Idi na sadržaj

Glikogen

S Wikipedije, slobodne enciklopedije
Datum izmjene: 3 novembar 2015 u 01:40; autor: Yahadzija (razgovor | doprinosi) (N-Glikogen)
(razl) ← Starija izmjena | Trenutna verzija (razl) | Novija izmjena → (razl)

{{Izmjene u toku}

Struktura glikogena

[[Datoteka:Glycogen structure.svg|mini|300px|2-D profil glikogena. Protein u jezgru, glukogenin, je okružen granama glukoznih jedinica. Cijela globularna granula može sadržavati približno oko 30.000 glukoznih jedinica.Greška kod citiranja: Nedostaje oznaka za zatvaranje </ref> nakon <ref> U biosintezi glikogenina prajmer je glikogenin, onda kada počinje od prekursora sa manje od 7 ostataka glukoze.

Zastupljenost i uloga u organizmu

Ukupne rezerve glikogena u organizmu su primarno smješten u jetri i mišićima. Kod odraslih osoba, u jetri ima do 100g glikogena, a odatnih 200g je u mišićima.[1] Glikogen se skladišti u obliku zrnaca u citosolu ćelija. Ćelije jetre, u odnosu na svoju masu, mogu primiti maksimalno 5-8% glikogena, a u mišićima oko 1-3%. Zasićenost ćelija glikogenom, uglavnom ovisi o dužini gladovanja, fizičkoj aktivnosti, ali i udjelu ugljikohidrata u ishrani. Pri mirovanju, rezerve glikogena mogu zadovoljiti energetske potrebe organizma u periodu od oko 12 sati intenzivnog gladovanja.[2]

Glikogen se ne skladišti u većoj mjeri od spomenute, jer ne predstavlja najsvrsishodniji oblik deponovanja energije; veže dva puta veću količinu vode od svoje mase, a daje 2,5 puta manje energije od iste mase neutralnih masti.

Rezerve glikogena se neprestano troše i obnavljanju. Nakon uzimanja, probave i apsorpcije hrane bogate ugljikohidratima, povećanja se razina glukoze u krvi, što utiče na lučenje insulina (iz pankreasa). U nizu kompleksnih regulatornih uloga koje obavlja u metabolizmu, insulin utiče na povećan ulaz glukoze u ćelije. Pošto je glukoza osmotski veoma aktivna, normalno se ne deponira u ćelijama, nego brzo glikolizira. U ćelijama jetre i mišića, insulin istovremeno aktivira proces glikogeneza — biosinteze glikogena, što omogućava konverziju preuzete glukoze u glikogen. Nakon zasićenja ćelija glikogenom, suvišna glukoza, u nizu metaboličkih procesa, pretvara se u lipide, a suvišna energija skladišti u vidu triacilglicerola.

Promet glikogen u jetri

Okončanjem priliva glukoze iz probavnog trakta, razina insulina opada. Za homeostazu razine glukoze u krvi odgovoran je i hormonglukagon. Budući da je je glukoza najneposredniji izvor energije za ćelije, a za neurone i jedini (osim u periodu dugotrajnog gladovanja), razina glukoze u krvi posljedično počinje da opada. Glukagon smanjuje intenzitet preuzimanja glukoze iz krvotoka, inhibira nebitne anaboličke procese i regulatorno utiče na mobilizaciju rezervi glikogena. Oslobođena glukoza iz hepatocita, prelazi zatim u krvotok. Suštinski, glikogen jetre predstavlja depo glukoze koji, između obroka, obezbjeđuje konstantan dotok ovog šećera perifernim organima i tkivima. Ova uloga se označava i kaopuferska uloga jetre za glukozu.

Promet glikogena u mišićima

U mišićima, glikogenma ne učestvuje u održavanju homeostaze glukoze, nego je isključivo rezerva energije u samim mišićima. U mirovanju ili pri umjerenim fizičkim aktivnostima, energetske potrebe za održavanje mišićnog tonusa i umjerenog rada podmiruju se aerobnim metabolizmom — masne kiseline, glukoza i kisik, u dovoljnim količinama, dopremaju se do mišićnog tkiva, razgrađuju i konačno uključuju u respiratorni lanac čime se, u oksidativnoj fosforilaciji, obezbjeđuje znatna količina energije. Pod navedenim okolnostima, taj iznos zadovoljava oko 95% energetskih potreba mišića. Tokom intenzivnog fizičkog rada, potrebe za energijom se snažno povećavaju pa relativno spor aerobni metabolizam nije dovoljan da ih pravovremeno podmiri. Po utrošku kreatin-fosfata, kao najneposrednije rezerve energije koja je deponirana u mišićima, počinje glikogenoliza. Njome se brzo oslobađaju velike količine uskladištene glukoze, koja se razgrađuje do piruvata, a zatim i redukucira do laktata, uz stvaranje ATP. Anaerobni put stvaranja ATP je oko 100 puta brži od aerobnog.

Metabolizam glikogena

Katabolizam

Proces razgradnje glikogena do glukoze označava se kao glikogenoliza. To je proces koji kataliziraju tri enzima, uz odvajanje po jedane molekule glukoze, u vidu glukoze-6-fosfata (sa neredukujućih krajeva glikogena). Proces je pod kontrolom brojnih faktora, ali se u biti zasniva na alosternoj modulaciji i kovalentnoj modifikaciji enzima koji ga kataliziraju. Nastala glukoza-6-fosfat (G6P) u hepotocitima se defosforilizira pod djejstvom specifične fosfataze, nakon čega glukoza difundira u krvotok. G6P djelimično ulazi i u fosfoglukonatni put, a G6P u mišićima se primarno uključuje u glikolitički put.

Anabolizam

Proces biosinteze glikogena je glikogeneza. Taj proces Kataliziraju također tri enzima, pri čemu je prva reakcija endergonska: formiranje UDP-glukoze. Njena bit je uaktiviranju glikozidnih jedinica, koje se zatim vežu u rastući lanac glikogena, pri čemu se vezana energija troši za formiranje glikozidne veze. U ćelijama sa potpunim gubitkom glikogena, za njegovu sintezu je neophodan glikogenin, kao prajmer koji omogućava i autokatalizira vezivanje prvih 7 ostataka glukoze. Glikogeneza je također strogo kontrolirana, posebno hormonima, posredovanom kovalentnom modifikacijom glikogen-sintaze.

Poremećaji

Pošto je insulin centralni hormon metabolizma glikogena, većina stečenih poremećaja metabolizma glikogena vezana je za njegove patološki smanjene ili povišene razine. Jedan dio poremećaja je i urođene prirode, a posljedica je nedostatka ili disfunkcije enzima uključenih u metabolizam glikogena. Takvi poremećaji se općenito označavaju kao poremećaji skladištenja glikogena.

Hipoglikemija, koja je izazvana viškom insulina, koči proces glikogenolize, inhibirajući glikogen-fosforilazu, a time i oslobađanje rezervi glukoze. Manjak insulina pak sprečava ulazak glukoze u ćelije, pa i stvranje rezervi u molekulama glikogena. Normalizacija metabolizma glukoze uglavnom uravnotežava i metabolizam glikogena.

Također pogledajte

Reference

  1. ^ David Shier D., Butler J., Lewis R. (1999): Hole's human anatomy and physiology, 8th Ed., WCB/McGraw-Hill, New York.
  2. ^ http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2047463/pdf/amjpathol00410-0037.pdf.

Vanjski linkovi