0% found this document useful (0 votes)
71 views7 pages

Foundation Type Selection Check For Isolated Footing

1) A mat foundation is required for a structure with 16 columns due to the large combined area of isolated footings exceeding 50% of the plinth area. 2) The maximum soil pressure and bending moment were calculated to be 163.78 kN/m^2 and 488.44 kNm. 3) A 900mm deep mat foundation with 60mm concrete cover was designed to satisfy the punching shear and steel reinforcement requirements. 16mm diameter bars with a total area of 1548.04 mm^2 will be provided.

Uploaded by

Saurav Shrestha
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
71 views7 pages

Foundation Type Selection Check For Isolated Footing

1) A mat foundation is required for a structure with 16 columns due to the large combined area of isolated footings exceeding 50% of the plinth area. 2) The maximum soil pressure and bending moment were calculated to be 163.78 kN/m^2 and 488.44 kNm. 3) A 900mm deep mat foundation with 60mm concrete cover was designed to satisfy the punching shear and steel reinforcement requirements. 16mm diameter bars with a total area of 1548.04 mm^2 will be provided.

Uploaded by

Saurav Shrestha
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 7

Foundation type selection

Check for Isolated footing


Column size= (400*400)mm2
Total number of column=16
Service load,P=1508.51
Design Load,Pu=2262.77KN
Safe bearing capacity of soil(SBC)=150KN/m2
Now,
𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑙𝑜𝑎𝑑
Approximate area=1.10*
𝑆𝐵𝐶

A=1.1*1508.51/150
=11.062 m2
Let us consider a square footing. Then,
Size of footing= 3.326m
Therefore providing 3.5*3.5 m2 square footing.
𝐹𝑎𝑐𝑡𝑜𝑟𝑒𝑑 𝑙𝑜𝑎𝑑
Net pressure on soil=𝐴𝑟𝑒𝑎 𝑜𝑓 𝑓𝑜𝑜𝑡𝑖𝑛𝑔

=123.14KN/m2 <SBC
Therefore area occupied by 16 footing= 16*3.5*3.5
=196m2
Length=14.262m
Breadth= 14.5668m
Plinth area of block=207.75m2
50% of area block=103.875m2
Since area occupied by isolated footing is greater than 50% of plinth area,
So, Mat foundation is necessary
Determination of eccentricity
For locating geometric centroid

Column Area About column 1-c A*X A*Y


X Y
1C 0.16 0 0 0 0
1H 0.16 5.461 0 0.87376 0
1K 0.16 9.5758 0 1.532128 0
1M 0.16 13.462 0 2.15392 0
2C 0.16 0 4.7244 0 0.755904
2H 0.16 5.461 4.7244 0.87376 0.755904
2K 0.16 9.5758 4.7244 1.532128 0.755904
2M 0.16 13.462 4.7244 2.15392 0.755904
6C 0.16 0 9.0932 0 1.454912
6H 0.16 5.461 9.0932 0.87376 1.454912
6K 0.16 9.5758 9.0932 1.532128 1.454912
6M 0.16 13.462 9.0932 2.15392 1.454912
7C 0.16 0 13.7668 0 2.202688
7H 0.16 5.461 13.7668 0.87376 2.202688
7K 0.16 9.5758 13.7668 1.532128 2.202688
7M 0.16 13.462 13.7668 2.15392 2.202688
Total 2.56 18.23923 17.65402

ΣAi Xi
x= =7.1247m
ΣAi

ΣAi Yi
y= =6.8961m
ΣAi
For locating centroid of resultant forces
` Combination Axial load About Column 1-c P*X P*y
KN X,m Y,m
1C 1.5(DL+LL) 668.74 0 0 0 0
1H 1.5(DL+LL) 723.104 5.461 0 3948.870944 0
1K 1.5(DL+LL) 698.563 9.5758 0 6689.299575 0
1M 1.5(DL+LL) 572.894 13.462 0 7712.299028 0
2C 1.5(DL+LL) 1419.876 0 4.7244 0 6708.062174
2H 1.5(DL+LL) 1097.176 5.461 4.7244 5991.678136 5183.498294
2K 1.5(DL+LL) 1809.752 9.5758 4.7244 17329.8232 8549.992349
2M 1.5(DL+LL) 1891.618 13.462 4.7244 25464.96152 8936.760079
6C 1.5(DL+LL) 1479.808 0 9.0932 0 13456.19011
6H 1.5(DL+LL) 1172.825 5.461 9.0932 6404.797325 10664.73229
6K 1.5(DL+LL) 1932.998 9.5758 9.0932 18510.00225 17577.13741
6M 1.5(DL+LL) 1906.873 13.462 9.0932 25670.32433 17339.57756
7C 1.5(DL+LL) 1781.029 0 13.7668 0 24519.07004
7H 1.5(DL+LL) 2263.77 5.461 13.7668 12362.44797 31164.86884
7K 1.5(DL+LL) 1881.419 9.5758 13.7668 18016.09206 25901.11909
7M 1.5(DL+LL) 1330.914 13.462 13.7668 17916.76427 18322.42686
Total 22631.359 166017.3606 188323.4351

C.G from load


ΣP X
X = i i =7.335722m
̅
ΣPi

̅ = ΣPi Yi =8.321349m
Y
ΣPi

Eccentricity
̅ -x = 0.211022m
ex = X
̅ – y =1.425249m
ey = Y
Moment of inertia
bd3
Ix = + Ahy2
12

14.262∗14.56683
= + 196.380*(7.0834-7.3357)2
12

=3686.099 m4

db3 14.5668∗14.2623
Iy = + Ahx2 = + 196.380*(6.931-8.3213)2 =3901.061 m4
12 12
Calculation of stress
Safe bearing capacity of soil= 150KN/m2
Stress,s=(P/A)±(MY/IY)*X±(MX/IX)*Y

Area(A)=14.262*14.5688
=207.78m2

P/A=108.919696KN/m2

MX=P*ey
=23466.45615KNm

My=P*ex
=4632.639187KNm

Co-ordinate of corner of Mat Foundation and corresponding corner stress

ID About C.G of Mat Foundation Stress


X,m Y,m REMARKS
Corner1 7.131 7.284 163.7831>SBC
Corner2 7.131 -7.284 72.048<SBC
Corner3 -7.131 -7.284 54.056<SBC
Corner4 -7.131 7.284 145.7911<SBC
1C -6.731 -6.884 <SBC
57.08
1H -1.27 -6.884 63.969<SBC
1K 2.8448 -6.884 <SBC
69.16
1M 6.731 -6.884 <SBC
74.06
2C -6.731 -2.1596 86.8293<SBC
2H -1.27 -2.1596 93.718<SBC
2K 2.8448 -2.1596 98.909<SBC
2M 6.731 -2.1596 103.81<SBC
6C -6.731 2.2092 114.339<SBC
6H -1.27 2.2092 121.229<SBC
6K 2.8448 2.2092 126.42<SBC
6M 6.731 2.2092 131.322<SBC
7C -6.731 6.8828 143.768<SBC
7H -1.27 6.8828 150.65817 >SBC
7K 2.8448 6.8828 155.85 >SBC
7M 6.731 6.8828 160.75 >SBC
Design of Mat Foundation
Reference S.N Calculation Output
Strip 7-7 1 Known Data q=163.7831KN/m2
Average upward soil pressure,q=163.7831KN/m2
Maxium span length,L=5.461

IS 456-2000 2 Moment calculation Ms=488.442


Table 12 Maxium support moment , Ms=qL2/10
Ms=488.442KNm

IS 456-2000 Maxium span moment, Msp= qL2/12 Msp=407.035


Table 12 Msp=407.035MNm

SP 16 3 Depth from Monent consideration


TABLE D Depth of footing,
2 𝑀 2 488.442∗10^6
d= √ =√ =382.987mm
3.33∗𝑏 3.33∗1000

4 Permissible Punching shear


Tv’=β*.25*√fck
β =1
Tv’= 1*.25*√25
=1.25 N/mm2

IS 456-2000 5 Check for two way shear i.e. Punching shear


For corner column C1
Perimeter, b0=(d+1200) mm
Pu =2263.77KN
Nominal Shear stress
Pu
Tv=
b0∗d
Therefore, d=873.309 mm d=873.309 mm
6 So taking depth of the mat foundation, d=900mm
d=900mm
Providing effective cover 60mm
D= (900+60)mm D=960mm
=960mm
IS 456-2000 7 Calculation of Area of steel
CL. 26.5.2 Min Ast= .12% 0f bD
=.12/100* 1000*960
=1152mm2
Area of Steel at Support (Bottom Bars)
IS 456-2000 𝑓𝑐𝑘 4.6∗𝑀𝑠
Annex G Ast= 0.5* 𝑓𝑦 *( 1-√1 − 𝑓𝑐𝑘∗𝑏∗𝑑2 ) b*d
(G-1.1b) 1548.037 mm2
Providing 16mm Dia rebar
Area of each rebar=201.062
𝑅𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
No. of rebar required= 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑟𝑒𝑏𝑎𝑟
1548.037
= 201.062
=7.699 no.
Area of reinforcement provided,
Ast provided=10*201.062
=2010.62mm2
Pt=.2094%
Providing 16mm
Spacing of bars, rebar @100 c/c
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑏𝑎𝑟
Sv= Ast provided * 1000
=100mm
Provide 16mm rebar @100 c/c

IS 456-2000 Area of Steel at mid span (Top rebar)


Annex G 𝑓𝑐𝑘 4.6∗,Msp
Ast= 0.5* *( 1-√1 − ) b*d
𝑓𝑦 𝑓𝑐𝑘∗𝑏∗𝑑2
=1283.645mm2
𝑅𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
No. of rebar required=
𝑎𝑟𝑒𝑎 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑟𝑒𝑏𝑎𝑟
1283.645
=
201.062
=6.384
Area of reinforcement provided,
Ast provided=10*201.062
=2010.62mm2
Pt=.2094%
Spacing of bars,
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑏𝑎𝑟
Sv= Ast provided * 1000
=100mm Providing 16mm
Provide 16mm rebar @100 c/c rebar @100 c/c
8 Check for one way shear
IS 456-2000 .6*q*l=536.65
Table 19 .4*q*l=357.7678
Shear at critical section
Vu=354.96KN
a/2+d=1.1m

536.65
354.96

1.1 357.77

3.249

22.8238
Vc=378KN
Pt=.4188% Hence,Safe
tc=.42
then,
tc*b*d=.42*1000*900=378KN

You might also like