Model Question Paper
Trigonometry - Part I
10th Standard
Maths Reg.No. :
I.Answer all the questions.
II.Use blue pen only.
III.Question number 15 is compulsory.
Time : 01:00:00 Hrs Total Marks : 40
Part-A 5x1=5
1) 2
(1 − sin θ) sec θ =
2
(a) 0 (b) 1 (c) tan θ
2
(d) cos θ
2
2) 2
(1 + tan θ) sin θ =
2
(a) 2
sin θ (b) cos θ
2
(c) tan θ
2
(d) 2
cot θ
3) 2
(1 − cos θ) (1 + cot θ) =
2
(a) 2
sin θ (b) 0 (c) 1 (d) tan θ
2
4) sin (90
∘
− θ) cosθ + cos (90
∘
− θ) sinθ =
(a) 1 (b) 0 (c) 2 (d) -1
2
5) 1−
sin θ
=
1+cosθ
(a) cosθ (b) tanθ (c) cotθ (d) cosecθ
Part-B 5 x 2 = 10
6) Prove the identity sin θ
+
cos θ
= 1
cosec θ sec θ
−−−−−
7) Prove the identity √ 1−cosθ
= cosec θ − cot θ
1+cosθ
8) Prove the identity (sin 6 6
θ + cos θ) = 1 − 3sin θ cos θ
2 2
9) Prove the identity sin θ−2sin θ
3
= tan θ
2cos θ−cos θ
2
10) Prove that 1+sec θ sin θ
=
sec θ 1−cosθ
Part-C 5 x 5 = 25
11) Prove the identity [cosec(90 o
− θ) − sin(90
o
− θ)][cosec θ − sinθ][tan θ + cot θ] = 1
12) Prove that tan θ + sec θ−1 1+sinθ
=
tanθ− secθ + 1 cosθ
13) Prove the identity tanθ
+
cot θ
= 1 + tanθ + cotθ
1−cot θ 1−tan θ
14) Prove the identity (sin θ + cosec θ) 2
+ (cos θ + sec θ)
2 2
= 7 + tan θ + cot θ
2
15) a) Prove the identity sec θ−tan θ
= 1 − 2sec θ tan θ + 2tan θ
2
sec θ+tan θ
(OR)
b) Prove the identity (cosec θ − sin θ)(sec θ − cos θ) = 1
tan θ+cot θ
*****************************************