    Fb =                 =                  = 6.643ksi < 0.6 Fy
                            (Lb / rT )
                                     2
                                               (170.8)2
                                                 12000(1.14)
          b¤        Fb =
                           12000Cb
                           Lb d / A f
                                      =
                                        (40 ×12)(16.97 ) / (10.42 × 0.985)
                                                                           = 17.24ksi < 0.60 Fy
          yk Fb = 17.24ksi . m:Um:g;GtibramKW
                    M = Fb S = 17.24(175) = 3017in. − kips = 251 ft − kips
cemøIy³ c) m:Um:g;Gtibrma = 251 ft − kips .
Design Aids
                  sRmab;FñwmPaKeRcInEdlmanenAkñúg LRFD Manual k¾manenAkñúg ASD Manual Edr.
        Design aids
varYmmanTaMg design chart Edl[ allowable bending moment CaGnuKmn_én unbraced length
sRmab;rUbragEdleKeRbIsRmab;FñwmCaTUeTA. ExSekagTaMgenHQrelI Cb = 1.0 b:uEnþeKminGaceRbIvaeday
pÞal;sRmab;témøepSgeTotrbs; Cb eT edaysar allowable stress Fb minsmamaRtedaypÞal;eTAnwg
Cb .
B >5>     Beam-Columns
       eKviPaKGgát;eRKOgbgÁúMEdlrgTaMgkugRtaMgBt; nigkugRtaMgtamG½kSCamYynwgsmIkarGnþrGMeBI
edayKitpleFobkugRtaMgCak;EsþgelIkugRtaMgGnuBaØat. ASD Specification equation KW
             f a f bx f by
                +    +     ≤ 1 .0
             Fa Fbx Fby
]bsm<½n§ B                                           505                                              T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                         NPIC
Edl x nig y sMKal;karBt;tamG½kS. eKeRbIsmIkarBIrenAkñúg Specification³ EdlmYyKNnaCamYy
nwgkugRtaMgBt;EdlQrelIm:Um:g;Gtibrmadac;xatenAkñúgGgát; nigmYyeTotCamYykugRtaMgBt;EdlQrelI
m:Um:g;cugGtibrma. eKeRbI amplification factor EtmYy vaminmanemKuNdac;edayELkkñúgkarKit
sway nig nonsway components. Amplification factor enHmanTRmg;dUcxageRkam³
               Cm
          1− ( f a / F 'e )
Edl Cm RtUv)ankMNt;esμInwg³
     sRmab;Ggát;RbQmnwg sidesway
                        C m = 0.85
          sRmab;Ggát;EdlminRbQmnwg sidesway ehIynigminman transverse load
                        C m 0.6 − 0.4(M 1 / M 2 )                                        (B.22)
      Edl M 1 nig M 2 Cam:Um:g;enAxagcugrbs;Ggát; ehIyEdltémødac;xatrbs; M 1 tUcCag.
pleFob M 1 / M 2 viC¢manRbsinebIGgát;ekagDub ehIyvamantémøGviC¢mansRmab;kMeNageTal.
      sRmab;Ggát;EdlTb;RbqaMgnwg sidesway ehIyman transverse load
              C m = 0.85 RbsinebIcugRtUv)anTb;min[vil
              C m = 1.0 RbsinebIcugminRtUv)anTb;
emKuN F 'e CaplEckrvag Euler buckling stress CamYynwgemKuNsuvtßiPaB 23 /12 ³
                          12π 2 E
              F 'e =                                                                     (B.23)
                       23(KLb / rb )2
GkSr      sMedAelIG½kSénkarBt;. RbsinebIeKBicarNakarBt;eFobnwgG½kS x enaH
          b                                                                            F 'e = F 'ex   nig
KLb / rb = KL x / rx . dUcKñasRmab; F 'ey eRbI K y L / ry .
        eKRtUvRtYtBinitüsmIkarGnþrGMeBIxageRkam³
        RbsinebI f a / Fa ≤ 0.15 / eKminRtUvkar moment amplification ehIy
                        f a f bx f by
                           +    +     ≤ 1.0                                              (B.24)
                        Fa Fbx Fby
          RbsinebI        f a / Fa > 0.15   / eKRtUvRtYtBinitüsmIkarTaMgBIrxageRkam³
                        fa       C mx f bx          C my f by
                           +                   +              ≤ 1 .0                     (B.25)
                        Fa ⎛        fa ⎞         ⎛     f    ⎞
                             ⎜⎜1 −       ⎟⎟ Fbx ⎜1 − a ⎟ Fby
                              ⎝ F 'ex ⎠          ⎜ F 'ey ⎟
                                                 ⎝          ⎠
T.Chhay                                                 506                                Appendix B
viTüasßanCatiBhubec©keTskm<úCa                                        Department of Civil Engineering
                                  f by
          nig          fa    f
                           + bx +
                     0.6 Fa Fbx Fby
                                       ≤ 1. 0                                            (B.26)
smIkar B.25 CakarRtYtBinitüesßrPaB ehIyeKeRbIm:Um:g;Bt;GtibrmaedIm,IKNna fbx nig fby .
smIkar B.26 EdlmineRbI amplification factor CakarRtYtBinitükugRtaMg ehIyeKeRbIm:Um:g;cugGtibrma
edIm,IKNna fbx nig f by . cMNaMfa eKeRbI 0.60Fy CMnYs[ Fa enAkñúgsmIkar B.26 edaysar
sßanPaBkMNt;Ca yielding CaCag buckling. sRmab;mUlehtudUcKña eKGacBicarNaGgát;Ca laterally
supported member sRmab;karKNna Fbx enAkñúgsmIkar B.26 b:uEnþeKRtUvKitlkçxNÐ lateral
bracing Cak;EsþgenAeyIgeRbIsmIkar B.25 edIm,IRtYtBinitü.
        eKalbMNgrbs;emKuN Cmx enAkñúgsmIkar B.25 KWedIm,IKitBI gradient m:Um:g;eFobG½kS x
rbs;Ggát;. enAkñúg laterally supported member eKeRbIemKuN Cb kñúgkarKNna Fbx k¾edIm,IKitBI
gradient Edr. dUcenH Specification yk Cb esμImYyenAeBlEdleKKit Fbx sRmab;eRbIenAkñúgsmIkar
B.25 sRmab;Ggát;EdlBRgwgRbqaMgnwgkarrMkiltMN (members braced againt joint translation).
]TahrN_ B>4³ Beam-column EdlbgðajenAkñúgrUbTI B.7 CaEpñkrbs; braced frame. karBt;KWeFob
nwgG½kS x ehIycugrbs;vaRtUvman         lateral bracing. snμt;fa   K x = K y = 1.0   cUrviPaKGgát;eday
eKarBtam AISC Specification.
dMeNaHRsay³ kugRtaMgrgkarsgát;tamG½kS
                    P   100
             fa =     =     = 6.944ksi
                    Ag 14.4
]bsm<½n§ B                                      507                                           T.Chhay
mhaviTüal½ysMNg;sIuvil                                                           NPIC
KNnakugRtaMgsgát;GnuBaØat
Slenderness ration GtibrmaKW
          KyL          1.0(15)(12 )
                   =                = 70.87
              ry          2.54
BIsmIkar B.8
                       2π 2 E        2π 2 (29000 )
          Cc =                =                    = 126.1
                        Fy                 36
edaysar KL / r ≤ Cc / kMNt;kugRtaMgsgát;GtibrmaCamYysmIkar B.9
                      ⎡ (KL / r )2 ⎤         ⎡ (70.87 )2 ⎤
                   Fy ⎢1 −         ⎥      36 ⎢1 −       2⎥
                      ⎢⎣   2Cc2 ⎥⎦           ⎢⎣ 2(126.1) ⎥⎦
          Fa =                        =                      = 16.34ksi
               5 3(KL / r ) (KL / r )3 5 3(70.87 ) (70.87 )3
                 +         −             +         −
               3      8Cc       8Cc3    3 8(126.1) 8(126.1)3
          f a 6.944
             =      = 0.4250 > 0.15
          Fa 16.34
dUcenHRtYtBinitüsmIkar B.25 nig B.26
                   M x 60(12 )
          f bx =      =        = 13.19ksi
                   Sx   54.6
          f bv = 0
KNnakugRtaMgBt;GnuBaØat
BIsmIkar B.12
          76b f            76(10.00 )
                   =                  = 126.7in. = 10.6 ft
              Fy               36
           20000                     20000
                     =                             = 311.7in. = 26.0 ft
          (
          d / A f Fy   )            9.98
                                              (36)
                                0.560(10.00 )
témøEdltUcCaglub dUcenH Lc = 10.6 ft . RbEvgenHKWtUcCag unbraced length Lb = 15 ft dUcenH
Ggát;enHRtUv)aneKKitCa laterally unsupported beam. edaysarGgát;enHRtUv)anTb;nwg sidesway
dUcenHyk Cb = 1.0
              102000Cb   102000(1.0 )
                       =              = 53.2
                 Fy          36
T.Chhay                                                508                    Appendix B
viTüasßanCatiBhubec©keTskm<úCa                                                  Department of Civil Engineering
              510000Cb   510000(1.0 )
                       =              = 119
                 Fy          36
             Lb 15(12 )
             rT
                =
                  2.74
                             ¬ rT RtUv)anerobCataragenAkñúg Manual¦
                        = 65.69
edaysar 53.2 < Lb / rT < 119 yktémøEdlKNnaCamYynwgsmIkar B.18 nig B.19 EdlFMCagEtmin
RtUvFMCagEdnkMNt;x<s;bMputén
          0.60 Fy = 0.60(36 ) = 21.6ksi
BIsmIkar B.18
          ⎡ 2 Fy (Lb / rT )2 ⎤      ⎡ 2 36(65.69 )2 ⎤
          ⎢ −                ⎥ Fy = ⎢ −                ⎥ = 20.34ksi
          ⎢⎣ 3 1530000Cb ⎥⎦         ⎢⎣ 3 1530000(1.0 )⎥⎦
BIsmIkar B.19
          12000Cb                 12000(1.0 )
                      =                                   = 37.4ksi
           lb d / A f   (15 × 12)(9.98) / (0.560 × 10.00)
témøEdl)ansmIkarTaMgBIrxagelIFMCag 0.6Fy dUcenH
          Fbx = 0.60 Fy = 21.6ksi
dMbUgRtYtBinitüsmIkar B.26. enAkñúgsmIkarenH GVIEdlRtUvRtYtBinitüKWlkçxNÐkugRtaMgenARtg;TRm
dUcenHeKRtUvKNnakugRtaMgBt;GnuBaØatrbs;Ggát;enH RbsinebIGgát;rgkarsgát;rbs;vaman full lateral
support. W 16 × 49 Ca compact sRmab;Edk A36 dUcenHeKGacykkugRtaMgGnuBaØat 0.66 Fy .
eday karBt;eFobnwgG½kS x dUcenHeKecaltYEdlTak;TgnwgkarBt;eFobG½kS y . dUcenHeK)an
             fa    f    6.944    13.19
                 + bx =        +          = 0.877 < 1.0                  (OK)
          0.60 Fy Fbx 0.60(36 ) 0.66(36 )
RtYtBinitüsmIkar B.25
BIsmIkar B.22
                                 M1            ⎛ 35 ⎞
          C m = 0 .6 − 0 .4         = 0.6 − 0.4⎜ − ⎟ = 0.8333
                                 M2            ⎝ 60 ⎠
Slenderness ratio       EdleRbIkñúgkarKNna F 'ex KW
             KLb K x L 1.0(15)(12 )
                 =    =             = 41.38
              rb   rx     4.35
                       12π 2 E             12π 2 (29000 )
ehIy      F 'ex =                      =                    = 87.21ksi
                    23(K x L / rx )2        23(41.38)2
]bsm<½n§ B                                               509                                            T.Chhay
mhaviTüal½ysMNg;sIuvil                                                                 NPIC
          fa       C mx f bx                  0.8333(13.19 )
             +                    = 0.4250 +                 = 0.978 < 1.0   (OK)
          Fa ⎛        fa ⎞                   ⎛ 6.944 ⎞
               ⎜⎜1 −       ⎟⎟ Fbx            ⎜1 −      ⎟21.6
                ⎝ F 'ex ⎠                    ⎝ 87.21 ⎠
cemøIy³ W 10 × 49 RKb;RKan;
Design Aids
        eRkABItarag nigdüaRkamsRmab;KNnassr nigFñwm principal Manual design aid sRmab;
beam-column CataragéntémøefrsRmab;eRbIkñúgkareRCIserIsmuxkat;dMbUg (Burgett, 1973). témøefr
TaMgenH Gac[GñkKNnabMElgm:Um:g;Bt;[eTACabnÞkú tamG½kSsmmUlEdlGacpSMCamYynwgbnÞúkCak;
EsþgedIm,ITTYl)anbnÞúktamG½kSRbsiT§PaBsrub. bnÞab;mkeKGacbBa©ÚlbnÞúktamG½kSRbsiT§PaBenH
eTAkñúg Column allowable load table eKnwgTTYl)anmuxkat;sakl,gEdleKGacykvaeTAsikSa
epÞógpÞat;)an.
B>6> snñidæan (Concluding Remarks)
        eTaHbICa ASD RtUv)anCMnYsy:agelOneday LRFD k¾eday k¾vaenAEtRtUv)anGnuBaØat
[eRbIeday AISC dEdl ehIyeBlxøHk¾eKenAEteRbIvaEdr. sRmab;GñksikSaEdlmanbMNgcg;dwg
lMGitBI ASD elIsBIGVIEdl)anerobrab;kñúg]bsm<½n§enHGacrk)anenAkñúg Design of Steel structure
(Gaylord and stallmeyer, 1992) EdlenAkñúgenaHk¾manerobrab;BI AISC Specification provision
pgEdr.
T.Chhay                                       510                                   Appendix B