0% found this document useful (0 votes)
420 views5 pages

Differential Equations Guide

This document provides examples of solving various types of differential equations, including: 1) Identifying properties of differential equations such as order, linearity, and homogeneity. 2) Solving first and second order differential equations using separation of variables, integrating factors, and undetermined coefficients methods. 3) Finding general and particular solutions to initial value problems. 4) Solving homogeneous and non-homogeneous linear differential equations with constant coefficients. 5) Using power series solutions to solve differential equations.

Uploaded by

Victor Loong
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
420 views5 pages

Differential Equations Guide

This document provides examples of solving various types of differential equations, including: 1) Identifying properties of differential equations such as order, linearity, and homogeneity. 2) Solving first and second order differential equations using separation of variables, integrating factors, and undetermined coefficients methods. 3) Finding general and particular solutions to initial value problems. 4) Solving homogeneous and non-homogeneous linear differential equations with constant coefficients. 5) Using power series solutions to solve differential equations.

Uploaded by

Victor Loong
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

Tutorial ODE (EEM1026) trims 2 1718

1. State the order, linearity, homogeneous or non- homogeneous of following differential


equations.
4

(a) d 3 y + 5  dy   4y = ex (b) y''  5xy' + y = 3 sinx


 
dx 3  
dx

2. Solve the following differential equations.


x 1
(a) y’ = x2 - x (b) y'  x  1 (c) y” = 24x
Ans : (a) x3/3 – x2/2 +c, (b) x + 2lnx-1 + c or x -1 + 2lnx-1 + c (by using u=x-1),
(c) 4x3 + cx + d

3. Solve the following initial value problems.


(c) y '  x 1  y ; y(0) = 1
2
(a) y’ = y 2 + y – 6 ; y(5) = 10 (b) y '  y ln y , y(1) = e
x y
5 ( x 5 )
26  24e 4
Ans:(a) 13  8e 5( x 5) ; (b) y = ex, (c) y  1  x
4

4. By using the method of separation of variables, find the general solution of the
following differential equations:
(a) y’ = xy
2

(b) 1  x y'  2 y  (c) y 2 y’ = (y 3 +1)
Ans: (a) y  ce
x 2
/2
, (b) y  A
1 x 
, (c) y  Ae  1
3x

1/ 3

1 x

5. Show that the equation is exact, and obtain its general solution. Find the particular
solution corresponding to the given initial condition if given.
(a) [(x + 1)ex –ey] dx –xey dy = 0 (b) 3x2(y-1)2 dx + [2x3(y -1)+y] dy = 0; y(1) = 1/2
dy 1  e 2 y
3 3 2
(c) 2(x + y ) dx + 6xy dy = 0 (d) dx  2 xe 2 y
x  2y
(e) (x + tan-1y)dx + dy  0 (f) 2y2+ yexy + (4xy+ xexy+2y)y’ = 0
1 y 2

(g) x cos(2y – x) – sin(2y –x) –2x cos(2y – x)y’ = 0; y(/12) = /8

Ans:(a) x(ex –ey) = c, (b) x3(y –1)2 +(y2/2)= 3/8 (c) 2xy3+x4/2 = c ;
2 y
(d) x  xe  C ; (e) x tan-1y + ln1+y2 + x2/2 = C; (f) 2xy2+ exy + y2 = c;
(g)  x sin(2 y  x)   / 24

6. Newton's law of cooling states that dT  k (T - TS ) . Given that a hot bottle with initial
dt
temperature of 80 C is allowed to cool in air which remains at temperature 250C. It is
0

observed that in 20 minutes, the bottle has cooled down to 600C. What is the temperature
of the bottle after another half hour? [T(t) = 42.770C]

1
7. Prove that given function is an integrating factor. Not need to solve.
(a) 2ydx + xdy = 0, µ(x) = x. (b) y2 dx + (1 + xy) dy = 0, µ(x, y) = exy.
8. By using the formula  ( x)  e 
R ( x ) dx 1  M N 
where R( x)    or
N  y x 

 ( y)  e 
R ( y ) dy
with R( y)  1  N  M  . Find a suitable integrating factor µ(x) or µ(y),
M  x y 
and use it to find the general solution of the differential equation.
(a) (y + 1) dx - (x + 1) dy = 0 (b) (xy + y +1)dx + x dy = 0
(c) (x + y) dx + xlnx dy = 0 (d) 2  ln x  2 x 2 y dx + x3 dy = 0
(e) xn(x2 + y2 + x)dx + yxn+1dy = 0 (f) (xy3 + y2)dx + (y – xy + y3 cos y)dy = 0
y 1
, general solution is x  1  c ; (b) ex, general solution is xyex +ex = c ;
1
Ans: (a)
x  1 2

1 2 x 2 2 4 3
(c) ; y ln x + x = c; (d) ; x 2 y  2 ln x  (ln x)  C ; (e) n , x y  x  x  C .
1
x x 2 x 2 4 3
2
1 x 1 x
(f) 3 ;    sin y  c
y 2 y y

9. Find the general solutions of the following linear differential equations. If initial
condition is given, find the corresponding particular solution.
(a) 2xy’ + y = 10 x (b) cos x dy  y sin x  cos 2 x
dx
(c) y’ + y = ex, y(0) = 1 (d) (1+x)y’ + y = cos x, y(0) = 1, x > -1.
dy 1 dy
(e)  y  x, y(1)  5 [exam Feb 2015] (f)  y  2 sin x
dx x dx

, (b) y =xcosx + ccosx, (c) y  2 e  e  , (d) y  1  x sin x  1 ,


c 1 1
Ans: (a) y  5 x 
x x

x
2
(e) y  x  14 , (f) y  sin x  cos x  ce  x
3 3x

10. Solve the following Bernoulli equations:


1 y
(a) y' y  y , y(0)  2 (c) xy' y  x y (d) y' x  x y
2 2 2 2
(b) x2y’ + 2xy = 5y3
1/ 2
 x  2
, (b) y   2  cx5 
2 x
Ans: (a) y  1  3e , (c) y  1 , (d) y
   x 2  cx  x  cx
3

11. Find a general solution of the following homogeneous linear differential equations
with constant coefficients:
(a) y” + 7y = 0 (b) y”- 6y + 25y = 0 (c) y(iv) -29y” + 100y = 0

2
(d) Solve the following initial value problems:
d2y 
 2 y  0, y(0)  5, y' ( )  4,   0 [exam Feb 2015]
dx 2

Ans: (a) y = A cos 7 x +B sin 7 x, (b) y = e3x(Acos 4x+B sin 4x),
4
(c) y = Ae-2x+Be2x+Ce-5x+De5x, (d) y =  sin x + 5 cos x

12. Solve the following initial value problems:


(a) y” + 4y’ + 5y = 0, y(0) = -3, y’(0) = 0
(b) y”’-3y” + 3y’ - y = 0, y(0) = 2, y’(0) = 2, y”(0) = 10
(c) y(iv) + 3y”- 4y = 0, y(0) = 0, y’(0) = -10, y”(0) = 0, y”’(0) = 40
Ans: (a) y = -3e-2x(cos x + 2 sin x), (b) y = (2 + 4x2)ex, (c) y = -5 sin 2x

13. By using the method of undetermined coefficients, find the particular solution yp of
the following inhomogeneous differential equations:
(a) y” + 2y’ + 3y = 1 + xex (b) y” + y’ + y = sin2 x (c) y” – y’ - 6y = 2 sin 3x
d2y
(d)  9 y  12 x cos 3x (e) y” + y = cos2 x
dx 2
1 1
Ans: (a) 3   6 x  9 e , (b) 2  26 cos 2 x  13 sin 2 x , (c) 39 cos 3x  5 sin 3x  ,
1 x 1 3 1 1
 
x
y p  x 2 sin 3x  cos 3x, (e) yp = -(1/6)cos 2x + 1/2
(d) 3

14. Solve the following initial value problems:


(a) y” + 4y = 2x, y(0) = 1, y’(0) = 2 (b) y” + 9y = sin 2x, y(0) = 1, y’(0) = 0
(c) y” - 2y’ + 2y = x + 1, y(0) = 3, y’(0) = 0
3 1 2 1
Ans: (a) cos 2 x  4 sin 2 x  2 x , (b) cos 3x  15 sin 3x  5 sin 2 x ,
 5  1
(c) e  2 cos x  2 sin x   2 x  1
x

 

15. Solve the following problem:


2 x
(a) y”5y’ + 6y = -3sin2x [exam Feb 2016] (b) y"5 y'9 y  e 2 x

Ans: (a) y = c1 e2x+ c2 e3x + (-3/52)sin2x + (-15/52)cos 2x,


5 61 5 61
x x 1 2 x 1 13
(d) y  c1e 2
 c2 e 2
 e  x
15 9 81

3
dy
16. Consider the solution of  (6 x  2) y  0 in the form of power series in x about
dx

x0 = 0, i.e., y   cn x n . Find the first five nonzero terms of this series solution.
n 0

[exam Feb 2015]


22 3 67
Ans: y  c0  2c0 x  5c0 x  c0 x  c0 x 4  
2

3 6

17. Consider a power series solution y   cn x of the differential equation


n

n 0
2
(1 + x )y” + 2xy’ - 2y = 0
 k 1 
(a) Show that c2 = c0, c3 = 0 and ck  2   k  1 ck , k  2
 
(b) Find the first five nonzero terms of the series solution.
1 1
Ans: y  co (1  x  3 x  5 x )  c1 x
2 4 6

18. Suppose that the linear differential equation


y” + x2y’ - 3xy = 0

has a power series solution y   c n x .


n

n 0

k 4
(a) Show that c2 = 0, c3 = ½ c0 and ck 2   (k  2)(k  1) ck 1 , k  2

1 3 1 4 1 7 1 10
(b) Show that y  co (1  x )  c1 ( x  x  x  x  )
2 6 252 5670

19. Consider the solution of y"5xy '  4 y  0 in the form of power series in x about

x0 = 0, i.e., y   cn x n . Find the first six coefficient terms of this series solution.
n 0

1 11
[exam Feb 2016] Ans: y  c0 c1x  2c0 x 2  c1 x3  c0 x 4  c1 x5  
6 120

20. Find the first six coefficient terms of the power series solution for the following
differential equation about x0 = 1.
y”+ xy = 0

Ans: y  c0 1  1 ( x  1) 2  1 x  13  1 x  14  1 x  15  


 2 6 24 30 

 c1 ( x  1)  x  13  x  14 
1 1 1
x  15  
 6 12 120 

4
d 2 y dy
21. Consider the solution of   xy  0 in the form of power series in x about
dx 2 dx

x0 = 1, i.e., y  c
n 0
n ( x  1) n . Find the first six coefficient terms of this series solution.
Ans:

y   cn ( x  1) n  c0  c1 ( x  1)  c2 ( x  1) 2  c3 ( x  1)3  
n 0

c0 c c c c
 c0  c1 ( x  1)  ( x  1) 2  1 ( x  1) 2  0 ( x  1)3  0 ( x  1) 4  1 ( x  1) 4
2 2 3 24 8
c0 c
 ( x  1)5  1 ( x  1)5 
30 20
1 1 1 1
 c0 [1  ( x  1) 2  ( x  1)3  ( x  1) 4  ( x  1)5  ]
2 3 24 30
1 1 1
 c1[( x  1)  ( x  1) 2  ( x  1) 4  ( x  1)5 ]
2 8 20
end

You might also like