Sulzer Chemtech
Efficiency Benefits of High Performance
Structured Packings
Kevin Bennett, Sulzer Chemtech
Mark Pilling, Sulzer Chemtech
Prepared for Presentation at
Department of Energy
Texas Technology Showcase 2003
Separation & Distillation Technology Session
Introduction Sulzer Chemtech
• Structured Packing is the Internal of
Choice for Low Pressure and Low
Liquid Rate Systems
• High Capacity
• High Efficiency
• Low Pressure Drop
• Proper Distribution is Critical
Mechanical Construction Sulzer Chemtech
• Thin Sheet Metal
• Angled Corrugation
• Textured & Perforated
• Layers are Segmented
& Rotated
Mechanical Construction - Base Material Sulzer Chemtech
• Sheet Metal Typically 0.004” - 0.008”
– Larger Crimp Packings May Require
More Thickness
– Essentially No Corrosion Allowance
• Material Selection is Critical
• Gauze Packings Made From Woven
Metal Cloth
– Usually for Very High Efficiency
Applications
Mechanical Construction - Surface Treatment Sulzer Chemtech
• Typically Textured & Perforated
– Texturing Promotes Spreading of Liquid
on Surface
– Perforation Allows Equalization of Flows
and Pressures Between Sheets
– Lack of Texture and/or Perforation
Reduces Efficiency
Mechanical Construction - Corrugation Angle Sulzer Chemtech
• Most Commonly 45o
(Sulzer Y Designation)
– Usually the Optimum Angle for
Efficiency, Capacity & Cost
• Second Most Commonly 60o
(Sulzer X Designation)
– More Often Used in Absorption
& Heat Transfer Applications
Where Surface Area is More
Important
Mechanical Construction - Surface Area Sulzer Chemtech
• Typically Expressed in Units of m2/m3
– Normal Range (40 - 900 m2/m3)
– Benchmark M250.Y
– Lower Surface Area Packing (40 - 90 m2/m3)
Often Grid Type
• Heat Transfer & Scrubbing
– High Surface Area > 500 m2/m3
• Air Separation & Fine Chemicals
When To Use Structured Packing Sulzer Chemtech
• System Pressure & Liquid Rates
• Vessel Diameter
• Number of Stages
• Presence of Two Liquid Phases
• Thermal Degradation
System Pressure & Liquid Rates Sulzer Chemtech
• Structured Packing Works Has its
Greatest Advantage with Low Liquid
Rates and High Vapor Velocities
– In Distillation Systems, Low Pressure
Means Low Liquid Rates and High
Vapor Velocities. Ideal for Structured
Packing
– High Pressure Absorption with Low
Liquid Rates are also Good Structured
Packing Applications
Number of Stages Required Sulzer Chemtech
• Structured Packing’s High Efficiency
Makes it Ideal for Applications
Requiring Many Stages
– Exception: Superfractionators with High
Pressures and High Liquid Rates
Performance Characteristics - Efficiency Sulzer Chemtech
• Mainly a Function of:
– Packing Geometry
• Surface Area
• Crimp Angle
– Distribution Quality
– Process System Properties
Performance Characteristics - Efficiency Sulzer Chemtech
• Packing Geometry
– Surface Area: Efficiency Increases With
Surface Area
– Crimp Angle: Efficiency Increases with
Decreasing Crimp Angle
Performance Characteristics - Efficiency Sulzer Chemtech
• Things Requiring Special Consideration:
– High Liquid Rates
• Rates Above 20-25 gpm/ft2 May Have Lower
Efficiencies
– High Relative Volatility (α > 3)
– High Liquid Viscosity & High Stripping Factors
– Absorption & Stripping Applications
– High Surface Tension
• All These Systems Have Been Packed with Structured
Packing. Special Design Considerations are Needed
Sulzer Chemtech
Performance Characteristics - Hydraulic
Loading
• Beyond the Loading Point, Liquid Holdup
in Conventional Structured Packing
Begins at the Interface Between Layers
Sulzer Chemtech
1. MellapakPlus: Background, Performances & Potential
Development steps
! Concept: modify transition
between the packing layers
! CFD Analysis
! Mechanical issues
Sulzer Chemtech
Product
Mellapak® MellapakPlus®
Sulzer Chemtech
Close Up Mellapak 252.Y
Sulzer Chemtech
Sulzer Chemtech Testing
• Facility: Winterthur, Switzerland
• Column Diameter: 3.3 ft (1 m)
• Bed Depth: 9.9 ft (3.03 m)
• Distributor Type: Sulzer Chemtech VKG
• Test System: Chloro/Ethyl Benzene at
75mm Hg (100 mbar)
Sulzer Chemtech
FRI Testing
• F.R.I. 2000 Category 1 Packing Test
• Industrial Scale Test Facility
• Measure efficiency, capacity, pressure
drop, holdup
Sulzer Chemtech
FRI Testing
• Facility Stillwater, OK
• Column Diameter: 4 ft (1.2 m)
• Bed Depth: 12 ft (3.7 m)
• Distributor Type: Sulzer Chemtech VKG
• Test Systems: Ortho/Para-Xylene at
100mm Hg (133 mbar)
C6/C7 at 5 & 24 psia
(345 & 1650 mbar)
Sulzer Chemtech
Sulzer Chemtech
Figure 3. Mellapak Plus 252.Y Efficiency
o/p Xylene System, 100 mm Hg (FRI)
&
Chloro/Ethyl Benzene, 77 mm Hg (Sulzer CT)
Capacity Factor Cs, m/s
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
32 0.80
30 0.75
M252Y (FRI) M250Y (FRI)
28 Optiflow (FRI) M250Y (WT) 0.70
M252Y (WT)
26 0.65
24 0.60
HETP, inches
HETP, m
22 0.55
20 0.50
18 0.45
16 0.40
14 0.35
12 0.30
10 0.25
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
Capacity Factor Cs, ft/s
Sulzer Chemtech
Figure 4. Mellapak Plus 252.Y Efficiency
12 foot (3.67 m) Bed Depth
C6/C7 System, 5 psia (0.34 bar)
Capacity Factor Cs, m/s
0.00 0.02 0.04 0.06 0.08 0.10 0.12
32 0.80
M252.Y VKG 5.3 mm (Midbed 16-38%C6)
30 M252.Y VKG 5.3 mm (Midbed 45-52%C6) 0.75
M252.Y VKG 5.3 mm (Midbed 83-91%C6)
28 M250.Y 1988 TDP (midbed 40-66%C6) 0.70
M250.Y 1988 TDP (midbed 90-96%C6)
26 0.65
24
HETP, inches
0.60
HETP, m
22 0.55
20 0.50
18 0.45
16 0.40
14 0.35
12 0.30
10 0.25
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Capacity Factor Cs, ft/s
Sulzer Chemtech
Figure 5. Mellapak Plus 252.Y Efficiency
12 foot (3.67 m) Bed Depth
C6/C7 System, 24 psia (1.65 bar)
Capacity Factor Cs, m/s
0.00 0.02 0.04 0.06 0.08 0.10 0.12
32 0.80
30 M252.Y VKG 6.7 mm (Midbed 34-58%C6) 0.75
M250.Y 1988 TDP (midbed 44-53%C6)
28 0.70
M250.Y 1988 TDP (midbed 61-79%C6)
26 M250.Y 1988 TDP (dc-reflux)
0.65
24
HETP, inches
0.60
HETP, m
22 0.55
20 0.50
18 0.45
16 0.40
14 0.35
12 0.30
10 0.25
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Capacity Factor Cs, ft/s
Sulzer Chemtech
Figure 6. Mellapak Plus 252.Y Efficiency
Effect of Pressure on HETP
Capacity Factor Cs, m/s
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
32 0.80
30 0.75
100 mm Hg xylene
28 5 psia (0.34 bar) C6/C7 0.70
24 psia (1.65 bar) C6/C7
26 0.65
75 mm Hg CB/EB
24
HETP, inches
0.60
HETP, m
22 0.55
20 0.50
18 0.45
16 0.40
14 0.35
12 0.30
10 0.25
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
Capacity Factor Cs, ft/s
Sulzer Chemtech
Efficiency Conclusions
• M252.Y HETP 14 -16 inches (0.35-0.4 m) as good
or better than M250.Y & Optiflow
• Maximum useful capacity 100 mm Hg: 40% above
M250.Y, 15% above Optiflow
• Maximum useful capacity 5 psia (0.34 bar): 25%
above M250.Y
• Maximum useful capacity 24 psia (1.65 bar): 18%
above M250.Y
Sulzer Chemtech
Figure 7. Mellapak Plus 252.Y Pressure Drop
12 foot (3.67 m) Bed Depth
o/p Xylene System, 100 mm Hg
Total Reflux
10.000
M252.Y
M250.Y 1988 TDP
Optiflow VEP
Sulpak
Pressure Drop, in H2O/ft
1.000
0.100
in H2O/ft x 8.167 =
mbar/m
0.010
0.01 0.10 1.00
Capacity Factor Cs, ft/s
Sulzer Chemtech
Figure 8. Mellapak Plus 252.Y Pressure Drop
12 foot (3.67 m) Bed Depth
C6/C7 System, 24 psia (1.65 bar)
Total Reflux
10.000
Top
Bottom
Overall-Measured
Overall-Calculated
Sulpak
1.000 M250.Y 1988 TDP
Pressure Drop, in H2O/ft
0.100
0.010
in H2O/ft x 8.167 =
mbar/m
0.001
0.01 0.10 1.00
Capacity Factor Cs, ft/s
Sulzer Chemtech
Figure 9. Mellapak Plus 252.Y Pressure Drop/Stage
12 foot (3.67 m) Bed Depth
o/p Xylene System, 100 mm Hg
Total Reflux
100.000
M252.Y
M250.Y 1988 TDP
Optiflow VEP
10.000
Inch H2O/stage
1.000
0.100
in H2O/stage x 2.5 = mbar/stage
ft/s x 0.3048 = m/s
0.010
0.01 0.10 1.00
Capacity Factor Cs, ft/s
Sulzer Chemtech
Pressure Drop Conclusions
• M252.Y pressure drop less than M250.Y
• Good agreement with Sulpak predictions
• Lowest pressure drop per stage
measured in 100 mm Hg xylene at F.R.I.
Sulzer Chemtech
Other MellapakPlus Data
separation efficiency separation efficiency
0.5 0.4
0.4
0.3
HETP [m]
HETP [m]
0.3
0.2
0.2
0.1
0.1
0 0
0 1 2 3 4 0 1 2 3
0.5 0.5
gas load F-factor [Pa ] gas load F-factor [Pa ]
pressure drop pressure drop
10 10
∆p [mbar/m]
∆p [mbar/m]
1 1
MellapakPlus 752.Y MellapakPlus 752.Y
Mellapak 750.Y Mellapak 750.Y
Mellapak 500.Y Mellapak 500.Y
0.1 0.1
0 1 2 3 4 0 1 2 3
0.5 0.5
gas load F-factor [Pa ] gas load F-factor [Pa ]
100 mbar 960 mbar