Trigonometric Integration
Trigonometric Integration
Trigonometric Integration
DBS&H, CEME-NUST
Trigonometric Integration
Trigonometric Substitutions
√ For Substitute
2 2
√a − x x = a sin θ
2 2
√a + x x = a tan θ
x 2 − a2 x = a sec θ
Z
dx
I= √
a2 + x2
Z
dx
I= √
a2 + x2
Z
dx
I= √
a2 + x2
p a sec2 θ
a2 + a2 tan2 θ = a sec θ =⇒ √ = sec θ
a2 + a2 tan2 θ
Z
dx
I= √
a2 + x2
p a sec2 θ
a2 + a2 tan2 θ = a sec θ =⇒ √ = sec θ
a2 + a2 tan2 θ
Thus Z
I= sec θdθ =⇒ ln | sec θ + tan θ|
Z p
I= a2 − x2 dx
a2
Z Z Z
2 2
= a cos θ · a cos θdθ = a cos θdθ = (1 + cos 2θ) dθ
2
a2 a2 a2
sin 2θ p
I= θ+ = (θ + sin θ cos θ) = θ + sin θ 1 − sin2 θ
2 2 2 2
r !
x a2 −1 x x x 2
Using sin θ = a to I = sin + 1−
2 a a a
Z 1p
I= 1 + x2 dx
0
π
Put x = tan θ gives x = 0 =⇒ θ = 0 and x = 1 =⇒ θ = .
4
dx = sec2 θdθ
Z θ= π4 p Z π
4
2
I= 2
1 + tan θ sec θdθ =⇒ I = sec3 θdθ
θ=0 0
π
1 4 1 √ √
I= (sec θ tan θ + ln | sec θ + tan θ|) = 2 + ln( 2 + 1) ' 1.148
2 0 2
Reduction Formulas
n−1
Z Z
n 1 n−1
sin xdx = − sin x cos x + sinn−2 xdx
n n
n−1
Z Z
n 1 n−1
cos xdx = cos x sin x + cosn−2 xdx
n n
xn eax n
Z Z
n ax
x e dx = − xn−1 eax dx
a a
xm+1 (ln x)n
Z Z
n n
m
x (ln x) dx = − xm+1 (ln x)n−1 dx
m+1 m+1
n−1
Z Z
1
sinn xdx = − sinn−1 x cos x + sinn−2 xdx
n n
Z Z
2 1 1
sin xdx = − sin x cos x + dx =
2 2
n−1
Z Z
1
sinn xdx = − sinn−1 x cos x + sinn−2 xdx
n n
Z Z
2 1 1 1 1
sin xdx = − sin x cos x + dx = − sin x cos x + x
2 2 2 2
n−1
Z Z
1
sinn xdx = − sinn−1 x cos x + sinn−2 xdx
n n
Z Z
2 1 1 1 1
sin xdx = − sin x cos x + dx = − sin x cos x + x
2 2 2 2
Z
1 2
sin3 xdx = − sin2 x cos x + cos x
3 3
n−1
Z Z
1
sinn xdx = − sinn−1 x cos x + sinn−2 xdx
n n
Z Z
2 1 1 1 1
sin xdx = − sin x cos x + dx = − sin x cos x + x
2 2 2 2
Z
1 2 1
sin3 xdx = − sin2 x cos x + cos x = cos3 x − cos x
3 3 3
n−1
Z Z
1
sinn xdx = − sinn−1 x cos x + sinn−2 xdx
n n
Z Z
2 1 1 1 1
sin xdx = − sin x cos x + dx = − sin x cos x + x
2 2 2 2
Z
1 2 1
sin3 xdx = − sin2 x cos x + cos x = cos3 x − cos x
3 3 3
Z
sin4 xdx
n−1
Z Z
1
sinn xdx = − sinn−1 x cos x + sinn−2 xdx
n n
Z Z
2 1 1 1 1
sin xdx = − sin x cos x + dx = − sin x cos x + x
2 2 2 2
Z
1 2 1
sin3 xdx = −
sin2 x cos x + cos x = cos3 x − cos x
3 3 3
Z Z
4 1 3 3 2
sin xdx = − sin x cos x + sin xdx
4 4
n−1
Z Z
1
sinn xdx = − sinn−1 x cos x + sinn−2 xdx
n n
Z Z
2 1 1 1 1
sin xdx = − sin x cos x + dx = − sin x cos x + x
2 2 2 2
Z
1 2 1
sin3 xdx = −
sin2 x cos x + cos x = cos3 x − cos x
3 3 3
Z Z
4 1 3 3 2
sin xdx = − sin x cos x + sin xdx
4 4
1 3 1 1
= − sin3 x cos x + − sin x cos x + x
4 4 2 2
n−1
Z Z
1
sinn xdx = − sinn−1 x cos x + sinn−2 xdx
n n
Z Z
2 1 1 1 1
sin xdx = − sin x cos x + dx = − sin x cos x + x
2 2 2 2
Z
1 2 1
sin3 xdx = −
sin2 x cos x + cos x = cos3 x − cos x
3 3 3
Z Z
4 1 3 3 2
sin xdx = − sin x cos x + sin xdx
4 4
1 3 1 1
= − sin3 x cos x + − sin x cos x + x
4 4 2 2
3 3 1
= x− sin 2x − sin3 x cos x
8 16 4
Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)
Cal&AG December 23, 2020 10 / 28
Reduction Formulas Trick Using Pascal’s Triangle
20 is in the middle of
Pascal’s triangle. The
add 15s on left and right
of 20. Then add two 6s
Figure: Pascal’s Triangle and the two 1s
20 is in the middle of
Pascal’s triangle. The
add 15s on left and right
of 20. Then add two 6s
Figure: Pascal’s Triangle and the two 1s
1
cos6 x = (20 cos 0x + 30 cos 2x + 12 cos 4x + 2 cos 6x)
64
1
cos6 x = (10 + 15 cos 2x + 6 cos 4x + cos 6x)
32
Z Z
6 1
I = cos x = (10 + 15 cos 2x + 6 cos 4x + cos 6x) dx
32
1 15 6 1
= 10x + sin 2x + sin 4x + sin 6x + C
32 2 4 6
1
cos5 x = (20 cos x + 10 cos 3x + 2 cos 5x)
32
Z Z
1
I= cos5 x = (20 cos x + 10 cos 3x + 2 cos 5x) dx
32
1 5 1
= 10 sin x + sin 3x + sin 5x + C
16 3 5
1 Alternative sign
starting from +
1 Alternative sign
starting from +
2 Odd powers of sin x
get expanded in
terms of sine
functions,
1 Alternative sign
starting from +
2 Odd powers of sin x
get expanded in
terms of sine
functions,
3 Even powers of sin x
get expanded in
terms of cosine
functions.
1 Alternative sign
starting from +
2 Odd powers of sin x
get expanded in
terms of sine 1
functions, sin2 x = (1 − cos 2x)
2
3 Even powers of sin x
get expanded in
terms of cosine
functions.
1 Alternative sign
starting from +
2 Odd powers of sin x
get expanded in
terms of sine 1
functions, sin2 x = (1 − cos 2x)
2
3 Even powers of sin x 3 1
sin3 x = sin x − sin 3x
get expanded in 4 4
terms of cosine
functions.
1 Alternative sign
starting from +
2 Odd powers of sin x
get expanded in
terms of sine 1
functions, sin2 x = (1 − cos 2x)
2
3 Even powers of sin x 3 1
sin3 x = sin x − sin 3x
get expanded in 4 4
3 1 1
terms of cosine sin4 x = − cos 2x + cos 4x
8 2 2
functions.
1 Alternative sign
starting from +
2 Odd powers of sin x
get expanded in
terms of sine 1
functions, sin2 x = (1 − cos 2x)
2
3 Even powers of sin x 3 1
sin3 x = sin x − sin 3x
get expanded in 4 4
3 1 1
terms of cosine sin4 x = − cos 2x + cos 4x
8 2 2
functions. 5 5 1
sin5 x = sin x − sin 3x + sin 5x
8 16 16
Z
I= sin4 x cos5 xdx, n= 5 is odd
So
Z Z
4 4
2
I= sin x cos x cos xdx =⇒ I = sin4 x 1 − sin2 x cos xdx
Z Z
4 4
2 2
I= sin x cos xdx = sin2 x cos2 x
1−cos 2x 1+cos 2x
Use sin2 x = 2 and cos2 x = 2
Z 2 2
1 − cos 2x
Z
1 + cos 2x 1
I= dx = (1 − cos2 2x)2 dx
2 2 16
Z Z
1 4 1
I= sin 2xdx letting 2x = u =⇒ I = sin4 udu
16 32
Use reduction formula to get the answer.
Z
I= tan2 x sec4 xdx
Z
1 1
I= u2 (u2 + 1)du = u5 + u3 + C
5 3
1 1
I= tan5 x + tan3 x + C
5 3
Dr. Yasir Ali (yali@ceme.nust.edu.pk) (DBS&H, CEME-NUST)
Cal&AG December 23, 2020 24 / 28
Products of Powers of Sines and Cosines
Z
tan3 x sec3 xdx
Z
tan2 x sec xdx
1
sin α cos β = [sin(α − β) + sin(α + β)]
2
1
sin α sin β = [cos(α − β) − cos(α + β)]
2
1
cos α cos β = [cos(α − β) + cos(α + β)]
2
1
sin α cos β = [sin(α − β) + sin(α + β)]
2
1
sin α sin β = [cos(α − β) − cos(α + β)]
2
1
cos α cos β = [cos(α − β) + cos(α + β)]
2
Z Z
1
sin 7x cos 3xdx = [sin(7x − 3x) + sin(7x + 3x)] dx
2
Z
1 1
= (sin 4x + sin 10x)dx = − cos 4x − cos 10x + C
8 20
Summary
Trigonometric Substitutions
Powers of sine and Cosine Functions
Product of Powers of x and Transcendental Functions
Product of Powers of Sine and Cosine
Product of Powers of Tan and Secant