Problem Set 2
1. Fig. 2.7 shows the one-line diagram of a simple three-bus power system with
generation at bus 1. The voltage at bus 1 is V1 = 1.0 00 per unit.The
scheduled load at buses 2 and 3 are marked on the diagram. Line impedances
are marked in per unit on a 100-MVA base.
V1 = 1 00 1 2
j 0.03333
400 MW
320 Mvar
Slack
j 0.05
j 0.0125
300 MW 270 Mvar
Fig. 2.7 One-line diagram for Problem 1
(a) Assuming a flat start using Gauss-Seidel method determine V2 and V3.
Perform two iterations. Take acceleration factor as 1.2.
(b) If after several iterations the bus voltages converge to V2 = (0.9 j 0.1) pu
and V3 = (0.95 j 0.05) pu determine the line flows, line losses, transmission
loss and the slack bus real and reactive power. Construct a power flow
diagram and show the direction of the line flows.
2. Fig. 2.9 shows the one-line diagram of a simple three-phase power system
with generation at buses 1 and 3. The voltage at bus 1 is V1 = 1.025 00 per
unit. Voltage magnitude at bus 3 is fixed at 1.03 pu with a real power
generation of 300 MW. A load consisting of 400 MW and 200 Mvar is taken from
bus 2. Line impedances are marked in per unit on a 100-MVA base.
0
V1 = 1.025 0 1 3
j 0.05 300 MW
Slack |V3| = 1.03
j 0.025
j 0.025
400 MW 200 Mvar
Fig. 2.8 One-line diagram for Problem 2
3. Consider the two-bus system shown in Fig. 2.9. Base = 100 MVA. Starting
with flat start, using Newton-Raphson method, obtain the voltage at bus 2 at
the end of first and second iteration.
2
Slack bus 1 100 MW
0.12 + j 0.16
V1 = 1.0 0
0
50 Mvar
Fig. 2.9 One-line diagram for Problem 3
4. Consider the power system with the following data. Perform power flow
analysis for the power system with the data given below, using Newton
Raphson method, and obtain the bus voltages at the end of first two
iterations.
Line data ( p.u. quantities )
Line No. Between buses Line impedances
1 1 2 0 + j 0.1
2 2 3 0 + j 0.2
3 1 3 0 + j 0.2
Bus data ( p.u. quantities )
Bus Generator Load
Type V Q min Q max
No P Q P Q
1 Slack --- --- 0 0 1.0 0 --- ---
2 P-V 5.3217 --- 0 --- 1.1 --- 0 3.5
3 P-Q 0 0 3.6392 0.5339 --- --- --- ---
5. Redo the problem using Fast Decoupled Power Flow method.
ANSWERS
1. (a) V2(1) = 0.9232 j 0.096; V3(1) = 0.9491 j 0.0590
V2(2) = 0.8979 j 0.1034; V3(2) = 0.9493 j 0.0487
(b) V1= 1 + j 0 1 2 V2= 0.9 - j 0.1
300 MW - 300 MW
400 MW
300 Mvar - 240 Mvar
400 MW - 100 MW 320 Mvar
Slack
400 Mvar - 400 MW 100 MW - 80 Mvar
-360 Mvar 90 Mvar
3 V3= 0.95 - j 0.05
300 MW 270 Mvar
Transmission loss = SL 1-2 + SL 1-3 + SL 2-3 = j 0.6 + j 0.4 + j 0.1 = j 1.1 pu
i.e. 110 Mvar
Slack bus power SL = S12 + S13 = (3 + j 3) + (4 + j 4) = (7 + j 7) pu
i.e. 700 MW and 700 Mvar
2. At the end of first iteration
V1 = 1.025 + j 0; V2 = 1.0025 - j 0.05; V3 = 1.02989 + j 0.01521
At the end of second iteration
V1 = 1.025 + j 0; V2 =1.00008 - j 0.0409 ; V3 = 1.02978 + j 0.0216
3. At the end of first iteration |V2| = 1 0.2 = 0.8 and 2 = 0 0.1 = - 0.1
V2 = 0.8 - 5.730
At the end of second iteration |V2| = 0.8 0.07736 = 0.7226
2= - 0.1- 0.035 = - 0.135
Thus V2 = 0.7226 - 7.7350
4.
At the end of first iteration V1 = 1.0 0 0 V2 = 1.1 14.37 0 V3 = 0.9964 12.33 0
At the end of second iteration
V1 = 1.0 0 0 V2 = 1.1 14.943 0 V3 = 0.912 14.456 0
5. At the end of first iteration, bus voltage
V1 = 1.0 0 0
V2 = 1.1 13.84 0
V3 = 0.9186 13.93 0
At the end of second iteration, bus voltages
V1 = 1.0 0 0
V2 = 1.1 14.79 0
V3 = 0.9799 14.57 0