Organometallics for Chemists
Organometallics for Chemists
4e 5e 6e 7e 8e 9e 10e
Ti V Cr Mn Fe Co Ni
Zr Nb Mo Rc Ru Rh Pd
Hf Ta W Re Os Ir Pt
2
-The 18 e rule is followed most closely in complexes of middle
transition metals (Cr to Co)
-As for early transition metal complexes, it’s usually too difficult
to get enough ligands around the metal to get it to 18 e (i.e., Ti)
Cl
Ti (16 e) (Cp2TiCl2)
Cl
A) Inorganic Ligands
1e- -X -H -R
4
Organic Ligands - Part 1
C C
η2 ( 2 e-) M (alkenes) M (alkynes)
C C
R
- R N
+ M
η1 (2e-) M C O M C O M C
N
R R
(carbonyl ligands) (carbenes, alkylidenes)
η3 (3e-)
M (π -allyls)
η1 (3e-) M C R (carbynes)
5
Organic Ligands, Cont'd.
(trimethylenemethanes)
η4 (4e-) M = M (dienes) (TMM)
M
η5 (5e-)
(dienyls) (cyclopentadienyls)
M M
η7 (7e-) (trienyls)
M
(cyclotetraenes) - rarely, usually η4
η8 (8e-)
6
So.....
+ sum of the η number of the hydrocarbon ligands + sum of the electrons donated by other ligands
Should = 18 normally
Many exceptions with early or late transition metals ; works best with middle transition metals
Fe Cr Mo+
OC OC
C C N
O O
O
6 (Cr) + 6 (Ph) + (3x2) = 18 e- 6 (Mo) + 5 (Cp) + 2 + 3 +3 -1 = 18 e-
8 (Fe) + (2x5) = 18e-
Ph3P Cl
Pd 10 (Pd) + (2x2) + (2x1) = 16 e-
8 + 4 (TMM) + (3x2) = 18 e-
Fe
OC Ph3P Cl
C C
O 7
O
Bonding of Hydrocarbon Ligands
- In its simplist form, bonding of the π- system to a transition metal fragment is based on the
Dewar-Chatt-Duncanson Model
C
Consider - There are two contributions to bonding
M
C
C
1) Ligand to Metal Donation M Note: this is not a π- bond, but
rather a σ- bond
C
Dewar, M. J. S. Bull. Chim. Soc. Fr. 1951, C71. Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939.
8
η3, η4, η5 - see Yamamoto, A., p. 58-72 η6 - see Collman, Hegedus, Norton, Finke p. 43-47
Consequences of Bonding of Hydrocarbon Ligands
But.......
mirror image 9
Other examples
+ +
OMe MeO
Ph Ph
Cr Cr Pd Pd
OC CO
C C Ph2P PPh2 Ph2P PPh2
C O O C
O O
10
Basic Organometallic Reactions
The more complex reactions are normally some combination of these fundamental ones
- many transition metal compounds, especially hydrides, can lose as Lewis acid
(i.e., deprotonate)
-Co(CO)
H Co(CO)4 H+ + 4
This may be a surprise, but many transition metal hydrides are quite acidic
-notice that making the metal more electron rich decreases acidity
SH OH O
(pKa = 10.3, (24.4) 11
(18.0) H2O (32.0)
CH3S(O)CH3) H3 C CH3
2) Lewis Base Dissociation
slow
L
Ni(CO)4 Ni(CO)3 + CO LNi(CO)3
fast
Y Lc
Lc X
Pt + Y Pt X
Lt Lc Lc X Lt Pt
Lt Lc Y
Lc
square pyramidal trig. bipy
rate v = 2nd order
Lc Y Lc Y
X + Pt Lt Lc
Lt Lc Pt
square pyramidal trig. bipy
X
13
3) Oxidative Addition
- represented by
n+2
A
LnMn + A-B Ln M
B
change in number of metal valence e-'s +2 (14 - 16 e)
-Overall reaction is cleavage of the A-B bond with bonding to the metal
O
- Most common A-B is R3C-X X = halogen or pseudohalogen O S CF3 triflate
O
Therefore, system needs: a) 2 available oxidation states i.e., Pdo/PdII , Feo/FeII, IrI/IrIII
A) If the R of R-X is alkyl (especially 1o or 2o), the reaction is believed to (usually) occur
via an SN2 substitution
+
CH3 CH3
Cl .. PPh3 rds fast
PPh3
Ir Cl
Ir Cl PPh3 Ir
Ph3P CH3-I Ph3P CO
CO Ph3P CO
I
- Inversion at alkyl carbon has been observed
B') Aryl halides go via direct insertion into C-X bond (clearly related to B)
i.e., P P
M Could result in retention of
Pd C configuration in some cases
X X
C) - Now defrocked - Nucleophilic Aromatic Substiution - was an old proposal for aryl cases,
to rationalized that cases with electron withdrawing groups "always" go faster
X X PdL2X
rds
+ "L2Pd"
EWG - PdL
EWG + 2 EWG 16
C)' - much more likely and often detected in calculations is initial formation of an η2-benzene complex
R
R
N R
N Cl N
Pd N
R Cl Pd
N Cl
Pd R Pd N
R R
N N R
+
Cl N R N R
transition state
X
[ LnM+ RX-.] LnM
R
17
H
Rh + Rh
Me3P Me3P
H
Br Li
+ 2 Li LiBr +
II A
LnM LnMo + A-B
B
change in number of metal valence e-'s -2 (16e - 14e)
Ph3P
Pt Ph3P
Ph3P Pt + "Pt(PPh3)2"
Ph3P
transition state
-not an intermediate
19
In 'normal' cases, the reaction goes by a concerted mechanism
-and, importantly for organic chemists.......
R R R
N R
O O
Ni O
N
R R R
R
More details in general: Yamamoto, pp. 240-5 20
Collman, Hegedus pp 322-33
5) Insertion (Migration)
-There is more than one type possible
A B M A
M-R is a
B R Metal-C or
M R Metal-H bond
or
M R*
M A R*
A B
B
:A B is :C O :C NR' :CR'2
21
-The reaction is a concerted migration of R*, with retention of
configuration at R* and the metal, if they are chiral
H3C CH3
CH3 L
rds OC C O L OC O
OC CO
Mn Mn Mn
OC CO OC CO OC CO
CO CO CO
22
Note: Reverse reaction is deinsertion
O
O insertion
H Ni O H Ni O
Ph2P PPh2 deinsertion Ph2P PPh2
- The reverse reaction in this case (β-elimination) is one of the most common reactions
of alkylmetals - main mode of decomposition
see R Cross, R. J., in "Chemistry of the Metal-Carbon Bond", Hartley and Patai, 1982, V.2
R Yamamoto, p. 246-272
23
6) Oxidative Coupling
Oxidative coupling occurs when two 'π-bound' ligands on the metal react with each other
to form (usually) a C-C σ bond
L M L M
R R
III
I empty coordination site ultimately
Co Co
filled by a ligand
R
R
-This has become increasingly important with a variety of metals and transformations
a) Preparation
i) -most common method - ligand exchange (with CO, CH3CN, alkenes)
CO2Et hν CO2Et
+ CO
+ Fe(CO)5
Fe(CO)4
CO2Et
CO2Et ether solvents + Fe(CO)5
+ Fe2(CO)9
Fe(CO)4
Weiss et al Helv. Chim. Acta. 1963, 46, 288
60oC +
Fe+ + OC Fe +
OC OC R
OC or R
R
R
25
-sterically hindered alkene Cutler, M. et al (M. Rosenblum) J. Am. Chem. Soc. 1976, 98, 3495
R
Co + 2 R R R
Co + C2H4
R
-volatile alkenes
R
Jonas, K. et al Angew. Chem. Int. Ed. Engl. 1983, 22, 716.
OPr-i R R R
OPr-i OPr-i
Ti + Ti Ti
OPr-i OPr-i OPr-i
R
R R
R Sato, F.; Okamoto, S. Adv. Synth. Catal. 2001, 343, 759.
Cl
+ Pd
PdCl42- 2 Cl- + Cl
Cp
Cp -CH4(g) Cp Cp
Zr
CH3 Zr Zr
H Cp Cp
R R
(CO)4Fe + L: (CO)4Fe L +
O O
Me3NO
Fe(CO)4
acetone-CH2Cl2
CO2Et CO2Et
Green, J. R.; Carroll, M. K. Tetrahedron Lett. 1991, 32, 1141.
O O
Co2(CO)6 Me3NO
SiMe3 SiMe3
R Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207.
Consider......
O
O
C C CO2H
Fe CO2H
C Fe(CO)4
O C
O
-therefore, very slightly overall electron donating (essentially the same)
but
+
charge on complex almost unboubtedly renders η2-complex
less electron rich
OC Fe
OC -as a result, the alkene is less reactive to attack by E+, and to
hydrogenation
-but(!), the alkene is more reative to attack by Nu-
Note:
+ = Fp+
OC Fe
OC 30
+
Fp
BF4- Fp + Fp +
H2, Pd/C
CF3CO2H
+
Fp
BF4-
Fp+
Fp+
+ Br2 + Hg(OAc)2 +
Br
Fp Fp Fp HgOAc
90% 82%
Br OAc
OH OH OH OH
OMe OMe Br2 Br OMe NaI, acetone Br OMe
CH2Cl2, 90% 80%
+ +
Fp Fp
31
-Fp+ alkene complexes are air stable, water stable, and you can store them at 0oC
Alkynes
-many alkyne complexes known
PR3
Ph3P PPh3 Cp Cp Ni PR3
Fp + Pt Mo
R R R R R R
2) H2O2 32
R Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207.
η2-Complexes as Electrophiles
-just as the '+' charge, nominally on Fe, ultimately withdraws electron density
from the alkene and reduces its reactivity to electrophiles (E+)....
Stereochemistry of Addition
H + Bn [Fe]
+ H Ph NH2
OC Fe CH3 NH2 H Me
OC Nu: OC Fe
H OC H H Me
CH3 NH Bn
+ 2
+ H [Fe]
Fe H + Bn
OC Ph NH2 Me H
OC Nu: NH2
OC Fe H Me
H OC H NH Bn
+ 2
Regiochemistry
If you draw various resonance forms of the Fp+-alkene cation complex, the
nucleophile ends up attacking the carbon atom where the 'traditional' organic
34
cation would be most highly stabilized (i.e., 'SN1 like') reactivity
+ + CH
Fp OC Fe CH3 Fp 3
OC
CH2 more contributing resonance form
+
Li(CH(CO2Et)2 Li(CH(CO2Et)2
Note: Unfortunately, with simple alkyl substutuents (like above), the regioselectivity
is pretty poor.
However, with strong cation stabilizing or detsabilizing (electron withdrawing) groups,
the outcome is much more decisive
δ+ β
Fp + Fe(CO)2Cp
α
+
O 35
OLi O O
So what do you do with the products?
-there are very few natural products with covalent Fe-C bonds in them, so it's
generally desired to turn these into something 'all organic'
1) -the alkyl-Fp compounds may be transformed into several functional groups, i.e....
I2 Br2
Fp R R I Fp R R Br
CS2
-normally, this occurs with inversion of configuration at the carbon being attacked.
But......
HCl or
}
Fp R R H with retention of configuration
CF3CO2H at the carbon attacked!
HgCl2
Fp R R HgCl
if a good Nu- is present
(I-, Br-) R-Nu
Why this dichotomy? +
SN2 attack on R
+ E+ OC Fe
OC Fe OC E R
OC R (Lewis acid, if no strong Nu- present
or electrophile)
reductive elimination of ER R-E
36
(retention of configuration)
2) Oxidation
This is most often done in methanol solvent, so that the final product is a methyl ester.
+
D Cp Cp O O
[O] D L D D
Cp
t-Bu
Fe
CO Fe +. t-Bu
III
MeOH t-Bu CO Fe t-Bu OMe
D CO CO
D D CO D
L
17e- 17e-
O O
Br2 Cl2
Fp-R R Fp-R R
MeOH OMe Cl
notice difference when solvent is CS2
3) Elimination
Fp + Fp
Ph3C+ BF4+ Fp +
CH3
H H CH2Cl2
-if internal alkenes must be made, one gets mostly the (Z)- isomer
-no one really knows why....perhaps a greater stability of the complex
Fp Ph3C+ BF4+
major
Fp +
References:
R Pearson, A. J. 'Iron Compounds in Organic Synthesis', 1994, Ch.2
R Rosenblum, M. J. Organomet. Chem. 1986, 300, 191.
R Rosenblum, M. Pure Appl. Chem. 1984, 56, 129.
R Rosenblum, M. Acc. Chem. Res. 1974, 7, 122.
R Green, J.R.; Donaldson, W. A. in 'Encyclopedia of Inorganic Chemistry' 1994, V. 2, p.1735.
Enantiomerically pure versions 38
Turnbull, M. M.; Foxman, B.M.; Rosenblum, M. Organometallics 1988, 7, 200.
Begum, M. K. et al (Rosenblum) J. Am. Chem. Soc. 1989, 111, 5252.
-some similar chemistry is known for the corresponding alkyne complexes, i.e.,
+ O NH3 + :NH R Fp
Fp Fp
R R N N NaBH4
Fp R
H Fp
Ag2O O Δ
N
R Fe N N
O 72% Cp CO
CO R
migration R
Wong, P. K. (Rosenblum) J. Am. Chem. Soc. 1977, 99, 2823. 39
Berryhill, S. R. (Rosenblum) J. Org. Chem. 1980, 45, 1984; 1983, 48, 158.
Synthesis of stereochemically defined alkenes from enol ethers
R OEt OEt
anti EtO H HBF4
R R
O Fp Fp
EtO Fp + departure of Fp Et O+ (-EtOH) OEt
EtOH R H Et
This can be repeated, using other ether function, with modification to get either alkene isomer
R
1) Nu- Nu R I-
Nu R
EtO Fp + 2) HBF4 Fp +
1) Nu- R R
EtO R I-
2) HBF4 Nu Fp + Nu 40
Fp +
PdII Complexes of Alkenes
-probably the other major choice in alkene-TM complexes
Early Chemistry
-Pd II forms comlexes with alkenes; an amine ligand is usually added to
break up dimer and make a more reactive species
R R
R Li2PdCl4 Cl Cl R'3N
Cl
+ or Pd Pd Pd
(MeCN)2PdCl2 Cl Cl
Cl NR'3
R
-susceptible to attack by nucleophiles on the more substituted C
-can sometimes reduce Pd off at low T, but mostly get β-H elimination
O O O
Nu:/Nu- = R2NH, H2O (ROH), - R ) amines, water, alcohols,
R ( R -
enolates
R
Nu- R Nu
Cl -L R Nu L -HCl, -Pdo R Nu
Pd or L
Pd Pd H
Cl NR'3 Nu:
Cl NR'3 Cl 41
BUT......This is stoichiometric in Pd, and PdCl2 1g, $102; 25g, $1155
However, if one has a stoichiometric oxidant present to oxidize the Pdo back to PdII,
the could in principle be catalytic
Earliest Successes
CuCl(cat)
O2, H2O actually not true 42
species
-reaction is selective for terminal alkenes; in fact intermolecular reactions for
internal alkenes work poorly in most cases (except strong EWG substituted ones)
-Markovnikov addition - Nu: attacks most substituted side of the alkene normally
-this can be overridden by coordinating groups within the substrate
Alcohols and phenols can do this type of chemistry too, usually as an intramolecular
addition
PdCl2 isomerization
OH DMSO, H2O O
KHCO3, air O
- first work was with PdCl2 as the PdII source, but now it is often replaced with
other PdII salts
-Reason - with Cl- salts, attack of Nu is anti to Pd; whereas with Pd(OAc)2, Pd(OCOCF2)2,
attack is syn to Pd 43
-syn attack allows/forces β-H elimination away from ring
R R
H H
H R H
R R R R R
PdCl2 anti O H Pd Cl R O
R OH R OH R
or
R R
R O H
R
H R
R H R
R R
PdX2 syn O H Pd X R O H
R OH R
usually
Hayashi, T.; Yamasaki, K.; Mimura, M.; Uozumi, Y. J. Am. Chem. Soc. 2004, 126, 3036.
( )n ( )n
5 mol% Pd(OAc)2
90-96%
HO DMSO, O2, rt O
-this even allows asymmetric synthesis at the newly formed chiral centre
ligand
10 mol%
Pd(OCOCF3)2
O
20mol% ligand O N
OH BQ, MeOH, 60o N
75%, 96% ee O
44
Uozumi, Y.; Kato, K.; Hayashi, T. J. Org. Chem. 1998, 63, 5071
N Nucleophiles -sometimes called aza-Wacker
-problem with amine ligands - these are generally too basic/nucleophilic; tend to
displace alkene as ligand
-as a result, in the vast majority of successful cases, the lone pair on N is deactivated
H H O H H
N N N N
{ { S = { Ts or even { Ar
O
O
- with this restriction, this has become an increasingly important way of making
heterocycles; especially possible for indole type systems
OTBDMS
OTBDMS
10% PdCl2(MeCN)2
77%
1.5 equiv BQ CH3
NH 3 equiv K2CO3, THF, rt N
CH3 CH3
Ts
5 mol% Pd(OAc)2 N
NH
Ts O2, 2 equiv NaOAc,
DMSO, rt
45
R Minatti, A.; Munoz, K. Chem. Soc. Rev. 2007, 36, 1142.
Carbon Nucleophiles
-success in these nucleophilic attack reactions has even been extended to carbon
based nucleophiles such as silyl enol ethers, enolizable β-dicarbonyls, electron rich
aromatics and heterocycles - there are even some intermolecular cases
10mol% Pd(OAc)2
MeO O R' 1 equiv BQ MeO O
R' 54-77%
20 mol% ethyl nicotinate
t-AmOH-AcOH, 20 mol% NaOAc
OMe OMe
10mol% Pd(OAc)2
O2 82%
40 mol% ethyl nicotinate
N t-AmOH-AcOH, 80o N
Ferreira, E. M.; Stoltz, B. M.* J. Am. Chem. Soc. 2003, 125, 9578.
7 mol% Pd(OAc)2,
S OEt 1 mol% H4PMo11VO40 CO2Et
+ S 86%
O 7 mol% acetylacetone,
4 mol% NaOAc, EtCO2H, O2
O O O O
OH O
5 mol% PdCl2(MeCN)2
R R
R 64-97%
2.5 equiv CuCl2,
CuCl2, rt 46
even organometallics, i.e., Ar-HgOAc (ancient history), ArB(OH)2, ArSnR'3
dmphen=
i.e. O Pd(OAc)2, O
B(OH)2
+ OBu-n dmphen(cat) OBu-n
N N
NMM, MeCN,
O2, 50o
exhaustive review R Becalli, E. M.; Broggini, G.; Martinelli, M.; Sottocomola, S. Chem. Rev. 2007, 107, 5318.
Some of these (the organometallics, syn attack cases) are probably going through
a different intermediate than has been presented L
L L H Pd X
L
X Pd R 'insertion' X Pd R X Pd H β-elimin. R
reaction A HH H A HH R A
A
A
Nu bound to metal
A
-much more common way to get at the intermediates A
-by oxidative addition of Pdo to organic halides/triflates
-called Heck reaction 47
Reveiws - many
R Heck, R.F. Org, React. 1982, 27, 345; Acc. Chem. Res. 1979, 12, 146.
R Larock, Adv. Met-Org. Chem. 1994, 3, 97.
R Jefery, T. Adv. Met. Org. Chem. 1996, 5, ch.4.
R Crisp, G. T. Chem. Soc. rev. 1998, 27, 427. (mechansitic detail)
R Knowles, J. P.; Whiting, A. Org. Biomol. Chem. 2007, 5, 31 mechanistic detail
R De Vries, J. G. Dalt. Trans. 2006, 421 (mechanistic discussion)
R lonso, F.; Beletskaya, I. P.; Yus, M.. Tetrahedron 2005, 61, 11771.
R Miyaura, N. Adv. Synth. Catal. 2004, 346, 1522.
R Jutand, A. Pure Appl. Chem. 2004, 76, 565 (mechanistic detail)
R Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945 (asymmetric synthesis)
R Link, J. T. Org. React. 2002, 60 157 (intramolecular rxns)
I
Pd(OAc)2
+ Br CO2Me
CO2Me CO2Me
Et3N Pd(OAc)2,
Br 68% 63%
P(o-tol)3, Et3N
H AcO
Pd(OAc)2 + HOAc + + "Pdo"
60
Stereochemistry
-resulting alkene is usually the most thermodynamically stable one, meaning trans
......all else being equal
HH Br "Pdo" H H L L β-elimination
R
Pd H-Br + Pdo +
R R Br
49
β-elimination takes place before any coupling can occur
X X
Thus X
(aryl) X (vinyl)
(allyl) (benzyl)
-Cl historically sluggish, but coming along nicely with new catalysts,
including sterically hindered phosphines, carbenes as ligands, and
ortho- metallated palladacycles
O PPr-i2
O O
i.e., PtBu3 Pd Cl
N N
Cy2P ..
O PPr-i2
L
O "Pdo" (Pd(OAc)2) O migratory
Br Cl Br Pd Cl
Br
Cl Pd deinsertion
Ph NMe2 Cl L L
-CO
Br
X
-can occur under very mild conds, in some cases - being made obsolete by improvements
to aryl chloride Heck reactions
Spenser, A. J. Organomet. Chem. 1983, 247, 113; 1984, 265, 273.
Jeffery, T. J. Chem. Soc., Chem. Commun. 1984, 1287.
Tetrahedron Lett. 1985, 26 2667.
The Alkene
R' R3 R1 R3 R1
R R' and >>>
> >> R4 R2
X R R2
monosub disubst. trisubst tetrasubst.
-forget it
51
only practical ones
-ligands generally stabilize palladium intermediates, but are't always added
-inorganic base is often used (instead of amine) to consume H-X
O
O
I PdCl2(MeCN)2
O HCOOH
O
O O
Br O
Note what happens to
Pd(OAc)2
+ β-elimination process
S OH
S
Et3OSi Et3OSi
H H
Pd(dba)2 CO2Me
OTf + CO2Me
N K3PO4 N
O O
CO2PMP CO2PMP
Pdo R'
R-X +
R' R PdX 52
a) Trap with organometallics
Ph
I 10% Pd(OAc)2
+ PhZnCl 60%
N 20% PPh3
N
H Et2O-THF, rt
b) Further cyclopalladation
Na2PdCl4
Cl + CO2 +2 HCl + 2 NaCl
CO, H2O, MeOH Pd
(Pdo generated in situ) Cl
2
I
I Fe(CO)5 or Fe2(CO)9 Fe CO
CO
Δ, -CO C
O
+
(CO)4Fe Fe(CO)4
Fe2(CO)9 HBF4 BF4-
OH OH
Et2O, -H2O
OR
Ni(cod)2
OR Ni + 2
PPh3 PPh3 54
R = Ph, Ac
Cp Cp
hν
CpFe-(CO)2 + Cl Fe CO Fe CO
CO -CO
η1 η3
Fish, R. W. et al (Rosenblum) J. Organomet. Chem. 1976, 105, 101.
O
O O- C O
Fe(CO)5 + O C
Fe(CO)3
Fe(CO)3
Y
Cl
+ PdCl2 + Y-
Pd Pd Y- = Cl-, RO-,
Cl AcO-, PhHgCl
Y
55
Trost, B. Tetrahedron 1977, 33, 2615.
iii) Activation of allylic C-H Bonds
-most applicable for Pd complexes
" "
NaOAc -HCl
+ PdCl2
HOAc H
H Pd
Cl Cl Pd
Cl L
i.e.,
PdCl2
Trost, B. M. Tetrahedron Lett. 1974, 2603.
Cl
Pd
2
Huttl, R. Chem. Ber. 1968, 101, 252.
CO2H
CO2H PdCl2
CO2H Chrisope, D. R.; Beak, P.; Saunders, W. H.,
Cl J. A. Chem. Soc. 1988, 110, 230
CO2H AcOH Pd
2
Co2(CO)6 Co2(CO)6
Co2(CO)6 H+ (-ROH) or +
R' CH2OR R' CH2OR R' CH2
BF3 (-ROBF3-) 56
Allyl/Propargyl η3- Complexes as Electrophiles
Nu: R Nu
R
+Fe(CO) Fe(CO)4
4
-complexes react with a pretty wide range of nucleophiles to give η2-alkene complexes
as immediate products
-these η2-alkene complexes are not all that stable, easily decomplexed by mild oxidant
-allyl attack is presominantly at less substituted side of allyl unit (more later)
Nu: can be... R3N (amines), Ph3P (phosphines), R2Cd (RMgBr), RCu(CN)ZnI
O O OSiMe3 M
electron rich arenes, H- (Et3SiH), , R' ,
MeO OMe R - R R
O
(M = Me3Si, Bu3Sn, R2B)
OSiMe3 Fe(CO)4
CO2Et CO2Et Me3NO CO2Et
Fe(CO)4 O O
+ CH2Cl2
58
Green, J. R.*; Carroll, M. K. Tetrahedron Lett. 1991, 32, 1141.
Why care?
-allyl cations are very highly reactive; either too unstable to prepare or too reactive
to be isolated or control their reactivity
R de Koning, H.; Hiemstra, H.; Moolenar, M. J.; Speckamp, W. N. Eur. J. Org. Chem. 1998, 1729.
R Enders, D.; Jandeleit, B.; von Berg, S. Synlett 1997, 421.
2 PPh3 +
-halide displacement by
Pd Cl-
good ligands
Ph3P PPh3 59
-can also be activated by other ligands (esp. phosphines), dimethyl sulphoxide (DMSO),
hexamethylphosphoric triamide (HMPA)
-rationale - more electron rich C-Pd bond shouold be the stronger one - this is the
more substituted one
- therefore the less substituted one is more weakly held, so Nu- attacks there
-BUT , with a bigger ligand (i.e., (o-tol)3P), there is a steric repulsion between PdL2 and
the more substituted C - makes that bond weaker, more easily attacked
Consider..... 60
SO2Me
Pd Cl -
L, Me-SO2-CH-CO2Me CO2Me SO2Me
2
DMSO, RT + CO2Me
PPh3 62 38
n-Bu3P 100 0
P
3 18 82
-electron withdrawing groups direct attack to the end site remote to the group
-electron donating groups direct attack to the end near the EDG
2
EtO2C CO2Et EtO2C CO2Et
O OAc O -
Cl NHAc O NAc
Pd
2 61
-there are rare cases of attack at the central carbon of the allyl unit - C-2 attack
-usually observed for Nu- with high pKa's (20-30), or where the central carbon has
a leaving group
-C-2 attack has very limited use in synthetic organic chemistry so far
- CO2Me -Pdo
+ CO2Et CO2Et
Pd +
Et3N NEt3
Pd(NEt3)2
Stereochemistry of Attack
-recall - oxidative addition to for π- allyl is on a alkyl centre, and therefore goes with
inversion of configuration
OAc Me
H PPh3
H "Pdo(PPh3)2" Pd +
PPh3 62
-now, nucleophilic attack on the allylpalladium normally occurs away from the
palladium (it could be called backside attack, too), so overall there is a
retention of configuration at carbon
SO2Ph
O - H3C
Me CO2Me
H PPh3 Ph S CH-CO2Me H
Pd + O
PPh3
- then, the initial attack step is on the metal, which is followed by reductive
elimination to give retention for this step
2
Pd Cl Pd CH3 reductive
CH3MgI CH3
elimination H
The best news is that many, many, many of these reactions can be done as
catalytic reactions
for example, allylic oxidation McMurry, J. R.; Kocovsky, P. Tetrahedron Lett. 1984, 25, 4187.
O O
O Pd(OC(O)CF3)2(cat)
+
HOAc, O
(solvent) O O
O O OMe O O
or most commonly.....
+
L L
Nu-
X Pd X Pd X- Nu + L2Pd
+ L4Pd
L L
O O O
X = -OAc, -OC-R -OC-OR -OPh, -OH, -SO2Ph, -NO2, 64
so......
OAc Godleski, S. A.;Valpey, R. S.
NaH, THF, Δ CO2Et 66% J. Org. Chem. 1982, 47, 381.
CO2Et
CO2Et
7% Pd(PPh3)4
CO2Et
(Ph3P)34Pd(cat)
AcO O HN O
N dppb(cat)
H2N O N
THF, Δ O
HAcN HAcN
Trost, B.M.; Cossy, J. J. Am. Chem. Soc. 1982, 104, 6881.
O OH
O 40o, Pd(PPh3)4
85%
CH2(SO2Ph)2
+
Pd PPh
Ph3P 3 SO2Ph SO2Ph
65
Notes on that last one: 1) Allylic substituent, CHR-OH is electron withdrawing and sterically
blocking 'proximal' attack - therefore, attack is on remote (distal) end of allyl unit
Question: How about the other possible regiochemical outcome, i.e., attack at more
substituted end?
If you instead use Co group catalysts, particularly RhI and IrI, and use less donating
ligands (phosphites, esp. P(OPh)3), it is clear that allyl more 'electrophilic', so
location of '+' resonance for more critical - attack on more substituted end.
n-Bu [Ir(cod)Cl2]2
n-Bu + n-Bu 90%
OAc 4 P(OPh)3, THF, RT Nu Nu
NaCH(CO2Et)2 97:3
R Takeuchi, R. Synlett 2002, 1954 (Ir)
RhCl(PPh3)3,P(OPh)3 + 89%
Nu Nu
OAc
NaCH(CO2Me)2, THF, 30o >99:1
R Leahy, D. K.; Evans, P. A. Modern Rh-Catalyzed Organic Reactions, Ch. 10
This still can be a very tricky process, as there are many isomerization processes possible
OAc L*
OAc Pd +
Nu
L* Pd k1
PdL2 *
+ L* L*
A
OAc
OAc L*
Pd + Nu
PdL2* Pd
L* L* k2
+ L*
B
1) Under normal reaction conditions (high phosphine to Pd ratios), nucleophilic displacement
is slow relative to π-allyl interconversion 67
-therefore, the product can depend of stabilities of A and B
2) Acyclic systems can racemize by an η3 - η1 - η3 mechanism
Y X
X Pd H
H Pd Y
X Pd
X Pd Y
Y
-same process can also result in anti / syn- isomerization of allyl Pd's
Pd X Pd
X X Pd
Y Y
Y
syn,syn- syn,anti- anti,anti-
O O where O O
X X HX XH N N most common
H H
PPh2 Ph2P is a symmetrical diol P P
diamine Ph2 Ph2
DPPBA ligands
see Trost reviews listed on last page
R Trost. B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
68
Other successful ligands
H Me Me
X= R = iPr, tBu
X N OH MeO
PPh2 O
Fe PPh2 OH
Me Ph2P N
PPh2 OH R
N
MOP (Monophosphine
OH ( )n
ligands)
BPPF-X
N OH R Hayashi, T. J. Organomet. N N
Chem. 1999, 576, 195. R R
BOX (Bis-oxazoline ligands)
R Pfaltz, A. Acc. Chem. Res. 1993, 26, 339.
NaCH(EWG)2
Ar Ar Ar * Ar
up to 96% ee with (R)- or (S)- BPPFX
OAc (π-C3H5)PdCl/L*, 40o CH(EWG)2 Hayashi, T. et al Tetrahedron Lett. 1986, 27, 191.
O
PdCl/2 BzO conduramine A-1
Bz O
O benzamide
O
R benzene Ni Ni
X + Ni(cod)2 X R
or Ni(CO)4
X = Br
usually
These can behave as if they are nucleophiles themselves, and will allylate organic halides
(X = Br, usually)
R Br
DMF + NiBrX
Ni + R'X R'
R
2 25o
-ketones and aldehydes are often tolerated (i.e., they survive this rxn at RT)
-esters are tolerated well
Br I DMF
Ni α-santelene 70
+ 25o
2
So who cares?
Look carefully at the above; the centre that's being attacked is neopentyl (i.e., R3C-CH2-X)
-neopentyl centres are normally forbidden for nuceophilic (SN2) substitution
-works just fine here
-Generally true - rxn works well in cases where SN2 is impossible (i.e., aryl halides)
OAc OAc O
Br
HMPA
+ Ni
Br 2
OAc OAc O
and if you want to do... vitamin K analogue
O Br
- -this is very tough directly
+
CH2
O
But..
O O
O Br
MeO DMF H3O+ OMe
OMe Ni OMe
+ N
2 N
N Br
O CH3
OMe
Hegedus, L. S.; Stiverson, R. K. J. Am. Chem. Soc. 1974, 96, 3250.
Hegedus, L. S. et al J. Org. Chem. 1977, 42, 1329.
71
Works with aryl, vinyl, 1o, 2o, 3o alkyl bromides and iodides
However, allyl halides 'scramble'
Br Br Br
+
Ni + + Ni +
Br
2 2
Other points
-like allylPd's the allyl fragment loses its stereochemical integrity
Br 1) Ni(cod)2 R R
+
2) R-X
O OEt Br
O DMF O O OEt
I + Ni
2
Hegedus believes that this is all due to the interventional of NiI and NiIII as well as NiII
Hegedus, L. S.; Thompson, D.H.P. J. Am. Chem. Soc. 1985, 107, 5663. 72
Initiation
IIBr II hν or Δ Br I
III
allyl Ni Ni allyl allyl Ni Ni allyl allyl-NiI + allyl-NiIII
Br Br
?
Oxidative addition/reductive elimination
III R
allyl-NiI + R-X allyl-R + NiI-X
allyl Ni
Br
Scarmbling of R
* III R
III R III R allyl-NiI allyl Ni
allyl Ni + allyl-NiII-Br allyl-NiII-Br + allyl Ni * Br
* Br * Br +
allyl-NiI
Chain carrying step
Scrambling of R goes with inversion, i.e., SN2 like - therefore occurs with alkyls, but
not alkenyls
The rest is like you expect - for alkyls, oxidative addition is with inversion,
reductive elimination with retention
- for alkenyls, oxidative addition with retention, 73
reductive elimination with retention
Other electrophiles
-although organic halides react preferentially, these allylnickel species will react
with aldehydes and the more reactive ketones at ca. 50oC
-ordinary acyclic aliphatic and α,β-unsaturated ketones only react sluggishly
Br O DMF R
Ni + R R' 50o R'
OH
2
-example of use in spirocyclic α-methylene-γ-butyrolactones
O
Br O OH
EtO + ( )n O O
Ni
O ( )n
2 ( )n
OEt
Billington, D. C. Chem. Soc. Rev. 1985, 14, 93.
π-Allylnickels as Electrophiles
PPh3
+
With two phosphine ligands Ni does pretty much the same chemistry
PPh3 as α π-allylpalladium complexes
-what's unusual? - successful coupling of Grignard reagents, i.e.,
-large variety of X, including -Br, -Cl, -Oalkyl, -OAr, -OSiR3, -OH, -OTHP, -SR
-the R of RMgX is suprising....R = Ar, or 2o or 1o alkyl
-β-hydride elimination is apparently a lesser problem in alkyl-Ni 74
β-elimination step for R = alkyls is often slow enough that one can get reasonable amounts
of C-C bond formation
PhMgBr 95%
PhS OMe PhS
Cl2Ni(dppp)(cat),
benzene, 0o Sugimura, H.; Takei, H.
Chem. Lett. 1984, 351
( )6 MgBr
OEt EtO ( )7 74%
CH3
OEt Cl2Ni(dppp)(cat),
THF, 0o
Hayashi, T., et al J. Organomet. Chem. 1985, 285, 259.
for work with chiral phosphine ligands, see: Cansiglio, G., et al Tetrahedron 1986, 42, 2043.
-Work in this area has slowed drastically since the mid 1980's
-when one attempts the typical oxidative metallation, it causes reductive elimination
and therefore C-C bond formation - with two possible outcomes
CAN O O CAN O
O β-lactone
δ-lactone Fe(CO)3 (major)
high T or [(NH4)2Ce(NO3)6], O
O
under CO CH3CN, RT
O O O
O O [O] reductive
CO Fe(CO)
+.
3
? Fe(CO)3 elimin. O
O O
Fe(CO)3
?
O [O] O reductive
[O] O
CO, Δ, O O
high O Fe(CO)3 Fe(CO)3 elimin. O
+. 77
π-Allyltricarbonyl Lactam Complexes
-these have had a larger impact than the corresponding lactone complexes
Preparation - less common
O
(CO)3Fe Δ
hν, (CO)3Fe
N-CO2Me N-CO2Me
N-CO2Me Fe(CO)5 RT, CO
-can be made more readily from the lactone complexes, through Lewis acid mediated
substitution
1 Ph
RT, Al2O3, PhH 1
N O
2 Fe(CO)3 or 2
+ PhNH2 Fe(CO)3
3
O ZnCl2, RT, Et2O 3
4 O
4
-this goes with transposition of the allylic fragment via the following mechanism
(E = Lewis acid) Ph
H2PhN+ + -
H2N+ O-E
..
H2NPh intramolecular
Fe(CO)3 - O
Fe(CO)3
+ E- oxidative addition Fe
O
O E-
+
O O (CO)3
Ph
Ph HN: O-E+ - -H+,
N O -H2O +H+
Fe(CO)3 OH
Fe 78
-E (CO)3
-when these compounds are oxidized, the reductive elimination is more highly selective
for the β-lactam
O β-lactam
(CO)3Fe -30o - RT
(azetidinone)
N Ph CAN, EtOH, 72% N
O Ph
O
(CO)3Fe Ph O Fe(CO)3
-can separate the two diastereomers N CH3 H3C
chromatographically H + N
H
Ph
OCH3 H
O Fe(CO)3 OCH3 O
CAN, MeOH OCH3
H3C 1) O3, -78o
N OCH3 OCH3
-30o - RT N N
Ph O Ph 2) Me2S Ph
H O
H CH3 H CH3
H3CO OCH3
spontaneous
epimerization OH
NH2+
R Ley, S.V. Cox, L. R. Chem. Rev. 1996, 96, 423
R Ley, S. V. Pure Appl. Chem. 1994, 66, 1416. S
R Cox, L.R.; Ley, S.V. Chem. Soc. Rev. 1998, 27, 301 N
O
CO2-
80
(+)-thienamycin
Propargyl Cation-Dicobalt Hexacarbonyl Complexes
R Green, J. R. Curr. Org. Chem. 2001, 5, 809. R Caffyn, A.J.M.; Nicholas, K. M. in Comprehensive Organo-
R Teobald, B. J. Tetrahedron 2002, 58, 4133. metallic Chemistry II, 1995, V.12, Ch. 7.1
R Nicholas, K. M. Acc. Chem. Res. 1987, 20, 208.
(Di)Cobalt alkyne complexes form cations at the propargylic site very easily
HO " "
OH HBF4 or + R2
R' R' R2 R'
R2 R3 R3
R
(CO)6Co2 3 HPF6 (CO)6Co2
(CO)3Co Co(CO)3
-X-Ray of cation Melikyan, G. G. et al Angew. Chem. Int. Ed. Engl. 1998, 37, 161.
R2 R2
R3 R3 -both antarafacial and supra-
facial migrations going on,
(CO)3Co Co(CO)3 (CO)3Co along with epimerization
+ Co(CO)3
+
R' R'
-actually pretty complicated
R3
R2
R2
R2
(CO)3Co Co(CO)3
(CO)3Co Co(CO)3 +
+
R'
R'
-these are much more electrophilic than allylpalladiums, so they are electrophilic
enough to react with several types of nucleophiles
82
X
electron rich -arene needs one or more activating groups, i.e.,
aromatics
-OCH3, -OH, -NMe2
O
O
O O O-SiMe3 O-BR'2 SiMe3
O
OMe R R R SnBu3
β-dicarbonyls silyl enol ethers allylsilanes or
enol borinates enol
silyl ketene acetals allyltins
acetates
reduction
A couple of examples
( )n
( )n H+ R' +
R Smit, W.A.; Caple, R.; Smoliakova, I.P.
R' Chem. Rev. 1994, 94, 2359.
O (CO)6Co2 OH
(CO)6Co2
R BF3-OEt2 R
in general, the cobalt carbonyl unit can be removed as before (Ce+4, Fe+3, Me3N+-O-)
Importance - in traditional organic chemistry, SN2' reactions are a major competitive
problem in substitutions of propargyl-X
SN2' R
i.e., R C CH2 allenes
X Nu- Nu
-this never, ever, ever happens with Co propargyl cations (Nicholas reactions)
X or
Fe + Fe Fp
OC OC
CO CO 85
-behave as modestly reactive nucleophiles to a pretty wide range of E+
E+ +
Fp E Fp E
Fp +
O
R Cl + HgCl2 +
O Fp
Fp Fp
Fp HgCl
AgSbF6 R
+ +
Me3O+ Fp H+
CH3 Fp
Fp Fp HBF4 CH3
O
+
R R' OH Br2 +
Fp
Fp Fp
Fp BF3 R Br
R'
η1-allyls react with electron poor alkenes by initial nucleophilic attack, followed by electrophilic
attack back onto the iron containing unit - this is ultimately a 3+2 cycloaddition resulting
E + R Br2
+ Fp R Br R
Fp Fp -
R E E E E CS2 E
E E
Ce+4
E = CO2R, CN
(normally need 2) EtOH EtO2C R
E
E
-to be sufficiently reactive, the alkene usually needs two electron withdrawing
groups, although some cyclic alkenones work with a Lewis acid added (AlBr3)
AlBr3 O
O + Fp
Fp
-several more obscure electron deficient X=X systems do this [3+2] cycloaddition, but they
aren't as important so we'll just list them
δ− δ+ δ− δ+ δ+ δ−
Ts N C O MeO2C N SO2 H2C SO2
-one further [3+2] cycloaddition partner that is interesting enough to show is specialized;
cycloheptadienyl iron cation with an included alkene
87
R R R
+ +
Fp Fp Fp
+ +
(CO)3Fe (CO)3Fe
(CO)3Fe
if R = O-SiMe3
O
Rosenblum, M. J. Am. Chem. Soc. -"SiMe3+"
functionalized
1990, 112, 6316 and refs therein. Fp
hydoazulene
ring system +
(CO)3Fe
O OR
(CO)3Fe O
S
Fe(CO)3 O Fe(CO)3 M(PPh3)2
Fe(CO)3X Fe(CO)3
X = Br, Cl M = Pd, Pt
see later Frey,M.; Jenny
R = H, TMS Ando, W. Albright, T.A. Organometallics
Organometallics 1990, J. Am. Chem. Soc.
9, 1806. J. Organomet. Chem. 1990, 112, 4574. 1989, 8, 199.
1991, 421, 257. Emerson, G.I. J. Am. Chem. Soc.
1966, 88, 3172.
88
-therefore, the most likely structures for these iron oxyallyls are....
or perhaps a dimer
O O η3 or
or O η4
+Fe(CO) Fe(CO)3
3 called oxyallyl cations
Br Fe(CO)3
L
-the iron oxyallys react with simple alkenes to give either [3+2] cycloaddition products or
ene reaction products
O
O O O
R R
PhH, Δ R R R R
R R + Fe2(CO)9 +
R' R'
Br Br + CH 3
FeLn
CH3 R'
-the [3+2] cycloadditions work best when the alkene has some carbocation stabilizingg groups
O OFeLn
O Fe2(CO)9
65% via
60o, PhH
Br Br +
Ph Ph Ph
-i.e., with enamines
O O
O Fe2(CO)9
RT - 30o 83%
Br Br N N
O O 89
OFeLn O
O Fe2(CO)9
51%
RT, O
O O
Br Br
NMe2
NMe2
Regiochemistry
-on the oxyallyl - the major product results from initial reaction at the least substituted
end of the allyl (to give the most substituted Fe enolate)
-on the alkene - the major product is the one that goes through the most stable carbo-
cationic intermediate
O OFeLn O
O
Fe2(CO)9
major product
Br Br +FeLn +
Ph
Ph
O O
O Fe2(CO)9 R1 R3
R1 R3 R4
R2 R4 R2
Br Br + FeLn
-a couple of examples
O
ca. 60o 80%
+ Fe2(CO)9 + O
Br Br
O
O O
32o
+ + Fe2(CO)9 35%
O 91
excess
Limitations on Reagents in [4+3] - on the dibromoalkene
O O O O O
Br Br Br R R
R Br
Br Br Br Br R
Br Br Br Br Br Br
can't use
unsubstituted used tribromo used (except R = Ph) is even used
one instead instead of.... sometimes
O O O
Fe2(CO)9 Br Br Zn-Cu
Br Br 63%
O O O
Br Br
-in cases with pyrroles, N-alkyl cases give electrophilic aromatic substitution
N-acyl cases usually give the [4+3]
O Fe2(CO)9 O
N CH3 + + O N CO2Me
N N
Br Br works, though
CH3 CH3
Mechanism
-allyl cation is a 3C, 2π electron system; diene is a 4π electron system
-could this be a concerted [4π + 2π] cycloaddition?
-Noyori thinks yes
-Hoffmann thinks only sometimes, but mostly no 92
(Angew. Chem. Int. Ed. Engl. 1984, 23, 1)
Regiochemistry
-behaves as if it is a concerted reaction
-therefore, it is controlled by HOMO-LUMO interactions
Consider O if we leave out the iron O LUMO
Ph
Ph
+ FeLn
larger smaller orbital
coefficients
and
EtO2C O
EtO2C O HOMO
-frontier molecular orbital arguments require that atoms with larger orbital coefficients,
and smaller with smaller
O
-therefore, frontier molecular orbital (FMO) arguments would predict Ph
O
EtO2C
-but if stepwise, one would predict....
OFeLn OFeLn O
Ph Ph Ph
+ O would be
+ O CO Et O
CO2Et favoured
EtO2C bad good 2
O O
Ph Ph
-the actual result is....
O 90 : 10 O
EtO2C CO2Et 93
Stereochemical consequences
-ordinary dienes
O O
Fe2(CO)9
+
+
Br Br O O
+ FeLn
presumed usually major usually minor
configuration (endo) (exo)
-aromatic dienes
O
X X X
+
Fe2(CO)9 X
O O
Br Br O
X = O, N-EWG pretty much a random mixture
-it is the presence of these types of products that makes Hoffmann think that the reaction
is not concerted
-use - pretty good way of making 7-membered ring containing natural products
O
O O O O
i.e., Pd/C, H2 F S OH
DDQ
O
O NH4Cl, PhH O
CH2Cl2
nezukone
η4- Complexes
η4-Trimethylenemethane Complexes
-stereochemical considerations
-about alkene - get mostly retention of configuration, but not perfectly so
CO2Me Pd(PPh3)4(cat), Δ
( )5
OAc
( )5 CO2Me 96
SiMe3
Pd(PPh3)4(cat), Δ
major minor
Ph CO2Me +
OAc
Ph CO2Me Ph CO2Me
SiMe3
-other aspects of the stereochemistry (i.e., diastereoselectivity) have been well established,
but are beyond the course's scope
Regiochemistry
OAc R OAc OAc
R = alkyl
R or or R electron withdrawing
electron donating
SiMe3 SiMe3 SiMe3
-regardless, it doesn't matter (much),
-the produc is as if......
+ + EWG
L2Pd -
L2Pd EWG
R EWG
-
R R
97
-no real mechanistic explanation for this result
-example of use in synthesis - loganin
H O H CO Me
O Pd(OAc)2 2
SiMe3 1) O3
+ (iPrO)3P 2) MeOH, H+
OAc H H
1:1 ratio 3) NaOMe
H CO2Me H CO2Me
racemic loganin O
(key intermediate
in alkaloid biosynthesis) O O
H H
O-beta-D-glu OCH3
-there is some work on reacting TMM-Pd complexes with C=O and C=N-EWG in the
presence of R3Sn-X co-catalysts
-see Trost, B. M. et al J. Am. Chem. Soc. 1990, 112, 408.
Trost, B. M. et al J. Am. Chem. Soc. 1993, 115, 6636.
Me3NO or Δ
+ Fe(CO)5 Fe2(CO)9 +
hν, or Δ
Fe(CO)3
-more subtle reagents
(CO)3Fe Δ low T
+ Fe(CO)3
Ph
2
O Fe(CO)3
Fleckner, H.; Grevels, F.W.; Hess, D.
J. Am. Chem. Soc. 1984, 106, 2027.
Me3NO mediated transfer Shvo, Y.; Hazum, E. J. Chem. Soc. Chem. Commun. 1975, 829
-the Fe(CO)3 unit is unusually stable; even in cases where it could lose more CO ligands,
it normally does not
Ph Ph (CO)3Fe Ph Ph
Ph
Fe2(CO)9 R O
O R O
Δ R
Fe(CO)3 R (CO)3Fe
Note: esters, amides only form η2-Fe(CO)4 complexes
Reviews
R Pearson, A.J. 'Iron Compounds in Organic Synthesis, Ch. 4, 1994.
R Green., J. R,; Donaldson, W. A. 'Encyclopedia of Inorganic Chemistry, 1994, Vol. 4
R Gree, R. Lellouche, J. P. Adv. Met.-Org. Chem. 1995, 4, Ch.4
R King, R.B. 'The Organic Chemistry of Iron', Vol. 1, 1978. 99
Rare/specialty methods
Fe(CO)5 Agar, J.; Kaplan, F.; Roberts, B. W. J. Org. Chem. 1974, 39, 3451.
O
hν, -CO2 Very stable complex
R O R Fe(CO) -by contrast, free cyclobutadiene is not at all stable
3
MeO2C
Fe2(CO)9 rare: ring opening is actually stereospecific
Fe(CO)3
MeO2C MeO2C Whitesides, T.H. J. Organomet. Chem. 1974, 67, 99.
CO2Me
R
+ R
Mo(CO)2(MeCN)2 Green, M. et al
+ J. Chem. Soc., Chem.
BF4- + Commun. 1985, 18.
(CO)2Mo
R Yasuda, H.; Nakamura, A. Angew. Chem. Int. Ed. Engl. 1987, 26, 723.
Cp2M
OMe OMe
Fe(CO)3 RO RO
Fe(CO)3
Shvo, Y.; Hazum, E. J. Chem. Soc., Chem. Commun.
1974, 336.
a) Protection of Dienes
-although coordination of a diene by Fe(CO)3 is inductively a slight electron donor,
the reactivity of dienes to electrophiles is reduced
therefore
1) "BH3" FeCl3
OH
OH
2) H2O2 Fe(CO)3
Fe(CO)3
OH
a b HO
RO RO RO
Fe(CO)3
a. i., H2, PtO2, PhCH2SiMe2H b. i.,OsO4
ii., FeCl3 ii., FeCl3
-Carbenes - normally prefer to add to conjugated dienes over isolated C=C 's, but....
Cl Cl
CHCl3 Cl CuII Cl
tBuO- Cl
Fe(CO)3 :C Fe(CO)3
102
Cl
-and acylation*
O
H3C Cl
Fe(CO)3 H3C(O)C Fe(CO)3
AlCl3, -78o
* - diene-Fe(CO)3 complexes will also react, but more slowly
-one can even do cycloadditions on free double bonds in the presence of
Fe(CO)3 complexes
O
O
[4+2] PtO2 N
N N-CH3
CH3 N-CH3 N
N H2 Fe(CO)3
(CO)3Fe O N O Fe(CO)3 O
O
N N H Me
H
+ NN Me H
Δ H Me3NO H
N N H
O O
75% O 84% O >90%
(CO)3Fe
(CO)3Fe (CO)3Fe
hν R
O Fe2(CO)9 Cl
O Fe(CO)5 R
Fe(CO)3 Cl
-stable enough to allow standard aromatic functionalization reactions - behaves pretty
104
much like benzene
-these cyclobutadiene-Fe(CO)3 complexes are stable enough to allow standard aromatic
functionalization reaction - they behave pretty much like benzene
OH
O
O
O H
Cl Fe(CO)3
Fe(CO)3 NaBH4
AlCl3 Fe(CO)3
POCl3 O
D Ph
D+ N H
CH3 HO
Fe(CO)3 Fe(CO)3
CH2O, CH2O,
Fe(CO)3
HCl
Me2N Me2NH Hg(OAc)2,
NaCl Cl
Fe(CO)3
ClHg Fe(CO)3
Fe(CO)3
Rosenblim, M.; et al J. Am. Chem. Soc. 1972, 94, 1239
Emerson, G.F.; Pettit, R., et al J. Am. Chem. Soc. 1975, 97, 3255. 105
R Green, J. R.; Donaldson, W.A. 'Encyclopedia of Inorganic Chemistry', Vol. 4, 1735, 1994.
Note: Decomplexation of Fe leads to free cyclobutadiene, which can be trapped by other
reagents
ii) Dienols
H
not unstable R O
R OH
per se, but...
Fe(CO)3 coordinates more strongly to the π-system of a C=C relative to a C=O, so....
Fe2(CO)9 1) MeLi does not
R O R O R OH
CH3 CH3 tautomerize
2) H2O to aldehyde
O (CO)3Fe O (CO)3Fe
HO R O
R R OH Ph
(CO)3Fe O
(CO)3Fe (CO)3Fe
+ Fe(CO)
3 Fe(CO)3 Fe(CO)n
-almost nothing has been done with this, but it has much potential....
see Birch, A.J. Tetrahedron Lett. 1975, 119 (Org. Synth. VI, 996)
O (CO)3Fe
Landesberg, J.M.; Roth, W.R.; Neier, J.D.
Sieczkowski, J. Tetrahedron Lett. 1967, 2053.
J. Am. Chem. Soc. 1971, 93, 972
Fe(CO)3
- thermod, A
R R Fe(CO) kinetic,
3 0o R Fe(CO) -78o R Nu
3
H+
Nucleophiles are restricted CO2Et -
CN -
to things like.......... - Ph Ph S S
-
Semmelhack, M.F. J. Am. Chem. Soc. 1984, 106, 2715. R Nu
107
-in cyclohexadiene complexes, species like A do further chemistry
CF3CO2H
R- R
+ R R R
+ +
Fe(CO)3 -
Fe(CO)3
major
E O
CO E+
R R
O E = H, OH (O2), or ROSO2R
- Fe(CO)
3
-see R Pearson, A.J. 'Iron Compounds in Organic Synthesis, p. 67-97.
+
CpMo(CO)2 CpMo(CO)2
Nu- C-1 attack
108
Nu
-range of nucleophiles should start looking familiar
+ O Cp(CO)2Mo
Mo(CO)2Cp 1) N O
H
2) workup
+ O
Mo(CO)2Cp Mo(CO)2Cp
E, E' = -CO2Me, -SO2Ph, CH3
-CH(E)(E') E
E'
Note:
Mo(CO)2Cp
Mo(CO)2Cp
Na/Hg
CO2Me
CO2Me
SO2Ph
109
+
Mo(CO)2Cp Mo(CO)2Cp
MeMgBr
CH3 CH3
Regiochemistry
-the nucleophile's attack is generally at the less substituted end of the diene
+ O
Mo(CO)2Ind
H3C 1) N Ind(CO)2Mo
O
H3C
2) workup H
H3C
(CO)2Mo(MeCN)2
+
η5-indenyl can be a ligand instead of Cp 110
Note; product allylMo has anti stereochemistry at addition site
-tandem reactions are also feasible
sterically available
H Ph3C+ CH3 CH3
MeMgBr
MeMgX H CH3 CH3
(-H-) H H
H CpMo(CO)2 H
CpMo(CO)2 CpMo(CO)2 + CpMo(CO)2
+
not sterically available
Me3NO
C5H11 C5H11
MeCN
(CO)2MoCp*
+
Nu I2 Nu attack trans I Nu
H H to Mo H H
CpMo(CO)2 CpMo(CO)2
+.
111
-oxidative decomplexation can occur with nucleophilic addition
Mo(CO)2Cp I2 or
KOH Mo(CO)2Cp
O
NOPF6 O
CO2Me
CO2H
-note stereochemistry
R Pearson, A.J. Adv. Met. Org. Chem. 1989, 1, 1.
R Backvall, J.-E. Adv. Met. Org. Chem. 1989, 1, 135. (mostly Pd catalyzed addns)
c) we will not discuss this in detail, but PdII catalyzed additions to dienes is known
Nu- Nu
R R
R R
PdII, oxidant
Nu
112
η4-Diene Complexes as Nucleophiles
-early transition metal diene complexes don't really behave like dienes
-dominated by Cp2Zr complexes
-
-therefore, the zirconium dienes are reactive as nucleophiles, especially with oxygen
containing electrophiles, where =O: coordination to Zr can increase the electrophilicity
of C=O
1) E+
Cp2Zr E
2) workup
Regiochemistry
-if a substituent is at the 2-position of the diene, the rxn occurs at the more substituted end
O R R'
H+ OH
O notice difference in
}
R R'
Cp2Zr Cp2Zr R R' product isomer
dependence on acid vs.
NH base cleavage
or OH
NH R R'
113
-in acid, the allylZr cleaves via SE2' (remote end, much like allylsilanes)
-in base, the product is the result of direct C-Zr bond cleavage
O
1) 2) H+
R OR' R
Cp2Zr or O
1) RCN 2) H+
Note: Rxn is at the more substituted
O end of the epoxide
1) R M -
M
OH O O
Cp2Zr R +
2) H+ R R
R = aryl, vinyl
O Ph Ph
+
Ph Me O
O
Cp2Zr O Cp2Zr - Cp2Zr
or
Ph Me both epoxides give
same isomeric mixture 114
α, β-unstaurated carbonyls -give high 1,2-addition
R
OR' 1)
1)
Cp2Zr Cp2Zr O OH
O
O
2) H+
2) H+
Other electrophiles
CO2
H+
CO2
Cp*2Zr Cp*2Zr
Cp*2Zr O O O O HO O
But in many cases, further reaction can't be stopped
Isocyanates
NR
R-N=C=O O
Cp2Zr Cp2Zr
Photochemical Reactions
alkenes/alkynes
R3
Cp2Zr hν Cp2Zr R3 Cp2Zr R3
Metal carbonyls
M(CO)6 O O
C Cp2Zr M(CO)5
Cp2Zr Cp2Zr M(CO)5
M = Cr, W, Mo Cp2Zr
O M(CO)5
CpCo(CO)2 is similar
Finally, at least for some products, the allylZr products themselves can be reacted with carbonyls
R R
O carbonyl, metal carbonyl adducts do this to
R2C=O
Cp2Zr -always get 9-membered ring with trans C=C
Cp2Zr
see R Yasuda, H.; Nakamura, H. Angew. Chem. Int. Ed. Engl. 1987, 26, 723.
R Taber, D. F. et al Curr. Org. Chem. 2000, 4, 809.
Ph + Ph H- source
C BF4 Ph3C-H
Ph
triphenylmethyl (trityl) cation
-thus....
+ -works very well for cyclic dienes,
Fe(CO)3 as adjacent substituent must
Ph3C+BF4- be cis
Fe(CO)3 BF4-
117
-with acyclc dienes, one can normally abstract H- is the source is cis
i.e.,
Ph3C+
+
(CO)3Fe (CO)3Fe
-but, if the "H- source' can only be trans, the abstraction usually fails
-Pearson has made an orbital interaction based explanation - for those interested, see.
Pearson, A.J. et al Organometallics 1984, 3, 1150.
-examples
1 OMe MeO +Fe(CO) MeO
2 3
Hb +
Hb Fe(CO)3
+
Fe(CO)3
Ha Ha R R
R 3
Hb abstraction Ha abstraction 118
4
R Hb abstraction Ha abstraction
H 20 80
3-CH3 0 100
4-CH3 90 10
3-OCH3 N O 56 44
4-morpholino 100 0
+
1 2 Fe(CO)3
Hb OMe OMe
Hb OMe
Fe(CO)3 +
Fe(CO)3 +
R Ha R
Ha
R 3
Ha abstraction Hb abstraction
4
R ro Ha abstraction Hb abstraction
H 90 10
1-CO2Me 100 0
4-CO2Me 0 100
4-CH3 0 100
4-OCH3 56 44
-there are related methods for preparation of dienylirons, from carbonyls, alkenes (trienes)
Fe(CO)3 + + Fe(CO)
H+ Fe(CO)3 -28o 3
O HO
R R
H H HO R
Fe(CO)3 + Fe(CO)
HBF4 + 3
Fe(CO)3
R propionic
anhydride R
H3C R
H3C
D
CF3CO2D notice the stereochemistry of attack
D +
D Fe(CO)3 -78 , CH2Cl2
o
Fe(CO)3 J. Chem. Soc., Dalton Trans. 1977, 794120
and 2340
-from alkoxy-substituted diene complexes and strong acid
OH H
+
H+ hydride +
or Fe(CO)3
Fe(CO)3 Fe(CO)3 Fe(CO)3 transfer
121
Reactions as Electrophiles
Nucleophilic Attack on η5-Complexes
-these cations readily react (normally) with nucleophiles to give C-C or C-heteroatom
bond formation
C-X bonds
R2NH (amines), H2O, MeO-, R3P (phosphines), (RO)3P (phosphites), R3As (arsines)
NaBH4, Et3SiH, NaBH3CN (hydride sources)
Regiochemistry, part II
-attack of the nucleophiles is at less substituted terminus
-MeO as a substitutent is particularly powerful in this respect 122
OMe -enamine example
OMe O Fe(CO)3
+ 1) N -regiochem away from OMe
Fe(CO)3 -sterochem exo (away from iron)
2) H2O O
CO2Me
CO2Me
+ NaCH(CO2Me)2
Fe(CO)3 Fe(CO)3
MeO2C
MeO2C
+ MeO2C
Fe(CO)3
Fe(CO)3 NaCH(CO2Me)2
MeO2C Fe(CO)3 +
OMe OMe OMe
MeO2C CO2Me
82:18
123
counterion dependent
OR OMe
OSiMe3
+ Fe(CO)3
Fe(CO)3 OMe
CO2Me
R = Me, iPr
+ (CO)3Fe
Fe(CO)3 R' CuLi2 R = Me, Ph, CO2Me
3
R Et2O/THF, -65o R
R'
(CO)3Fe
PhCH2CH2Cu(CN)ZnBr
Donaldson, W. A. et al
Tetrahedron Lett. 1989, 30, 1339.
R = Me H3C
OAc BF3-OEt2 Nu
R1
R1 Nu-, -78o R
(CO)3Fe R2 (CO)3Fe R2 (CO)3Fe R2 1
+
-reacts before isomerization occurs, therefore retention
Uemura, M. et al Tetrahedron Lett. 1987, 28, 641; Roush, W.R. et al Tetrahedron Lett. 1994, 35, 7347 and 7351.
+ +
Fe(CO)3 Fe(CO)2(P(OPh)3
doesn't work; Pearson's solution
nucleophiles -see book
deprotonate 125
instead
Synthetic Utility -widely used by Pearson's and Knolker's groups
R Synlett 1992, 371 R Chem. Soc. Rev. 1999, 28, 151. R Pearson, A.J. Acc. Chem. Res. 1980, 13, 463.
OMe O
Et3N, CH2Cl2
Fe(CO)3 1) Me3NO
-78o 2) H3O+(dilute) CO2Me
CO2Me
O O
and
OPr-i
OPr-i 1) p-TsOH OPr-i +
Ph3C+BF4- Fe(CO)3 KH(CO2Me)2
Fe(CO)3
2) Fe2(CO)9, CH2Cl2 THF
OMe
OMe 30
o
OMe
126
OPr-i 1) KCN, DMSO, OPr-i OPr-i
1) p-TSCl, Fe(CO)3
Fe(CO)3 Δ, -CO2 Fe(CO)3
pyridine
CO2Me 2) iBu2AlH, THF 2) NaCN, CN
OH
-78o - RT HMPA
CO2Me MeO
MeO MeO
major
OPr-i O
1)oxalic
1) Me3NO HH
acid(aq) O N
benzene
2) LiAlH4 2) NaHCO3
NH2 NH2 OMe
MeO MeO
OH (+/-)-limaspermine
N H
(CO)3Fe
H (R)-HETE methyl ester
H Ce+4
HO HO >93% ee
86%
MeO2C MeO2C
5-hydroxyeicosatrienoic acid (HETE)
+ diastereomer (S) enantiomer
Tao, C.; Donaldson, W.A. J. Org. Chem. 1993, 58, 2134.
>>> >
+ 2+
Cr(CO)3 Fe Mn + Fe
OC CO L
Preparation of Complexes
Chromium
a) Standard method - Arene + Cr(CO)6 + heat
R
R Bu2O:THF (10:1)
+ Cr(CO)6 + 3CO
Δ
Cr(CO)3
Cr(CO)3 Cr(CO)3
equilibrium is well to the right, normally Kundig, E.P. et al J. Organomet.Chem. 1985, 286, 183.
d) Photolysis
R R
hν, RT
+ Cr(CO)6 + 3CO
Cr(CO)3
They do complex under these conditions, although the yields are poor 130
Ofele, K. Chem. Ber. 1966, 99, 1732.
Complexes of Mn
Cl 100o Cl
+ (CO)5MnBr + AlCl3 4h
or Mn(CO)8Cl2 +Mn(CO)
+ HBF4/TFA 3
Cl Cl
+ TFA
Mn2(CO)10 + HBF4
Δ +Mn(CO)
3
+Mn(CO)
3
R Sun. S.; Dullaghan, C.A.; Sweigart, D. A. J. Chem. Soc., Dalton Trans. 1996, 4493.
Complexes of Iron
original prep, but not used much any more for Cp complexes
-for Cp* complexes, though, it's the default way
R Astruc, D.Tetrahedron 1983, 39, 4027.
R Kündig, E.P. Top. Organomet. Chem. 2004, 7, 3.
AlCl3
R
Fe
+ Fe+ AlCl4-
OC ca. 90o
Br R
CO
Cr(CO)3
and
CO2H pKa 4.77 CO2H pKa 5.52 CO2H pKa 5.68
background Nu
+ Nu- H
-
is not normally a commonly feasible reaction, unless the arene has some strongly
electron withdrawing group(s) on it...
But.... Nu
H
+ Nu- further reaction
Cr(CO)3 - Cr(CO)
3
133
is absolutely viable A
-in 'normal' cases, nucleophiles which work in this process are limited to ones whose
conjugate acid (i.e., Nu-H+) has a pKa > 20
Unsuccessful ones..
R R
LiCH(CO2R)2, Li , Grignards, Me2CuLi
O O
Li
Note: nBuLi, MeLi, sBuLi do different reactions
Cr(CO)3 - Cr(CO) Nu Nu
3
o- m- p-
-do get mixtures under these conditions, but the general rules are......
135
Frontier Orbital Control
-attack occurs at the lowest unoccupied arene centred M.O. (LUMO)
EDG EWG
LUMO coefficients
-the argument is that if there is a good energy match between the LUMO of the arene-Cr(CO)3
and the HOMO of the nucleophile, then orbital control is favoured
-in the absence of this match, charge control operates
see Semmelhack, M.F. et al Organometallics 1983, 2, 467.
Thermodynamic Control
-it was later realized that this addition to the arene-Cr(CO)3 is reversible in many cases; this
has a couple of consequences
Nu Nu
X H Nu- -X-
Nu- X Nu
X
- Cr(CO) Cr(CO)3 - Cr(CO) Cr(CO)3
3 3
-this is possible, especially for X = F X = F > Cl, OPh >> others 136
2) some nucleophiles which don't give noticeable amounts of additionin non-X bearing cases
now work well
NC
1) N
-78o, THF 72:28
Li + 0o, THF 03:97
CN
Cr(CO)3 2) H+
3) I2 NC
137
Semmelhack, M.F. et al J. Am. Chem. Soc. 1977, 99, 959; Ohlsson, B.; Ullenius, C. J. Organomet. Chem. 1984, 267, C34
Note: A couple of nucleophiles that do add kinetically do not undergo reversible reaction
-if a careful work is done using a proton source instead of I2, one gets reduced arene
complex which then loses Cr easily - since the transient complex is coordinatively
unsaturated (16e-) Cr, hydride shifts occur readily and one gets diene rearrangement
1) Li CN CN CN
CN H+ H shift
H HH
2) H+
Cr(CO)3 (CO)3Cr H (CO)3Cr
- Cr(CO)
3
B I2
predominant substitution regiochemistry CN
-except NC
same conds methoxy has very high preference
OCH3
for 1-position
Cr(CO)3 OCH3
Alkylation of anionic intermediates
S S , PhLi, BuLi
-if the incorporated Nu- is one of the irreversible ones t
CN Br
- CN CN
H
+ +
- Cr(CO) Cr(CO)3 Cr(CO)3
3
2) MeI, CO
MeO 3) I2
Cr(CO)3
MeO
+ 2+ 2+
Cr(CO)3 Fe Mn + Ru Fe
OC CO CO
v. small
1 11,000 6 x 106 2 x 108
Consider arene-Mn+(CO)3
Nu
Nu- Nu- = MeLi, PhLi, RMgBr, H-,
H NaCH(CO2Et)2, O O
Mn + -
Mn(CO)3 R R
OC CO CO
Note: -CN and :PPh3 add, but are reversible
-so what now?
Nu
Nu CF3CO2H CrO3, H2SO4 Nu
H
(MeCN)3Mn+(CO)3 +
acetone
MeCN
Mn(CO)3
-other chemistry is possible with the intermediate dienyls, but it's beyond the scope of the course
R Pike, R. D.; Sweigart, D.A. Synlett 1990, 565; J. Chem. Soc. Dalton Trans 1996, 4493. 140
-and if there is a leaving group on the arene, the concept is the same, but the reversible
nucleophiles are a different group
Nu-
X Nu -nucleophiles which can add reversibly and
or NuH therefore do this include
Mn + Mn + MeO-, PhO-, PhS-, N3-, R2NH
OC CO CO OC CO CO
-the regiochemistry of kinetic substitutions are not as thoroughly studied, but what's available
shows the same general trends
i.e., EWG directs ortho- attack (para is usually blocked in Mn studies)
EDG directs meta- attack
H H
X = Cl 69:37
LiAlH4
X + X
X X = NMe2 3:97
Mn Mn
Mn +
OC CO CO OC CO CO
OC CO CO
Pauson, P.L. et al J. Chem. Soc., Dalton Trans. 1975, 1677 and 1683
Kane-Maguire, L.A.P.; Sweigart, D.A. Inorg. Chem. 1979, 48, 700.
Pearson, A.J. Tetrahedron 1992, 48, 7527
J. Org. Chem. 1991, 56, 7092. 141
And the Cp-Fe+-arenes?
R
H DDQ
R
+ RLi O
+ Cl CN
Fe Fe
Cl CN
O R = Me, Et, Ph, PhCH2MgBr
-here, there are more examples of successful examples of hydride abstraction to get back
the complex
R with the exception of benzyl
H Ph3C+ Ph
R
Ph3C+
+ H
Fe Fe + PhCH2CPh3
+
Fe Fe
A similar reaction pattern for substitutions are observed with the haloarenes
X MeO- OMe
+ +
Fe Fe Nu- = PhO-, RO-, RS-, R2NH, NaCH(EWG)2
142
-fairly analogous trend is seen in the kinetic regiochemistry
EWG - ortho attack EDG - meta attack
H H
H- H H- MeO H
CO2Me OMe
+ +
Fe CO2Me
Fe Fe Fe
for free arene -CONR2 > -SO2NR2 > -NHCOR > -CH2NR2 > -OMe > -NR2 = -F
for Cr complexes -F > -C(O)NHR > -CH2NR2 = -OMe >> -CH2OMe > -NR2, -SR
So
O O O
O NHR
NHR 1) 2 LDA, THF, -78o NHR
1) 2 BuLi, TMEDA Me3Si NHR
F F 2) Me3SiCl F
2) Me3SiCl F
Cr(CO)3
(CO)3Cr SiMe3
DMG
can be trapped by a wide to give
Li range of E+
DMG DMG DMG
Cr(CO)3 CH3I, Me3SiCl, CO2, Ph2PCl,
CH3 SiMe3 CO2H
O
, Br Br
R R' Cr(CO)3 Cr(CO)3 Cr(CO)3
DMG DMG DMG
OH
PPh2 Br
R R'
Cr(CO)3 (CO)3Cr Cr(CO)3 144
further
OSi(i-Pr)3 OSi(i-Pr)3
1) t-BuLi, THF, -78o
2) MeI H3C
this meta metallation is unheard of
Cr(CO)3 Cr(CO)3 in chemistry of free arenes
-as a result, one can often do benzylic deprotonation reactions which fail with the free arene
R2 R2
R3 KOtBu, DMSO R3 Jaouen, G. et al
R1 R1 J. Chem. Soc. Chem. Commun. 1984, 602, 475
EtO OEt CO2Et J. Chem. Soc. Chem. Commun. 1981, 1264
Cr(CO)3 O O (CO)3Cr HO J. Organomet. Chem. 1984, 102, C37.
Cr(CO)3
Cr(CO)3 Cr(CO)3
O
R2 = - CN - CO2Bu-t
, nBu-, Ph-, S S E+ = H+, CH3I, Ph Cl
-
Semmelhack, M. F. Seufert, W.; Keller, L. J. Am. Chem. Soc. 1980, 102, 6586.
Uemura, M.;Minami, T.; Hayashi, Y. J. Chem. Soc., Chem. Commun. 1984, 1193.
Cl Cl
also, the SN1 solvolyses of are 103 - 105 times faster than
and the corresponding
Ph
Cr(CO)3 Cr(CO)3 non-complexed arenes 146
-makes the following reactions possible
OH HPF6 + HNR2 NR2
Y Y CH2 Y
CH2Cl2
Cr(CO)3 Cr(CO)3 Cr(CO)3
-20o
H O
OH H2SO4 N
Y + RCN Y R
Cr(CO)3 Cr(CO)3
-this Ritter reaction only works with 3o benzylic halides
R Davies, S.G. Synlett 1993, 323.
Consider
O
O
H
CH3 H CH3
(CO)3Cr 147
(CO)3Cr
H O
-at position 1 we have C H counterclockwise
O C 4 CH3
Cr 2
C Cr C -therefore,
C C 3
H H Cr (S)-enantiomer
Cr Cr
CH3 Cr
1
NaBH4 1) base
CO2Me
H 2) R-X
Cr(CO)3 R
Cr(CO)3 O Cr(CO)3 OH Cr(CO)3 CO2Me
O O
CH3
1) NaH H
2) CH3I
Cr(CO)3 Cr(CO)3 148
Acyclic cases
R disfavoured
R R'Li or R'MgBr R
O rotamer
H R'
or NaCH2NO2 H
OH Cr(CO)3 H
Cr(CO)3 O Cr(CO)3
X X
X R'MgBr R' R
O
OH
R Cr(CO)3 O
Cr(CO)3 R Cr(CO)3
SiMe3
TiCl4 +
OH H HNCOMe
H H2SO4 1) MeCN
Me H
Me Me
2) H2O
Cr(CO)3 +
Cr(CO)3 Cr(CO)3 149
R R R
Cr(CO)3-naphthalene
OH H
OH
H OH
OMe OMe OMe
Cr(CO)3 Cr(CO)3
major
because
R H
H R
favoured disfavoured
X O X O
LnCr LnCr
3) chiral auxiliaries
MeO MeO
1) 2 nBuLi,
O -30o O H+
O CHO
OMe 2) E+ O OMe (E = Me)
E E
Cr(CO)3 Cr(CO)3 Cr(CO)3
90% de
Kondo, Y.; Green, J.R.; Ho, J. J. Org. Chem. 1993, 58, 6182.
4) enantioselective functionalization
O MeO
OMe CONPr-i2
X X X= OMe
1)Ph N Ph O
Li
SiMe3
or Kundig,E.P. at al Tetrahedron Lett. 1994, 35, 3497
Li Simpkins, N.S. et al J. Org. Chem. 1994, 59, 1961
Cr(CO)3 N Cr(CO)3 Siwek, M.J.; Green, J.R. J. Chem. Soc., Chem. Commun,
Ph
1996, 2359.
up to >90%ee
2) Me3SiCl 151
Other η6-Cycloalkatriene-Cr(CO)3 Complexes
oxid
Cr(CO)2
hν, -CO
Cr(CO)3 Cr(CO)2 coupling Cr(CO)2
-this is stepwise in nature, so there is no 'concertedness' reason why the [6+2] should fail, so...
CO2Et
CO2Et 1) hν, RT, hexanes H H
+
92%
Cr(CO)3 2) O2
152
-both of these can be catalytic in Cr - often in the presence of Mgo
CO2Me MeO2C CO2Et
N CO2Et 9% (CO)3Cr-naphth
+ H N H
77%
nBu O, 150o
2
Multistep Reactions
The [2+2+2] Cycloaddition
- important method of making six membered rings
-also, many of the other multistep processes are based on this reaction
R R R
Cp R R R
insertion reductive R R
Co + "CpCo"
R' CpCo R elimination
R R' R
R R' R'
R' R'
Personal opinion - there are instances where the concerted cycloaddition mechanism is
operating
- more often, it is the insertion/elimination mechanism that is operating
Regiochemistry
-if one has R(big) R(small) , what happens?
Rb Rb Rs
Rs Cp Rb
Cp major a minor
Rs + Co
CpCo Co product amount of this
Rs Rs
L Rs L
Rb Rb
Rb
-simply from sterics
Rb Rs Rs
Rs Rb Rb
CpCo fast CpCo slower CpCo Rb no way
Rs Rs
155
Rb Rb Rs
-if one has R(EDG) R(EWG) , what happens?
Rw Rw Rw
Rd Cp Rd
Cp major a minor
Rd + Co
CpCo Co product amount of this
Rd Rw
L Rd L
Rw Rd
Rw
-if sterics and electronic effects compete, the steric effect overwhelm
Ph Ph MeO2C
CO2Me Cp CO2Me Cp Ph
CpCo Ph Co + Co 5%
43%
Ph3P Ph Ph3P Ph
Ph Ph Ph
-there is still a third alkyne to participate in 2+2+2, so often one gets further regiochemical
mixtures
-reaction becomes synthetically useful when BTMSA Me3Si SiMe3
is used as the third alkyne, as it only reacts with itself very slowly
156
-particularly synthetically useful reaction when the two other alkynes are joined
i.e., L
H Me3Si SiMe3 SiMe3
( )n ( )n Co
Cp ( )n
H CpCo(CO)2, hν
SiMe3
n = 0, 1, 2 A good yields
H
-fortunately, silyl groups are removable from arenes
SiMe3 H H
H+ or
( )n ( )n ( )n
SiMe3 F- SiMe3 H
-reactions tolerate a pretty good range of substituents, such as... -CO2R, -CH2OH, -CH2OR',
-NR'2, -SR', O , N-OR'
R H
-reaction may be carried out thermally or photochemically (or both) 157
-reaction is often (but not always) catalytic in cobalt
examples
xs BTMSA SiMe3 CF3CO2H SiMe3
CpCo(CO)2(cat) SiMe3 72%
SiMe3
hν, Δ 96%
Berris, B.C.; Vollhardt, K.P.C. J. Chem. Soc.,
SiMe3 Chem. Commun. 1982, 953.
Me3Si
xs BTMSA
SiMe3 36%
CpCo(CO)2
Dierks, R.; Vollhardt, K.P.C.
Δ SiMe3 J. Am. Chem. Soc. 1983, 39, 3150.
Me3Si
SiMe3
MeO Vollhardt, K.P.C. et al
xs BTMSA N Tetrahedron 1983, 39, 905.
N MeO
MeO CpCo(CO)2(cat)
MeO SiMe3
hν
96%
SiMe3
Other cyclization partners
-the 'third alkyne' does not have to be an alkyne per se - for example, it can be an alkyne
1 equiv CpCo
CpCo(CO)2 H CuCl2-Et3N
H
SiMe3 Δ, isooctane 0o, CH3CN
SiMe3 SiMe3
158
Sternberg, E.D.; Vollhardt, K.P.C. J. Org. Chem. 1984, 49, 1564.
CpCo(CO)2 CoCp CuCl2-Et3N
Me Me
hν, Δ, 0o, or silica gel
m-xylene
60% 61%
Vollahrdt, K.P.C. et al J. Org. Chem. 1984, 49, 5010; Angew. Chem. Int. Ed. Engl. 1981, 20, 802.
-or an isocyanate
CpCo(CO)2(cat) R
H R N
( )n N C O ( )n Earl, R.A.; Vollhardt, K.P.C.
H xylene, hν, Δ O J. Org. Chem. 1984, 49, 4786.
n = 1-2
R R R
R " " R2
H ca. 45%
+ R2 R1 N
N C O R1
O 159
-again, these are, in almost all circumstances, the 3rd partner in the cycloaddition
i.e.
R2 R
R R2R R R
R R1 R1 R R N
Co not Co R Co N Co R
Cp Cp not
R Cp R Cp
R R
R R R R
Use in estrone synthesis O
O O Me3Si
Me3Si Δ
BTMSA
CpCo(CO)2 Me3Si Me3Si
O
O
O H 71%
CF3CO2H Me Si
Pb(OC(O)CF3)4 H 3
H H H
H H Me3Si
H H Me3Si
HO
estrone Funk, R.L.; Vollhardt, K.P.C. J. Am. Chem. Soc. 1977, 99, 5483; 1979, 101, 215; 1980, 102, 5253.
-using the CoI / CoIII systems are not the only transition metal complexes capable of these
cycloaddition - certainly the most popular, especially in early days, but other systems have
been used effectively 160
-a survey of literature, early 2000's
O
O OH
OH 2% (Ph3P)3RhCl
86%
EtOH, 25o, 12h HO
HO
MeO MeO
OMe OMe MeO
SiMe3 Pd(PPh ) 81% OMe
3 4 +
OTf CsF, CH3CN
MeO
MeO 93:7
Many, many reviews on this
R Tanaka, K. Synlett 2007, 1977. (Rh catalysts)
R Chopade, P.R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307. (all metals)
R Gandon, V.; Aubert, C.; Malacria, M. Chem. Commun. 2006, 2209 (Co)
R Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005, 4741 (all metals, small)
R Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901 (all metals)
R Grotjahn, D.B. Comprehensive Organometallic Chemistry II, Vol12, p741, 1995 (library)
R Boese, R.; Sickle, A.P.; Vollhardt, K.P.C. Synthesis 1994, 1374. (indoles)
R Schore, N. Comprehensive Organic Synthesis, Vol 5, p 1129, 1991
R Vollhardt, K.P.C. Angew. Chem. Int. Ed. Engl. 1984, 23, 539.
161
3. Interrupting the 2+2+2
-there are a number of reactions that start to follow this 2+2+2 pathway, getting to the
metallacyclopentdiene or metallacyclopentene, and then go differently
-only a time to look at a couple, but there are many more in synthesis
see: Topics in Organometallic Chemistry 2006, 19 entire issue
R R R
Cp Cp R
Co O Co CoCp
CO CO
R R R R
Intermolecular Cases
-no particular constraints on the alkyne 162
-if you have an unsymmetrical alkyne, larger groups end up next to C=O, as in
Alkene Partner
-simple alkenes don't work especially well, unless present in huge excess
(Note: this is making progress)
-strained alkenes, "non β-hydride" alkenes (bridged bicyclic akenes),
and alkenes with ligands attached (X = NR2, SR, O?) give better yield, high regioselectivity
O
Ph H Ph Ph Ph
+ 15% ordinary alkene
Co2(CO)6
CH3 SMe
SMe
O
Ph H + coordinating substit.
Ph 73%
Co2(CO)6
(note: trans)
Krafft,M. et al J. Am. Chem. Soc. 1991, 113, 1693 CH3
NMe2 O arrow is where
NMe2 R2 1st C-C bond
S+ O Ph
R1 forms
Si
1 O
Krafft
Carretero Kerr Yoshida (with Ru3(CO)12)
-also chiral -loses benzoate -loses Si
high % 163
2 ( )n
( )n even n = normal
C 1
with mild conditions
PhMe2Si especially
n = small "no β-H"
Cazes (no β-H)
Reviews focussing on intermolecular reactions R Gibson, S.E. et al Angew. Chem. Int. Ed. 2005, 44, 3022.
R Laschat, S. Synlett 2005, 2547.
Intramolecular Cases
-reaction works much better when alkene and alkyne are in the same molecule
Co2(CO)6
O +N O (NMO) O 85%
O O
CH2Cl2, RT
-often particularly good for all carbon bridges when there is a gem dialkyl in the bridge
Co2(CO)8 H gem dimethyl or Thorpe-Ingold
effect
Δ, 82% O
SiMe3 TBDMSO
TBDMSO SiMe3 164
-there are subtle stereochemical matters which are beyond this course's scope
-many recent advances have increased yields and allowed reactions under milder conditions
-photolysis O
-3o amine oxides (Me3N+-O-, TMANO), (NMO) O +N and room temp
Catalysis
-the new holy Grail - to use catalytic amounts of metal and CO gas (under as low a pressure
as possible), or a CO substitute (some aldehydes)
-other metals (other than Co) now are common, especially for catalytic chemistry; I think
that RhI is gradually replacing Co
Most recent reviews: R Shibata,T. Adv. Synth. Catal. 2006, 348, 2328.
R Pérez-Castells, J. Top Organomet Chem 2006, 19, 207
R Strübing, D.; Beller, M. Top Organomet Chem 2006, 18, 165 165
Mechanism of Pauson-Khand
-unnaturally complex looking, because presence of second metal, which is just 'along for
the ride'
OC CO
(CO)3Co Co(CO)3 Co Co(CO)3
Rb Rs R
+ R
Co2(CO)6 Rs Rb Rs Rb
oxidative
(CO)3 coupling +L
L2Co(CO) Co (CO)3
Co(CO)3 insertion Co
Rs Rb Rs Rb
CoCO +L Rs Rb
O
LL Co (CO)2
R R O H L
R
same as L2Co(CO)
Co(CO)3 Rs Rb
Rs Rb
+ LnCo-CoLn
O
O
R
Reviews R
R Chung, Y.K. et al Synlett 2005, 545 (Co nanoparticles) R Brummond, K. Tetrahedron 2000, 56, 3262 (allenes)
R Krafft, M.E. Tetrahedron 2004, 66, 9795. (Interrupted P.-K.) R Geis, G.; Schmalz, H.-G. Angew. Chem. Int. Ed. Engl.
R Alcaide, J.C.; Almendros, P. Eur. J. Org. Chem. 2004, 3377 (allenes) 1998, 37, 911
R Perez-Castells, J. Chem. Soc. Rev. 2004, 33, 32. R Schore, N.E. Comprehensive Organometal. Chem. II
R Gibson, S.E. Angew. Chem. Int. Ed. Engl. 2003, 42, 1800 (catalytic) 1992, Vol 12, Ch 7.2
R Carretero, J.C. Eur. J. Org. Chem. 2002, 288 R Schore, N.E. Org. React. 1991, 40, 1.
R Carretero, J.C. Synlett 2001, 26. R Schore, N.E. Chem. Rev. 1988, 88, 1081.
166
-so how about alkyne only cases, i.e. + + CO O
-sort of - uses Feo and product is the iron complex
R R R
R
R H3O+ R H3O+ R
ZrCp2 R ZrCp2
CH3
R' R' R' R'
R R R R
R H3O+ R R ZrCp2 H3O+ R
ZrCp2
N O O OH 168
R' R' R' R'
-due to electronegativity difference between
C and Zr, there's a tendency for these to react like -
-
R'
-other reactions -with sulphur monochloride or dichloride R'
R' R'
-reactions with iodine
R R R R R
tBuLi
I2
Cp2Zr I Li
Cp2Zr
I I
R
I2 R R
H3O+
Cp2Zr
I I
N I
N O
R' Cp2Zr
R' R' 169
Regiochemistry in benzyne reactivity
R R
R' R' ZrCp2 Rs Rb ZrCp2
ZrCp2 R' ZrCp2 Rb
R' Rs
analogous to cobalt
R R
"Cp2Zr" CO
( )n Pauson-Khand
( )n ZrCp2 ( )n O
R
R
( )n "Cp2Zr" same reactions as
R R' ( )n ZrCp2
intermolecular cases
R'
see R Negishi, E.; Takahashi, T. Bull. Chem. Soc. of Jpn. 1998, 71, 755.
R Majoral, J.-P. et al Coord. Chem. Rev. 1998, 178-80, 145 (main group elements)
R Negishi, E. Acc. Chem. Res. 1994, 27, 124.
R Buchwald, S.L.; Nielsen, R.B. Science 1993, 261, 1696.
R Buchwald, S.L. Chem. Rev. 1988, 88, 1047.
170
Carbenes
Bonding
R1 R1 : R1 R1
LnM : C LnM C LnM C LnM C
R2 R2 R2 R2
171
Preparation
O O OMe
PhLi - Me3O+
W(CO)6 (CO)5W C (CO)5W C (CO)5W C
Ph Ph Ph
-nucleophiles mostly alkyllithiums, but don't absolutely have to be C based
Li(NiPr2) Et3O+ BF4- OEt
Cr(CO)6
(CO)5M C
NPr2-i
Reactions of Fischer Carbenes
-for many reactions, it's useful to think of these carbenes as having parallel reactivity
to carboxylic esters
-anion is so stabilized that it's a fairly weak nucleophile; therefore only captures more
reactive electrophiles
O O
O (Michael acceptor)
Br CO2Et Cl OR R R' R X
-epoxides give further reaction
OMe OMe O
(CO)5Cr C 1) nBuLi, -78o (CO)5Cr C (CO)5Cr C
CH3 2) O
O
Casey, C.P. et al J. Organomet. Chem. 1974, 73, C28.
-aldehydes and ketones don't eliminate immediately, but the alcohols can be made to
eliminate 173
OMe 1) nBuLi, -78o pyridine OMe
OMe
(CO)5Cr C (CO)5Cr C
(CO)5Cr C OH
2) PhCHO, TiCl4
Ph
3) workup Ph
Wulff, W.D. et al J. Am. Chem. Soc. 1985, 107, 503.
-can make the anion less stable, more reactive, by exchanging one CO ligand for a phosphine;
the anion will then react with (less electrophilic) alkyl halides/triflates
Wulff, W.D. et al J. Org. Chem. 1987, 52, 3263.
OMe Cr(CO)5
(CO)5Cr C H endo exo
Cr(CO)5 OMe
94:6 H
MeO 174
OMe Wulff, W.D. et al J. Am. Chem. Soc. 1983, 105, 6726
also
C partcicpate Dotz, K.H. et al Angew. Chem. int. Ed. Engl. 1986, 25, 812
(CO)5Cr Wulff, W.D. et al J. Am. Chem. Soc. 1984, 106, 756.
H
Cyclopropanation with Alkenes R'
R'
-typical reaction of carbenes in organic chemistry :CR2 + R
R R'
R'
-may also be done with discrete organometallic complexes, with either electron poor or
electron rich alkenes - probably by two different mechanisms
-with electron rich alkenes, rxns are at lower temperature, different mechanism 175
R + Ph
CO reduct
(CO)5Cr C N N N
Ph elimin Ph
OMe N R R
- (CO)5Cr
(CO)5Cr OMe MeO R
Ph OMe
R R
N (CO)5Cr C +
Ph OMe
R N
(CO)5Cr
OMe
+ Δ H2
-with normal alkenes, it's more useful to use
-see R Helquist, P. Adv. Met. Org. Chem. 1991, 2, 143 OC Fe CH2 made OC Fe C
OC
in situ
OC +SMe2
Carbene-Alkyne Cycloaddition
-probably most important type of rxn of Fischer carbenes; many uses in organic synthesis
-vinyl and aryl carbenes do a 2+2+1+1 cycloaddition reaction to give very specific types of arenes
OMe
OH
ca. 45o R
(CO)5Cr C + R R Cr(CO)3
R
OMe
reaction is essentially
R R
MeO Cr O
MeO C: :C O 176
-this process also occurs on aryl substituted carbenes
OH
OMe
R'
(CO)5Cr C + R' R'
R Cr(CO)3
R R'
OMe
Rs or CeIV/H2O Rs Rs
OMe
Cr(CO)3 OMe O
177
-aromatic heterocycles participate as well
OMe n-Pr OH
H X = O, S
(CO)5Cr Pr-n
Cr(CO)3
X X
OMe
-use in daunomycinone synthesis
Rs
H O
Rb O O OH FeIII/DMF
45o O
O + O 76%
(CO)5Cr THF O 2 steps
MeO O MeO
OMe
(CO)3Cr OMe
O
O OH O O OH
O
CH3
OH O
MeO
MeO O OMe OMe
daunomycinone
-many, many other synthetic examples -see
R Wulff, W.D. Adv. Met. Org. Chem. 1989, 1, 209.
R Minatti, A.; Dötz, K.H. Topics Organomet Chem 2004, 13, 123.
-other major ring formation reactions of Fischer carbenes is β-lactam synthesis 178
OMe hν
OMe O
[2+2] OMe CO OMe
(CO)5Cr C (CO)4Cr C
R2 L(CO)4Cr CH3 (CO)nCr CH3
CH3 CH insertion
N N R2 3 N R2 N R
R3 R1 R3 R3 R1 R3 R 2
1
R1
O OMe reductive
CH3
N R2 elimination
-for example R3 R
1
OMe S hν
H Me
(CO)5Cr C + MeO S one isomer
CH3 N H CH2Cl2 penam derivative
N
CO2Me O H (related to thienamycin)
MeO2C
R Hegedus, L.S. Topics Organomet Chem 2004,13, 157
-also works with carbonyls that are highly enolizable, whereas the Wittig reagent
would simply deprotonate
R Hartley, R.C.; McKiernan, G.J. J. Chem. Soc., Perkin Trans. 1 2002, 2763
-alternative set of conditions, see:
R Grubbs, R.H.; Pine, S.H. "Comprehensive Organic Synthesis" 1991, vol 5, Ch 9.3 (p1115)
"Cp2Ti=CH2" CH2
-acid chlorides do give enolates O
R O-TiCp2Cl
R Cl
Metathesis of Alkenes
-these 2+2 / retrograde 2+2 cycloadditions become the dominant reaction pathway with
several transition metal carbenes/alkylidenes
N N Mes
Ph PCy3 Mes N N Mes Mes
PCy3 Ph
Cl Ph Cl
N Cl Ru Cl Ru
Ru Ph Ru Cl
Cl Cl Cl
O Mo Ph PCy3 PCy3 O
PCy3
F3C O
CF3 CF3 1 2 3 1st generation 4 2nd generation 5
CF3
Grubbs-Hoveyda
Schrock (pre)catalyst Grubbs' (pre)catalysts
-higher reactivity -more easily handled
-less stable, less easily -much more functional group tolerant
handled -less reactive (4 is close)
-not that functional group tolerant 181
-use in organic synthesis - Ring Closing Metathesis (RCM)
true (living) catalyst
R
R R R R R H2C M
2+2 retro M 2+2
+ M
M M
2+2
10 mol%
3
HO OSiPh2Bu-t HO OSiPh2Bu-t 82%
PCy3
Ph
Cl Ru
O Cl O
PCy3
O O Grubbs 1 O O
5-10 mol%
1 Schrock cat.
95%
F3C N F3C N
O N
O
OTBDMS O Mo Ph OTBDMS
F3C O 182
CF3 CF3
CF3
-one alkyne can be used in these ring closing metathesis reactions; get a diene as product
H2C M
R' R' R'
retro M 2+2
2+2 M
M M R'
2+2 R'
3 CH3
O O 73%
H N
PCy3
Ph
H3C 1st gen Cl N
Grubbs cat Cl
Ru H
PCy3
R Chattopadhyay, S. K.; Karmakar, S.; Biswas, T.; Majumdar, K. C.; Rahaman, H.; Roy, B. Tetrahedron 2007, 63, 3919.
R Mori, M. Adv. Synth. Catal. 2007, 349, 121 (entire issue is on metathesis)
R Villar, H.; Frings, M.; Bolm, C. Chem. Soc. Rev. 2007, 36, 55.
R Maifeld, S. V.; Lee, D. Chem.-Eur. J. 2005, 11, 6118.
Cross Metathesis - Intermolecular
-metathesis of two alkenes can be intermolecular, but there is normally a problem with selectivity
-in some cases, an alkene can be chosen such that metathesis with itself is slowed down to
almost zero
-in these cases, it is possible to do cross-metathesis with a second, unhindered alkene
-the 'slow' alkene is normally either H2C=CH-EWG or H2C=CH-BIG
OEt SiR3
CN R P O
O O OEt O 183
R
OBz
CH2Cl2, 3 mol% OBz
+ CO2Me CO2Me
Mes N N Mes
Ph 4
Cl Ru
91%, 4.5:1 E/Z
Cl
PCy3
2nd gen Grubbs
R Connon, S.J.; Blechert, S. Angew. Chem. int. Ed. Engl. 2003, 42, 1900.
Note: There is much work and progress in the RCM of diynes, using alkylidyne (carbyne)
intermediates
Ring Closing Metathesis reviews - many, many, many - selected ones include..
R Hoveyda, A. H.; Zhugralin, A. R. Nature 2007, 450, 243.
R Conrad, J. C.; Fogg, D. E. Current Organic Chemistry 2006, 10, 185.
R Grubbs, R. H.; Trnka, T. M. 'Ruthenium in Organic Synthesis' 2004,153
R Mulzer, J.; Oehler, E. Top. Organomet. Chem. 2004, 13, 269
R Grubbs, R. H Tetrahedron 2004, 60, 7117
R Hoveyda, A.H.; Schrock, R.R, Angew. Chem. Int. Ed. Engl. 2003, 42, 4592 (Mo)
R Hoveyda, A.H.; Schrock, R.R Chem.-Eur. J. 2001, 7, 945 (asymmetric)
R Furstner, A. Angew. Chem. Int. Ed. Engl. 2000, 39, 3012.
R Jafarour, L.; Nolan, S.P. J. Organomet. Chem. 2001, 617-618, 17.
R Tanka, T.M.; Grubbs, R.H. Acc. Chem. Res. 2001, 34, 18.
R Schrock, R.R., Tetrahedron 1999, 55, 8141. (Mo)
184