100%(3)100% found this document useful (3 votes) 885 views38 pagesComminution FLSmidth 2.001
Comminution FLSmidth 2.001
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
ELIEZER CARROZ
CEMEX VENEZUELA
Comminution manual
© 2001Comminution manual _ Contents [Comminution manual Contents
Ball mill = D: Closed circuit grinding
Charge and power Grincing theory
Calculation of charge a ee Commintton index snanD2
Caleuation of power as Cieulaton factor
Specie arene By sive residues or weight Da
Torque icons cs = Separator oticoney
example Sas Descrtion D4
Max charges 7 Power reduction: sos DS
sunatiagcomoarnert ar Max power reduction. D6
vinding mesa Yevalues SD?
EQUIIUM CharGO8 nn . = Tromp euve
Charges - Large bali. Ag Descrtion D8
Charges Smal bal oo eZ Example SCs
Srages Ce ant Factors of influence D0
Standard charge compostions.-AT2
Standard charge composions........A10 MCE: Various
Wear on grinding media Aa Fans
Piece weight and specie surtace... 15 Fan calculations. &2
Sampling of grinding MEE ava ACTS Fan calculations... es
Grinding an tneness Airand heat
“Transport through mil sonsanAAT Densities and Cp-values e4
Norma snenaes nil At? Varous formulae es
Heat balance, Example... Ate Wet and iy temperature £6
Closed Cicui grinding, Layout Ang + Water vapourin air E7
Pitt tube measurerienis e8
Bi Rollor press
e Pitt tube measurements =9
Layout False air caloulation E10
Pre-tinsing co ay Moisture celeuiations, en
Semitinsh gincing sien Sieve to mesn conversions E12
onatinan ona Cr Unit wanstormations E13
ole press calculations a7
SYMBOIS ont rnsnnnneS
Fomlas 86
Typical values: er ea
©: Vertical mits
Layout, lteratves 2. =
Vertical mil ealeuations
|
Power consumption ca
Grinding pressure woes
Mit internals es
Nozze cng ce
Dam ng co =
Heat balances, Example snnnvonnennans6®
al(index
Index
A
‘arm of gravity in relation to mill diameter AS
average moisture of feed en
8
barometric pressure ES
Bra Ds
bulk weight A2A5
bypass De
ce
caloulation o false air E10
centre distance AQ
‘charge A2
‘charge and power, example AG
charges - oyipeps AM
‘charges - large balls Ag
charges - small balls AsO
circulation factor D2
Circulation factor for roller press BS
Cirevlation factor from mass flows Ds
Circulation fator irom residues Ds
comminution index D2
C-values of gases and materials Ea
ctitcal speed AS
cutsize Ds
D
dam ring height G7
dota De
densities of gases Ea
density of a gas ES
‘drying compartment Ar
dynamic pressure Ea
E
efficiency, fan £2
efficiency, separator Da,D5
electical energy to heat ES
cequilixium charge, definition AB
examination ofa grinding mosia charge
{alge air calculation
fan calculations
fan eficiancy
fan power consumption
fan speed
fineness of grinding material in the mil
finish grinding layout
free height
s
(988 flow measurement Fae
grinding bed
‘ringing madia, piece weight and specific surface
4
ro)
heat balance fora ball mill
heat balance for a vertical mill
heat of evaporation of water
heat transmission
!
‘deal separator D
1
1
geercimecccntl
Figs
eg
‘erase
Initial charge, coal mill wth classifying lining A
intial charge, fine grinding compartment A
intial charge, frst compartment A
A
A
1
initial charge, intermediate compartment 1
initia charge, raw mil with classifying lining 1
kK
kappa D
L
layout of closed circuit grinding Ad
layout of finish grinding 8,
layout of pre-grinding 5
layout of semifnish grinding 5
layouts of the VRM system ¢)
[index M-s | Index s-W
spect sutace Ass
ee — Ag
maxcharges 7 Standard charge compocttons Fert
max power eduction a
measurement of gas fow EBES
mesh o stove conversions ete torque factor, ball mil ARAS
moisture calculations E11 MERE torque actor, oer prose 25.8687
most rom Het and ry temperature es torque factor vera mil ea
transport capacty of material through grates
Me rea resco tony ar
nazzo ring area oe ‘romp eune De
z es.
malin Bae uni wansfommatons E18
Prove weight fr equlovium charge ~ oe Y
Pet tube measurements EB
pone consumption by compartment 3 KERIB velo oraee ze
ower consumption Nf rler prose Be Yolume of compartment a2
power consumption of drying compartment. AT Vs and Brnax O4
Power consumption of verte mil a =z |
flower consumption tan E2
pre-grinding layout B2 Be water vapoyr in air rom dew point E7
7 wearon ging med ane
recover of fines oC
toler press Greiaton factor Be
ral press parameters By
roistonalspoe fhe mil 2
e ea
sampling of rnding media, examples Ae
semis grag layout 38
Separator ecioncy babs
Separator efleoy a8 reovary of fes ba
Separator eficieney as reduction ipower consumpion 0.5 EA
sieve to mesh conversions ew
poste charge Aa
Speetedonsty ofa gos es
Specie grinding pressure for vertical mil cs
Specie pon sonsumpton for bal il ba
Specie power consumption! rll press Be
Specie oer pressure 26,87Page At
A: Ball mill
secoCharge and power Calculation of charge]
Charge and Power Calculation of power
Compartment power consumption:
D: —_Elfestve ameter of compartment tn}
Effective length of compartment im BB Aimet gravity inretation to mil diameter
Rotational speed of he mil trom
v: Volume of compartment :
14D 1 I) es Accaleration of gravity ims
hi: Cenire distance (W/D used in page A.4) & —_Angleof displacement nl
b=H-DO2 [en]
AD =H =$6 a . N: Power consumption by compartment at mill shell
Hi: Free heigt N=F-g-D-a-sina-m 160 rane)
H=(vD + %)-D Im)
smi pmanereaigegeamagalne i sini the traue factor. Standard values tom page A
we Bui weight (rom page As) tu Ne0514-Fen-psD-a noe
er
Bota y ‘i BB Woetecremnosi ie aren
Critical speed:
The eal speed ns the speed, were the contifugal force at
the mil ining equal to the graational ore
423
nate tm)
vo
Normal mil speeds are 70-80% ofthe etical specs
Page A2 Ball mill es Ball mill Page AS[Charge and power
Specific charge eo
Charge and power
Torque factors)
nD aq | WD a — T ~~ Wedia
000 aes 3000900 aT Matra) ining | ining] er Foxe
500s 0s0 9d | 0.205.658 aa ngs TYP my
0010 0435 487 | 0210 O85 Nene Bale] 43) 878
O01s oad! 481 | O23 685 arse
002 ods 475 0900 0.670 = and | Stoo | NOME | Rods | 80 | 085
0025 0.482 468 0.225 0.876 : Danuia | Bais | 48 | 075
00s 04s? © 482 | 0200 6a a mec
003s 0482456 | 025 68 [|_| Sie | Ba | |
ood ass 449 | 0280 1609 Cament Nene | Bais > 4S~ 068
os 047s 443 | 0.245 0.699 So names (epee | ar | ‘Gad
00800479438 | 0250 0.705 vines
a ne a meal None [Minos 4.7 08s
0080 0.490 424 | 0260 O77 in | || mn | oom | as | on
0085 0485 418 | 0205 0722
bee: GE | eee e-3 anus | cyoeds | 47 | a7s |
075 0.507 405 | 0273 o7a4 Dania |Minpebs) 47 | 086
0080 O5i2 999 | 0280 0740 L x
ooss oie © 92 | 0203 OFA a ay | Se] Nene [aramie | 8 for
080 0823 «386 | 0290 0751 Silex | None | stone | 15 | 075
dos _o820 380. | 0295 _O787 ae] 18 ee |
1000594 97.4 | 09000769 coarse None | Bale [4S 68s
0108 oi «367 | 0505 768 ea | None | Reds | 60 | 050
O10 0846 361 | ORO O77 and | Steet
Ons osst «885 | Oss Oe! seta Dawa | Bats | 49 | 967
0420 0557 m3 | 0220 0786 aa Sonex | als 49 | 058
O12 0862 a3 | 0.925.702 ain et te
dts) O68 © 836 | 0880 798 i bee | Bas | 48 | ane
0135 0574 330 | 0335 0.804 es None | Cyioavs | 4.7 0.88
O10 0878 S24 | oad oat ie | Sl sie | ean |
O15 0805 518 | 031 _08%6 ea ei |, (ats ast
0.150 0.501 912-0360 0822 Daruia | Cypebs | 47 | 067
0155 080) 808 | 098s ogee Were | Coram 4
fe te 8 as ae a Nene | Coane +8 035
0165 0608 204 | 0905 089 Steel None | Stone | 15 | 08s
04700613 268 | 0370 oes Woah eee [—
0.175 0619 262 | 0375 08st ee titers | stone 15 | 086
0180 082 © 276 | 0980 O8sr rum
o485 0690 270 | 0305 0860 6.99 es Coarse Nore | Bale 43] ae
2490 0838 284 | 0300 0869 5.99
0195 062 358 | ons 087 B59 wee | 202 | MB | ion | | Bate | as | 088
1 car abo bo calouated as Mesum Nona | Cipebs | 47 | 060
essen a =. wesum |__| dana | cybebs | 47 | ot
Page Aa Ball ral SS ain Page ASCharge and pai Example
Example:
In & UMS 42 x 19 mill running with 16.0 rpm, the following was
measured:
First compartment
D=401m L=889m —H=2.75m
‘Second compartment:
D=419m L=898m — H=281m
Calculations for rst compartment
1/4 (4.01 my 3.89 m= 49.1 me
WD =2.7614.01 - = 0.186 wy.
From page A.4: q= 27.0%; trom page A:
227.0100: 4.9.um?.49.1m'=57.0t
Calculations for second compartment
14 (4.43 mp «8.98 m= 112.3 me
hO =2.8114.13-%
From page At: q = 27.6%: from page AS: b = 4.5 vin?
Fs27.6/100 4.5 tim? 112.4m° = 199.41
Power caleuations:
N= 0818 Fonda bemoans
First compartment
From page At: a
N
1630; From page AS:
73
514-57.01- 16.0 rpm 0.73. 4.01 m- 0.690
N
865 KAMnet
‘Second comparment
From page A.4: a = 0.625; From page A.S: u = 0.69
N= 0514-18041. 16.0 mpm -0.69- 4.19 m- 0.625
N= 2002 KWingt
TOCIC ITC Cn eee
charzelned pa iMax charges
ee oping RE |
a ee ee
specie cetge
(eas er]
Dy 6s
um | wesshwm | a |S
wecsnwnt | 23 | 3s
Tuk] "Zeamparments-| se —] 35
‘comparmente_|_ 3
TM 2-compartments 28 26
Tes %
[aie Goa 38
Wash Blam st
foaa |e
i wy
g sts
ums. e sot
conpertne 2 oa
5 aos
2 mas
sf Sis
second se ise
commer e ws
Gus Ste} 3B a3
Diora % soa
Be 308
Power consumption of ding compartment
oe Nominal ametor of dying conparinen! ta
Loc Nominal length of ying comesemnent tm)
Nuc wa’ consumpion of tying compartment Woe
‘The power consumption of drying compartment can be
Calculated as illows
For raw and cement mils
Noe = 15° Doc®*> (toc 0.4) (kW (net)
Fr coal mila
Noc = 08: Dse® hoc -0.4) ikWinet)
Page AG Ball mill
Ball mill Page A?r
erinaing media Equilibrium charges] SSM [Grinding meaia Charges - Large balls
Equilibrium chat finition ER Siee eigaeo8 S33
‘An squilovum charges the distribution ofbat szesihatwithe = WEB ge ghecabeses
realised when operating a ball il fr along time, compensating Re Re BREE gles
the weary atcng al of one pectic siz, and removing he Ea le
bal tich are smalor tan Palfthe ameter ofthe bal size gees galsex Bebe ele
Used for compensation Rp ole
The equlivun cage sctenaeisedbythedanetert novos SS 3 |ge| ageee BRESE
20 used for compensation — PSF Sle
EEquitbrium chargés may be mixed to adjust the required piece RRR | Seseen BSR ale
weight and suave area, Two or more bal sizes are then used for per ele
compensation SA Ee alee KRgeeo Paes
“The avorage piece weight and the specific surtace of an Epes Swleale
eau arg win rma sets cane acs a 5 ses Raskes BSB 2\5
0.001913 :0,? ia) a Bese] SBSeE+ Bees
B/ées| abazheo gles
on 8 wm = OEE Beis sls
Bese 8), faeegno Essie
here is he dati mm of ba io ne for oe: 5 Bap Sr
compensation es Ele les| ealszelew Beleok
eB] = IF 2 Bese
Fleck aeasie Sele ole
SS EES E EEE REPEAT
f Pee ESE To oealt
em | Peeesbsse sce ee
; Se[soteis gag 5
F/iGeeessecscks < ze
2/5 BS Sessa sere sk si,
|B ReTREE eal
2) @ PERE EEE ESS oz a/e
B/S lEEEEcEE EE 2 gle
F|S BEsesesse sig gis ge
6 BaP
Ball mill Tye)
Page AS ‘Ball millCharges -Cyipeps |
ublen Aq stunowe renbe wy paonporius ave Ketp ‘paves 18 uopesuedtiioD 10} SOzI8 OF AYA)
sa] ve] v9] 6s] ] os] oF] er] we] ze] ve | ze] ez | vew ] nba conyns oyoods
se | uo} es {es | is | uv | ov | iv | oe | ce | ee | oe | wz | yeun|_pegna coens ayoads
S [2 ]e [st foe lve] ie} se | er use| os fear] 6 ‘nb 1yBiom S004
st | ve{ez| vc |r| es}eolealcn| 5
+ jiwack Joe1 paw oxo
le ele ewes foe fuwexg
ov sfe @ juew ze 89 fu orxoy
se v2] ou 6 L lve eo [B11 fu zexe1
ey | ov | ge | ee Www er [Bez fu srxor
lvator [Bey uw gixe.
z
9
1 | ez er] 6 jes [659 fw zexas
v2] ct hewaoe [806 [uusexcz
, se | ze fworsz |6s01 haw oexoe
$ 1 | 62 haw oze [5.92 uw cece
4 e @ oporpa far farfer] et fot uw lsu edonn
3| ot 6 zz|zz|ez{sz| oe} oe} ce} ce [xe] *9muey? uisdedKo
3 a a 8 % |e | | 06 | % | ce [us | (opens uonesuac
| [o a a 212 |e 1% | x [oe | [se (s)e2 uonesuaduog|
5) [sdaat Winjgi)nbS 10) SOGse9 Tenia popuauWoT_y
Charges - Small bails]
Grinding media
DODEDIDID002
auBisés Aq siunoure jen u, peonpoill axe feu} “poIeIs axe LOVeSUEditod 10} 5621S 01 O10UNA
so [es] is [or |i [ze] ve [oe | sz | ez [roz|zerozt| vw] -unbs eoepns oupedg)
so | 9 | 9» | a | ee | ve | ve | vz | oe | iz Jett lect] yw | remus aonuns owoods|
se] rest | oz for | ee | es | ex fzzr|ear|eszfeoe|err| 6 nbs 1yBiom Daye,
| on | 94 | iz | ez | op | e5 | ee | zi lors ove lore |aiv| 6
z wan vst [Bs0
seliz/o}e]z lew zz [Bp
zoles|er|oclu}ul + Wwe is [Ov
sefis[orliv[ tele] a] e wee [Bcc
oz | ov | ov | or | zz earl ale wie [5 b9
silse|ec}ec|reler| 6 | ¢ hewoe [ois
ge [is fer | ay | 26 | oz juwerer [bcoz
te |e | uy | ov hawys Jeers
Wwew eres [5.998
‘UM
sforfor]orfor|a}ar|o seqwiey U $9715 fee
st | oz | oz | sz | cz | oe | & | o» xu
SL 02 se Of
uu |, (s)ez1s uowesuedwo,
oz | | oe | | Ge | 0 | OF (sh 0
ea news ‘ingHTNBS 103 sat
Page ATi
Ball mill
Ball mill
Page A10rinding mi ‘Standard charge compositions
First compartment initial charge:
Bail size
7oma_[ 6mm _|
I Bate
Compensation 90mm
ina pices weight 1509
Equlibium pisce weight 1395
Coal mil -
Salsie
Ham [40mm [30mm
25%, o% | 3%
Compensation 508 40mm
ina piece woigh 1839
Equlibrum piece weight: 1626
Intermediate compartment inital charge
{tare compartment mils
Balaze
Sama mm mm
ae 22% 16%
Compensation som
inital pieoe wight 2800
Equibrium piece weight: 259
Page A.12 Ball mill
=
=
=
Ess
Ea
ss
[Grinding medi
Standard charge compositions
Fine grinding compartment initial charge:
‘Non-classitying lining:
Bal se
Mil system 2mm 20mm iSmm
‘Open 20% 40% | 40%
Closed 40% | 40% [20%
pen Closed
Compensation: Ok 25mm 25mm
Initia piece weight: 239 30g
Equilibrium piece weight: §=— 20g 809
CClassitying ting:
Ball size
Bomm [4mm | somm | 25mm | 20mm | omm
10% | 10% | 5% —[ 30% | 30% | 15%
Compensation: 50mm 25%
25mm 75%
Initial piece weight 39g
Equilbium piece weight! = 38g
Raw mill with classifying lining (one compartment mills
Ball size
30mm | 80mm [70mm | 60mm [0mm [5 mem | 20mm
44% [19% [13% J 14% [ 14% [16% [10%
Compensation: 90 mm: 60%
30 mm; 40%
Initia place weight 1399
Equilibrium piece weight: 122g
Coal mill with classitying lining (one compartment mills)
—Ballsize
somm | aomm [om | 26mm | 20mm | mm
V8 18% 6% | 22% | 23% | 10%
‘Compensation: 0mm: 22.5%
40mm: 22.5%
20mm: 55%
Initial piece weight 70g
Equilirium piece weight: 75.
Ball mill Page A138Grinding media Wear on grinding media Oem (Grinding media Piece weight and specific surface
Page Ata
Ball mill Page ATS
4 Diameter of ba im
Cast Pp: ‘Specific weight of material Ig’em®)
Meste Chrome alloy Piece weight
[— Te e286 Lap ‘ol
% 10-12 .
Analysis vm 8 glom (normal steel):
% Or ue o.oo a? tal
ene 02-05
hi | ©: Specific surface:
Hardness HRC 35 oon wet
Wear in lkWh taken up by compartment P
iaigetale ae |i p=7.8 glom? (normal steel)
768
Wt Smal balls io 7a (rey
, 18-30 5; 123 »
[eee | vr (may
“Largo als i
Raw | Stall bale 1-3 For exarination of a grinding media charge, toke out net less
‘han 200 plces, tom each sampling spot in Compartment I, snd
‘6 less than 2600 form compartment 2. Exact fom under te
L centoline and dig 2s deeply as possi. Broken media sored
EM ai Separate in actons so stom in exampes orang
small balls a
‘Cement Snell bak w Calculation of surtace is based on the average piece weight and
Cyipes 1-3 WEE aitteascumpton hat al ne mesa or of prone eae a
assumption also appies to cyincicl eyipoue
WG iscce vot and spec sutace of charg 6 ltd tom
the main facton by slsregarding madia less. tan hal te
WES aiametor ofthe largest size usd for compensation for woar
In compartments wih cessing ing the charge normaly
ESB consist oto eguionum charges consttung « Coste. grding
and atine-ginding chage, ther proporions bong detained
Kesar Te cme an asta ag rng
‘Tho classying elect is most cieary expressed in the proportion
between the plece weights inthe inlet end and outst end othe
eR rpariment
Ball mill(Grinding media pling of grinding me WEBB iinding and fineness Transport through ell
Normal fineness in mill
Example: Ballcharge Compartment 1-compersates EA
Bam co an boas Transpen capacity of material through grates
mam Wear a ae) = [Wath afaias Open cieat Smear]
(mm) (xg) (gram) | _(méit) | (m*) Closed circuit 8- 12mm
30-85 | 7052 | 250 | 24 | 2008 | 858 [0.805 Es 1st partion
85-75 | 81.87 | 290] 38 2154 | 9.52 | 0.779 Dry | 2nd. partition approx, 5 vidmi?h)
reoes| e008 | 213 | a2 | ‘ses | 1108 |oece | gem Gite grata
t-s5| eos | 149 | 40 | 1000 | 1220 | o4es who Tonal 6
55-45 | 2388 | 8.5 49. 4e7__| 15.63 | 0.373 ‘Wet | 1st. partition 8 ms(dm?-h)
<45 | 291 | 1.0) 13 | 224 | 2025 es 2nd. partion 2 mifldmehy
Broken | 3.02 td. 7 431 16.28. Outlet grate 40. mr(dm*h)
[Teta [ e262 3 25S) geegy. (| WS Pessoa cro 30 avan=h)
‘Main fraction >45 mm: 276.69 kg ~ 0.27669 ton ~ 97.9 % ~ 195. drum _| Inciined outlet grate 25 mkom*h)
mesa,
hoc went 276860 sary HEB spa capac of mater tough ml body
° 195 a 20-30:thim?
29100 2/
ecific surface = m
= °* p27669 A =
Normal finan. o rncing mater in tne i
Example 2: — Cylpebs charye | Compartment 2- Normal th igh ie A
Compencated fox woar wth 25 x 25 mm cyipebs. PB ive compertment mi
Facion [Wee] a, Jan ).1 8, |S 20% 402mm
com) _| eg Ne gram | corny | cn’ | ell savomaion
25-235 | 223 [222] 26 65.7 | 27.89 | 0.062 ponti
ws-205| 365 |o64| 52 | e30 | p00 [ors | em
20s-173| 210 |200| <9 | ase | 3488 | 0073
ts 160| 43 |iae| 36 | 266 | ais9 | ooo:
io-125| 038 | as | 30 | 127 | 270 loco]
Ties | vier | 10] 18 | 65 | e398
Bown | bo |os| > | se | See =a Fis pation
Total 10.04 | 241 0.330,
Win raion 25 rans BS Kg = 0GBBSTON ~ 981% — 218
meda =a Second partion |
Piece weight 9853 452 g es
218 “he samples ar taken Inside oF immer in ont of he
es Me
Specific surface ee
2.00885
Page A16 Ball mill
Ball mil Page ATTHeat balance Example]
Closed Circuit grinding Layout
‘An example of a heat balance fora ball mill (ball mil tube only)
Cp
kealiagC
Temp
iw wh °C
Feed, ary 50 959 0.186 1516
Water in teed 02 200 1.000 «4
tun mat, 1020 1180 ©0186 2188
Isrinaing hoat 2498
lair 28 250 oad 180
Fate aiciniet 00 «250 ata
Fate air, outer 22 2500 ate
[water in
[TOTAL IN
out
raterai otal
Water in product
Water evap 20 1180 © 0.483 1295,
ot aie 239 1180 «= 0.244678
Surface lose 199
Water evap : The water in the food and the water from the water
Injection s evaporated at 0 °C and the steam is heated 0116 °C:
2.0 (695 40.453 - 116) Mean = 1295 Meath
‘The amount of ai out ofthe mil tube is 24.9 Uh (Arn + Water
evaporated). At the oullat the air has a density of: 0.90 kai?
‘The ait amount is thus 7.7 ms. Ao 4.2 m mil wil have a tree
area of 9.70m® (with 30% filing degree). The velocity in the mill
tube is thus 0.80 mvs,
Far Gp values see page 2 , grinding heat calculation and
Surface loss, soe page Es
‘Typical layout of closed circuit grinding
Separator with product collection in eyciones:
Offers maximurn heat preservation for maximum drying in the il,
‘smallest possibie fiter and pressure drop over separator system,
‘Separator with product collection in fiter. Ofers maximum cooling
of the product: ©
Both sysiems may be designed to offer partly recycling of the
‘separator air fr the best compromise between the two solutions
Page A18 Ball mill
Tos
Ball mill Page A19Roller press:
TAA
B: Roller press
Page BtDECQCECCEICCCOONOOES,
re
ee
| Control
[re
Recycled | Govtce
Magnet) | pressed
2 material 5
Presses |
i matorato
bal il
Pre-arinding layout
‘+ Flow splitter controls rato between material recycled to roller
press and pressed material to ball mil
+ Roller press speciic power consumption
~210 ~5 kWhit material to ball mil
‘+ Roller press circulation factor =
Roller press throughputinaw feed:
1-20
Page B2 Roller pressTayout Semisinih grinding Tayeut Finish grinding
eta
deter
t seers,
Feed
tin i
wea | .
| press||. Fine o
maton to Finished
Feed ball product
Deagglomerator 3)
‘Separator,
Recycled
material ins
finish grinding layout
+ Separator controls ratio between material recycled to roller
press and pressed material to ball ml
+ Deagglomeration and separation may be combined in one.
machine
+ Roller press specific power consumption
6 to ~14 kWhit material to ball mill
‘© Roller pross citculation factor
Faller press throughpuvnew feed:
25-6
Separator
New maT
feed Recycled
Magnet coarse
material
Finish grinding layout
+ Separator controls ratio between material recycled to roller
press and pressed materia to ball mil
+ Deaggiomeration and separation may be combined in one
machine
+ Separator may be divided into a grit separator and separator
‘working in series
* Roller press specific powar consumption (cement grinding)
14 to ~30 KWhit finished product
‘+ Roller press circulation factor =
Roller press throughputriew feed
“61014
Roller press Page BS
DERCCCOCCLCC CONT OL
Page Ba Rollor press[Roller press calculations
‘Symbols
Roller press calculations Formulas,
Move
‘otal roller force Ts calculated trom the hydraulic pressure and
the number and area of the hycraulic cylinders:
T=c-A-B: 102 Ny
‘Specific roller pressure ks the total force divided by the
projected roler area:
kr=TD-W) (Nin?)
rol aCe Peripheral velocity v of the rollers is calculated from the roller
BR ahecd and the ole ameter
i W=P"D (60) ims}
L ctr nates eset casts
es applied total force, the peripheral velocity and the rolling torque
factor between materia and roller sutace |
D: Roller diamete im) NapeTew [kW]
TE ar iton using tho spac or pressure
W: Roller width im uk owe ew)
a: Roller speed (pm) Ea
i ‘Throughput capacity M ofthe roller press is calculate rom tho
el, Raver peripr etal ey a) BR _iekness ol tne grinding bes tne density ofthe pressed materi,
Grinding best thicaness im the width of thé rollers and the peripheral velocity
a ua Ma36.3°0-W-v wn)
F— Rolorforeo |
8: Hydrate prossure toad Specific power consumption E1 appied tothe material at exch
Bass trout tne rer press isthe power consumption dided by
aw Piston area Im] ‘the throughput capacity:
nt 0
c ‘Number of hydraulic cylinders a es a M [kwhit)
3° Density of pressed materal igh Roller press circulation factor Cis the throughput capacity
yore 8 Bee aiedty no new toe rate
us Torque factor u CemP u
kei Specie roller pressure ous |
M: Roller press capacity (uh =a roller press system (finished product or product to ball mill) is the
a Sonesta Spectic power consumption applied tothe material at oach pass
N Power conauenet 1 through the roller press multiplied by the circulation factor:
E: ° Specific power consumption rw) es =C-EI tkwha |
c: Roller press circulation factor a
P: New feed to roller press toh eS
Roller press Page BS Bee Fees Roller pressRoller press calculations _—_—_—_—_—‘Typical val
Typical roller press parameters
Flier press velocity Ima] [13-16
6000 (Cement and slag)
Specific roller prossure —_(kNim*]
4500 (Raw materials)
Torque factor a | 007-04 |
| Grinding bed — eotoy | 18-23 |
Density of pressed material [ume] | 22-27
Roller press. PageB7
Notes
Page BS
Roller pressDOGG EE CCCP
Vertical mill
C: Vertical Mills
Page 1Layout
‘There are two basic layouts of the VAM system; product
collection in eyclone(s} or product collection in fiter.
Below only the ducting used with the mill in operation is shown
Product collection in eyeione(s
To dedusting
. » '
Heat source
Product collection in fiter:
«
q
q
4
y
Heat source
Page 02 Vertical mill
IH
|OO ee
[Vertical mili calculations Semboie | MEM yericat ant cacaatons ——Pomersonsmaption
WES re tnecratcal poner consumption ot vorical te i
A Sele nen nae oR ee Oe a
Nozte ring area ta Forthe Atox mil folowing applies:
Grinding table diameter im) = Kx Typicaly 500-700 [Nine
Day Hygraulo ylinder ciameter tm = Daa: Wate tm
Dn Hyde pol lemeter im a] Baits fi
Deets eller clameter tr Dy = Mit size 40 imi
F —Geincing force ay es 4
Fis Hyer rnin force KN] — ‘aeoven eal
Fe: Roller grading force KN) Bundlb-by ia
x Specie gindng pressure tevin es
Ma Roller assembly weight, one roller kg) es For the OK mill following applies:
HTorque ctor 4 Kr Typically 700-1000 Nin
N Mill power uptake kw) SS A= Dror Wear [my
Grinding table speed (pm) Drotor = 0.89 Do (OK 25-3: 0.69 Da) Im]
Pea Hytaule ong pressure een = aar™ 024- Dy to
Grinding track speed rvs] es (ro)
Waser Roller weth tm a
Number of allers a Ld (rvs)
=a i
HR 76 lorUe factor, wil norma be in tho range
[ ial -Repeaton Ty =range —
8 le remo
es [eat arnaing 007-008
Comentgending —0.08-070
BB LK | Secrecy [oso
Vertical mi Page C3 GB eo Vertical iVertical mill calculations Grinding pressure Will nternats Nozzle ring]
Formulas apply for Atox and OK milis only ‘The nozzle ring area isthe free area, perpendicular tothe
rection ofthe gas flow, as measured at the shortest distance
between the table and the air guide cone:
Piston rod
| Aes
Pos | stock Z
|| abso
i|
| Aouide cone,
Hyer i
eviinder L)
- Anazzie
7 | 3
‘The grinding pressure, F, consists of: Dam ring \ =
4. =
Fat Fu en
Fa=Ma-981/ 1000 te Grinding table
are
whore \
Fia= Piya (Dey)? (Dpeon}") Bla = 100 kN]
‘The specific grinding pressure will then be: 1
|
KreFiA (kav Gas ow direction
The mechanical instrucion wil mast often enclose a graph giving
the correlation betwoen Pays and Kr.
35-50 mis,
‘The higher the velocity, the lass material falls through the nozzle
ting,
a
‘The gas volociy in the nazz rig wl normaly bein the range:
=3
es
es
es
Page 6.6 Vertical mill
Page C5‘ermal Dam ring]
Heat balances Example
‘The dam ring height isthe height measured from the grinding
table segment to the top of the dam ring
For Atox mills:
Dam ring
height
Table segment
Grinding table
For Atox mill the dam ring height is often refered to as "% of
{able diameter". The optimum height normally being in the range
25 - 4% of table diameter.
Example:
‘Adam ring of 120 mm in an Atox 32.5 will give a relative height,
of 120 mm /3250 mm
For OK mills:
Dam fing
height
“Table segment |
Grinding table}
For OK mils the dam ring height is given in mm only
N th SC __KCalkg’C Mean
[Feed, ry B00 a0~COaIe Cae
Water in feed 74 20 1.00088
[Reciee mat. (#)
[Grinding heat (2) 1376
Icas 02-5222 18405
lFalco air) 20 2 © 02M, 847
water injection 0
FrOTALIN 7, Ze
our
[water in product
pe Water evap 164 0453 10389
loas,total =. | axe 2d 6833
|surtace loss 200
ecire mat. (#)
‘An example of a heat balance for a vertical mill
Case: 200 th, 8 KWhit{net), drying from 896 to 0.5% moisture
Flow Temp Op Heat
[fora our
(2): Recirculated material isnot included in the heat balance since
the inlet and outlet temperature of this is virtually the same.
(©): 1600 kW * 9800 sth / 4.186 J/Cal = 1376 MCalh
(C): False air from mil inlet to mill outlet is calculated based upon
(CO; and O: measurements. Standard value is 10%
Us (S95 + 0453.85) = 10.384
Vertical mill Page G7
Page C8 Vertical millTOC
D: Closed circuit grinding
Closed circuit grinding Page Dui[Grinding theory ComnTnon Indo]
(Circulation factor By sieve residuos or weight]
Fo: Sieve residue of feed to mill system (es) SC comsiove rositues:
Re Sieve residue of product 6) — a
Re: Sieve residue of separator reject [ee]
Fa: Stove ideo separator teed 1 =a "s
Ws Comminutian index ten :
€:—_Specitc power consumption for ball mill (AW <
© Girulation factor ra
‘Tho spectc power consumption for a ball mil, grinding fom sieve | 5
residue Ri to Re, can be described by the falloving equator RY T
I
E-water Re) tent u
Wis the cammiution index spect or the patcuar mil Mato balance: OxRy = R, +(C~1)xR
‘operating wh tho partcularmateras, and states the spactic
energy consumption in KWvt required for reduction ofthe sieve _Ro-Rr
ee erate Gielaton ator c= FF
‘The specie power consumption plotled agains the sieve residue pay A
wil form a straight ine, when the residue values are plotted using Byweiants —- son
Blogante scale
For open cult grinding the equation is
& tol) teen
Ry
For closed circuit grinding, with a circulation factor C: a
remeron
Ro +R x(C-1)
=Wxex x(0-1) jew Re
Ee OR Re [writin] A
— I
‘The comminution index, being a measure forthe grinding t
eticieney, can be usefl when making comparisons between two ieee
mil, or produts with éfferent fineness, ea
= +P
ey tent cn Ss
Page D2 Closed circuit grinding BSR Glosed circuit grinding PageD.3
|[Separator efficiency
Separator efficiency as reduction in power consumption:
‘Operating in closed circuit with a separatar, normally results in a
reduction in the specific power consumption,
Description
The size ofthe reduction depends on the efficiency of the
separator, the fineness level of the product and ofthe circulation
factor.
By applying the formulas for Vs and Bs, the saving in kWhit
‘oblained by using a separator can be determined. The
Ccalcuations are based on the residues found in the samples Fi,
Pres Fl
Typical values for efficiency, Vs, relating to residues inthe interval
82-45 micron:
4st ganeration separators:
CV, Heya, Sturtevant
‘2nd generation separators:
REO, Wedag, ZUB
3.rd generation separators:
Vs =25- 40%
Vs = 40-60%
Sepax O-Sepa, Sepol Vs =75 -85%
‘Separator officioncy as recovery of fines
Ur Separator efficiency as recovery of fines [%]
‘Separator eficiency measured as Recovery of Fines is calculated
according to the expression:
‘The msthod can be used for comparison between separators
operating atthe same circulation factor.
The method does not quantify the power reduction,
Power reduction
Separator efficiency
Vs: Separator efficiency as reduction in power consumption
Pe)
Obtained power reduction ical
Baxi Maximum possible power reduction I
‘The separator eficiency (Vs), is defined as the reduction in
Specific power consumption in the mil, obtained with the
‘separator in question (B), in relation to the reduction which could
have been obtained if the separator were ideal Bn.
vs=—5 100 ra)
Ban
hence the saving (B) can be expressed as:
B= Bypgy XV5/100
‘The sionficance of an deal soparator isa residue in the retume,
Ry = 100%.
The value of Bax can be calculated using the expression:
Ry +100x(C-1)
The soparator efficiency Vs is calculated according to the
expression:
R Ry +Ryx(C-1)
tog Ro _extog Ro * Ra fC-1)
TR, OR sR, (OT)
Ro Gntog eo = 100%(0=1}
10982 extog Re y
08 pO Oa F00x(O=7)
Vs=
}«400: 4]
‘The speciic energy consumption or closed circuit operation is
Calculated from the expression:
ee oWato
Bas | [kwon
10000
Page D4 Closed circuit grinding
=a
a
ea
=
ea
ea
Ss
Closed circuit grinding Page DS[Separator efficiency Max power reduction [Separator efficiency Ve values
Max power reduction, Bmax) Soparator efficiency, approximate values
Valid for = 1.8 -5
Dinan
Page D6 Closed circuit grinding (Closed circuit grinding Page D7
TOC CCRC HeTromp curve Description
T: Tromp curve value ea
‘The tromp curve is used to evaluate the performance of a
separator,
‘The curve describes the percentage of the feed material, of any
‘fain size, which is found inthe return material
The construction af a Tromp cure requires particle size
distrioution curves for the material streams going into and leaving
the separator.
‘The panicle size distriaution curves, representing Rt, Rim, Rg, are
divided into particle size intervals, where each interval represents
a patticle size,
‘The Tromp values are caloulated according to the expression:
C-1,, ARG 409
ABO 4
© “Rm
where:
he percentage of reluin material in the interval
representing the particle size.
‘fim = the percentage of material leaving the mil, in the interval
representing the particle size,
Cutsize:
Parca size corresponding to the Tromp-value 50 %
Depends on rotor speed and fineness fevei
Kappa:
‘Slope of the curve in the interval 25 - 75.%, Eg.: x25/x75
Normal range: 0.5-0.6
Delta = Byoass:
‘Tromp value at lowast point on curve.
Normal range: 5-15 %
Page D8 Closed circuit grinding
TOLCCte
[Tromp curve
Example
100
2
@
7”
2
2 w
5
8
20
z
8 40
5
e
x
2»
re |
0
Closed circuit grinding
Page 0.9Factors of influence: Trompecuves | EMD [Notes
‘The shape ofthe Tremp curve i influenced by the folowing a |
factors
‘Separator desian, =
Later generation separators designed with more favourable es
geometry, resulting in higher valves for Kappa and low By-pass
an ea
Material load, es
Excassive material loading sults i increased by-pass and lower
Kappa value. =
Normal ranges: Productload: 0.85 koi?
Feedload: 2-25 kg/m? es
Insufficient aidiow resus in higher by-pass value and lower a
Keppa value —_
Creulation factor
Increase in cculation factor leads to Increase inthe by-pass =
value.
Grinding ala a
‘The use of grinding eid may counteract agglomeration, resulting es
in reduced by-pass value and increased sharpness of separation
‘Analysis method. =
Different laser analysis methods may ajve cifferent results es
Comparison of Tromp cures should be done using the same
rebeana wen ea
Page 0.10 Closed circuit grinding BSE Closed ci Page D.1tPage Ext
E: Various
Various
DDDQDDDDDDLDDDDDDID2rai FamST=ufonsi] Fane an calcoalons
no or ‘Te carats of an cn be change by changing he
Eaiges kya) tiemeter a given impolior os br shen
Tela rosie atornce oer fan a
ae (rn =O i
N Fan power consumption (KW) a
Volume flow at inlet [mvs] y
° tm mee) a
fn: Fan effilency ul =
D: Diameter an impel tm Fi
pens of clean gas kan tae (2) ww
5 Disteinentingee tom
th changing fan sped andor dns
= Quy
pts
a Cod reer
where the subscript "ref refers to the values the fancurva is
based upon.
“The fan power consumption can be calculated from the flow and
the pressure diference over the fan:
Gp, pts 9.81 pa/mmWs
Nw
1p 1000 W/W
tw)
1 can vary from 0.89 for oft type open blade impeller types to
10.85 for a modem closed impeller with curved blades.
Changing the diameter ofthe fan impeller causes the same
changes as changing the fan speed.
Page E2 Various
=
es
|
|
Ll
es
eas
ea
es
es
Various Page ESainandtieat Densities and p-values [Air and heat Various formulas
foi Specie density ofa gas Ikon
Gases: ni f — Densiy ofa ges thoi}
= po) Op average” .
Gas inka mo T Temperature rej
erry 7a] b: —Barometic pressure as be
ie bp: Barometic pressure at sea level
ed y=760 mmmHG, 1013 mBar or 10833 mmiNG.
1.486 | Height: Height above sea level fm)
*: Air with 7596 rel. humid at 20 °C at soa level Relative pressure mmwe}
2. Kiln gas’ Oz vat 4.0%; CO2 ma: 32.0% and moisture content of gh gs eters re]
0.05 kg H:0 kg dy gas. Ve: Gas amount at Normal conations {Nm
>. Cp-average fr the gases are the average vals in the interval Ve © Gai ernoupt at acted condetons: kl
0 400°C
Ikcabkgi"C)
aR
sinker 8
“Goat igh vile | 027 —
Coal, low volaile oi «|
“Sag 0.197
rr
Ho waioy OY
*. Gp-average for the materials are the average values in the
interval 0-200 °C
Barometric pressure:
b= by «ef 2020128 Hey
Density:
273 bby -10393+p 1
Reo met 10333 fore
Volume:
Vevy 27324, 10299 ii
“273 Bly 10333 +p
A gas volume V; with temperature t and pressure p; will change
0 Ve when temperature andior pressure changes to t and pe
273+ tp bilby 10833 +p,
"Dre, Bly 10353 + Pp
(ont)
Heat of evaporation of water:
595 kealkg at O°C 539 koalig at 100°
Electrical eneray to heat:
‘kWh equals 660 kcal
Heat transmission from a surface:
8 kealh/*Cim for free convection,
4012 callie from forced convection.
1000 keal/nvm from a cement mil surface.
PageEs Various
=a
es
=a
esa
=a
es
Various Page ES[Air and heat Water vapour in air
[Air and hi
Wet and dry temperature
Dow point temperature °C
Wet thermometer
Dew Point Temperature
Dry thermometer
Kiln Gases:
Subtract 2.5 °C from the actual dewpoint and use the graph,
PogeEs Various Various Page Ey?[Air and heat Pitot tube measurements Il
(Air and hi Pitot tube measurements
Pe Dynamic pressure Immwa}
= State pressure immu]
o* —Spocte gravity of gus
B73. oy 10559 +p, eet
8 Brat 70333
ve Valo of gas
va [20-80 ime
2
D: Inside diameter of duct imi
@: Volume ow of gas
Q=5.0?-y [ois]
Mass fow of gas
Q=5-D? v-p Ikg’s}
3: Quantity in Nine
=Q-2 [Nm¥s}
‘Measuring points must as far as possible be situated on a straight
stretch of pipe with uniform flow, without obstructions like blends
fr dampers, There should be a straight stretch of minimum 5xD
before and 2x0 ater the measuring point.
conectoe:
Pe Meroe branches both rere
Ho Semnacreae oe
—— —
— °
| IL
[Normal pitot tube Stlype pitot tube is usa6, if the gas
stream is dust filed. The dynamic
pressure is corrected with a factor of
(0.86 before the normal formulas ara
used,
Page 68 Various
‘The gas flow in @ pipe is never uniform throughout ts cross
Section, and Ps should be calculated as an average value of the
‘measured values taken atthe tabulated points below.
i SyPameensa)
‘hore n is the number of measurements included
Pewee
fm) a |S fe fe fe |
~~ as.
points | 2x2 | 2x4 | 2x6 [2x8 | 2xf0 =
a [0.850/0.930]0.96D)0.970]o.970
@_{0150/0.750]0.850|0900|0.920
a [0250 ]0.700]0.81-0/0.850)
a 9.07.0 0.800 | 0.68.0| 0.77.0)
a (0.15:0/032.0 0.660
as | (0.04-0)0.190|0.360
a (0.100/0.23)
ae 0.030/0.15)
ae 0.080
a 0.03.0
For rectangular oross sections a fictive diameter of D=¥(HsB) is
Calculated, and use the number of tabulated measuring points as
indicated in the table. In a rectangular duct, the measuring paints
are evenly distributed inthe cross-section,
Example:
‘A duct measures inside: mm
= %@ - (800+800) = 650 mm
Corresponding to the a 650 mm cireviar
duct, or & measurements ag indicated. ot
Various Page £8‘Air and heat False air calculation
Molsture calculations ]
“The faise air between two points can be calculated based on O:
‘and CO: measurements, if the main gas stream is kin gas. False
air in the mil lowers the temperature and thereby the drying
capacity. False air atthe aullet does not directly influence drying
burtinereases the load on fans and fers, n extreme cases false
air may bring this load to a point where sufficient air ean no longor
be drawn through the mil
False air is expressed in percent of unmixed gases at the inet.
‘The amount of false air through the mill and cyclones may be
calculated from the contents of COs and Opin the gas.
‘Atmosphere air contains 0% COs and 21 % Oz. In the
‘calculations the term “gas” signifies the unmixed gases and the
term *mixure” the mixture of false air and gases.
From COs-measurements:
60,(gas)—CO,{mixtre) e
COstmictue)— a)
From Ormeasuroments
Op{ mixture) 0988). 99 a
ef mtu)
F Feed (wet) (uh)
P: Production (ary) (uh)
wi Moisture of feed 1
Wp Moisture in product fel
E: Water evaporated (un
‘A: Dry proportion of component ea)
B: Wet proportion of component (Pa
Production of @ mil system with moist feed
100-w,
P=F
ay {uh
Feed necessary to produce P is
400
FeP
Se teh
‘The average moisture of feed with dtferent components:
os 100
wy = 100-- A [%)
200-5,
or in terms of the wet proportions:
Wy =38,-w,/100
where Ais the dry proportion ofthe ith component and the
moisture of the same component,
‘The wet proportion of the nth component is calculated as:
‘The dry proportion is calculated from the wet proportions as:
fg =By 100
400-58, -w, 7700
Page E10 Various
Various Page E11Sieve to mesh conversions
[Unit wansformations
rT, | Dita
wi | Mesto | Meetho thn 0621 les tle = 1.900km
neal are Pee ORtisveom ved” sesame
Cases iow - Oates
jr 2 ie te 41mm =0.0384 inch Yinch = 254mm
‘to ‘a ‘4
1780 ae | 6 Weight:
Hes ® ts ie) ce remmnen taht. wow0ri
- erage ie te coast ig
eo Ty ota jer 226350
coo 2B 2 | aoe
= |» | s TES OMEnKO Imei tdi
33 tmBar =102mmH.0 tmmH:0 =0.098 mBar
“ © {Ba 07mm imme. cLassmoer
a +0 see: Soi moer
al re
0 eo 1 Bar 1.033 atm. tat. = 0.969 Bar
re 70 Tpsi "= 0.0690 Bar 1 Bar 14.5 psi
85 80, 1 kgtiem? = 0.98 Bar 1 Bar = 1.02 kato?
a0 toon
iz | 0 Force, power, eneray and to
106 150 5) sc tke =8BN
90 170 isd | tkpm 981d WW 102 kom
200 x0 tien Sastw tw =o.t02rpms
20 20 tre tw L3eh—
00 270 1kWh
seo ws | | eT tery =o250.iat
—* | aa = fi), =o a
‘Temperature:
BB xc xe V5 X-+92°C.
ae XK Lxeane
a Verous RY Various Page E78
You might also like
Specification Sheet - 1,13,18,72,73,76-100-Um005 - En-P PDF
Specification Sheet - 1,13,18,72,73,76-100-Um005 - En-P PDF
6 pages