Cordilleran base metal
veins and replacement
bodies as "normal"
constituents of
porphyry systems
Llus Fontbot
Earth Sciences, University of Geneva, Switzerland
l
Outline
Normal constituent of porphyry style systems
Overview of main Characteristics
Mineralogical zoning (ore and alteration
minerals)
Evolution in time
Origin of mineralizing fluid (brine, vapor,
single phase fluid?)
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 2
Cordilleran base metals deposits
are "normal" constituents in
porphyry style systems
A type among others within the magmato-hydrothermal
porphyry system:
porphyry copper deposits,
intermediate and high sulfidation Au and Ag deposits
Cu, Cu-Fe, Au, and Zn-Pb skarn deposits
"Cordilleran" (~ "zoned base metal deposits")
"distal" Au deposits
All types do not coexist in each single porphyry system!
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 3
Schematic relations: HS and IS epithermal deposits
And roots of porphyry systems Sillitoe and Hedenquist, 200
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 4
Cordilleran Base Metal Deposits
are
Economically Interesting
Targets
Butte: >0.6 billion oz Ag, > 4 billion lb Zn, > 16 billion lb of Cu, > 4
billion lb Zn, > 0.8 billion lb Pb, > 2.5 million oz Au.
Gold equivalent: > 80 million oz.
Cerro de Pasco: >1.5 billion oz Ag, >8 billion lb Zn, >2.5 billion lb Pb,
>2 billion lb Cu, >2 million oz Au.
Au equivalent: > 60 millons oz
Colquijirca District: >500 million oz Ag, >6 billion lb of Cu, >6 billion
lb Zn, >2 billion lb Pb, >2 million oz Au.
Au equivalent: > 50 million oz
Morococha, San Cristobal, Yauricocha, Huarn, Quiruvilca, Julcani,
Hualgayoc, Casapalca (?)
Bisbee, Magma, and Tintic (USA), Bor (Serbia)
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 5
Cordilleran Base Metal Deposits
are
Economically Interesting
Targets (cont.)
Historically, a most important base-metal and Ag ore-
type.
Today, in Peru, Cordilleran base metal deposits
account for more than 50% of the Zn and Pb
production and more than 60% of Ag production.
Resources of largest known deposits (80 - 100 million
oz Au equivalent) are comparable to those of
very large porphyry copper deposits (e.g. 2000 million
t and 1% Cu, i.e., Au equivalent: > 145 million oz).
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 6
What are Cordilleran Base Metal
Deposits?
In short: (Mostly) epithermal base metal (Cu-Zn-Pb)
deposits formed in late stages of a porphyry system.
Still another new name???
Not really new: long time known deposit class for polymetallic
veins occurring in the upper part of porphyry copper systems
(e.g., Sawkins (1972), Einaudi (1977, 1982, 1994):
Cordilleran base metal lodes".
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 7
What are Cordilleran Base Metal
Deposits?
Other terms:
Butte-type vein deposits, zoned Cu-Zn-Pb-Ag
deposits", zoned base metal veins, high
sulfidation/intermediate sulfidation base
metal veins
Problem with these terms:
not always HS or IS and therefore not not
always so well zoned
not only veins but also large replacement
bodies.
generally epithermal, but T up to 350 C
have been recorded
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 8
Typical tonnages, grades
In some systems, the Cordilleran stage is
well developed (e.g., Bisbee, Arizona;
Yauricocha, Cerro de Pasco, Colquijirca,
Peru....).
Typical tonnages, grades
Underground: 2 - 10 Mill t, 2-5%Cu, 5-
15%Zn+Pb, 3-5 oz/t Ag
Open pit: 30-150 Mill t, 1-2%Cu, 2-
10%Zn+Pb, 1-3 oz/t Ag
Not always present:
In other districts the Cordilleran stage is
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 9
Main characteristics of
Cordilleran base metals deposits
(1) Close association in time and space with
calc-alkaline igneous activity- Same
producing areas as porphyry - Cu or high
sulfidation epithermal Au-Ag deposits
(2) Mainly epithermal: deposition at shallow
levels below the paleo-surface and generally
at temperatures below 300C (temperatures
up to ~350C also recorded)
(3) Deposition "late" in the evolution of the
porphyry system
(4) Cu-Zn-Pb-(Ag-Au-Bi-Sn-W) metal suites.
High
G4 Cordilleran Ag/Au
Base Metal ratios.
Deposits, Llus Fontbot, v. 06.12, slide 10
Main characteristics of
Cordilleran base metals deposits
(5) Much richer in sulfides (up to more than 50
% total sulfides) than porphyry copper ores
(6) Mainly occurrence as open-space fillings in
silicate host rocks and as replacement in
carbonate rocks,
(6) Frequently: well-developed zoning (ore and
alteration minerals)
(7) Frequent early pyrite-quartz (W)
assemblage that can be extensive and form
large bodies (and can be zoned to Zn-Pb
ores)
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 11
Cordilleran deposits, the
Colquijirca and Cerro de
Pasco examples
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 12
Geology
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 13
Colquijirca
Marcapunta volcanic complex
Smelter deposit Colquijirca deposit
N
500 m
Cu-(Au-Ag) zone: enargite
Zn-Pb-Cu-(Ag) zone:
sphalerite-galena-
chalcopyrite
Zn-Pb-(Ag) zone: sphalerite
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 14 -galena
Colquijirca
Cu-(Au-Ag) zone: enargite
Zn-Pb-Cu-(Ag) zone:
sphalerite-galena-
60 m chalcopyrite
Zn-Pb-(Ag) zone: sphalerite
-galena
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 15
Colquijirca
Early silica-pyrite stage Main ore stage Late ore sta
G4 Cordilleran Base Metal Deposits, Llus Fontbot, <1
v. 06.12, slide 16 >1-<5 >5-<10 >10
Colquijirca, Early silica-pyrite stage
1 cm
2 cm
sheelit
e
rutil
e rutil
e
zirco
n
50 m 50 m
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 17
lquijirca, Main ore stage, enargite zo
z
2 cm 1 cm
enargite
dickite
0.5 1 cm
cm
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 18
lquijirca, Main ore stage, enargite zo
z
enargite
colusite
200 50 m
m
Au-(Ag)
telluride alunite
s
+
electrum
tennanti
te
pyrite II
goldfieldit
e 50 m 1 cm
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 19
Colquijirca, Main ore stage, Cu zone
woodhouseit
quartz e
alunite
1 mm
alunite 50 m
colusite
100 100
m m
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 20
uijirca, Main ore stage, chalcopyrite
kaolinit sphalerit
e e aikinite
emplectit
e
tennantit
e
bornite
chalcopyri
100 te 100
m m
tennantit
e
matildite
stromeyerit tennantit
e e
50 m 50 m
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 21
quijirca, Main ore stage, sphalerite z
sphalerit
e
sphalerit
e
galena
alunit
e
alunit
e 100 50 m
m
hematit
e
sphalerit
e
galena
kaolinite
sphalerit 400 m
e Mn-Zn-
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 22 siderit
Colquijirca, Late stage
100 m
tennanti
te
bornite chalcosite digenite
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 23
Cerro de Pasco
A
1st mineralization stage:
- Pyrite-quartz body
- Pipe-like pyrrhotite
bodies Matagent
- Zn-Pb ores (bearing Fe- e syncline
rich sphalerite)
2nd mineralization stage:
- Cu-Ag-(Au-Zn-Pb)
enargite-pyrite veins
- Zn-Pb-(Bi-Ag-Cu)
carbonate replacement
A
bodies (bearing Fe-poor
sphalerite)
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 24
Cerro de Pasco
1st mineralization stage
Modified after Einaudi
(1977)
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 25
Cerro de Pasco
pyrrhotit
e,
quartz,
wolframi
pyrrhotite,
te
sphalerite,
chalcopyrit
e, stannite
pyrrhotite,
Fe-rich
sphalerite, Pyrrhotite
arsenopyrit Transition body Transition
e, zone zone
Pyrite-quartz Zn-Pb ores
chalcopyrit body
eCordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 26
G4
Cerro de Pasco
35.0 10.0 mol% FeS
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 27
Cerro de Pasco
pyrrhotite
galena
sphalerite
100 m pyrite
Pipe-like pyrrhotite ores: pyrrhotite, arsenopyrite, Fe-rich
sphalerite
Alteration mineral: quartz
=> LowBase
G4 Cordilleran sulfidation statev. 06.12,
Metal Deposits, Llus Fontbot, assemblages
slide 28
Stage superposition at Cerro de
Pasco
Massive
ore with
Fe- Fe-rich sl
poor sl (early
vein
stage)
(Main
ore
stage)
Central part of the
pit, in the vicinity
20cm of the silica-pyrite
body
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 29
Zoning of alteration minerals and of
ore minerals are "parallel" but do
not correlate 1:1
Alteration minerals Ore mineral assemblages (-)
Association (/)
AA Advanced Argillic (qtz-
alunite, barite),
core
Cu-(Au): /py-en, py, en, cc,
(cv), Sn, W, and Bi
A Argillic alteration,dickite, minerals/
kaolinite,
to
AA (A), ((S))
rim
S qtz-sericite
Cu-(Ag-Bi) /py-bn, (py-cp),
ten, /py-cp, bn/Bi
From
D qtz, calcite, rhodochr,
siderite, hematite sulfosalts/ ; A, (AA), (S)
Zn-Pb-Ag py-sl, gn, (tt, arg,
cp); D, (A), ((AA, S))
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 30
Caution!
The observed patterns may be complicated by
prograde evolution: Cu-(Au) prograding
over Cu(Ag-Bi) and over Zn-Pb-Ag zones
retrograde evolution: typically Cu(Ag-Bi)
and Zn-Pb-Ag zones retrograding over
Cu-(Au) zone
superposition of pulses
It is important to distinguish between
- mineral assemblages (without reaction borders, in
apparent equilibrium)
- mineral associations
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 31
Fluid origin
Brine? If yes, how
could reach dense
fluids shallow
depths?
Vapor? If yes, why
Zn and Pb rich?
Contracted (deep)
vapor/Single-
phase fluid?
Heinrich (2005)
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 32
Brine? If yes,
how could reach
dense fluids
shallow depths?
Vapor? If yes,
why Zn and Pb
rich?
Reminder:
Single-phase
The
fluid?/(deep)
"Single phase
contracted
intermediate-density
vapor?
fluid" could ascend
without crossing the
two-phase boundary
and condenses out
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 33
minor mass of saline
Brine and vapour FI in porphyry copper deposits
Ulrich, T., Gnther, D, Heinrich, C.A. (1999) Nature, v. 399, p. 676-679.
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 34
Cerro de Pasco - Fluid isotope
signature
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 35
Colquijirca - Fluid isotope
signature
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 36
Colquijirca - Fluid isotope
signature
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 37
Results of FI and stable isotope
studies
(Colquijirca, Bendez, 2006; Cerro de Pasco, Baumgartnerr et al., 2008, Morococha,
Kouzmanov et al ., 2008)
Early and Main stage
- Moderate to low salinities (< ~12 % NaCl eq.)
- Mixing of magmatic fluids with isotope equilibrated
waters
- Possible to retrace cooling ( ~350C to ~200C)
Alunite in Main stage:
- Mixing trend of magmatic fluid with meteoric water (in
part no mixing, only magmatic signature)
Ore Fluid origin
Brine? If yes, how could Yes, Diluted brine!
reach dense fluids shallow
depths?
Pulses of vapor are
responsible for alunite
Vapor? If yes, why Zn and Pb precipitation
rich?
Difficult if taking into
G4 Cordilleran
Contracted vapor/Single-
Base Metal Deposits, Llus Fontbot, v. 06.12, slide 38 account the traced
Very acidic fluids
between diluted brine and acidic fluids derived from SO2-bearing
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 39 (Bendez, 2006)
Less acidic fluids
ly diluted brine enters the epithermal environment
Only diluted brine Diluted brine and vapor pulse
(Bendez, 2006)
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 40
Timing of Cordilleran
mineralization as part of a porphyry
system
HS Cordilleran
lodes
D veins
A-B qtz veinlets
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 41 Einaudi, M, 1996
Today
Polymetallic lodes cutting D-veins,
Toromocho,
G4 Cordilleran Base MetalMorococha,
Deposits, Llus Fontbot, Peru.
v. 06.12, slide 42
Timing at Cerro de Pasco
Baumgartner, Fontbot &
Vennemann (2008)
Timing at
Colquijirc
a
Bendez, Page, Spikings,
Pecskay and Fontbot (2008)
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 44
Early barren quartz-alunite
ledges
Au-(Ag)
high
sulfidation
epithermal Cordilleran base
metal veins and
replacement
deposits
Porphyry copper
Skarn
Zn-Pb-(Ag-Cu)
Modified from Muntean and Einaudi (2002)
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 45
Cordilleran base metal deposits -
Conclusions
Economically important (Cu-Zn-Pb-Ag-Au-Bi-(Sn-W))
Typical constituents in the upper part of porphyry
copper systems
Main characteristics: zoned and rich in sulfides
The cores may bear HS and AA mineral assemblages,
but Cordilleran base metal deposits are a separate
deposits class which
is rich in sulfides
crosscuts "porphyry veins" and epithermal Au-Ag
deposits
older by n 100.000 years than the later (in dated
examples)
Diluted magmatic brines (tapped when the system is
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 46
Recent References
Bendez, R , Page, L, Spikings, R, Pecskay, Z and Fontbot, L, 2008. New
40Ar/39Ar alunite ages from the Colquijirca District, Peru. Evidence of long
period of magmatic SO2 degassing during formation of epithermal Au-Ag
and Cordilleran polymetallic ores. Mineralium Deposita, v. 43, p. 777-789.
Baumgartner, R, Fontbot, L and Vennemann, T, 2008. Mineral zoning and
geochemistry of epithermal polymetallic Zn-Pb-Ag-Cu-Bi mineralization at
Cerro de Pasco, Peru. Economic Geology, 103: 493-537.
Kouzmanov, K., A. Bendez, H. Catchpole, M. Ageneau, J. Prez & L.
Fontbot, 2008 The Miocene Morococha district, central Peru: large-scale
epithermal polymetallic overprint on multiple intrusion-centered porphyry
system PACRIM 2008
More documents to download in:
http://www.unige.ch/sciences/terre/mineral/ore/min_ore.htm
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 47
From Einaudi, 199
G4 Cordilleran Base Metal Deposits, Llus Fontbot, v. 06.12, slide 48