Concreto Act 5
Concreto Act 5
N-1
BT = 60/20 + 60/2 + 17 = 77 cm
h = L/21 = 5.60/21 = 0.26 0.30 m
S = b + Balig = 0.17 + 0.60 = 0.77 m
Wconc = [(h – tf)(b) + tf] δc [(0.30 – 0.05)(0.17) + 0.05] 2400 = 252 kg/m²
S 0.77
Walig = [(Balig)(h - tf)] δalig [(0.60)(0.30 – 0.05)] 500 = 97 kg/m²
S 0.77
Wpp losa = 252 + 97 = 349 kg/m²
Carga muerta:
- Empastado = (2000)(0.05) = 100 kg/m²
- Acabado piso = 25 kg/m²
- Plafond = (2000)(0.025) = 50 kg/m²
- Muros divisorios = 150 kg/m²
- Instalaciones = 15 kg/m²
- Peso de la losa = 349 kg/m²
Cm = 689 kg/m²
Cv = 500 kg/m²
Wu = 1.2(689) + 1.6(500) = 1627 kg/m²
1. Cálculo de la carga lineal del diseño.
Wlu = BT x Wu = (0.77)(1627) = 1253 kg/m
2. Análisis de la nervadura.
V1 = (1.15)(1253)(5.60) = 4035 kg
2
V2 = (1.15)(1253)(5.20) = 3746 kg
2
M1 = (1253)(5.60)² = 1637 kg-m
24
M2 = (1253)(5.60)² = 2807 kg-m
14
M3 = (1253)(5.40)² = 4060 kg-m
9
M4 = (1253)(5.20)² = 2420 kg-m
14
M5 = (1253)(5.20)² = 1412 kg-m
24
3. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 30 cm
d = h-5 = 30-5 25 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(25-5/2) = 851
100
Asreq = Mu
851
Asmin = 14 (17)(25) = 1.42 cm²
4200
Momento b h Asreq Asmin As Final Cant. vrs Assum
1637 17 30 1.92 1.42 1.92 3#3 2.13
2807 17 30 3.29 1.42 3.29 3#4 3.81
4060 17 30 4.77 1.42 4.77 3#5 5.97
2420 17 30 2.84 1.42 2.87 3#4 3.81
1412 17 30 1.65 1.42 1.65 3#3 2.13
“Claro 4-5”
ΦVc = (0.75)(1.1)(0.53)(√200)(17x25) = 2628 kg
Vu = 3746 kg
ΦVc < Vu si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(25)(0.64) = 25200 = 23 cm
3746 – 2628 1118
S = menor {23, 12.5} 12.5 cm
X = 3746 – 2628 = 0.89 m
1253
Cant. estribos = 89 = 7 estribos
12.5
V1 = (1.15)(1367)(5.60) = 4402 kg
2
V2 = (1.15)(1367)(5.20) = 4087 kg
2
M1 = (1367)(5.60)² = 1786 kg-m
24
M2 = (1367)(5.60)² = 3062 kg-m
14
M3 = (1367)(5.40)² = 4429 kg-m
9
M4 = (1367)(5.20)² = 2640 kg-m
14
M5 = (1367)(5.20)² = 1540 kg-m
24
3. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 30 cm
d = h-5 = 30-5 25 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(25-5/2) = 851
100
Asreq = Mu
851
Asmin = 14 (23.5)(25) = 1.95 cm²
4200
Momento b h Asreq Asmin As Final Cant. vrs Assum
1786 23.5 30 2.09 1.95 2.05 2#4 2.54
3062 23.5 30 3.59 1.95 3.59 3#4 3.81
4429 23.5 30 5.20 1.95 5.20 3#5 5.97
2640 23.5 30 3.10 1.95 3.10 3#4 3.81
1540 23.5 30 1.80 1.95 1.95 3#3 2.13
“Claro 4-5”
ΦVc = (0.75)(1.1)(0.53)(√200)(23.5x25) = 3633 kg
Vu = 4084 kg
ΦVc < Vu si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(25)(0.64) = 25200 = 56 cm
4084 – 3633 451
S = menor {56, 12.5} 12.5 cm
X = 4084 – 3633 = 0.33 m
1367
Cant. estribos = 33 = 2.64 3 estribos
12.5
Conclusión: Usar 3 estribos #2 @ 12.5 cm
(5.60)(0.3) = 1.68
(5.20)(0.3) = 1.56
LT = 45 db
#4: LT = (45)(1.27) = 57 cm
CORTE A-A´
V1 = (1.15)(1285)(4.60) = 3398 kg
2
V2 = (1.15)(1285)(4.70) = 3019 kg
2
V3 = (1.15)(1285)(5.60) = 3598 kg
2
V4 = (1.15)(1285)(5.20) = 3842 kg
2
M1 = (1285)(4.60)² = 1132 kg-m
24
M2 = (1285)(4.60)² = 1942 kg-m
14
M3 = (1285)(4.65)² = 2778 kg-m
10
M4 = (1285)(4.70)² = 1774 kg-m
16
M5 = (1285)(5.15)² = 3408 kg-m
10
M6 = (1285)(5.60)² = 2518 kg-m
16
M7 = (1285)(5.40)² = 3747 kg-m
10
M8 = (1285)(5.20)² = 2481 kg-m
14
M9 = (1285)(5.20)² = 1447 kg-m
24
3. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 30 cm
d = h-5 = 30-5 25 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(25-5/2) = 851
100
Asreq = Mu Asmin = 14 (19)(25) = 1.58 cm²
851 4200
Momento b h Asreq Asmin As Final Cant. vrs Assum
1132 19 30 1.33 1.58 1.58 2#3 1.42
1942 19 30 2.28 1.58 2.28 2#4 2.54
2778 19 30 3.26 1.58 3.26 3#4 3.81
1774 19 30 2.08 1.58 2.08 2#4 2.54
3408 19 30 4.01 1.58 4.01 3#5 5.97
2518 19 30 2.95 1.58 2.95 3#4 3.81
3747 19 30 4.40 1.58 4.40 4#5 7.96
2481 19 30 2.91 1.58 2.91 3#4 3.81
1447 19 30 1.70 1.58 1.70 3#3 2.13
N-4
BT = 60/20 + 60/2 + 20.5 = 81 cm
h = L/21 = 5.60/21 = 0.26 0.30 m
S = b + Balig = 0.205 + 0.60 = 0.81 m
Wconc = [(h – tf)(b) + tf] δc [(0.30 – 0.05)(0.205) + 0.05] 2400 = 272 kg/m²
S 0.81
Walig = [(Balig)(h - tf)] δalig [(0.60)(0.30 – 0.05)] 500 = 93 kg/m²
S 0.81
Wpp losa = 272 + 93 = 365 kg/m²
Wu = 1.2(689) + 1.6(500) = 1627 kg/m²
5. Análisis de la nervadura.
V1 = (1.15)(1318)(4.60) = 3486 kg
2
V2 = (1.15)(1318)(4.70) = 3562 kg
2
V3 = (1.15)(1318)(5.60) = 4244 kg
2
V4 = (1.15)(1318)(5.20) = 3941 kg
2
M1 = (1318)(4.60)² = 1162 kg-m
24
M2 = (1318)(4.60)² = 1992 kg-m
14
M3 = (1318)(4.65)² = 2850 kg-m
10
M4 = (1318)(4.70)² = 1820 kg-m
16
M5 = (1318)(5.15)² = 3496 kg-m
10
M6 = (1318)(5.60)² = 2583 kg-m
16
M7 = (1318)(5.40)² = 3843 kg-m
10
M8 = (1318)(5.20)² = 2546 kg-m
14
M9 = (1318)(5.20)² = 1485 kg-m
24
6. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 30 cm
d = h-5 = 30-5 25 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(25-5/2) = 851
100
Asreq = Mu Asmin = 14 (20.5)(25) = 1.70 cm²
851 4200
“Claro 2-3”
ΦVc = (0.75)(1.1)(0.53)(√200)(19x25) = 3169 kg
Vu = 3562 kg
ΦVc < Vu si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(25)(0.64) = 64 cm
3562 – 3169
S = menor {64, 12.5} 12.5 cm
X = 3562– 3169 = 0.30 m
1318
Cant. estribos = 30 = 3 estribos
12.5
Conclusión: Usar 3 estribos #2 @ 12.5 cm
“Claro 3-4”
ΦVc = (0.75)(1.1)(0.53)(√200)(19x25) = 3169 kg
Vu = 4244 kg
ΦVc < Vu si requiere estribos
Vr #2 (0.75 1”/4 = 0.64) Ab = 0.32 cm²
Sreq = (0.75)(2100)(25)(0.64) = 23 cm
4244 – 3169
S = menor {23, 12.5} 12.5 cm
X = 4244– 3169 = 0.82 m
1318
(4.60)(0.3) = 1.38
(4.70)(0.3) = 1.41
(5.60)(0.3) = 1.68
(5.20)(0.3) = 1.56
LT = 45 db
#4: LT = (45)(1.27) = 57 cm
#4: LT = (45)(1.27) = 57 cm
CORTE A-A´
Dist. Interior = 20.5 – (2x2.64) = 15.22
Sep = 15.22 – 3x1.58 = 5.24
2
N-5
BT = 60/20 + 60/2 + 16 = 76 cm
h = L/21 = 4.70/21 = 0.22 0.25 m
S = b + Balig = 0.16 + 0.60 = 0.76 m
Wconc = [(h – tf)(b) + tf] δc [(0.30 – 0.05)(0.16) + 0.05] 2400 = 221 kg/m²
S 0.76
Walig = [(Balig)(h - tf)] δalig [(0.60)(0.30 – 0.05)] 500 = 79 kg/m²
S 0.76
Wpp losa = 221 + 79 = 300 kg/m²
Wu = 1.2(689) + 1.6(500) = 1627 kg/m²
1. Cálculo de la carga lineal del diseño.
Wlu = BT x Wu = (0.76)(1627) = 1237 kg/m
2. Análisis de la nervadura.
V1 = (1.15)(1237)(4.60) = 3272 kg
2
V2 = (1.15)(1237)(4.70) = 3343 kg
2
M1 = (1237)(4.60)² = 1091 kg-m
24
M2 = (1237)(4.60)² = 1870 kg-m
14
M3 = (1237)(4.65)² = 2972 kg-m
9
M4 = (1237)(4.70)² = 1952 kg-m
14
M5 = (1237)(4.70)² = 1139 kg-m
24
3. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 25 cm
d = h-5 = 25-5 20 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(20-5/2) = 662
100
Asreq = Mu
662
Asmin = 14 (16)(20) = 1.06 cm²
4200
Momento b h Asreq Asmin As Final Cant. vrs Assum
1091 16 25 1.64 1.06 1.64 3#3 2.13
1970 16 25 2.82 1.06 2.82 3#4 3.81
2970 16 25 4.48 1.06 4.48 3#5 5.97
1952 16 25 2.94 1.06 2.94 3#4 3.81
1139 16 25 1.72 1.06 1.72 3#3 2.13
4. Diseño por corte.
“Claro 1-2”
CORTE A-A´
2. Análisis de la nervadura.
V1 = (1.15)(1041)(4.60) = 2753 kg
2
V2 = (1.15)(1041)(4.70) = 2813 kg
2
M1 = (1041)(4.60)² = 918 kg-m
24
M2 = (1041)(4.60)² = 1573 kg-m
14
M3 = (1041)(4.65)² = 2501 kg-m
9
M4 = (1041)(4.70)² = 1642 kg-m
14
M5 = (1041)(4.70)² = 958 kg-m
24
3. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 25 cm
d = h-5 = 25-5 20 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(20-5/2) = 662
100
Asreq = Mu
662
Asmin = 14 (18.5)(20) = 1.23 cm²
4200
CORTE A-A´
Dist. Interior = 18.5 – (2x2.64) = 13.22
Sep = 13.22– 3x1.58 = 8.48
2
AZOTEA
N-1
BT = 60/20 + 60/2 + 12.5 = 73 cm
h = L/21 = 5.60/21 = 0.26 0.30 m
S = b + Balig = 0.125 + 0.60 = 0.73 m
Wconc = [(h – tf)(b) + tf] δc [(0.30 – 0.05)(0.125) + 0.05] 2400 = 222 kg/m²
S 0.73
Walig = [(Balig)(h - tf)] δalig [(0.60)(0.30 – 0.05)] 500 = 102 kg/m²
S 0.73
Wpp losa = 222 + 102 = 324 kg/m²
Carga muerta:
- Impermeabilizante = 10 kg/m²
- Empastado = 160 kg/m²
- Acabado cielo = 50 kg/m²
- Instalaciones = 15 kg/m²
- Equipo = 50 kg/m²
- Peso de la losa = 324 kg/m²
Cm = 609 kg/m²
Cv = 100 kg/m²
Wu = 1.2(609) + 1.6(100) = 890 kg/m²
5. Cálculo de la carga lineal del diseño.
Wlu = BT x Wu = (0.73)(890) = 649 kg/m
6. Análisis de la nervadura.
V1 = (1.15)(649)(5.60) = 2089 kg
2
V2 = (1.15)(649)(5.20) = 1941 kg
2
M1 = (649)(5.60)² = 848 kg-m
24
M2 = (649)(5.60)² = 1453 kg-m
14
M3 = (649)(5.40)² = 2102 kg-m
9
M4 = (649)(5.20)² = 1253 kg-m
14
M5 = (649)(5.20)² = 731 kg-m
24
7. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 30 cm
d = h-5 = 30-5 25 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(25-5/2) = 851
100
Asreq = Mu
851
Asmin = 14 (12.5)(25) = 1.04 cm²
4200
N-2
BT = 60/20 + 60/2 + 13= 73 cm
h = L/21 = 5.60/21 = 0.26 0.30 m
S = b + Balig = 0.13 + 0.60 = 0.73 m
Wconc = [(h – tf)(b) + tf] δc [(0.30 – 0.05)(0.13) + 0.05] 2400 = 227 kg/m²
S 0.73
Walig = [(Balig)(h - tf)] δalig [(0.60)(0.30 – 0.05)] 500 = 103 kg/m²
S 0.73
Wpp losa = 227 + 103 = 330 kg/m²
1. Cálculo de la carga lineal del diseño.
Wlu = BT x Wu = (0.73)(538) = 393 kg/m
2. Análisis de la nervadura.
V1 = (1.15)(393)(5.60) = 1265 kg
2
V2 = (1.15)(393)(5.20) = 1175 kg
2
M1 = (393)(5.60)² = 513 kg-m
24
M2 = (393)(5.60)² = 880 kg-m
14
M3 = (393)(5.40)² = 1273 kg-m
9
M4 = (393)(5.20)² = 759 kg-m
14
M5 = (393)(5.20)² = 442 kg-m
24
3. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 30 cm
d = h-5 = 30-5 25 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(25-5/2) = 851
100
Asreq = Mu
851
Asmin = 14 (13)(25) = 1.08 cm²
4200
“Claro 3-4”
ΦVc = (0.75)(1.1)(0.53)(√200)(13x25) = 2009 kg
Vu = 1265 kg
ΦVc > Vu no requiere estribos
“Claro 4-5”
ΦVc = (0.75)(1.1)(0.53)(√200)(13x25) = 2009 kg
Vu = 1175 kg
ΦVc > Vu no requiere estribos
(5.60)(0.3) = 1.68
(5.20)(0.3) = 1.56
LT = 45 db
#4: LT = (45)(1.27) = 57 cm
CORTE A-A´
Dist. Interior = 13 – (2x2.64) = 7.72
Sep = 7.72 – 2x1.27 = 2.59 3
2
N-3
BT = 60/20 + 60/2 + 14= 74 cm
h = L/21 = 5.60/21 = 0.26 0.30 m
S = b + Balig = 0.14 + 0.60 = 0.74 m
Wconc = [(h – tf)(b) + tf] δc [(0.30 – 0.05)(0.14) + 0.05] 2400 = 234 kg/m²
S 0.74
Walig = [(Balig)(h - tf)] δalig [(0.60)(0.30 – 0.05)] 500 = 101 kg/m²
S 0.74
Wpp losa = 234 + 101 = 335 kg/m²
7. Cálculo de la carga lineal del diseño.
Wlu = BT x Wu = (0.74)(904) = 669 kg/m
8. Análisis de la nervadura.
V1 = (1.15)(669)(4.60) = 1769 kg
2
V2 = (1.15)(669)(4.70) = 1807 kg
2
V3 = (1.15)(669)(5.60) = 2154 kg
2
V4 = (1.15)(669)(5.20) = 2000 kg
2
M1 = (669)(4.60)² = 589 kg-m
24
M2 = (669)(4.60)² = 1011 kg-m
14
M3 = (669)(4.65)² = 1446 kg-m
10
M4 = (669)(4.70)² = 923 kg-m
16
M5 = (669)(5.15)² = 1774 kg-m
10
M6 = (669)(5.60)² = 1311 kg-m
16
M7 = (669)(5.40)² = 1950 kg-m
10
M8 = (669)(5.20)² = 1292 kg-m
14
M9 = (669)(5.20)² = 753 kg-m
24
9. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 30 cm
d = h-5 = 30-5 25 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(25-5/2) = 851
100
Asreq = Mu Asmin = 14 (14)(25) = 1.16 cm²
851 4200
“Claro 1-2”
ΦVc = (0.75)(1.1)(0.53)(√200)(19x25) = 2164 kg
Vu = 1769 kg
“Claro 2-3”
ΦVc = (0.75)(1.1)(0.53)(√200)(19x25) = 2164 kg
Vu = 1807 kg
ΦVc > Vu no requiere estribos
“Claro 3-4”
ΦVc = (0.75)(1.1)(0.53)(√200)(19x25) = 2164 kg
Vu = 2154 kg
ΦVc > Vu no requiere estribos
“Claro 4-5”
ΦVc = (0.75)(1.1)(0.53)(√200)(19x25) = 2164 kg
Vu = 2000 kg
ΦVc > Vu no requiere estribos
(4.60)(0.3) = 1.38
(4.70)(0.3) = 1.41
(5.60)(0.3) = 1.68
(5.20)(0.3) = 1.56
LT = 45 db
#4: LT = (45)(1.27) = 57 cm
#4: LT = (45)(1.27) = 57 cm
CORTE A-A´
Dist. Interior = 14 – (2x2.64) = 8.72
Sep = 8.72– 3x0.95 = 2.93 3
2
N-4
BT = 60/20 + 60/2 + 16 = 76 cm
h = L/21 = 5.60/21 = 0.26 0.30 m
S = b + Balig = 0.16 + 0.60 = 0.76 m
Wconc = [(h – tf)(b) + tf] δc [(0.30 – 0.05)(0.16) + 0.05] 2400 = 246 kg/m²
S 0.76
Walig = [(Balig)(h - tf)] δalig [(0.60)(0.30 – 0.05)] 500 = 99 kg/m²
S 0.76
Wpp losa = 246 + 99 = 345 kg/m²
1. Cálculo de la carga lineal del diseño.
Wlu = BT x Wu = (0.76)(916) = 696 kg/m
2. Análisis de la nervadura.
V1 = (1.15)(696)(4.60) = 1841 kg
2
V2 = (1.15)(696)(4.70) = 1881 kg
2
V3 = (1.15)(696)(5.60) = 2241 kg
2
V4 = (1.15)(696)(5.20) = 2081 kg
2
M1 = (696)(4.60)² = 613 kg-m
24
M2 = (696)(4.60)² = 1051 kg-m
14
M3 = (696)(4.65)² = 1504 kg-m
10
M4 = (696)(4.70)² = 960 kg-m
16
M5 = (696)(5.15)² = 1845 kg-m
10
M6 = (696)(5.60)² = 1364 kg-m
16
M7 = (696)(5.40)² = 2029 kg-m
10
M8 = (696)(5.20)² = 1344 kg-m
14
M9 = (696)(5.20)² = 784 kg-m
24
3. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 30 cm
d = h-5 = 30-5 25 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(25-5/2) = 851
100
Asreq = Mu Asmin = 14 (16)(25) = 1.33 cm²
851 4200
Momento b h Asreq Asmin As Final Cant. vrs Assum
613 16 30 0.72 1.33 1.33 2#3 1.42
1051 16 30 1.23 1.33 1.33 2#3 1.42
1504 16 30 1.76 1.33 1.76 3#3 2.13
960 16 30 1.12 1.33 1.33 2#3 1.42
1845 16 30 2.16 1.33 2.16 2#4 2.54
1364 16 30 1.60 1.33 1.60 3#3 2.13
2029 16 30 2.38 1.33 2.38 2#4 2.54
1344 16 30 1.57 1.33 1.57 3#3 2.13
784 16 30 0.92 1.33 1.33 2#3 1.42
“Claro 2-3”
ΦVc = (0.75)(1.1)(0.53)(√200)(16x25) = 2473 kg
Vu = 1881 kg
ΦVc > Vu no requiere estribos
“Claro 3-4”
ΦVc = (0.75)(1.1)(0.53)(√200)(16x25) = 2473 kg
Vu = 2241 kg
ΦVc > Vu no requiere estribos
“Claro 4-5”
ΦVc = (0.75)(1.1)(0.53)(√200)(16x25) = 2473 kg
Vu = 2081 kg
ΦVc > Vu no requiere estribos
(4.60)(0.3) = 1.38
(4.70)(0.3) = 1.41
(5.60)(0.3) = 1.68
(5.20)(0.3) = 1.56
LT = 45 db
#4: LT = (45)(1.27) = 57 cm
#4: LT = (45)(1.27) = 57 cm
CORTE A-A´
Dist. Interior = 16 – (2x2.64) = 10.72
Sep = 10.72– 3x1.58 = 2.99 3
2
N-5
BT = 60/20 + 60/2 + 13 = 73 cm
h = L/21 = 4.70/21 = 0.22 0.25 m
S = b + Balig = 0.13 + 0.60 = 0.73 m
Wconc = [(h – tf)(b) + tf] δc [(0.30 – 0.05)(0.13) + 0.05] 2400 = 205 kg/m²
S 0.73
Walig = [(Balig)(h - tf)] δalig [(0.60)(0.30 – 0.05)] 500 = 82 kg/m²
S 0.73
Wpp losa = 205 + 82 = 287 kg/m²
1. Cálculo de la carga lineal del diseño.
Wlu = BT x Wu = (0.73)(846) = 618 kg/m
2. Análisis de la nervadura.
V1 = (1.15)(618)(4.60) = 1635 kg
2
V2 = (1.15)(618)(4.70) = 1670 kg
2
M1 = (618)(4.60)² = 544 kg-m
24
M2 = (618)(4.60)² = 934 kg-m
14
M3 = (618)(4.65)² = 1484 kg-m
9
M4 = (618)(4.70)² = 975 kg-m
14
M5 = (618)(4.70)² = 568 kg-m
24
3. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 25 cm
d = h-5 = 25-5 20 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(20-5/2) = 662
100
Asreq = Mu
662
Asmin = 14 (13)(20) = 0.86 cm²
4200
N-6
BT = 60/20 + 30/2 + 15.5 = 61 cm
h = L/21 = 4.70/21 = 0.22 0.25 m
S = b + Balig = 0.155 + 0.60 = 0.755 m
Wconc = [(h – tf)(b) + tf] δc [(0.30 – 0.05)(0.155) + 0.05] 2400 = 268 kg/m²
S 0.755
Walig = [(Balig)(h - tf)] δalig [(0.60)(0.25 – 0.05)] 500 = 79 kg/m²
S 0.755
Wpp losa = 268 + 79 = 347 kg/m²
1. Cálculo de la carga lineal del diseño.
Wlu = BT x Wu = (0.61)(918) = 560 kg/m
2. Análisis de la nervadura.
V1 = (1.15)(560)(4.60) = 1481 kg
2
V2 = (1.15)(560)(4.70) = 1513 kg
2
M1 = (560)(4.60)² = 493 kg-m
24
M2 = (560)(4.60)² = 846 kg-m
14
M3 = (560)(4.65)² = 1345 kg-m
9
M4 = (560)(4.70)² = 883 kg-m
14
M5 = (560)(4.70)² = 515 kg-m
24
3. Diseño por flexión.
Asreq = Mu
fi
fy = 4200 kg/cm²
h = 25 cm
d = h-5 = 25-5 20 cm
Φ = 0.9
tf = 5 cm
fi = (0.9)(4200)(20-5/2) = 662
100
Asreq = Mu
662
Asmin = 14 (15.5)(20) = 1.03 cm²
4200
Momento b h Asreq Asmin As Final Cant. vrs Assum
493 15.5 25 0.74 1.03 1.03 2#3 1.42
846 15.5 25 1.27 1.03 1.27 2#3 1.42
1345 15.5 25 2.03 1.03 2.03 2#4 2.54
883 15.5 25 1.33 1.03 1.33 2#3 1.42
515 15.5 25 0.77 1.03 1.03 2#3 1.42
CORTE A-A´
Dist. Interior = 15.5 – (2x2.64) = 10.22
Sep = 10.22– 3x1.58 = 2.74 3
2