0% found this document useful (0 votes)
221 views34 pages

Reservoir Routing (Modified Puls)

The document discusses reservoir routing and the Muskingum method for calculating outflow from a reservoir given inflow. It provides storage indication inputs for a reservoir including an inflow hydrograph and storage curve. It then describes how inflow and outflow interact in a reservoir, with wedge and prism storage occurring. Finally, it outlines the Muskingum method which uses continuity and storage equations to relate inflow, outflow, and storage to calculate outflow from known inflow and reservoir parameters.

Uploaded by

Dario Prata
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
221 views34 pages

Reservoir Routing (Modified Puls)

The document discusses reservoir routing and the Muskingum method for calculating outflow from a reservoir given inflow. It provides storage indication inputs for a reservoir including an inflow hydrograph and storage curve. It then describes how inflow and outflow interact in a reservoir, with wedge and prism storage occurring. Finally, it outlines the Muskingum method which uses continuity and storage equations to relate inflow, outflow, and storage to calculate outflow from known inflow and reservoir parameters.

Uploaded by

Dario Prata
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 34

Reservoir Routing

(Modified Puls) 
Given  the  following  inflow  hydrograph  for  a  reservoir  and  the 
corresponding  storage  indication  curve  [2S/Δt  +  O  vs.  O],  find 
the  outflow  hydrograph  for  the  reservoir  assuming  it  to  be 
completely full at the beginning of the storm with no outflow. 
Storage Indication Inputs

    
    
    
  
  

  
      
      
     
4 
  4  
 
    
 
 4   4
4
Storage Indication Tabulation

          
  
     

      

 4      

    4  4 4

4    4  4 

 4      4
4
   4    

I > Q•
Q > I•
Inflow and outflow are complex•

Wedge and prism storage occurs•

• Peak flow Qp greater on rise limb than on


the falling limb

Peak storage occurs later than Qp•


Wedge and Prism
Storage

• Positive wedge I>Q


• Maximum S when I = Q
• Negative wedge I<Q
Muskingum Method (1938)

• Continuity Equation I - Q = dS / dt

• Storage Eqn S = K {x I + (1-x)Q}

• Parameters are x = weighting Coeff

K = travel time or time between peaks

x = ranges from 0.2 to about 0.5 (pure trans)

and assume that initial outflow = initial inflow


Muskingum Method (1938)

• Continuity Equation I - Q = dS / dt

• Storage Eqn S = K {x I + (1-x)Q}

• Combine 2 eqns using finite differences for I, Q, S

S2 - S1 = K [x(I2 - I1) + (1 - x)(Q2 - Q1)]

Solve for Q2 as fcn of all other parameters


X = 0.0, the equation reduces to S = KO, indicating that 
storage  is  only  a  function  of  outflow,  which  is 
equivalent to level‐pool reservoir routing with storage 
as  a  linear  function  of  outflow.  When  X  =  0.5,  equal 
weight  is  given  to  inflow  and  outflow,  and  the 
condition  is  equivalent  to  a  uniformly  progressive 
wave  that  does  not  attenuate.  Thus,  “0.0” and  “0.5”
are limits on the value of X, and within this range the 
value of X determines the degree of attenuation of the 
floodwave  as  it  passes  through  the  routing  reach.  A 
value  of  “0.0” produces  maximum  attenuation,  and 
“0.5” produces pure translation with no attenuation.
Muskingum Method (1938)
Muskingum Method (1938)
Muskingum Method (1938)
Muskingum Method (1938)

You might also like