0% found this document useful (0 votes)
16 views47 pages

Trigonometric Integration

Uploaded by

Osii C
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
16 views47 pages

Trigonometric Integration

Uploaded by

Osii C
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 47

MATH-101 Calculus and Analytical Geometry

Trigonometric Integration

Dr. Yasir Ali (yali@ceme.nust.edu.pk)

DBS&H, CEME-NUST

December 23, 2020

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 1 / 28
Trigonometric Integration

Trigonometric Integration

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 2 / 28
Trigonometric Integration

Trigonometric Substitutions

√ For Substitute
2 2
√a − x x = a sin θ
2 2
√a + x x = a tan θ
x 2 − a2 x = a sec θ

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 3 / 28
Trigonometric Integration

Z
dx
I= √
a2 + x2

Put x = a tan θ =⇒ dx = a sec2 θdθ


Z
dx
I= √
a2 + x2

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 4 / 28
Trigonometric Integration

Z
dx
I= √
a2 + x2

Put x = a tan θ =⇒ dx = a sec2 θdθ


a sec2 θdθ
Z Z
dx
I= √ =⇒ I = √
a2 + x2 a2 + a2 tan2 θ

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 4 / 28
Trigonometric Integration

Z
dx
I= √
a2 + x2

Put x = a tan θ =⇒ dx = a sec2 θdθ


a sec2 θdθ
Z Z
dx
I= √ =⇒ I = √
a2 + x2 a2 + a2 tan2 θ

p a sec2 θ
a2 + a2 tan2 θ = a sec θ =⇒ √ = sec θ
a2 + a2 tan2 θ

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 4 / 28
Trigonometric Integration

Z
dx
I= √
a2 + x2

Put x = a tan θ =⇒ dx = a sec2 θdθ


a sec2 θdθ
Z Z
dx
I= √ =⇒ I = √
a2 + x2 a2 + a2 tan2 θ

p a sec2 θ
a2 + a2 tan2 θ = a sec θ =⇒ √ = sec θ
a2 + a2 tan2 θ

Thus Z
I= sec θdθ =⇒ ln | sec θ + tan θ|

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 4 / 28
Trigonometric Integration

Z p
I= a2 − x2 dx

Put x = a sin θ =⇒ dx = a cos θ


Z p Z q
a2 − a2 sin2 θa cos θdθ = a2 1 − sin2 θ a cos θdθ

I=

a2
Z Z Z
2 2
= a cos θ · a cos θdθ = a cos θdθ = (1 + cos 2θ) dθ
2
a2 a2 a2 
 
sin 2θ p 
I= θ+ = (θ + sin θ cos θ) = θ + sin θ 1 − sin2 θ
2 2 2 2
r !
x a2 −1 x x  x 2
Using sin θ = a to I = sin + 1−
2 a a a

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 5 / 28
Trigonometric Integration

Z 1p
I= 1 + x2 dx
0

π
Put x = tan θ gives x = 0 =⇒ θ = 0 and x = 1 =⇒ θ = .
4
dx = sec2 θdθ
Z θ= π4 p Z π
4
2
I= 2
1 + tan θ sec θdθ =⇒ I = sec3 θdθ
θ=0 0

π
1 4 1 √ √ 
I= (sec θ tan θ + ln | sec θ + tan θ|) = 2 + ln( 2 + 1) ' 1.148
2 0 2

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 6 / 28
Reduction Formulas

Reduction Formulas

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 7 / 28
Reduction Formulas

n−1
Z Z
n 1 n−1
sin xdx = − sin x cos x + sinn−2 xdx
n n
n−1
Z Z
n 1 n−1
cos xdx = cos x sin x + cosn−2 xdx
n n

xn eax n
Z Z
n ax
x e dx = − xn−1 eax dx
a a
xm+1 (ln x)n
Z Z
n n
m
x (ln x) dx = − xm+1 (ln x)n−1 dx
m+1 m+1

xn cos ax n n−1 n(n − 1)


Z Z
xn sin axdx = − + 2x sin ax − xn−2 sin axdx
a a a2

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 8 / 28
Reduction Formulas

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 9 / 28
Reduction Formulas

n−1
Z Z
1
sinn xdx = − sinn−1 x cos x + sinn−2 xdx
n n

Z Z
2 1 1
sin xdx = − sin x cos x + dx =
2 2

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 10 / 28
Reduction Formulas

n−1
Z Z
1
sinn xdx = − sinn−1 x cos x + sinn−2 xdx
n n

Z Z
2 1 1 1 1
sin xdx = − sin x cos x + dx = − sin x cos x + x
2 2 2 2

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 10 / 28
Reduction Formulas

n−1
Z Z
1
sinn xdx = − sinn−1 x cos x + sinn−2 xdx
n n

Z Z
2 1 1 1 1
sin xdx = − sin x cos x + dx = − sin x cos x + x
2 2 2 2
Z
1 2
sin3 xdx = − sin2 x cos x + cos x
3 3

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 10 / 28
Reduction Formulas

n−1
Z Z
1
sinn xdx = − sinn−1 x cos x + sinn−2 xdx
n n

Z Z
2 1 1 1 1
sin xdx = − sin x cos x + dx = − sin x cos x + x
2 2 2 2
Z
1 2 1
sin3 xdx = − sin2 x cos x + cos x = cos3 x − cos x
3 3 3

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 10 / 28
Reduction Formulas

n−1
Z Z
1
sinn xdx = − sinn−1 x cos x + sinn−2 xdx
n n

Z Z
2 1 1 1 1
sin xdx = − sin x cos x + dx = − sin x cos x + x
2 2 2 2
Z
1 2 1
sin3 xdx = − sin2 x cos x + cos x = cos3 x − cos x
3 3 3
Z
sin4 xdx

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 10 / 28
Reduction Formulas

n−1
Z Z
1
sinn xdx = − sinn−1 x cos x + sinn−2 xdx
n n

Z Z
2 1 1 1 1
sin xdx = − sin x cos x + dx = − sin x cos x + x
2 2 2 2
Z
1 2 1
sin3 xdx = −
sin2 x cos x + cos x = cos3 x − cos x
3 3 3
Z Z
4 1 3 3 2
sin xdx = − sin x cos x + sin xdx
4 4

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 10 / 28
Reduction Formulas

n−1
Z Z
1
sinn xdx = − sinn−1 x cos x + sinn−2 xdx
n n

Z Z
2 1 1 1 1
sin xdx = − sin x cos x + dx = − sin x cos x + x
2 2 2 2
Z
1 2 1
sin3 xdx = −
sin2 x cos x + cos x = cos3 x − cos x
3 3 3
Z Z
4 1 3 3 2
sin xdx = − sin x cos x + sin xdx
4 4
 
1 3 1 1
= − sin3 x cos x + − sin x cos x + x
4 4 2 2

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 10 / 28
Reduction Formulas

n−1
Z Z
1
sinn xdx = − sinn−1 x cos x + sinn−2 xdx
n n

Z Z
2 1 1 1 1
sin xdx = − sin x cos x + dx = − sin x cos x + x
2 2 2 2
Z
1 2 1
sin3 xdx = −
sin2 x cos x + cos x = cos3 x − cos x
3 3 3
Z Z
4 1 3 3 2
sin xdx = − sin x cos x + sin xdx
4 4
 
1 3 1 1
= − sin3 x cos x + − sin x cos x + x
4 4 2 2
3 3 1
= x− sin 2x − sin3 x cos x
8 16 4
Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)
Cal&AG December 23, 2020 10 / 28
Reduction Formulas Trick Using Pascal’s Triangle

Powers of Sines and Cosines, Trick Using Pascal’s Triangle

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 11 / 28
Reduction Formulas Trick Using Pascal’s Triangle

Trick Using Pascal’s Triangle for Even Cosine Powers

Figure: Pascal’s Triangle

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 12 / 28
Reduction Formulas Trick Using Pascal’s Triangle

Trick Using Pascal’s Triangle for Even Cosine Powers

• Write 20, 30, 12, 1

20 is in the middle of
Pascal’s triangle. The
add 15s on left and right
of 20. Then add two 6s
Figure: Pascal’s Triangle and the two 1s

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 12 / 28
Reduction Formulas Trick Using Pascal’s Triangle

Trick Using Pascal’s Triangle for Even Cosine Powers

• Write 20, 30, 12, 1

20 is in the middle of
Pascal’s triangle. The
add 15s on left and right
of 20. Then add two 6s
Figure: Pascal’s Triangle and the two 1s

(2 cos x)6 = 20 cos 0 + 30 cos 2x + 12 cos 4x + 2 cos 6x 26 = 64

1
cos6 x = (20 cos 0x + 30 cos 2x + 12 cos 4x + 2 cos 6x)
64

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 12 / 28
Reduction Formulas Trick Using Pascal’s Triangle

1
cos6 x = (10 + 15 cos 2x + 6 cos 4x + cos 6x)
32

Z Z
6 1
I = cos x = (10 + 15 cos 2x + 6 cos 4x + cos 6x) dx
32
 
1 15 6 1
= 10x + sin 2x + sin 4x + sin 6x + C
32 2 4 6

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 13 / 28
Reduction Formulas Trick Using Pascal’s Triangle

Trick Using Pascal’s Triangle for Odd Cosine Powers

Write 20, 10, 2

(2 cos x)5 = 20 cos x+10 cos 3x+2 cos 5x

1
cos5 x = (20 cos x + 10 cos 3x + 2 cos 5x)
32

Z Z
1
I= cos5 x = (20 cos x + 10 cos 3x + 2 cos 5x) dx
32
 
1 5 1
= 10 sin x + sin 3x + sin 5x + C
16 3 5

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 14 / 28
Reduction Formulas Trick Using Pascal’s Triangle

Trick Using Pascal’s Triangle for Sine Powers

1 Alternative sign
starting from +

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 15 / 28
Reduction Formulas Trick Using Pascal’s Triangle

Trick Using Pascal’s Triangle for Sine Powers

1 Alternative sign
starting from +
2 Odd powers of sin x
get expanded in
terms of sine
functions,

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 15 / 28
Reduction Formulas Trick Using Pascal’s Triangle

Trick Using Pascal’s Triangle for Sine Powers

1 Alternative sign
starting from +
2 Odd powers of sin x
get expanded in
terms of sine
functions,
3 Even powers of sin x
get expanded in
terms of cosine
functions.

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 15 / 28
Reduction Formulas Trick Using Pascal’s Triangle

Trick Using Pascal’s Triangle for Sine Powers

1 Alternative sign
starting from +
2 Odd powers of sin x
get expanded in
terms of sine 1
functions, sin2 x = (1 − cos 2x)
2
3 Even powers of sin x
get expanded in
terms of cosine
functions.

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 15 / 28
Reduction Formulas Trick Using Pascal’s Triangle

Trick Using Pascal’s Triangle for Sine Powers

1 Alternative sign
starting from +
2 Odd powers of sin x
get expanded in
terms of sine 1
functions, sin2 x = (1 − cos 2x)
2
3 Even powers of sin x 3 1
sin3 x = sin x − sin 3x
get expanded in 4 4
terms of cosine
functions.

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 15 / 28
Reduction Formulas Trick Using Pascal’s Triangle

Trick Using Pascal’s Triangle for Sine Powers

1 Alternative sign
starting from +
2 Odd powers of sin x
get expanded in
terms of sine 1
functions, sin2 x = (1 − cos 2x)
2
3 Even powers of sin x 3 1
sin3 x = sin x − sin 3x
get expanded in 4 4
3 1 1
terms of cosine sin4 x = − cos 2x + cos 4x
8 2 2
functions.

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 15 / 28
Reduction Formulas Trick Using Pascal’s Triangle

Trick Using Pascal’s Triangle for Sine Powers

1 Alternative sign
starting from +
2 Odd powers of sin x
get expanded in
terms of sine 1
functions, sin2 x = (1 − cos 2x)
2
3 Even powers of sin x 3 1
sin3 x = sin x − sin 3x
get expanded in 4 4
3 1 1
terms of cosine sin4 x = − cos 2x + cos 4x
8 2 2
functions. 5 5 1
sin5 x = sin x − sin 3x + sin 5x
8 16 16

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 15 / 28
Reduction Formulas Trick Using Pascal’s Triangle

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 16 / 28
Reduction Formulas Trick Using Pascal’s Triangle

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 17 / 28
Products of Powers of Sines and Cosines

Products of Powers of Sines and Cosines

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 18 / 28
Products of Powers of Sines and Cosines

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 19 / 28
Products of Powers of Sines and Cosines

Z
I= sin4 x cos5 xdx, n= 5 is odd

So
Z Z
4 4
2
I= sin x cos x cos xdx =⇒ I = sin4 x 1 − sin2 x cos xdx

Put u = sin x impliesdu = cos xdx, thus


Z Z
4 2 2
I = u (1 − u ) du =⇒ I = (u4 − 2u6 + u8 )du

u5 2u7 u9 sin5 x 2 sin7 x sin9 x


I= − + +C = I = − + +C
5 7 9 5 7 9
Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)
Cal&AG December 23, 2020 20 / 28
Products of Powers of Sines and Cosines

Z Z
4 4
2 2
I= sin x cos xdx = sin2 x cos2 x

1−cos 2x 1+cos 2x
Use sin2 x = 2 and cos2 x = 2

Z  2  2
1 − cos 2x
Z
1 + cos 2x 1
I= dx = (1 − cos2 2x)2 dx
2 2 16

Z Z
1 4 1
I= sin 2xdx letting 2x = u =⇒ I = sin4 udu
16 32
Use reduction formula to get the answer.

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 21 / 28
Products of Powers of Sines and Cosines

Integrate sin3 x cos2 x

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 22 / 28
Products of Powers of Sines and Cosines

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 23 / 28
Products of Powers of Sines and Cosines

Z
I= tan2 x sec4 xdx

As power of sec is even, that is, n = 2 so Split off a factor of sec2 x.


Put u = tan x =⇒ du = sec2 xdx .
Z Z
I = tan x sec x sec xdx = tan2 x tan2 x + 1 sec2 xdx
2 2
 2 

Z
1 1
I= u2 (u2 + 1)du = u5 + u3 + C
5 3

1 1
I= tan5 x + tan3 x + C
5 3
Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)
Cal&AG December 23, 2020 24 / 28
Products of Powers of Sines and Cosines

Z
tan3 x sec3 xdx

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 25 / 28
Products of Powers of Sines and Cosines

Z
tan2 x sec xdx

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 26 / 28
Products of Powers of Sines and Cosines

1
sin α cos β = [sin(α − β) + sin(α + β)]
2
1
sin α sin β = [cos(α − β) − cos(α + β)]
2
1
cos α cos β = [cos(α − β) + cos(α + β)]
2

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 27 / 28
Products of Powers of Sines and Cosines

1
sin α cos β = [sin(α − β) + sin(α + β)]
2
1
sin α sin β = [cos(α − β) − cos(α + β)]
2
1
cos α cos β = [cos(α − β) + cos(α + β)]
2

Z Z
1
sin 7x cos 3xdx = [sin(7x − 3x) + sin(7x + 3x)] dx
2
Z
1 1
= (sin 4x + sin 10x)dx = − cos 4x − cos 10x + C
8 20

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 27 / 28
Products of Powers of Sines and Cosines

Summary

Trigonometric Substitutions
Powers of sine and Cosine Functions
Product of Powers of x and Transcendental Functions
Product of Powers of Sine and Cosine
Product of Powers of Tan and Secant

Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)


Cal&AG December 23, 2020 28 / 28

You might also like