0% found this document useful (0 votes)
63 views18 pages

T Se Debe Realizar Un Segundo Tanteo

This document summarizes the design of a reinforced concrete beam (Marco 4) over 4 levels. For each level, it calculates the required reinforcement based on the maximum bending moment and shear force. It performs iterative calculations to determine the required cross-sectional area and rebar configuration so that the design moment resistance equals or exceeds the factored moment. The final proposed design for each level meets the strength requirements.

Uploaded by

rosel
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
63 views18 pages

T Se Debe Realizar Un Segundo Tanteo

This document summarizes the design of a reinforced concrete beam (Marco 4) over 4 levels. For each level, it calculates the required reinforcement based on the maximum bending moment and shear force. It performs iterative calculations to determine the required cross-sectional area and rebar configuration so that the design moment resistance equals or exceeds the factored moment. The final proposed design for each level meets the strength requirements.

Uploaded by

rosel
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 18

1er tanteo (c= 10 cm)

4200
C= (170)(0.85x10)(15)= 21675 kg 𝜀𝑦 = 2𝑥106 = 0.0021
0.003𝑥20
𝜀𝑠 = 10
= 0.006

εs>εy fs=fy

T= Asfs= (6.97)(4200)= 29274 kg

C≠T Se debe realizar un segundo tanteo

2do tanteo (C=T)


29274
𝐶= = 13.5059 𝑐𝑚
0.85𝑥170𝑥15

C= (0.85)(13.5059)(170)(15)= 29274.0383 kg ≈ T
13.5059𝑥0.85
Mn = TZ = (29274)(30 - ) = 710187.0204 kg . Cm = 7.1019 ton . m
2

Mr = 0.9 Mn = (0.9)(7.1019) = 6.3917 ton . m

Mr > Mu

Marco 4 ( 1era planta)

Datos:

Mmax = 15.41 ton.m


𝑘𝑔
F´c = 250 𝑐𝑚2
𝑘𝑔
Fy = 4200
𝑐𝑚2
𝑘𝑔
F*c = 200 𝑐𝑚2
𝑘𝑔
F”c = 170 𝑐𝑚2
B1 =0.85
Mmax = 15.41 ton . m
Mu = (1.1)(15.41) = 16.951 ton .m
𝑓"𝑐 6000∗𝐵1 170 6000𝑥0.85
Ρb = 𝑓𝑦
∗ = ∗
𝑓𝑦+6000 4200 4200+6000
= 0.0202

Pmax = 0.75 Pb = 0.75 (0.0202) = 0.0152


(𝑃𝑚𝑎𝑥)(𝑓𝑦) 0.0152𝑥4200
q= 𝑓"𝑐
= 170
= 0.3755

Calculo de la base y peralte efectivo, donde d = 2b

Mr = Fr b d2 f”c q (1-0.5 q)

1695100 = (0.9)(b)(2b2)(170)(0.3755)(1-0.5(0.3755))

1695100 = 186.6599 b3

b = 20.8632 cm ≈ 21 cm

d= 42 cm

As = Pbd
D= 42 cm

As = (0.0152)(21)(42)

AS As = 13.4064 cm2

R = 5 cm As = 2vs#6 y 1vs#10 = 13.64 cm2

B= 21 cm

Diseño propuesto
𝑘𝑔
F´c = 250 𝑐𝑚2
𝑘𝑔
Fy = 4200 𝑐𝑚2
D= 42 cm

As = 2vs#6 y 1vs#10
As = 13.64 cm2
AS

R = 5 cm

B= 21 cm
1er tanteo (c = 14 cm)

4200
𝜀𝑦 = 2𝑥106 = 0.0021
0.003𝑥20
𝜀𝑠 = 10
= 0.006
εs>εy
fs=fy

C = (0.85)(14)(170)(21) = 42483 kg
T = (4200)(13.62) = 57204 kg
C≠T Se debe realizar un segundo tanteo

2do tanteo donde C≠T


57204
𝐶 = 0.85𝑥170𝑥21 = 18.8512 𝑐𝑚

C = (0.85)(18.8512)(170)(21) = 57203.9664 ton . m


18.8512𝑥0.85
Mn = TZ = (57204)(42 - ) = 19.4426 ton . m
2

Mr = 0.9 Mn = (0.9)(19.4426) = 17.4983 ton . m

Mr > Mu

Marco 4 (2da planta)

Datos:

Mmax = 13.44 ton.m


𝑘𝑔
F´c = 250 𝑐𝑚2
𝑘𝑔
Fy = 4200 𝑐𝑚2
𝑘𝑔
F*c = 200
𝑐𝑚2
𝑘𝑔
F”c= 170 𝑐𝑚2
B1 =0.85

Mmax = 13.44 ton . m


Mu = (1.1)(13.44) = 14.784 ton .m
𝑓"𝑐 6000∗𝐵1 170 6000𝑥0.85
Ρb = 𝑓𝑦
∗ = ∗
𝑓𝑦+6000 4200 4200+6000
= 0.0202

Pmax = 0.75 Pb = 0.75 (0.0202) = 0.0152


(𝑃𝑚𝑎𝑥)(𝑓𝑦) 0.0152𝑥4200
q= 𝑓"𝑐
= 170
= 0.3755

Calculo de la base y peralte efectivo, donde d = 2b

Mr = Fr b d2 f”c q (1-0.5 q)

1478400 = (0.9)(b)(2b2)(170)(0.3755)(1-0.5(0.3755))

1478400 = 186.6599 b3

b = 19.9334 cm ≈ 20 cm

d= 40 cm

As = Pbd
D= 40 cm

As = (0.0152)(20)(40)

AS As = 12.16 cm2

R = 5 cm As = 2vs#9 = 12.82 cm2

B= 20 cm

1er tanteo (c = 13 cm)

4200
𝜀𝑦 = 2𝑥106 = 0.0021
0.003𝑥27
𝜀𝑠 = 13
= 0.00623
εs>εy
fs=fy

C = (11.05)(170)(20) = 37570 kg
T = (4200)(12.82) = 53844 kg
C≠T Se debe realizar un segundo tanteo

2do tanteo donde C≠T


53844
𝐶 = 0.85𝑥170𝑥20 = 18.63 𝑐𝑚

C = (0.85)(18.63)(170)(20) = 53840.7 ton . m

Mn = TZ = (53844)(32.08225) = 17.27436 ton . m


Mr = 0.9 Mn = (0.9)(17.27436) = 15.55 ton . m

Mr > Mu

Marco 4 (3era planta)

Datos:
Mmax = 5.07 ton.m
𝑘𝑔
F´c = 250 2
𝑐𝑚
𝑘𝑔
Fy = 4200 𝑐𝑚2
𝑘𝑔
F*c = 200 𝑐𝑚2
𝑘𝑔
F”c = 170 𝑐𝑚2
B1 =0.85
Mmax = 5.07 ton . m
Mu = (1.1)(5.07) = 5.577 ton .m
𝑓"𝑐 6000∗𝐵1 170 6000𝑥0.85
Ρb = 𝑓𝑦
∗ = ∗
𝑓𝑦+6000 4200 4200+6000
= 0.0202

Pmax = 0.75 Pb = 0.75 (0.0202) = 0.0152


(𝑃𝑚𝑎𝑥)(𝑓𝑦) 0.0152𝑥4200
q= = = 0.3755
𝑓"𝑐 170

Calculo de la base y peralte efectivo, donde d = 2b

Mr = Fr b d2 f”c q (1-0.5 q)

5577000 = (0.9)(b)(2b2)(170)(0.3755)(1-0.5(0.3755))

b = 14.4029 cm ≈ 15 cm

d= 30 cm

As = Pbd
D= 30 cm

As = (0.0152)(15)(30)

AS As = 6.8 cm2

R = 5 cm As = 2vs#5 y 1vs#6 = 6.81 cm2

B= 15 cm
1er tanteo (c = 10 cm)

4200
𝜀𝑦 = 2𝑥106 = 0.0021
0.003𝑥20
𝜀𝑠 = 13
= 0.006
εs>εy
fs=fy

C = (8.5)(170)(15) = 21675 kg
T = (4200)(6.8) = 28560 kg
C≠T Se debe realizar un segundo tanteo

2do tanteo donde C≠T


28560
𝐶= = 13.1765 𝑐𝑚
0.85𝑥170𝑥15

C = (11.2)(170)(15) = 28560 ton . m

Mn = TZ = (28560)(24.4) = 6.96864 ton . m

Mr = 0.9 Mn = (0.9)(6.96864) = 6.27 ton . m

Mr > Mu
DISEÑO DE
VIGA POR
CORTANTE
Marco 4 nivel 1

As = 2vs#6 y 1vs#10
As = 13.62 cm2
13.62
𝑃 = 21𝑥42 = 0.0154
P>0.015

Se considera la siguiente formula

𝑉𝑐𝑟 = 𝐹𝑟 (0.5)√𝑓 ∗ 𝑐 𝑏 𝑑
𝑉𝑐𝑟 = (0.8)(0.5)√200 (21) (42)
𝑉𝑐𝑟 = 4.9893 𝑡𝑜𝑛

Av = 0.71(2) = 1.42 cm2

Distinguir que formula de Smax se utilizara

1.5 √𝑓 ∗ 𝑐 𝑏 𝑑 = 1.5 √200 𝑥 21 𝑥 42 = 18.71 𝑡𝑜𝑛

Para determinar hasta que distancia de x de la viga el concreto soporta las fuerzas cortantes es
necesario usar triángulos semejantes.

2.053 → 5.80

𝑥 → 4.9893

𝑥 = 1.766 𝑚

Sección 2.393 m
La fuerza del cortante lo soporta el concreto
Smax = 0.5 (d)
Smax = 0.5(42) = 21 cm

Sección 2.68
Vu = 5.8 Vu < 18.71 ton Smax = 0.5 d
Vs = 5.8 -4.9893 = 0.8107
(0.8)(1.42)(4200)(42)
𝑆= = 247.1819
810.7
Smax = 0.5 (42) = 21 cm (RIGE)

Sección 4.42 m
Vu = 12.04 Vu < 18.71 ton Smax = 0.5 d
Vs = 12.04 -4.9893 = 7.0507

(0.8)(1.42)(4200)(42)
𝑆= = 28.4213 𝑐𝑚
7050.7
Smax = 0.5 (42) = 21 cm (RIGE)

“ARMADO FINAL”

Marco 4 nivel 2

As = 2vs#9
As = 12.82 cm2
12.82
𝑃 = 20𝑥40 = 0.016025
P>0.015
Se considera la siguiente formula

𝑉𝑐𝑟 = 𝐹𝑟 (0.5)√𝑓 ∗ 𝑐 𝑏 𝑑
𝑉𝑐𝑟 = (0.8)(0.5)√200 (20)(40)
𝑉𝑐𝑟 = 4.525 𝑡𝑜𝑛

Pendiente
−4.67 − 3.3
𝑚= = −2.9738
2.68

Vu = y = (-2.9738) (x-0) + 3.3

Nunca

Vu > 2.5 (0.8)(20)(40)√200


Vu > 22.627 ton

1.5 √𝑓 ∗ 𝑐 𝑏 𝑑 = (1.5) √200 (20) (40) = 18.576 𝑡𝑜𝑛

Smax = 0.5 (d)


Smax = 0.5(40) = 20 cm

Sección 1.10969 m
Y=0
Vcu = 0

(0.8)(1.42)(4200)(40)
𝑆= =0
0
Smax = 0.5 (40) = 20 cm (RIGE)

Sección 2.1069 m
Y = -2.9738
Vs = Vu = 2.9738 ton = 2973.8 kg

(0.8)(1.42)(4200)(40)
𝑆= = 64.176 𝑐𝑚
2973.8
Smax = 0.5 (40) = 20 cm (RIGE)

Sección 2.68 m
Y = -4.67
Vu = 4.67 ton
Vs = 4.67 -4.525 = 0.145 ton
(0.8)(1.42)(4200)(40)
𝑆= = 1316.193 𝑐𝑚
145
Smax = 0.5 (40) = 20 cm (RIGE)

Pendiente tramo (2.68 – 4.42) m


Puntos (2.68, -6.07) y (4.42, -11.24)
−11.24 − (−6.07)
𝑚= = −2.9713
4.42 − 2.68

Y = (-2.9713)(x-2.68)-6.07 = Vu

Sección 3.68
Y = -9.0413
Vu = 9.0413
Vs = 9.0413 – 4.525 = 4.5163 ton

(0.8)(1.42)(4200)(40)
𝑆= = 42.2576 𝑐𝑚
4516.3
Smax = 0.5 (40) = 20 cm (RIGE)

Sección 4.42
Y = -11.24
Vu = 11.24 ton
Vs = 6.715 ton

(0.8)(1.42)(4200)(40)
𝑆= = 28.42 𝑐𝑚
6715
Smax = 0.5 (40) = 20 cm (RIGE)

“ARMADO FINAL”
Marco 4 nivel 3

As = 2vs#5 y 1vs#6
As = 6.81 cm2
6.81
𝑃 = 30𝑥15 = 0.0152
P>0.015

Se considera la siguiente formula

𝑉𝑐𝑟 = 𝐹𝑟 (0.5)√𝑓 ∗ 𝑐 𝑏 𝑑
𝑉𝑐𝑟 = (0.8)(0.5)√200 (15)(30)
𝑉𝑐𝑟 = 2.5456 𝑡𝑜𝑛

Distinguir que la fórmula de Smax utilizaremos


1.5 √𝑓 ∗ 𝑐 𝑏 𝑑 = (1.5) √200 (15) (30) = 7.6368 𝑡𝑜𝑛
Smax = 0.5 (d)
Smax = 0.5(30) = 15 cm (RIGE)

Calculo de la ecuación de la pendiente


Pendiente
𝑚 = −1.2591
Y + 4.15 = -1.2591 (x – 4.94)
Y = -1.2591x + 2.07

Para saber hasta que distancia x de la trabe el cortante la absorbe el concreto es necesario
sustituirlo Vcr en ecuación de la recta

-2.5456 = -1.2591x + 2.07


X = 3.6658
Se diseñara con Smax = 15 cm

Sección 4.94 m
Vu = 4.15 Vu < 7.6368
Vs = 4.15 – 2.5456
Vs = 1.6044
(0.8)(1.42)(4200)(30)
𝑆= = 89.2147 𝑐𝑚
1604.4
Smax = 0.5 (30) = 15 cm (RIGE)

“ARMADO FINAL”

Marco A nivel 1

𝑉𝑐𝑟 = 4.9893 𝑡𝑜𝑛

Distinguir que formula de Smax utilizamos


1.5 𝐹𝑟 √𝑓 ∗ 𝑐 𝑏 𝑑 = (1.5)(0.8)√200 (21) (42) = 14.9680 𝑡𝑜𝑛

Para determinar hasta que distancia x de la viga la fuerza cortante es absorbida por Vcr.
Se calcula por semejanza de triángulos
3 → 6.39

𝑥 → 4.9893

𝑥 = 2.3424 𝑚

Sección 3.2724 m
Es diseñado con Smax = 0.5 d
Smax = 0.5 (42) = 21 cm

Sección 3.93 m
Vu = 6.93 Vu < 14.968 se usa Smax = 0.5 d y Av = 1.42 cm 2
Vs = 6.93 – 4.9893 = 1.4007 ton

(0.8)(1.42)(4200)(42)
𝑆= = 143.0645 𝑐𝑚
1400.7
Smax = 0.5 (42) = 21 cm (RIGE)

Sección 5.28 m
Vu = 10.65 ton Vu < 14.968 se usa Smax = 0.5 d y Av = 1.42 cm2
Vs = 10.65 – 4.9893 = 5.6607 ton

(0.8)(1.42)(4200)(42)
𝑆= = 35.4003 𝑐𝑚
5660.7

Smax = 0.5 (42) = 21 cm (RIGE)

“ARMADO FINAL”
Marco A nivel 2

As = 2vs#8 y 1vs#5
As = 12.12 cm2
12.12
𝑃 = 20𝑥40 = 0.01515
P>0.015

𝑉𝑐𝑟 = 𝐹𝑟 (0.5)√𝑓 ∗ 𝑐 𝑏 𝑑
𝑉𝑐𝑟 = (0.8)(0.5)√200 (20)(40)
𝑉𝑐𝑟 = 4.525 𝑡𝑜𝑛

−6.38 − 4.62
𝑚= = −2.7990
3.93

Vu = Y = (-2.799)(x-0) + 4.62

NUNCA
𝑉𝑢 < (2.5)(0.8)√200 (20)(40)
𝑉𝑢 < 22627.417 𝑘𝑔
𝑉𝑢 < 22.627 𝑡𝑜𝑛

1.5 𝐹𝑟 √𝑓 ∗ 𝑐 𝑏 𝑑 = 16.97 𝑡𝑜𝑛

Vu > 16.97 ton


Smax = 0.25 d

𝐹𝑟 𝐴𝑣 𝑓𝑦 𝑑
𝑆=
𝐴𝑠
E#3 As = 0.71 cm2 = 1.42 cm2

Sección 1 m
Y = 1.821
Vu = Vs = 1.821 ton
(0.8)(1.42)(4200)(40)
𝑆= = 104.803 𝑐𝑚
1821
Smax = 0.5 (40) = 20 cm (RIGE)

Sección 2 m
Y = -0.978
Vu = 0.978 ton

(0.8)(1.42)(4200)(40)
𝑆= = 195.141 𝑐𝑚
978
Smax = 0.5 (40) = 20 cm (RIGE)

Sección 3 m
Y = -3.777
Vu = 3.777 ton

(0.8)(1.42)(4200)(40)
𝑆= = 50.53 𝑐𝑚
3777
Smax = 0.5 (40) = 20 cm (RIGE)

Sección 3.93 m
Y = -6.38
Vu = 6.38 ton
Vs = 6.38 – 4.525 = 1.855

(0.8)(1.42)(4200)(40)
𝑆= = 102.88 𝑐𝑚
1855
Smax = 0.5 (40) = 20 cm (RIGE)

Tramo (3.93 – 5.28)

Puntos (3.93, -7.77) y (5.28, -11.55)

−11.55 − (−7.77)
𝑚= = −2.8
5.28 − 3.93

Y = Vu = (-2.8)(x-3.93)-7.77

Sección 4 m
Y = -7.966
Vu = 7.966 ton
Vs = 3.441 ton
(0.8)(1.42)(4200)(40)
𝑆= = 55.4629 𝑐𝑚
3441
Smax = 0.5 (40) = 20 cm (RIGE)

Sección 5.28 m
Y = -11.55
Vu = 11.55 ton
Vs = 11.55 – 4.525 = 7.025 ton

(0.8)(1.42)(4200)(40)
𝑆= = 27.1670 𝑐𝑚
7025

Smax = 0.5 (40) = 20 cm (RIGE)

“ARMADO FINAL”

Marco A nivel 3

As = 6.8175 cm2
6.8175
𝑃= 15𝑥30
= 0.01515
P>0.015

𝑉𝑐𝑟 = 𝐹𝑟 (0.5)√𝑓 ∗ 𝑐 𝑏 𝑑
𝑉𝑐𝑟 = (0.8)(0.5)√200 (15)(30)
𝑉𝑐𝑟 = 2.5456 𝑡𝑜𝑛
−3.29 − 0.89
𝑚= = −0.7917
5.28

Vu = Y = (-0.7917)(x-0) + 0.89

NUNCA
𝑉𝑢 < (2.5)(0.8)√200 (20)(40)
𝑉𝑢 < 12727.92 𝑘𝑔
𝑉𝑢 < 12.72792 𝑡𝑜𝑛

1.5 𝐹𝑟 √𝑓 ∗ 𝑐 𝑏 𝑑 = 16.97 𝑡𝑜𝑛

E#3 As = 0.71 cm2 = 1.42 cm2

Sección 1 m
Y = 0.0983
Vu = Vs = 0.0983 ton

(0.8)(1.42)(4200)(30)
𝑆= = 1456.11 𝑐𝑚
98.3

You might also like