POWERFAB
Improved Mica Insulation
System for HV Rotating
Machines
VPI-System
Porofab
Porofab
POWERFABs new glass fabric
Standard yarn of glass cloth Flat glass yarn for Powerfab
~25% - 33%
Porofab
Porofab
Contact area for binder resin
Mica Mica
weft
warp
binder
~15% reduced mica tape thickness
Porofab for VPI Technology
Calmicafab for RR Technology
Porofab
Porofab
VPI tape: 160g mica & 24g glass / m
Standard versus Porofab
Less resin
content
Flatter and
more com-
pact glass
yarn
Mica
layers
touch each
other
Porofab
Porofab
VPI tape: 160g mica & 24g glass / m
Standard versus Porofab
Thinner layers
with equal
Mica content
Warp and
weft
minimise
the knuckle
effect
Porofab
Porofab
Mainwall insulation: historical overview I
> 2005
Year 1911
Year 1983 Year 1993 Year 1998 Powerfab
69,82 mm
73,64 mm
78,89 mm
80,36 mm
128,45 mm
42,4 mm
17,1
19,01 mm
21,36 20,41 mm
mm mm
(4,6 mm) (4,1 mm) (3,4 mm) (2,5 mm)
(15,1 mm)
15 kV insulation
Porofab
Porofab
Mainwall insulation: historical overview II
Porofab
Porofab
Voltage Endurance Test
(Epoxy Anhydride System)
IEEE 1553: VET of form-wound coils and bars for hydrogenerators
Schedule A: 400 h @ 2.17 UN
Schedule A: 250 h @ 2.53 UN
Porofab 3290 Life time
En [kV/mm]
Extreme conditions: sharp edges
30
25
20
15
10
Test
KEMA Life time E=3.5kV/mm Votastat normal temperature:
Votastat spezial IEEE 1553 E=3.5kV/mm 155C
5 Kema Life time E=4.0kV/mm IEEE 1553 E=4.0kV/mm
Kema Life time E=4.5kV/mm IEEE 1553 E=4.5kV/mm
Logarithmic Votastat
0 t [h]
1 10 100 1000 10000
Porofab
Porofab
Thermal and electrical properties
(Epoxy Anhydride System)
P power, heat transmission
A heat transmission area
T temperature difference
P = A T thermal conductivity
s s thickness of insulation
TTC Thermal transmission
TTC
coefficient
10.5 kV Insulation
Porofab
Porofab
Thermal Cycling
(Epoxy Anhydride System)
Cycle: 16h at indicated temperature, 8h at RT
Fail criteria: tan tip-up 5
Thermocycle test VPI
60
VPI Standard Sample 1
VPI Standard Sample 2
50 VPI Standard Sample 3
VPI Standard Sample 4
Porofab Sample 1
Porofab Sample 2
40 Porofab Sample 3
Number of cycles
Porofab Sample 4
Porofab Sample 5
30
20
10
0
160 170 180 190 200 210
Temperature level [C]
Porofab
Porofab
Mechanical properties I
Tensile Strength
150 Fmax = 143,4 N
F
125
100
Fmax = 134,5 N
tape
F in N
75
50
25
Standard Porofab
F 0
0 1 2 3 4 L in % 5
Porofab
Porofab
Mechanical properties II
Tear Edge Strength
450
Fmax = 369 N
375
Fmax = 298,3 N
300
20 F in N
225
150
75 Standard Porofab
0
0 2 4 6 8 10 L in % 12
Porofab
Porofab
Mechanical properties III
Flexural Strength
6
Fmax= 5,4 N
knife 5
4 Fmax= 3,6 N
tape F
F in N
3
20 mm
2
1
Standard Porofab
slot 0
L in %
0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5
Porofab
Porofab
Power increase of a small air cooled hydro
generator
SN = 32 MVA
cos = 0.85
12.5 % more n = 500 rpm
copper in stator slot UN = 10.5 kV
16.5 % more power IN = 1760 A
output f = 50 Hz
EN = 2.24 kV/mm FAB EN new = 3.0 kV/mm
= 0.27 W/mK new = 0.37 W/mK
SN = 37.3 MVA
SN = 5.3 MVA
Porofab
Porofab
Power increase of a large indirect hydrogen
cooled turbo generator
SN = 440 MVA
cos = 0.80
9.5 % more copper n = 3000 rpm
in stator slot UN = 20 kV
20% more power IN = 12702 A
output f = 50 Hz
EN = 2.70 kV/mm FAB EN new = 3.5 kV/mm
= 0.27 W/mK new = 0.37 W/mK
SN = 530 MVA
SN = 90 MVA
Porofab
Porofab
Conclusions
Improved properties:
Thermal (insulation)
- higher thermal conductivity
- better bonding of layers better thermal properties at
elevated temperatures
- better delamination reserves at highest temperatures
Electrical (insulation)
- higher electric field strength
Ambient (insulation)
- same as standard
Mechanical (tape)
- reduced mica tape thickness
- higher tensile strength
- higher tear edge strength
- lower flexural strength
Increase of machines efficiency by reduced and better
thermal conducting mainwall insulation:
Reduction of frame size (material) at same power output:
commercial benefit
Higher power output at same frame size (material)