Tutorial ODE (EEM1026) trims 2 1718
1. State the order, linearity, homogeneous or non- homogeneous of following differential
equations.
4
(a) d 3 y + 5 dy 4y = ex (b) y'' 5xy' + y = 3 sinx
dx 3
dx
2. Solve the following differential equations.
x 1
(a) y’ = x2 - x (b) y' x 1 (c) y” = 24x
Ans : (a) x3/3 – x2/2 +c, (b) x + 2lnx-1 + c or x -1 + 2lnx-1 + c (by using u=x-1),
(c) 4x3 + cx + d
3. Solve the following initial value problems.
(c) y ' x 1 y ; y(0) = 1
2
(a) y’ = y 2 + y – 6 ; y(5) = 10 (b) y ' y ln y , y(1) = e
x y
5 ( x 5 )
26 24e 4
Ans:(a) 13 8e 5( x 5) ; (b) y = ex, (c) y 1 x
4
4. By using the method of separation of variables, find the general solution of the
following differential equations:
(a) y’ = xy
2
(b) 1 x y' 2 y (c) y 2 y’ = (y 3 +1)
Ans: (a) y ce
x 2
/2
, (b) y A
1 x
, (c) y Ae 1
3x
1/ 3
1 x
5. Show that the equation is exact, and obtain its general solution. Find the particular
solution corresponding to the given initial condition if given.
(a) [(x + 1)ex –ey] dx –xey dy = 0 (b) 3x2(y-1)2 dx + [2x3(y -1)+y] dy = 0; y(1) = 1/2
dy 1 e 2 y
3 3 2
(c) 2(x + y ) dx + 6xy dy = 0 (d) dx 2 xe 2 y
x 2y
(e) (x + tan-1y)dx + dy 0 (f) 2y2+ yexy + (4xy+ xexy+2y)y’ = 0
1 y 2
(g) x cos(2y – x) – sin(2y –x) –2x cos(2y – x)y’ = 0; y(/12) = /8
Ans:(a) x(ex –ey) = c, (b) x3(y –1)2 +(y2/2)= 3/8 (c) 2xy3+x4/2 = c ;
2 y
(d) x xe C ; (e) x tan-1y + ln1+y2 + x2/2 = C; (f) 2xy2+ exy + y2 = c;
(g) x sin(2 y x) / 24
6. Newton's law of cooling states that dT k (T - TS ) . Given that a hot bottle with initial
dt
temperature of 80 C is allowed to cool in air which remains at temperature 250C. It is
0
observed that in 20 minutes, the bottle has cooled down to 600C. What is the temperature
of the bottle after another half hour? [T(t) = 42.770C]
1
7. Prove that given function is an integrating factor. Not need to solve.
(a) 2ydx + xdy = 0, µ(x) = x. (b) y2 dx + (1 + xy) dy = 0, µ(x, y) = exy.
8. By using the formula ( x) e
R ( x ) dx 1 M N
where R( x) or
N y x
( y) e
R ( y ) dy
with R( y) 1 N M . Find a suitable integrating factor µ(x) or µ(y),
M x y
and use it to find the general solution of the differential equation.
(a) (y + 1) dx - (x + 1) dy = 0 (b) (xy + y +1)dx + x dy = 0
(c) (x + y) dx + xlnx dy = 0 (d) 2 ln x 2 x 2 y dx + x3 dy = 0
(e) xn(x2 + y2 + x)dx + yxn+1dy = 0 (f) (xy3 + y2)dx + (y – xy + y3 cos y)dy = 0
y 1
, general solution is x 1 c ; (b) ex, general solution is xyex +ex = c ;
1
Ans: (a)
x 1 2
1 2 x 2 2 4 3
(c) ; y ln x + x = c; (d) ; x 2 y 2 ln x (ln x) C ; (e) n , x y x x C .
1
x x 2 x 2 4 3
2
1 x 1 x
(f) 3 ; sin y c
y 2 y y
9. Find the general solutions of the following linear differential equations. If initial
condition is given, find the corresponding particular solution.
(a) 2xy’ + y = 10 x (b) cos x dy y sin x cos 2 x
dx
(c) y’ + y = ex, y(0) = 1 (d) (1+x)y’ + y = cos x, y(0) = 1, x > -1.
dy 1 dy
(e) y x, y(1) 5 [exam Feb 2015] (f) y 2 sin x
dx x dx
, (b) y =xcosx + ccosx, (c) y 2 e e , (d) y 1 x sin x 1 ,
c 1 1
Ans: (a) y 5 x
x x
x
2
(e) y x 14 , (f) y sin x cos x ce x
3 3x
10. Solve the following Bernoulli equations:
1 y
(a) y' y y , y(0) 2 (c) xy' y x y (d) y' x x y
2 2 2 2
(b) x2y’ + 2xy = 5y3
1/ 2
x 2
, (b) y 2 cx5
2 x
Ans: (a) y 1 3e , (c) y 1 , (d) y
x 2 cx x cx
3
11. Find a general solution of the following homogeneous linear differential equations
with constant coefficients:
(a) y” + 7y = 0 (b) y”- 6y + 25y = 0 (c) y(iv) -29y” + 100y = 0
2
(d) Solve the following initial value problems:
d2y
2 y 0, y(0) 5, y' ( ) 4, 0 [exam Feb 2015]
dx 2
Ans: (a) y = A cos 7 x +B sin 7 x, (b) y = e3x(Acos 4x+B sin 4x),
4
(c) y = Ae-2x+Be2x+Ce-5x+De5x, (d) y = sin x + 5 cos x
12. Solve the following initial value problems:
(a) y” + 4y’ + 5y = 0, y(0) = -3, y’(0) = 0
(b) y”’-3y” + 3y’ - y = 0, y(0) = 2, y’(0) = 2, y”(0) = 10
(c) y(iv) + 3y”- 4y = 0, y(0) = 0, y’(0) = -10, y”(0) = 0, y”’(0) = 40
Ans: (a) y = -3e-2x(cos x + 2 sin x), (b) y = (2 + 4x2)ex, (c) y = -5 sin 2x
13. By using the method of undetermined coefficients, find the particular solution yp of
the following inhomogeneous differential equations:
(a) y” + 2y’ + 3y = 1 + xex (b) y” + y’ + y = sin2 x (c) y” – y’ - 6y = 2 sin 3x
d2y
(d) 9 y 12 x cos 3x (e) y” + y = cos2 x
dx 2
1 1
Ans: (a) 3 6 x 9 e , (b) 2 26 cos 2 x 13 sin 2 x , (c) 39 cos 3x 5 sin 3x ,
1 x 1 3 1 1
x
y p x 2 sin 3x cos 3x, (e) yp = -(1/6)cos 2x + 1/2
(d) 3
14. Solve the following initial value problems:
(a) y” + 4y = 2x, y(0) = 1, y’(0) = 2 (b) y” + 9y = sin 2x, y(0) = 1, y’(0) = 0
(c) y” - 2y’ + 2y = x + 1, y(0) = 3, y’(0) = 0
3 1 2 1
Ans: (a) cos 2 x 4 sin 2 x 2 x , (b) cos 3x 15 sin 3x 5 sin 2 x ,
5 1
(c) e 2 cos x 2 sin x 2 x 1
x
15. Solve the following problem:
2 x
(a) y”5y’ + 6y = -3sin2x [exam Feb 2016] (b) y"5 y'9 y e 2 x
Ans: (a) y = c1 e2x+ c2 e3x + (-3/52)sin2x + (-15/52)cos 2x,
5 61 5 61
x x 1 2 x 1 13
(d) y c1e 2
c2 e 2
e x
15 9 81
3
dy
16. Consider the solution of (6 x 2) y 0 in the form of power series in x about
dx
x0 = 0, i.e., y cn x n . Find the first five nonzero terms of this series solution.
n 0
[exam Feb 2015]
22 3 67
Ans: y c0 2c0 x 5c0 x c0 x c0 x 4
2
3 6
17. Consider a power series solution y cn x of the differential equation
n
n 0
2
(1 + x )y” + 2xy’ - 2y = 0
k 1
(a) Show that c2 = c0, c3 = 0 and ck 2 k 1 ck , k 2
(b) Find the first five nonzero terms of the series solution.
1 1
Ans: y co (1 x 3 x 5 x ) c1 x
2 4 6
18. Suppose that the linear differential equation
y” + x2y’ - 3xy = 0
has a power series solution y c n x .
n
n 0
k 4
(a) Show that c2 = 0, c3 = ½ c0 and ck 2 (k 2)(k 1) ck 1 , k 2
1 3 1 4 1 7 1 10
(b) Show that y co (1 x ) c1 ( x x x x )
2 6 252 5670
19. Consider the solution of y"5xy ' 4 y 0 in the form of power series in x about
x0 = 0, i.e., y cn x n . Find the first six coefficient terms of this series solution.
n 0
1 11
[exam Feb 2016] Ans: y c0 c1x 2c0 x 2 c1 x3 c0 x 4 c1 x5
6 120
20. Find the first six coefficient terms of the power series solution for the following
differential equation about x0 = 1.
y”+ xy = 0
Ans: y c0 1 1 ( x 1) 2 1 x 13 1 x 14 1 x 15
2 6 24 30
c1 ( x 1) x 13 x 14
1 1 1
x 15
6 12 120
4
d 2 y dy
21. Consider the solution of xy 0 in the form of power series in x about
dx 2 dx
x0 = 1, i.e., y c
n 0
n ( x 1) n . Find the first six coefficient terms of this series solution.
Ans:
y cn ( x 1) n c0 c1 ( x 1) c2 ( x 1) 2 c3 ( x 1)3
n 0
c0 c c c c
c0 c1 ( x 1) ( x 1) 2 1 ( x 1) 2 0 ( x 1)3 0 ( x 1) 4 1 ( x 1) 4
2 2 3 24 8
c0 c
( x 1)5 1 ( x 1)5
30 20
1 1 1 1
c0 [1 ( x 1) 2 ( x 1)3 ( x 1) 4 ( x 1)5 ]
2 3 24 30
1 1 1
c1[( x 1) ( x 1) 2 ( x 1) 4 ( x 1)5 ]
2 8 20
end