0% found this document useful (0 votes)
42 views103 pages

Ymy Differentiation

This document discusses differentiation and the rules of differentiation. It provides examples of using the first principle and definition to find the derivative of various functions at given points. It also discusses determining differentiability and applying rules of differentiation such as the constant rule.

Uploaded by

syafiqah
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PPT, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
42 views103 pages

Ymy Differentiation

This document discusses differentiation and the rules of differentiation. It provides examples of using the first principle and definition to find the derivative of various functions at given points. It also discusses determining differentiability and applying rules of differentiation such as the constant rule.

Uploaded by

syafiqah
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PPT, PDF, TXT or read online on Scribd
You are on page 1/ 103

TOPIC 3 : DIFFERENTIATION

Derivative of a Function
Rules of Differentiation
Differentiation of Exponential,
Logarithmic and Trigonometric Functions

1
Derivative of a Function

Learning Outcomes:
At the end of this topic, students should
be able to:
(a) Determine the derivative of a
function
by using the first principle.
(b) Determine the differentiability of a
function at x = a.

2
Derivative of a Function

The process of finding the derivative of a


function is called differentiation.

We can write the differentiation as

dy d
dx
or f '
( x) or y '
or y
dx

3
Note:

The differentiation of a function should be


with respect to the independent variable
for example, if

dy
i) y = f(x), then = f ( x)
'

dx
dy
ii) y = h(t), then = h ( t)
'

dt
4
DERIVATIVE OF A FUNCTION FROM
FIRST PRINCIPLES

Definition 1 :

For a function y = f (x), the derivative of


f (x), written f ’(x) is defined by

f(x  h)  f(x)
f'(x) = lim
h0 h

5
Example 1 :

Use the first principle to find the


derivative of :

( a) f ( x ) = 3x

( b) f ( x ) = x2  2x

( c) f ( x) = x  5

1
( d) f ( x) =
x
6
Solution 1(a):
( a) f ( x ) = 3x
f ( x  h) = 3( x  h)

3 ( x  h )  3x
f '
( x ) = lim
h �0 h
3x  3h  3 x
= lim
h �0 h
3h
= lim
h �0 h

=3 7
Solution 1(b):
( b) f ( x ) = x2  2x
f ( x  h) = ( x  h)  2 ( x  h)
2

(
� ) ( ) �
2
x  h  2 x  h  �
x

2
 2x�

f ( x ) = lim
' � �
h �0 h

x  2 xh  h  2 x  2h  x  2 x
2 2 2
= lim
h �0 h

8
Solution 1(b):

2 xh  h  2h
2
= lim
h �0 h
h ( 2x  h  2)
= lim
h �0 h

= 2x  2

9
Solution 1(c):

( c) f ( x) = x  5

f ( x  h) = ( x  h)  5

( x  h)  5  x5
f '
( x ) = lim
h �0 h

10
Solution 1(c):

( x  h)  5  x5 ( x  h)  5  x5
= lim �
h �0 h ( x  h)  5  x5

( ( x  h)  5 ) ( )
2 2
 x5
= lim
h �0
h ( ( x  h)  5  x5 )
= lim
( x  h  5)  ( x  5)
h �0
h ( ( x  h)  5  x  5 )
11
Solution 1(c):
h
= lim
h �0
h ( ( x  h)  5  x5 )
1
= lim
h �0
( ( x  h)  5  x5 )
1
=
2 x5

12
Solution 1(d):
1 1
( d) f ( x) =
x
f ( x  h) =
xh
1 1

f ( x ) = lim
' x  h x
h �0 h
x  ( x  h)
= lim
h �0 h ( x  h ) ( x )

h
= lim
h �0 h ( x  h ) ( x )

1 1
= lim  = 2
h �0 ( x  h ) ( x ) x 13
DERIVATIVE OF A FUNCTION AT x=a
Definition 2 :
The derivative of a function f(x) at any
point x = a is given by

f(x)  f(a)
f'(a) = lim
x a xa

14
Example 2 :

f ( x)  f ( a)
Use the definition f
'
( a ) = lim
x �a xa

( a) f ( x ) = 3  2 x, a=2

( b) f ( x ) = x  2, a=3

15
Solution 2(a):
( a) f ( x ) = 3  2 x, a=2

( 3  2x )  ( 3  2 ( 2) )
f ( 2 ) = lim
'
x �2 x2
3  2x 1
= lim
x �2 x2
4  2x 0
= lim Direct substitution gives
x �2 x  2 0

2( 2  x)
= lim
x �2 x2 16
Solution 2(a):
2( 2  x)
= lim
x �2  ( 2  x)
= 2

17
Solution 2(b):

( b) f ( x ) = x  2, a=3

x  2  3 2
f ( 3) = lim
'
x �3 x3

x  2 1 Direct substitution
= lim
x �3 x 3 gives
0
0
x  2 1 x  2 1
= lim �
x �3 x 3 x  2 1
18
Solution 2(b):

= lim
( x  2) 1
x �3
( x  3) ( x  2  1)
x 3
= lim
x �3
( x  3) ( )
x  2 1

1
= lim
x �3
( x  2 1 )
1
=
2
19
Example 3 :
2 x, x  0
Given f ( x ) =  x 2 , x  0

Is f is differentiable at x = 0 ?

Solution 3:
f ( x)  f (0) 2x  0
f '(0) = lim = lim = lim 2 = 2
x �0 x0 x �0 x x �0

f ( x)  f (0) x2  0
f '(0) = lim = lim = lim x = 0
x �0 x0 x �0 x x �0

20
Left hand limit is not equal to right
hand limit.
Therefore f '(0) does not exist.
Hence,f is not differentiable at x = 0.

21
Example 4 :
,

Determine whether the function f ( x) = x


is differentiable at x=0.

Solution 4:
�x , x  0
f ( x) = x = �
�x , x �0

22
Solution 4:
,

For x  0
f ( x)  f (0) x  0
f '(0) = lim = lim = lim ( 1) = 1
x �0 x0 x �0 x x �0

For x �0
f ( x)  f (0) x0
f '(0) = lim = lim = lim (1) = 1
x �0 x0 x �0 x x �0

Left hand limit is not equal to right hand


limit.
Therefore f '(0) does not exist.
Hence, f is not differentiable at x = 0.

23
Rules of Differentiation
Learning Outcomes:
At the end of this topic, students should
be able to:
(a) Apply the rules of differentiation.
(b) Perform second and third order
differentiation

24
Rules of Differentiation

The Constant Rule


If f (x) = k , where k is a constant , f ’(x) = 0

Example 1:
Find the derivatives of
(a) f ( x ) = 31 (b) f ( x ) = 2p

f ' ( x) = 0 f ' ( x) = 0

25
The Power Rule
If f (x) = xn, then
f ’(x) = nxn-1 where n is positive integer.
Example 2:
Find the derivatives of
1
( a) f ( x) = x 23
( b) f ( x ) =
x
1 3
f ' ( x) =  ( x) 2

f '
( x ) = 23x 22
2
1
= 3
2x 2 26
If f (x) = kxn, then
f ’(x) = knxn-1 where k is a constant.

Example 3:
9
Find the derivative of f ( x ) =

1 x
f ( x ) = 9x 2
� 1 2 1 �

1
f ( x) = 9�
'
 x �
�2 �
3
9  9
= x 2
= 3
2
2x 2
27
If y = [ f (x) ]n , then y ’ = n[ f (x) ]n-1 f ’(x)

Example 4:
By using the Power Rule, differentiate the
following functions :

( a) y = ( 7x  1)
2 5

( b) y = 3x  1

28
Solution :

( a) y = ( 7x  1) ( b) y =
5
2
3x  1
1
y = ( 3x  1) 2

1 1
y = ( 3x  1) 2 ( 3)

y = 5 ( 7 x  1) ( 14 x )
4 '
' 2
2
3
= 70 x ( 7 x  1)
4 1
= ( 3 x  1) 2
2 

2
3
=
2 2x 1
29
The Sum / Difference Rule
If f (x) = h (x) ± g(x) , then
f ’(x) = h’(x) ± g’(x)

Example 5:
Find the derivatives of the following:
( a ) f ( x ) = 3x  2 x  6 x  11
8 5

2
7x
( b) f ( x ) = 5
3
( c) f ( x ) = 2x 2
5 x
30
Solution :
( ) ( )
a f x = 3 x 8
 2 x 5
 6 x  11
f '
( x ) = 24 x 7
 10 x  6
4

2
7x
( b) f ( x ) = 5
3
14
f ( x) = x
'

31
Solution :

( c) f ( x ) = 2x 2
5 x
1
= 2x  5x2 2

1
5 
f ( x) = 4x  x
' 2
2
5
= 4x 
2 x

32
The Product Rule

If y = uv, then
dy dv du
=u v = uv ' vu '
dx dx dx

Similarly, f ( x ) = u ( x ) v ( x ) , then

f '
( x) = u ( x) v ( x)  v ( x) u ( x)
' '

33
Example 6:
By using the product rule differentiate
the following with respect to x :
� 1 �
( a ) y = ( x  1) �3x  4 �
2

� x �

( b ) y = ( x  2 ) ( 2 x  3)
4 3

34
Solution 6 (a):
� 1 �
( a ) y = ( x  1) �3x  4 �
2

� x �

Product dy dv du
=u v
Rule dx dx dx
1
u = x 1
2
v = 3x  4
x
du
= 2x = 3x  x 4
dx
dv
= 3  4 x 5
dx
35
Solution 6 (a):
dy
= ( x  1) ( 3  4 x )  ( 3x  x ) ( 2 x )
2 5 4

dx
2
4x 4 2x
= 3x  5  3  5  6 x  4
2 2

x x x
2 4
= 9x  3  5  3
2

x x

36
Solution 6 (b):

( b ) y = ( x  2 ) ( 2 x  3)
4 3

Product dy
= uv�
 vu �
Rule dx

u = ( x  2) v = ( 2 x  3)
4 3

du dv
= 4 ( x  2) = 3 ( 2 x  3) ( 2 )
3 2

dx dx
= 6 ( 2 x  3)
2

37
Solution 6 (b):
dy
= ( x  2 ) 6 ( 2 x  3)  ( 2 x  3) 4 ( x  2 ) �
� � �
4 2 3 3

dx � � � �
= ( x  2 ) ( 2 x  3) � ( ) ( )
3 2
6
� x  2  4 2 x  3 �

= ( x  2) ( 2 x  3) [ 6 x  12  8 x  12]
3 2

= ( x  2 ) ( 2 x  3) [ 14 x  24] Note :
3 2

= 2 ( x  2 ) ( 2 x  3) ( 7 x  12 )
3 2 6 a 4 2
b  4 a 3 3
b
= a 3b 2 ( 6a  4b )

38
The Quotient Rule
u
If y = , then
v
du dv
v u
dy
= dx 2 dx
dx v
u ( x)
Similarly, f ( x ) = , then
v ( x)
v ( x ) u ' ( x )  u ( x ) v' ( x )
f ' ( x) =
v ( x) �
2

� � 39
Example 7:

By using Quotient Rule, find dy


dx
x
( a) y =
x2

( 3x  1)
2

( b) y=
x2  1

40
Solution 7 (a):
x du dv
v u
( a) y = Quotient dy
= dx 2 dx
x2 Rule dx v
u=x
du
=1 dy ( x  2 ) ( 1)  ( x ) ( 1)
dx =
( x  2)
2
dx

2
v = x2 =
( x  2)
2

dv
=1
dx
41
Solution 7 (b):
( 3 x  1)
2
dy vu ' uv '
( b) y= Quotient =
x 12
Rule dx v2

u = ( 3x  1) dy ( x  1) 6 ( 3 x  1)  ( 3 x  1) ( 2x)
2 2 2

=
u ' = 2 ( 3x  1) �
3 dx ( x  1)
2 2

= 6 ( 3 x  1) 3 ( x  1)  x ( 3 x  1) �
2 ( 3 x  1) �
� 2

= �
( x  1)
2 2

v = x 1
2

2 ( 3 x  1) ( 3  x )
v ' = 2x =
(x  1)
2 2
42
The Chain Rule

g ( x) �
If y = f �
� �and u = g ( x ) ,
then y = f ( u )

dy dy du
= �
dx du dx

43
Example 8:

Differentiate the following with respect


to x, using the Chain Rule.

( a ) y = ( x  4)
3

1
( b) y =
4x  9

44
Solution 8 (a) :
Chain dy dy du
= �
( a ) y = ( x  4)
3
Rule dx du dx

Let u = ( x  4 ) dy
= (3u )(1)
2

du dx
=1
dx
Substitute, u = x  4
dy
y=u 3
= 3( x  4) 2

dx
dy
= 3u 2

du
45
Solution 8(b):
1 Chain dy dy du
( b) y = = �
4x  9 Rule dx du dx

= ( 4x  9)
1
dy �1 �
( 4)
= �2 �
dx �u �
Let u = 4 x  9
du Substitute, u = 4 x  9
=4
dx
dy 4
1 =
y=u dx ( 4 x  9 ) 2

dy 2
= u
du 46
Example 9:
dy
Find if y = u  3u  1 and u = x  2
3 2 2

dx

Solution 9 :

y = u  3u  1
3 2
u = x 2
2

dy du
= 3u  6u
2
= 2x
du dx

47
Solution 9:

Chain dy dy du
= �
Rule dx du dx
dy
= (3u  6u )(2 x)
2

dx
Substitute, u = x 2  2
dy
= ( 3( x 2  2) 2  6( x 2  2) ) (2 x)
dx
dy
= 6 x ( x  2)
3 2

dx
48
Second Order Differentiation
Second order differentiation is the
differentiation of the first derivative.

Third Order Differentiation


Third order differentiation is the
differentiation of the second derivative.

49
Example 10:
d2y d3y
Find 2
and 3
for the following:
dx dx

( a) y = 2x 3
 5x  7 x  6
2

x 5
( b) y =
x

1
( c) y =
2x  3
50
Solution 10 (a) :

( )
a y = 2 x 3
 5 x 2
 7x  6

dy
= 6 x 2  10 x  7
dx
d2y
2
= 12 x  10
dx
3
d y
3
= 12
dx

51
Solution 10 (b):
2 5
x 5 d y 5� 3� 
( b) y = dx 2
= � �x
2� 2�
2

x
15
x 5 =
=  5

x x 4x 2

1

= 1  5x 2 3
d y 15 � 5 � 
7

3
= �  �x 2
dx 4 � 2�
dy 5 
3 75
= x 2 = 7
dx 2 8x 2
52
Solution 10 (c) :
1
( c) y =
2x  3
= ( 2 x  3)
1

dy
= ( 1) ( 2 x  3) ( 2 )
2

dx
= 2 ( 2 x  3)
2

2
=
( 2 x  3)
2

53
Solution 10 (c) :
2
d y
= ( 2 ) ( 2 ) ( 2 x  3) ( 2 )
3
2
dx
8
= 8 ( 2 x  3)
3
=
( 2 x  3)
3

3
d y
= 8 ( 3) ( 2 x  3) ( 2 )
4
3
dx
48
= 48 ( 2 x  3)
4
=
( 2 x  3)
4

54
Differentiation of Exponential,
Logarithmic and Trigonometric
Functions

55
• Determine the derivative of the functions;
x f ( x) x f ( x)
i. a , a ,e ,e
ii. ln x,ln f ( x )
iii. sin x,cos x, tan x, sec x, cosec x, cot x
iv. sin u,cos u, tan u, sec u, cosec u, cot u
v. sin n x,cos n x, tan n x, sec n x, cosec n x, cot n x .

• Solve problems involving the combination of


differentiation rules.
56
x
1. For a simplest index function, a
d x
dx
( )
a = a ln a
x

If m is a scalar,
d mx
dx
( )
a = ma ln a
mx

f ( x)
2. For the general exponential function a ,
where f(x) is a function of of x,
d
dx
a( )
f ( x)
= a ln a �f ' ( x )
f ( x)

57
Example 1

Differentiate the following with respect to


for each of the following function:

a) y = 5 x

3 x 5
b) y = 4
c) y = 35 x
Solution 1
a) y = 5
x
b) y = 4 3 x 5

dy d dy d
= 5 ln 5 x ln 4 ( 3 x  5)
x 3 x 5
=4
dx dx dx dx
dy dy
= 5 ln 5 = 4 ( 3) ln 4
x 3 x 5

dx dx
5 x
c) y = 3
dy d
= 3 ln 3 ( 5  x )
5 x

dx dx
dy
= 3 ( 1) ln 3 = 35 x ln 3
5 x
dx
x
3. For a simplest index function e ,
d x
dx
( e )=e x

If m is a scalar,
d mx
dx
( )
e = me mx

f ( x)
4. For the general exponential function e ,
where f(x) is a function of of x,

dx
(
d f ( x)
e )
= f ' ( x)e f ( x)

60
Example 2

dy
Find for each of the following function:
dx
a) y = e 4x

3 x 2 5
b) y = e
( 5 x ) 3
c) y = e
Solution 2

a) y = e 4x
b) y = e 3 x 2 5

dy 4x d
dx
=e
dx
4x dy
dx
=e 3 x 2 5 d

dx
( 3 x 2  5)
dy 4x dy 3 x 2 5
dx
= e (4) =e ( 6x)
dx
4x
= 4e
3 x 2 5
= 6 xe
Solution 2

( 5 x ) 3
c) y = e
dy ( 5 x ) 3 d
=e ( 5  x) 3

dx dx
dy 3
( 5 x )
=e ( 3) ( 5  x ) (1)
2
dx
3
= 3 ( 5  x ) e
2 ( 5 x )

63
Example 3

dy
Find for each of the following function:
dx

3 2 x
a) y = xe 4x
c) y = e
x

3x  2 e x
b) y = d) y = x  x
e x
e e
Solution 3 a)

a) y = xe 4x

dy d 4x 4x d

dx
=x
dx
( )
e e
dx
( x)
dy
= x ( 4e )  e ( 1)
4x 4x

dx
dy
= 4 xe  e4x 4x

dx
dy
= e 4 x ( 4 x  1)
dx
Solution 3 b)
3x  2
b) y = x
e
d d x
dy
e ( 3x  2 )  ( 3x  2 ) ( e )
x

= dx dx
(e )
2
dx x

dy e x ( 3)  ( 3 x  2 ) e x
=
dx (e )
x 2

dy e ( 3  3 x  2 ) 1 3 x
x
= = x
dx (e )
x 2
e
Solution 3 c)
3 2 x
c) y = e
x

= � e
dx x �dx
( �

)
dy 3 �d 2 x � 2 x �d �3 �
e � � �



dx �x �

dy 3
= ( 2 ) e
dx x
(
2 x
)
2 x �
 e �2 �
3 �
�x �
dy 2 x �6 3 �
= e �  2 �
dx �x x �
Solution 3 d)
x
e
d) y = x  x
e e
d x x d
dy (e x
e x
) ( )dx
(e e
dx
e x  e x )
=
( )
2
dx e e
x x

=
( )
dy e x  e  x e x  e x e x  e  x x x x
e e e e e (x x ) ( )
=
dx e e
x  x 2
( e e
x )
x 2
( )
dy
=
(
e x 2e  x ) =
2

( ) (e )
dx 2 2
e x  e x x
e x
5. The natural logarithmic function is
differentiable for all x  0 .
d 1
(ln x) =
dx x

6. If the natural logarithmic function in the form


�f ( x ) �
y = ln � � where f(x) is a function of x.

d f ' ( x)
[ ln f ( x ) ] =
dx f ( x)
69
Example 4

dy
Find for each of the following function:
dx

a) y = 5 ln x (
c) y = 7 ln 1  2 x 3
)

x2
b) y = ln( 4  3 x ) d) y = ln
1 x
Solution 4
a) y = 5 ln x
dy 5
= (
c) y = 7 ln 1  2 x 3
)
dx x dy
=
7 d
dx 1  2 x3 dx
1  2 (
x 3
)
b) y = ln ( 4  3 x ) dy
=
(
7 6 x 2 )
dx 1  2 x3
dy 1 d
= ( 4  3x )
dx 4  3 x dx 42 x 2
=
dy 3 1  2 x3
=
dx 4  3 x
Solution 4 d)
1
x2 �x  2 �
2 1 �x  2 �
d) y = ln = ln � � = ln � �
1 x �1  x � 2 �1  x �
1 1
y = ln ( x  2 )  ln ( 1  x )
2 2
dy 1 1 d 1 1 d
= ( x  2)  (1  x )
dx 2 ( x  2) dx 2 (1  x ) dx
dy 1 1 1 1
= [ 1]  [ 1]
dx 2 ( x  2 ) 2 (1 x)
dy 1 1 1 1
= 
dx 2 ( x  2) 2 (1  x )
dy 1  1 1  3
=    =
dx 2  x  2 1  x  2( x  2 )(1  x )
Example 5

dy
Find for each of the following function:
dx

a) y = x ln x x
( )
c) y = e ln 2 x 3

( )
b) y = ln 4e x 2 ln 2 x
d) y = 3 x
e
Solution 5 a) and b)
a) y = x ln x
dy �1 � u= x v = ln x
= ( x ) � � ( ln x ) ( 1)
dx �x � du dv 1
=1 =
= 1  ln x dx dx x

( )
b) y = ln 4e x2

ln ( ab ) = ln a  ln b
x2
y = ln 4  ln e = ln 4  x 2
dy ln m = p ln m
p

= 2x
dx ln e = 1
Solution 5 c)
x
( )
c) y = e ln 2 x 3

u=e x (
v = ln 2 x 3 )
du x
dv 1 d
= 3
dx 2 x dx
2 x3 ( )
= e
dx
dv 6 x 2 3
= 3 =
dx 2 x x

dy
dx
x �3�
( )(
= e � � ln 2 x3 e  x
�x �
)
x �3
�x
( )
3 �
= e �  ln 2 x �

Solution 5 d)
ln 2 x
d) y = 3 x u = ln 2 x v = e3 x
e du 1 d 1 dv
= 3e 3 x
= ( 2x) = dx
dx 2 x dx x

�1 �
dy
( e )
3x

�x�
� ( ln 2 x ) ( 3e 3x
)
=
dx (e )
3x 2

3x �1 �
e �  3ln 2 x �
dy
= �x � = 1  3 x ln 2 x
(e )
dx 2 3x
3x xe
Differentiation of Trigonometric
Functions

77
i) Derivatives of the functions sin x, cos x,
tan x, sec x, cosec x and cot x.

d
a) ( sin x ) = cos x
dx

d
b) ( cos x ) = -sin x
dx

d
c) ( tan x ) = sec 2 x
dx
78
i) Derivatives of the functions sin x, cos x,
tan x, sec x, cosec x and cot x.
d
d) ( sec x ) = sec x tan x
dx

d
e) ( cos ec x ) = -cos ec x cot x
dx

d
f) ( cot x ) = -cos ec x
2

dx
Example 7
d
Prove that ( tan x ) = sec x
2

dx
Solution 7
LHS:
d d �sin x �
tan x = � � Quotient Rule
dx dx �cos x �
d d
cos x ( sin x ) - sin x ( cos x )
= dx dx
( cos x )
2
80
cos x ( cos x ) - sin x ( - sin x )
= 2
cos x

cos x  sin x
2 2
= 2
cos x
1
= 2
cos x

= sec x
2

81
Example 8

Differentiate with respect to x :

a) 2sin x - 3cos x

5
b) 4 tan x -
x

82
Solution 8
d
a) ( 2sin x  3cos x ) d
b) ( 4 tan x  5 x )
1
dx
dx
= 2 cos x  3 (  sin x ) = 4sec x  ( 1) 5 x
2 2

= 2 cos x  3sin x 5
= 4sec x  2
2

x
Example 9

Find the gradient of the following curve at a


given point :

y = 2sin x - x ,
2
x = -p

84
Solution 9

b) y = 2sin x  x 2

dy
= 2cos x  2 x
dx
when x = p ,
dy
\ = 2 cos (p )  2(p )
dx
= 2  2p
ii) Derivatives of the function sin u, cos u,
tan u, sec u, cosec u and cot u with
u = f(x)
If u = f (x):
d d
(a) ( sin u ) = cos u u
dx dx
d d
(b) ( cos u ) = -sin u u
dx dx

d d
(c) ( tan u ) = sec u u
2

dx dx 86
ii) Derivatives of the function sin u, cos u,
tan u, sec u, cosec u and cot u with
u = f(x)

d d
(d) ( sec u ) = sec u tan u u
dx dx
d d
(e) ( cos ec u ) = -cos ec u cot u u
dx dx
d d
(f) ( cot u ) = - cos ec u u
2

dx dx
87
Example 10

Find the derivatives of :

a) sin ( ln x )

b) cos ( sin 4x )

88
Solution 10(a)

d
sin ( ln x ) �

� �
dx
d
= cos ( ln x ) ( ln x )
dx
cos ( ln x )
=
x
Solution 10(b)

d
cos ( sin 4 x )
dx
d
=  sin ( sin 4 x ) ( sin 4 x )
dx
d
=  sin ( sin 4 x ) ( cos 4 x ) 4x
dx
= 4sin ( sin 4 x ) ( cos 4 x )
iii) Derivatives of sinn u, cosn u, tann u,
secn u, cosecn u and cotn u with u = f(x)

If u = f (x), then
d d
a) ( sin u ) = n sin u (sin u )
n n -1

dx dx
d d
b) (cos u ) = n cos u (cos u )
n n -1

dx dx
d d
c) (tan u ) = n tan u (tan u )
n n -1

dx dx 91
d d
d)
dx
( cot u ) = n cot u ( cot u )
n n -1

dx

d d
e)
dx
( sec u ) = n sec u (sec u )
n n -1

dx

d d
f) (cos ec u ) = n cos ec u �
n n -1
cos ec ( u ) �
� �
dx dx
92
Example 11

Differentiate with respect to x :

a) cos 2x
4

1
b) sin ( 2 x  1)
3 2

93
Solution 11(a)

d d
a) cos 2 x = 4 cos 2 x ( cos 2 x )
4 3

dx dx
= 4 cos 2 x ( 2sin 2 x )
3

= 8 ( cos 2 x ) ( sin 2 x )
3

94
Solution 11(b)
d 1
b) sin 3 ( 2 x  1) 2
dx
1
d � 1

= 3sin 2 ( 2 x  1) 2 sin ( 2 x  1) �

2
dx � �
� 2 1
�� 1
�d 1
sin ( 2 x  1) 2 �
= 3� cos
� ( 2 x  1) 2
�dx ( 2 x  1) 2
� �� �
� 2 1
�� 1
�1 1
d
sin ( 2 x  1) �� cos ( 2 x  1) � ( 2 x  1) ( 2 x  1)

= 3� 2 2 2
� �� �2 dx
� 2 1
�� 1
�1 1
sin ( 2 x  1) 2 ��cos ( 2 x  1) 2 � ( 2 x  1) 2 ( 2 )

= 3�
� �� �2
� 2 1
�� 1
� 1
sin ( 2 x  1) 2 � ( ) 2 ( 2 x  1) 2

= 3� cos
� 2 x  1 �
� �� � 95
Problem Solving involving the
combination of differentiation rules

Example 12

dy
Find for y = ( x  1)
2x

dx

96
Solution 12
y = ( x  1)
2x

By taking ln at the both sides


ln y = ln ( x  1) 2x

ln y = 2 x ln ( x  1)
Differentiate both side toward x
1 dy d d
= 2x � ln ( x  1) �
� � ln ( x  1) ( 2 x )
y dx dx dx
�1 d �
= ( 2x) � ( x  1) � �
ln ( x  1) �
� �( 2)
�x  1 dx �
Solution 12
1 dy �1 �
= ( 2x) � ( 1) � �
ln ( x  1) �
� ( 2)

y dx �x 1 �

1 dy 2x
=  2 ln ( x  1)
y dx x  1
dy �2 x �
\ = y �  2 ln ( x  1) �
dx �x  1 �
dy 2 x �2 x �
\ = ( x  1) �  2ln ( x  1) �
dx �x  1 �
98
Example 13

Find f '( x) if f ( x) = ln ( sin x ) .


2

99
Solution 13
d 1 d
dx
ln ( sin x ) =
2
2
sin x dx
( sin x )
2

1 d
= 2 ( 2sin x ) ( sin x )
sin x dx
1
= 2 ( 2sin x ) cos x
sin x
2 cos x
=
sin x
= 2 cot x 100
Example 14

dy
Find if y = cos ( e )  e cos x .
x x
dx

101
Solution 14
y = cos ( e )  e cos x
x x

dy d x x d d x
=  sin ( e )
x
( e ) e ( cos x )  cos x ( e )
dx dx dx dx

=  sin ( e ) e  e (  sin x )  ( cos x ) ( e


x x x x
)
= e sin ( e )  e sin x  e cos x
x x x x

102
Example 15
dy
Find if y = sec ( e .)
x

dx

Solution 15
y = sec ( e x
)
dy d x
= sec ( e ) tan ( e )
x x
( e )
dx dx

= e x sec ( e x ) tan ( e x )
103

You might also like