0% found this document useful (0 votes)
10 views73 pages

Concreto Act 5

Uploaded by

Nora González
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
10 views73 pages

Concreto Act 5

Uploaded by

Nora González
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 73

ENTREPISO

N-1
BT = 60/20 + 60/2 + 17 = 77 cm
h = L/21 = 5.60/21 = 0.26  0.30 m
S = b + Balig = 0.17 + 0.60 = 0.77 m
Wconc = [(h – tf)(b) + tf] δc  [(0.30 – 0.05)(0.17) + 0.05] 2400 = 252 kg/m²
S 0.77
Walig = [(Balig)(h - tf)] δalig  [(0.60)(0.30 – 0.05)] 500 = 97 kg/m²
S 0.77
Wpp losa = 252 + 97 = 349 kg/m²
Carga muerta:
- Empastado = (2000)(0.05) = 100 kg/m²
- Acabado piso = 25 kg/m²
- Plafond = (2000)(0.025) = 50 kg/m²
- Muros divisorios = 150 kg/m²
- Instalaciones = 15 kg/m²
- Peso de la losa = 349 kg/m²
Cm = 689 kg/m²
Cv = 500 kg/m²
Wu = 1.2(689) + 1.6(500) = 1627 kg/m²
1. Cálculo de la carga lineal del diseño.
Wlu = BT x Wu = (0.77)(1627) = 1253 kg/m
2. Análisis de la nervadura.

V1 = (1.15)(1253)(5.60) = 4035 kg
2
V2 = (1.15)(1253)(5.20) = 3746 kg
2
M1 = (1253)(5.60)² = 1637 kg-m
24
M2 = (1253)(5.60)² = 2807 kg-m
14
M3 = (1253)(5.40)² = 4060 kg-m
9
M4 = (1253)(5.20)² = 2420 kg-m
14
M5 = (1253)(5.20)² = 1412 kg-m
24
3. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 30 cm
d = h-5 = 30-5  25 cm
Φ = 0.9
tf = 5 cm

fi = (0.9)(4200)(25-5/2) = 851
100
Asreq = Mu
851
Asmin = 14 (17)(25) = 1.42 cm²
4200
Momento b h Asreq Asmin As Final Cant. vrs Assum
1637 17 30 1.92 1.42 1.92 3#3 2.13
2807 17 30 3.29 1.42 3.29 3#4 3.81
4060 17 30 4.77 1.42 4.77 3#5 5.97
2420 17 30 2.84 1.42 2.87 3#4 3.81
1412 17 30 1.65 1.42 1.65 3#3 2.13

4. Diseño por corte.


“Claro 3-4”

ΦVc = (0.75)(1.1)(0.53)(√200)(17x25) = 2628 kg


Vu = 4035 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(25)(0.64) = 25593 = 18 cm
4035 – 2628 1407
S = menor {18, 12.5}  12.5 cm

X = 4035 – 2628 = 1.12 m


1253

Cant. estribos = 112 = 8.96  9 estribos


12.5
Conclusión: Usar 9 estribos #2 @ 12.5 cm

“Claro 4-5”
ΦVc = (0.75)(1.1)(0.53)(√200)(17x25) = 2628 kg
Vu = 3746 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(25)(0.64) = 25200 = 23 cm
3746 – 2628 1118
S = menor {23, 12.5}  12.5 cm
X = 3746 – 2628 = 0.89 m
1253
Cant. estribos = 89 = 7 estribos
12.5

Conclusión: Usar 7 estribos #2 @ 12.5 cm


CORTE A-A´
Dist. Interior = 17 – (2x2.64) = 11.72
Sep = 11.72 – 3x1.58 = 3.49
2
N-2
BT = 60/20 + 60/2 + 23.5 = 84 cm
h = L/21 = 5.60/21 = 0.26  0.30 m
S = b + Balig = 0.235 + 0.60 = 0.84 m
Wconc = [(h – tf)(b) + tf] δc  [(0.30 – 0.05)(0.235) + 0.05] 2400 = 122 kg/m²
S 0.84
Walig = [(Balig)(h - tf)] δalig  [(0.60)(0.30 – 0.05)] 500 = 89 kg/m²
S 0.84
Wpp losa = 122 + 89 = 211 kg/m²
Wu = 1.2(689) + 1.6(500) = 1627 kg/m²
1. Cálculo de la carga lineal del diseño.
Wlu = BT x Wu = (0.84)(1627) = 1367 kg/m
2. Análisis de la nervadura.

V1 = (1.15)(1367)(5.60) = 4402 kg
2
V2 = (1.15)(1367)(5.20) = 4087 kg
2
M1 = (1367)(5.60)² = 1786 kg-m
24
M2 = (1367)(5.60)² = 3062 kg-m
14
M3 = (1367)(5.40)² = 4429 kg-m
9
M4 = (1367)(5.20)² = 2640 kg-m
14
M5 = (1367)(5.20)² = 1540 kg-m
24
3. Diseño por flexión.

Asreq = Mu
fi
fy = 4200 kg/cm²
h = 30 cm
d = h-5 = 30-5  25 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(25-5/2) = 851
100
Asreq = Mu
851
Asmin = 14 (23.5)(25) = 1.95 cm²
4200
Momento b h Asreq Asmin As Final Cant. vrs Assum
1786 23.5 30 2.09 1.95 2.05 2#4 2.54
3062 23.5 30 3.59 1.95 3.59 3#4 3.81
4429 23.5 30 5.20 1.95 5.20 3#5 5.97
2640 23.5 30 3.10 1.95 3.10 3#4 3.81
1540 23.5 30 1.80 1.95 1.95 3#3 2.13

4. Diseño por corte.


“Claro 3-4”

ΦVc = (0.75)(1.1)(0.53)(√200)(23.5x25) = 3633 kg


Vu = 4402 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(25)(0.64) = 25200 = 33 cm
4402 – 3633 769
S = menor {33, 12.5}  12.5 cm
X = 4402 – 3633 = 0.56 m
1367
Cant. estribos = 56 = 5 estribos
12.5
Conclusión: Usar 5 estribos #2 @ 12.5 cm

“Claro 4-5”
ΦVc = (0.75)(1.1)(0.53)(√200)(23.5x25) = 3633 kg
Vu = 4084 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(25)(0.64) = 25200 = 56 cm
4084 – 3633 451
S = menor {56, 12.5}  12.5 cm
X = 4084 – 3633 = 0.33 m
1367
Cant. estribos = 33 = 2.64  3 estribos
12.5
Conclusión: Usar 3 estribos #2 @ 12.5 cm

(5.60)(0.3) = 1.68
(5.20)(0.3) = 1.56
LT = 45 db
#4: LT = (45)(1.27) = 57 cm
CORTE A-A´

Dist. Interior = 23.5 – (2x2.64) = 18.22


Sep = 18.22– 3x1.58 = 6.74
2
N-3
BT = 60/20 + 60/2 + 19= 79 cm
h = L/21 = 5.60/21 = 0.26  0.30 m
S = b + Balig = 0.19 + 0.60 = 0.79 m
Wconc = [(h – tf)(b) + tf] δc  [(0.30 – 0.05)(0.19) + 0.05] 2400 = 264 kg/m²
S 0.79
Walig = [(Balig)(h - tf)] δalig  [(0.60)(0.30 – 0.05)] 500 = 45 kg/m²
S 0.79
Wpp losa = 264 + 95 = 359 kg/m²
Wu = 1.2(689) + 1.6(500) = 1627 kg/m²
1. Cálculo de la carga lineal del diseño.
Wlu = BT x Wu = (0.79)(1627) = 1285 kg/m
2. Análisis de la nervadura.

V1 = (1.15)(1285)(4.60) = 3398 kg
2
V2 = (1.15)(1285)(4.70) = 3019 kg
2
V3 = (1.15)(1285)(5.60) = 3598 kg
2
V4 = (1.15)(1285)(5.20) = 3842 kg
2
M1 = (1285)(4.60)² = 1132 kg-m
24
M2 = (1285)(4.60)² = 1942 kg-m
14
M3 = (1285)(4.65)² = 2778 kg-m
10
M4 = (1285)(4.70)² = 1774 kg-m
16
M5 = (1285)(5.15)² = 3408 kg-m
10
M6 = (1285)(5.60)² = 2518 kg-m
16
M7 = (1285)(5.40)² = 3747 kg-m
10
M8 = (1285)(5.20)² = 2481 kg-m
14
M9 = (1285)(5.20)² = 1447 kg-m
24
3. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 30 cm
d = h-5 = 30-5  25 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(25-5/2) = 851
100
Asreq = Mu Asmin = 14 (19)(25) = 1.58 cm²
851 4200
Momento b h Asreq Asmin As Final Cant. vrs Assum
1132 19 30 1.33 1.58 1.58 2#3 1.42
1942 19 30 2.28 1.58 2.28 2#4 2.54
2778 19 30 3.26 1.58 3.26 3#4 3.81
1774 19 30 2.08 1.58 2.08 2#4 2.54
3408 19 30 4.01 1.58 4.01 3#5 5.97
2518 19 30 2.95 1.58 2.95 3#4 3.81
3747 19 30 4.40 1.58 4.40 4#5 7.96
2481 19 30 2.91 1.58 2.91 3#4 3.81
1447 19 30 1.70 1.58 1.70 3#3 2.13

1. Diseño por corte.


“Claro 1-2”

ΦVc = (0.75)(1.1)(0.53)(√200)(19x25) = 2937 kg


Vu = 3398 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(25)(0.64) = 25200 = 54 cm
3398 – 2937 461
S = menor {54, 12.5}  12.5 cm
X = 3398 – 2937 = 0.592 m
1287
Cant. estribos = 0.592 = 5 estribos
12.5
Conclusión: Usar 5 estribos #2 @ 12.5 cm
“Claro 2-3”
ΦVc = (0.75)(1.1)(0.53)(√200)(19x25) = 2937 kg
Vu = 3019 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(25)(0.64) = 25200 = 307 cm
3019 – 2937 82
S = menor {307, 12.5}  12.5 cm
X = 3019– 2937 = 0.063 m
1285
Cant. estribos = 0.063 = 0.504  1 estribo
12.5
Conclusión: Usar 1 estribo #2 @ 12.5 cm
“Claro 3-4”
ΦVc = (0.75)(1.1)(0.53)(√200)(19x25) = 2937 kg
Vu = 3598 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(25)(0.64) = 25200 = 38 cm
3598 – 2937 661
S = menor {38, 12.5}  12.5 cm
X = 3598– 2937 = 0.514 m
1285

Cant. estribos = 0.514 = 4.112  5 estribos


12.5
Conclusión: Usar 5 estribos #2 @ 12.5 cm
“Claro 4-5”
ΦVc = (0.75)(1.1)(0.53)(√200)(19x25) = 2937 kg
Vu = 3842 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(25)(0.64) = 25200 = 27 cm
3842 – 2937 905
S = menor {27, 12.5}  12.5 cm
X = 3842– 2937 = 0.704 m
1285
Cant. estribos = 0.704 = 5.6  6 estribos
12.5
Conclusión: Usar 6 estribos #2 @ 12.5 cm
(4.60)(0.3) = 1.38
(4.70)(0.3) = 1.41
(5.60)(0.3) = 1.68
(5.20)(0.3) = 1.56
LT = 45 db
#4: LT = (45)(1.27) = 57 cm
#4: LT = (45)(1.27) = 57 cm
CORTE A-A´
Dist. Interior = 19 – (2x2.64) = 13.72
Sep = 13.72– 3x1.58 = 4.49
2

N-4
BT = 60/20 + 60/2 + 20.5 = 81 cm
h = L/21 = 5.60/21 = 0.26  0.30 m
S = b + Balig = 0.205 + 0.60 = 0.81 m
Wconc = [(h – tf)(b) + tf] δc  [(0.30 – 0.05)(0.205) + 0.05] 2400 = 272 kg/m²
S 0.81
Walig = [(Balig)(h - tf)] δalig  [(0.60)(0.30 – 0.05)] 500 = 93 kg/m²
S 0.81
Wpp losa = 272 + 93 = 365 kg/m²
Wu = 1.2(689) + 1.6(500) = 1627 kg/m²

4. Cálculo de la carga lineal del diseño.


Wlu = BT x Wu = (0.81)(1627) = 1318 kg/m

5. Análisis de la nervadura.

V1 = (1.15)(1318)(4.60) = 3486 kg
2
V2 = (1.15)(1318)(4.70) = 3562 kg
2
V3 = (1.15)(1318)(5.60) = 4244 kg
2
V4 = (1.15)(1318)(5.20) = 3941 kg
2
M1 = (1318)(4.60)² = 1162 kg-m
24
M2 = (1318)(4.60)² = 1992 kg-m
14
M3 = (1318)(4.65)² = 2850 kg-m
10
M4 = (1318)(4.70)² = 1820 kg-m
16
M5 = (1318)(5.15)² = 3496 kg-m
10
M6 = (1318)(5.60)² = 2583 kg-m
16
M7 = (1318)(5.40)² = 3843 kg-m
10
M8 = (1318)(5.20)² = 2546 kg-m
14
M9 = (1318)(5.20)² = 1485 kg-m
24
6. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 30 cm
d = h-5 = 30-5  25 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(25-5/2) = 851
100
Asreq = Mu Asmin = 14 (20.5)(25) = 1.70 cm²
851 4200

Momento b h Asreq Asmin As Final Cant. vrs Assum


1162 20.5 30 1.36 1.70 1.70 3#3 2.13
1992 20.5 30 2.34 1.70 2.34 2#4 2.54
2850 20.5 30 3.34 1.70 3.34 3#4 3.81
1820 20.5 30 2.13 1.70 2.13 2#4 2.54
3496 20.5 30 4.10 1.70 4.10 3#5 5.97
2583 20.5 30 3.03 1.70 3.03 3#4 3.81
3843 20.5 30 4.51 1.70 4.51 3#5 5.97
2546 20.5 30 2.99 1.70 2.99 3#4 3.81
1485 20.5 30 1.74 1.70 1.74 3#3 2.13

2. Diseño por corte.


“Claro 1-2”

ΦVc = (0.75)(1.1)(0.53)(√200)(20.5x25) = 3169 kg


Vu = 3486 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(25)(0.64) = 79 cm
3486 – 3169
S = menor {79, 12.5}  12.5 cm
X = 3486 – 3169 = 0.24 m
1318
Cant. estribos = 24 = 1.92  2 estribos
12.5
Conclusión: Usar 2 estribos #2 @ 12.5 cm

“Claro 2-3”
ΦVc = (0.75)(1.1)(0.53)(√200)(19x25) = 3169 kg
Vu = 3562 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(25)(0.64) = 64 cm
3562 – 3169
S = menor {64, 12.5}  12.5 cm
X = 3562– 3169 = 0.30 m
1318
Cant. estribos = 30 = 3 estribos
12.5
Conclusión: Usar 3 estribos #2 @ 12.5 cm
“Claro 3-4”
ΦVc = (0.75)(1.1)(0.53)(√200)(19x25) = 3169 kg
Vu = 4244 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(25)(0.64) = 23 cm
4244 – 3169
S = menor {23, 12.5}  12.5 cm
X = 4244– 3169 = 0.82 m
1318

Cant. estribos = 82 = 7 estribos


12.5
Conclusión: Usar 7 estribos #2 @ 12.5 cm
“Claro 4-5”
ΦVc = (0.75)(1.1)(0.53)(√200)(19x25) = 3169 kg
Vu = 3941 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(25)(0.64) = 33 cm
3941 – 3169
S = menor {33, 12.5}  12.5 cm
X = 3941– 3169 = 0.58 m
1318
Cant. estribos = 58 = 4.6  5 estribos
12.5
Conclusión: Usar 5 estribos #2 @ 12.5 cm

(4.60)(0.3) = 1.38
(4.70)(0.3) = 1.41
(5.60)(0.3) = 1.68
(5.20)(0.3) = 1.56
LT = 45 db
#4: LT = (45)(1.27) = 57 cm
#4: LT = (45)(1.27) = 57 cm

CORTE A-A´
Dist. Interior = 20.5 – (2x2.64) = 15.22
Sep = 15.22 – 3x1.58 = 5.24
2
N-5
BT = 60/20 + 60/2 + 16 = 76 cm
h = L/21 = 4.70/21 = 0.22  0.25 m
S = b + Balig = 0.16 + 0.60 = 0.76 m
Wconc = [(h – tf)(b) + tf] δc  [(0.30 – 0.05)(0.16) + 0.05] 2400 = 221 kg/m²
S 0.76
Walig = [(Balig)(h - tf)] δalig  [(0.60)(0.30 – 0.05)] 500 = 79 kg/m²
S 0.76
Wpp losa = 221 + 79 = 300 kg/m²
Wu = 1.2(689) + 1.6(500) = 1627 kg/m²
1. Cálculo de la carga lineal del diseño.
Wlu = BT x Wu = (0.76)(1627) = 1237 kg/m

2. Análisis de la nervadura.
V1 = (1.15)(1237)(4.60) = 3272 kg
2
V2 = (1.15)(1237)(4.70) = 3343 kg
2
M1 = (1237)(4.60)² = 1091 kg-m
24
M2 = (1237)(4.60)² = 1870 kg-m
14
M3 = (1237)(4.65)² = 2972 kg-m
9
M4 = (1237)(4.70)² = 1952 kg-m
14
M5 = (1237)(4.70)² = 1139 kg-m
24
3. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 25 cm
d = h-5 = 25-5  20 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(20-5/2) = 662
100
Asreq = Mu
662
Asmin = 14 (16)(20) = 1.06 cm²
4200
Momento b h Asreq Asmin As Final Cant. vrs Assum
1091 16 25 1.64 1.06 1.64 3#3 2.13
1970 16 25 2.82 1.06 2.82 3#4 3.81
2970 16 25 4.48 1.06 4.48 3#5 5.97
1952 16 25 2.94 1.06 2.94 3#4 3.81
1139 16 25 1.72 1.06 1.72 3#3 2.13
4. Diseño por corte.
“Claro 1-2”

ΦVc = (0.75)(1.1)(0.53)(√200)(16x20) = 1979 kg


Vu = 3272 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(20)(0.64) = 16 cm
3272 – 1979
S = menor {16, 10}  10 cm
X = 3272 – 1979 = 1.04 m
1237
Cant. estribos = 104 = 10 estribos
10
Conclusión: Usar 10 estribos #2 @ 10 cm
“Claro 2-3”
ΦVc = (0.75)(1.1)(0.53)(√200)(16x20) = 1979 kg
Vu = 3343 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(20)(0.64) = 14 cm
3343 – 1979
S = menor {14, 10}  10 cm
X = 3343 – 1979 = 1.10 m
1237
Cant. estribos = 110 = 11 estribos
10
Conclusión: Usar 11 estribos #2 @ 10 cm
(4.60)(0.3) = 1.38
(4.70)(0.3) = 1.41
LT = 45 db
#4: LT = (45)(1.27) = 57 cm

CORTE A-A´

Dist. Interior = 16 – (2x2.64) = 10.72


Sep = 10.72– 3x1.58 = 5.98
2
N-6
BT = 60/20 + 30/2 + 18.5 = 64 cm
h = L/21 = 4.70/21 = 0.22  0.25 m
S = b + Balig = 0.185 + 0.60 = 0.78 m
Wconc = [(h – tf)(b) + tf] δc  [(0.30 – 0.05)(0.185) + 0.05] 2400 = 233 kg/m²
S 0.78
Walig = [(Balig)(h - tf)] δalig  [(0.60)(0.25 – 0.05)] 500 = 77 kg/m²
S 0.78
Wpp losa = 233 + 77 = 310 kg/m²
Wu = 1.2(689) + 1.6(500) = 1627 kg/m²
1. Cálculo de la carga lineal del diseño.
Wlu = BT x Wu = (0.64)(1627) = 1041 kg/m

2. Análisis de la nervadura.
V1 = (1.15)(1041)(4.60) = 2753 kg
2
V2 = (1.15)(1041)(4.70) = 2813 kg
2
M1 = (1041)(4.60)² = 918 kg-m
24
M2 = (1041)(4.60)² = 1573 kg-m
14
M3 = (1041)(4.65)² = 2501 kg-m
9
M4 = (1041)(4.70)² = 1642 kg-m
14
M5 = (1041)(4.70)² = 958 kg-m
24
3. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 25 cm
d = h-5 = 25-5  20 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(20-5/2) = 662
100
Asreq = Mu
662
Asmin = 14 (18.5)(20) = 1.23 cm²
4200

Momento b h Asreq Asmin As Final Cant. vrs Assum


918 18.5 25 1.38 1.23 1.38 2#3 1.42
1573 18.5 25 2.37 1.23 2.37 2#4 2.54
2501 18.5 25 3.77 1.23 3.77 3#4 3.81
1642 18.5 25 2.48 1.23 2.48 2#4 2.54
958 18.5 25 1.44 1.23 1.44 3#3 2.13

4. Diseño por corte.


“Claro 1-2”

ΦVc = (0.75)(1.1)(0.53)(√200)(18.5x20) = 2288 kg


Vu = 2753 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(20)(0.64) = 43 cm
2753 – 2288
S = menor {43, 10}  10 cm
X = 2753 – 2288 = 0.44 m
1041
Cant. estribos = 44 = 5 estribos
10
Conclusión: Usar 5 estribos #2 @ 10 cm
“Claro 2-3”
ΦVc = 2288 kg
Vu = 2813 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(20)(0.64) = 38 cm
2813 – 2288
S = menor {38, 10}  10 cm
X = 2813 – 2288 = 0.50 m
1041
Cant. estribos = 50 = 5 estribos
10

Conclusión: Usar 5 estribos #2 @ 10 cm


(4.60)(0.3) = 1.38
(4.70)(0.3) = 1.41
LT = 45 db
#4: LT = (45)(1.27) = 57 cm

CORTE A-A´
Dist. Interior = 18.5 – (2x2.64) = 13.22
Sep = 13.22– 3x1.58 = 8.48
2
AZOTEA
N-1
BT = 60/20 + 60/2 + 12.5 = 73 cm
h = L/21 = 5.60/21 = 0.26  0.30 m
S = b + Balig = 0.125 + 0.60 = 0.73 m
Wconc = [(h – tf)(b) + tf] δc  [(0.30 – 0.05)(0.125) + 0.05] 2400 = 222 kg/m²
S 0.73
Walig = [(Balig)(h - tf)] δalig  [(0.60)(0.30 – 0.05)] 500 = 102 kg/m²
S 0.73
Wpp losa = 222 + 102 = 324 kg/m²
Carga muerta:
- Impermeabilizante = 10 kg/m²
- Empastado = 160 kg/m²
- Acabado cielo = 50 kg/m²
- Instalaciones = 15 kg/m²
- Equipo = 50 kg/m²
- Peso de la losa = 324 kg/m²
Cm = 609 kg/m²
Cv = 100 kg/m²
Wu = 1.2(609) + 1.6(100) = 890 kg/m²
5. Cálculo de la carga lineal del diseño.
Wlu = BT x Wu = (0.73)(890) = 649 kg/m

6. Análisis de la nervadura.
V1 = (1.15)(649)(5.60) = 2089 kg
2
V2 = (1.15)(649)(5.20) = 1941 kg
2
M1 = (649)(5.60)² = 848 kg-m
24
M2 = (649)(5.60)² = 1453 kg-m
14
M3 = (649)(5.40)² = 2102 kg-m
9
M4 = (649)(5.20)² = 1253 kg-m
14
M5 = (649)(5.20)² = 731 kg-m
24
7. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 30 cm
d = h-5 = 30-5  25 cm
Φ = 0.9
tf = 5 cm

fi = (0.9)(4200)(25-5/2) = 851
100
Asreq = Mu
851
Asmin = 14 (12.5)(25) = 1.04 cm²
4200

Momento b h Asreq Asmin As Final Cant. vrs Assum


848 12.5 30 0.99 1.04 1.04 2#3 1.42
1453 12.5 30 1.70 1.04 1.70 3#3 2.13
2102 12.5 30 2.47 1.04 2.47 2#4 2.54
1253 12.5 30 1.47 1.04 1.47 3#3 2.13
731 12.5 30 0.85 1.04 1.04 2#3 1.42
8. Diseño por corte.
“Claro 3-4”

ΦVc = (0.75)(1.1)(0.53)(√200)(12.5x25) = 1932 kg


Vu = 2089 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(25)(0.64) = 161 cm
2089 – 1932
S = menor {161, 12.5}  12.5 cm
X = 2089 – 1932 = 0.24 m
649

Cant. estribos = 24 = 2 estribos


12.5
Conclusión: Usar 2 estribos #2 @ 12.5 cm
“Claro 4-5”
ΦVc = (0.75)(1.1)(0.53)(√200)(17x25) = 1932 kg
Vu = 1941 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(25)(0.64) = 2800 cm
1941 – 1932
S = menor {2800, 12.5}  12.5 cm
X = 1941 – 1932 = 0.013 m
649
Cant. estribos = 1.3 = 1 estribo
12.5
Conclusión: Usar 1 estribo #2 @ 12.5 cm
(5.60)(0.3) = 1.68
(5.20)(0.3) = 1.56
LT = 45 db
#4: LT = (45)(1.27) = 57 cm
CORTE A-A´
Dist. Interior = 12.5 – (2x2.64) = 7.22
Sep = 7.22 – 2x0.95 = 2.66  3
2

N-2
BT = 60/20 + 60/2 + 13= 73 cm
h = L/21 = 5.60/21 = 0.26  0.30 m
S = b + Balig = 0.13 + 0.60 = 0.73 m
Wconc = [(h – tf)(b) + tf] δc  [(0.30 – 0.05)(0.13) + 0.05] 2400 = 227 kg/m²
S 0.73
Walig = [(Balig)(h - tf)] δalig  [(0.60)(0.30 – 0.05)] 500 = 103 kg/m²
S 0.73
Wpp losa = 227 + 103 = 330 kg/m²
1. Cálculo de la carga lineal del diseño.
Wlu = BT x Wu = (0.73)(538) = 393 kg/m

2. Análisis de la nervadura.
V1 = (1.15)(393)(5.60) = 1265 kg
2
V2 = (1.15)(393)(5.20) = 1175 kg
2
M1 = (393)(5.60)² = 513 kg-m
24
M2 = (393)(5.60)² = 880 kg-m
14
M3 = (393)(5.40)² = 1273 kg-m
9
M4 = (393)(5.20)² = 759 kg-m
14
M5 = (393)(5.20)² = 442 kg-m
24
3. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 30 cm
d = h-5 = 30-5  25 cm
Φ = 0.9
tf = 5 cm

fi = (0.9)(4200)(25-5/2) = 851
100
Asreq = Mu
851
Asmin = 14 (13)(25) = 1.08 cm²
4200

Momento b h Asreq Asmin As Final Cant. vrs Assum


513 13 30 0.60 1.08 1.08 2#3 1.42
880 13 30 1.03 1.08 1.08 2#3 1.42
1273 13 30 1.49 1.08 1.49 3#3 2.13
759 13 30 0.89 1.08 1.08 2#3 1.42
442 13 30 0.51 1.08 1.08 2#3 1.42

4. Diseño por corte.

“Claro 3-4”
ΦVc = (0.75)(1.1)(0.53)(√200)(13x25) = 2009 kg
Vu = 1265 kg
ΦVc > Vu  no requiere estribos
“Claro 4-5”
ΦVc = (0.75)(1.1)(0.53)(√200)(13x25) = 2009 kg
Vu = 1175 kg
ΦVc > Vu  no requiere estribos

(5.60)(0.3) = 1.68
(5.20)(0.3) = 1.56
LT = 45 db
#4: LT = (45)(1.27) = 57 cm

CORTE A-A´
Dist. Interior = 13 – (2x2.64) = 7.72
Sep = 7.72 – 2x1.27 = 2.59  3
2

N-3
BT = 60/20 + 60/2 + 14= 74 cm
h = L/21 = 5.60/21 = 0.26  0.30 m
S = b + Balig = 0.14 + 0.60 = 0.74 m
Wconc = [(h – tf)(b) + tf] δc  [(0.30 – 0.05)(0.14) + 0.05] 2400 = 234 kg/m²
S 0.74
Walig = [(Balig)(h - tf)] δalig  [(0.60)(0.30 – 0.05)] 500 = 101 kg/m²
S 0.74
Wpp losa = 234 + 101 = 335 kg/m²
7. Cálculo de la carga lineal del diseño.
Wlu = BT x Wu = (0.74)(904) = 669 kg/m

8. Análisis de la nervadura.

V1 = (1.15)(669)(4.60) = 1769 kg
2
V2 = (1.15)(669)(4.70) = 1807 kg
2
V3 = (1.15)(669)(5.60) = 2154 kg
2
V4 = (1.15)(669)(5.20) = 2000 kg
2
M1 = (669)(4.60)² = 589 kg-m
24
M2 = (669)(4.60)² = 1011 kg-m
14
M3 = (669)(4.65)² = 1446 kg-m
10
M4 = (669)(4.70)² = 923 kg-m
16
M5 = (669)(5.15)² = 1774 kg-m
10
M6 = (669)(5.60)² = 1311 kg-m
16
M7 = (669)(5.40)² = 1950 kg-m
10
M8 = (669)(5.20)² = 1292 kg-m
14
M9 = (669)(5.20)² = 753 kg-m
24
9. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 30 cm
d = h-5 = 30-5  25 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(25-5/2) = 851
100
Asreq = Mu Asmin = 14 (14)(25) = 1.16 cm²
851 4200

Momento b h Asreq Asmin As Final Cant. vrs Assum


589 14 30 0.69 1.16 1.16 2#3 1.42
1011 14 30 1.18 1.16 1.18 2#3 1.42
1446 14 30 1.69 1.16 1.69 3#3 2.13
923 14 30 1.08 1.16 1.08 2#3 1.42
1774 14 30 2.08 1.16 2.08 2#4 2.54
1311 14 30 1.54 1.16 1.54 3#3 2.13
1950 14 30 2.29 1.16 2.29 2#4 2.54
1292 14 30 1.51 1.16 1.51 3#3 2.13
753 14 30 0.88 1.16 1.16 2#3 1.42

3. Diseño por corte.

“Claro 1-2”
ΦVc = (0.75)(1.1)(0.53)(√200)(19x25) = 2164 kg
Vu = 1769 kg

ΦVc > Vu  no requiere estribos

“Claro 2-3”
ΦVc = (0.75)(1.1)(0.53)(√200)(19x25) = 2164 kg
Vu = 1807 kg
ΦVc > Vu  no requiere estribos
“Claro 3-4”
ΦVc = (0.75)(1.1)(0.53)(√200)(19x25) = 2164 kg
Vu = 2154 kg
ΦVc > Vu  no requiere estribos
“Claro 4-5”
ΦVc = (0.75)(1.1)(0.53)(√200)(19x25) = 2164 kg
Vu = 2000 kg
ΦVc > Vu  no requiere estribos
(4.60)(0.3) = 1.38
(4.70)(0.3) = 1.41
(5.60)(0.3) = 1.68
(5.20)(0.3) = 1.56
LT = 45 db
#4: LT = (45)(1.27) = 57 cm
#4: LT = (45)(1.27) = 57 cm

CORTE A-A´
Dist. Interior = 14 – (2x2.64) = 8.72
Sep = 8.72– 3x0.95 = 2.93  3
2
N-4
BT = 60/20 + 60/2 + 16 = 76 cm
h = L/21 = 5.60/21 = 0.26  0.30 m
S = b + Balig = 0.16 + 0.60 = 0.76 m
Wconc = [(h – tf)(b) + tf] δc  [(0.30 – 0.05)(0.16) + 0.05] 2400 = 246 kg/m²
S 0.76
Walig = [(Balig)(h - tf)] δalig  [(0.60)(0.30 – 0.05)] 500 = 99 kg/m²
S 0.76
Wpp losa = 246 + 99 = 345 kg/m²
1. Cálculo de la carga lineal del diseño.
Wlu = BT x Wu = (0.76)(916) = 696 kg/m

2. Análisis de la nervadura.
V1 = (1.15)(696)(4.60) = 1841 kg
2
V2 = (1.15)(696)(4.70) = 1881 kg
2
V3 = (1.15)(696)(5.60) = 2241 kg
2
V4 = (1.15)(696)(5.20) = 2081 kg
2
M1 = (696)(4.60)² = 613 kg-m
24
M2 = (696)(4.60)² = 1051 kg-m
14
M3 = (696)(4.65)² = 1504 kg-m
10
M4 = (696)(4.70)² = 960 kg-m
16
M5 = (696)(5.15)² = 1845 kg-m
10
M6 = (696)(5.60)² = 1364 kg-m
16
M7 = (696)(5.40)² = 2029 kg-m
10
M8 = (696)(5.20)² = 1344 kg-m
14
M9 = (696)(5.20)² = 784 kg-m
24
3. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 30 cm
d = h-5 = 30-5  25 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(25-5/2) = 851
100
Asreq = Mu Asmin = 14 (16)(25) = 1.33 cm²
851 4200
Momento b h Asreq Asmin As Final Cant. vrs Assum
613 16 30 0.72 1.33 1.33 2#3 1.42
1051 16 30 1.23 1.33 1.33 2#3 1.42
1504 16 30 1.76 1.33 1.76 3#3 2.13
960 16 30 1.12 1.33 1.33 2#3 1.42
1845 16 30 2.16 1.33 2.16 2#4 2.54
1364 16 30 1.60 1.33 1.60 3#3 2.13
2029 16 30 2.38 1.33 2.38 2#4 2.54
1344 16 30 1.57 1.33 1.57 3#3 2.13
784 16 30 0.92 1.33 1.33 2#3 1.42

4. Diseño por corte.


“Claro 1-2”

ΦVc = (0.75)(1.1)(0.53)(√200)(16x25) = 2473 kg


Vu = 1841 kg

ΦVc > Vu  no requiere estribos

“Claro 2-3”
ΦVc = (0.75)(1.1)(0.53)(√200)(16x25) = 2473 kg
Vu = 1881 kg
ΦVc > Vu  no requiere estribos
“Claro 3-4”
ΦVc = (0.75)(1.1)(0.53)(√200)(16x25) = 2473 kg
Vu = 2241 kg
ΦVc > Vu  no requiere estribos
“Claro 4-5”
ΦVc = (0.75)(1.1)(0.53)(√200)(16x25) = 2473 kg
Vu = 2081 kg
ΦVc > Vu  no requiere estribos
(4.60)(0.3) = 1.38
(4.70)(0.3) = 1.41
(5.60)(0.3) = 1.68
(5.20)(0.3) = 1.56
LT = 45 db
#4: LT = (45)(1.27) = 57 cm
#4: LT = (45)(1.27) = 57 cm

CORTE A-A´
Dist. Interior = 16 – (2x2.64) = 10.72
Sep = 10.72– 3x1.58 = 2.99  3
2
N-5
BT = 60/20 + 60/2 + 13 = 73 cm
h = L/21 = 4.70/21 = 0.22  0.25 m
S = b + Balig = 0.13 + 0.60 = 0.73 m
Wconc = [(h – tf)(b) + tf] δc  [(0.30 – 0.05)(0.13) + 0.05] 2400 = 205 kg/m²
S 0.73
Walig = [(Balig)(h - tf)] δalig  [(0.60)(0.30 – 0.05)] 500 = 82 kg/m²
S 0.73
Wpp losa = 205 + 82 = 287 kg/m²
1. Cálculo de la carga lineal del diseño.
Wlu = BT x Wu = (0.73)(846) = 618 kg/m

2. Análisis de la nervadura.
V1 = (1.15)(618)(4.60) = 1635 kg
2
V2 = (1.15)(618)(4.70) = 1670 kg
2
M1 = (618)(4.60)² = 544 kg-m
24
M2 = (618)(4.60)² = 934 kg-m
14
M3 = (618)(4.65)² = 1484 kg-m
9
M4 = (618)(4.70)² = 975 kg-m
14
M5 = (618)(4.70)² = 568 kg-m
24
3. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 25 cm
d = h-5 = 25-5  20 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(20-5/2) = 662
100
Asreq = Mu
662
Asmin = 14 (13)(20) = 0.86 cm²
4200

Momento b h Asreq Asmin As Final Cant. vrs Assum


544 13 25 0.82 0.86 0.86 2#3 1.42
934 13 25 1.41 0.86 1.41 2#3 1.42
1484 13 25 2.24 0.86 2.24 2#4 2.54
975 13 25 1.47 0.86 1.47 3#3 2.13
568 13 25 0.85 0.86 0.86 2#3 1.42

4. Diseño por corte.


“Claro 1-2”

ΦVc = (0.75)(1.1)(0.53)(√200)(13x20) = 1608 kg


Vu = 1635 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(20)(0.64) = 746 cm
1635 – 1608
S = menor {746, 10}  10 cm
X = 1635 – 1608 = 0.043 m
618
Cant. estribos = 4.3 = 1 estribo
10
Conclusión: Usar 1 estribo #2 @ 10 cm
“Claro 2-3”
ΦVc = (0.75)(1.1)(0.53)(√200)(13x20) = 1608 kg
Vu = 1670 kg
ΦVc < Vu  si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(20)(0.64) = 325 cm
1670 – 1608
S = menor {325, 10}  10 cm
X = 1670 – 1608 = 0.10 m
618
Cant. estribos = 10 = 1 estribo
10
Conclusión: Usar 1 estribo #2 @ 10 cm
(4.60)(0.3) = 1.38
(4.70)(0.3) = 1.41
LT = 45 db
#4: LT = (45)(1.27) = 57 cm
CORTE A-A´
Dist. Interior = 13 – (2x2.64) = 7.72
Sep = 7.72– 3x0.64 = 2.9  3
2

N-6
BT = 60/20 + 30/2 + 15.5 = 61 cm
h = L/21 = 4.70/21 = 0.22  0.25 m
S = b + Balig = 0.155 + 0.60 = 0.755 m
Wconc = [(h – tf)(b) + tf] δc  [(0.30 – 0.05)(0.155) + 0.05] 2400 = 268 kg/m²
S 0.755
Walig = [(Balig)(h - tf)] δalig  [(0.60)(0.25 – 0.05)] 500 = 79 kg/m²
S 0.755
Wpp losa = 268 + 79 = 347 kg/m²
1. Cálculo de la carga lineal del diseño.
Wlu = BT x Wu = (0.61)(918) = 560 kg/m
2. Análisis de la nervadura.

V1 = (1.15)(560)(4.60) = 1481 kg
2
V2 = (1.15)(560)(4.70) = 1513 kg
2
M1 = (560)(4.60)² = 493 kg-m
24
M2 = (560)(4.60)² = 846 kg-m
14
M3 = (560)(4.65)² = 1345 kg-m
9
M4 = (560)(4.70)² = 883 kg-m
14
M5 = (560)(4.70)² = 515 kg-m
24
3. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 25 cm
d = h-5 = 25-5  20 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(20-5/2) = 662
100
Asreq = Mu
662
Asmin = 14 (15.5)(20) = 1.03 cm²
4200
Momento b h Asreq Asmin As Final Cant. vrs Assum
493 15.5 25 0.74 1.03 1.03 2#3 1.42
846 15.5 25 1.27 1.03 1.27 2#3 1.42
1345 15.5 25 2.03 1.03 2.03 2#4 2.54
883 15.5 25 1.33 1.03 1.33 2#3 1.42
515 15.5 25 0.77 1.03 1.03 2#3 1.42

4. Diseño por corte.


“Claro 1-2”

ΦVc = (0.75)(1.1)(0.53)(√200)(15.5x20) = 1917 kg


Vu = 1481 kg
ΦVc > Vu  no requiere estribos
“Claro 2-3”
ΦVc = 1917 kg
Vu = 1513 kg
ΦVc > Vu  no requiere estribos
(4.60)(0.3) = 1.38
(4.70)(0.3) = 1.41
LT = 45 db
#4: LT = (45)(1.27) = 57 cm

CORTE A-A´
Dist. Interior = 15.5 – (2x2.64) = 10.22
Sep = 10.22– 3x1.58 = 2.74  3
2

You might also like