2.
003SC Engineering Dynamics
                                                    Quiz 3 Solutions
Problem 1 Solution:
Modal Analysis Solution:
a) The natural frequencies of the system may be computed directly from the elements of the modal mass
   and stifness matrices.
             K1                190.4875
     ω12 =      ⇒ω1 =                   = 1.972 r/s
             M1                 48.981
                               210.5125
                     ω2 =               = 4.269 r/s
                                11.5579
b) Again, directly from modal values:
               C1          9.5244
     ζ1 =           =                  = 0.0493
             2ω1 M1   2(1.972)(48.981)
      q10             q̇10                     0.525    −0.0499       1       0.525
c)            = 0,           = u−1 x
                                   ˙ (0) =
                                   �
                                                                          =
      q20             q̇20                     0.475     0.0499       0       0.475
d)
                               (1)
                       1.0           q̇10 −ζ1 ω1d t
     x
     �
       = uq =                            e          sin(ω1d t)
                     −9.5125         ω1d
     where q̇10 = 0.525, ω1 = 1.972 r/s ≈ ω1d
     q̇10
          = 0.266
     ω1d
                                                                  1
Problem 2 Solution:
Vibration isolation:
                                                 fM = 3 Hz
                                                  ζ = 0.13
a) The total equivalent spring constant for springs in parallel is the sum of the individual ks:
     Keq = 4k
b) For a linear system, steady state response:
   frequency in=frequency out
     fin = fout = 10Hz
c)
      x         (1 + (2ζ ωωn )2 )1/2
        =                                 1/2
      y             ω2 2
             (1 −    2 )
                    ωn     + (2ζ ωωn )2
                   (1 + .8672 )1/2                  f    ω    10
         =                                             =    =
           [(1 − ( 10  2 2         2 1/2
                    3 ) ) + (0.867) ]
                                                    fn   ωn    3
             1.32
         =          = 0.130
           10.148
      x
        = 0.130
      y
                                                      2
Problem 3 Solution:
      r = 45 RPM
      Izz,G = 100kg-m2
      τ (t) = τ0 cos ωt, ω = 6π r/s
      kt = 1600π 2 N-m/r
      ct = 8π (N-m-s)/r
a).
           τ/o = τo cos ωtk̂ − cT θ̇k̂ − kt θk̂ = Izz,G θ̈k̂
                   ⇒ Izz,G θ¨ + cT θ̇ + kt θ = τo cos(ωt)
b).
                   kt        1600π 2 N-m
      ωn =               =               = 4π r/s
                 Izz,G         100 kg-m2
       ωd = ωn 1 − ζ 2
          = .99995ωn
           � ωn
                 ct           8π
       ζ=              =              = 0.01
               2Izz ωn   2 × 4π × 100
c). ωosc = ω = 6π r/s
d).   τ0
      kT   = 0.2 radians
                                             1/KT
      |θ| = |τ0 | · |Hθ/τ | = τ0                                1/2
                                          ω2 2
                                   (1 −    2 )
                                          ωn     + (2ζ ωωn )2
                                                 −1/2
               τ0     ω2         ω                                                         6π
        θ=        (1 − 2 )2 + (2ζ )2                    , which when evaluated at ω/ωn =      = 1.5 yields:
               KT     ωn         ωn                                                        4π
                        0.2 rad
           =                                     1/2
             [(1 − 1.52 )2 + (2(.01)(1.5))2 ]
                     .2
           =
             [1.56 + 0.0009]1/2
           = 0.16 = θ
                                                                      3
Problem 4 Solution:
a) The system has two degrees of freedom for the no-slip condition.
   If has four degrees of freedom if slip is allowed.
b) Two generalized conditions are required.
   I choose coordinates x1 and x2 , where
   x1 = rθ1 , x2 = rθ2 .
c)
             1        1        1         1
     T =       mẋ12 + mẋ22 + Ic1 θ̇12 + Ic2 θ̇22
             2        2        2         2
          for uniform disk, Ic = mr2 /2.
        1         1        1 m r2 ẋ21   1 m r2 ẋ22
     T =  mẋ21 + mẋ22 +              +
        2         2        2 2 r2        2 2 r2
        3         3
       = mẋ21 + mẋ22
        4         4
        1 2 1 2 1
     V = kx1 + kx2 + km (x2 − x1 )2
        2        2       2
d) Find EOMs:
   From Lagrange         d
                         dt
                              ∂T
                              ∂q̇i   −   ∂T
                                         ∂qi   +   ∂V
                                                   ∂qi   = Qi
          �        �
     d        ∂T       3       ∂T
                     = mẍ1 ,       =0
     dt       ∂ẋ1     2       ∂x1
                ∂V
                     = kx1 − km (x2 − x1 )
                ∂x1
                        3
                    ⇒     mẍ1 + (k + km )x1 − km x2 = 0
                        2
          �        �
     d        ∂T       3       ∂T
                     = mẍ2 ,       =0
     dt       ∂ẋ2     2       ∂x2
                ∂V
                     = kx2 + km (x2 − x1 )
                ∂x2
                        3
                    ⇒     mẍ2 − km x1 + (k + km )x2 = 0
                        2
                                                                4
MIT OpenCourseWare
http://ocw.mit.edu
2.003SC / 1.053J Engineering Dynamics
Fall 2011
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.